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Abstract
The objective of this dissertation is to develop data-driven frequency-domain methods for

designing robust controllers through the use of convex optimization algorithms. Many of

today’s industrial processes are becoming more complex, and modeling accurate physical

models for these plants using first principles may be impossible. Albeit a model may be

available; however, such a model may be too complex to consider for an appropriate controller

design. With the increased developments in the computing world, large amounts of measured

data can be easily collected and stored for processing purposes. Data can also be collected

and used in an on-line fashion. Thus it would be very sensible to make full use of this data

for controller design, performance evaluation, and stability analysis. The design methods

imposed in this work ensure that the dynamics of a system are captured in an experiment

and avoids the problem of unmodeled dynamics associated with parametric models. The

devised methods consider robust designs for both linear-time-invariant (LTI) single-input-

single-output (SISO) systems and certain classes of nonlinear systems.

In this dissertation, a data-driven approach using the frequency response function of a system

is proposed for designing robust controllers with H∞ performance. Necessary and sufficient

conditions are derived for obtaining H∞ performance while guaranteeing the closed-loop

stability of a system. A convex optimization algorithm is formulated to obtain the controller

parameters which ensure system robustness; the controller is robust with respect to the

frequency-dependent uncertainties of the frequency response function. For a certain class of

nonlinearities, the proposed method can be used to obtain a best-linear-approximation with

an associated frequency-dependent uncertainty to guarantee the stability and performance

for the underlying linear system that is subject to nonlinear distortions.

The controller for this design scheme is presented as a ratio of two linearly-parameterized

transfer functions; in this manner, the numerator and denominator of a controller are simul-

taneously optimized. With this construction, it can be shown that as the controller order

increases, the solution to the convex problem converges to the global optimal solution of

the H∞ problem. This method is then extended to the 2-degree-of-freedom discrete-time

controller where the necessary and sufficient conditions are imposed for multiple weighted

sensitivity functions.

The concepts behind these design methods are then used to devise necessary and sufficient

conditions for ensuring the closed-loop stability of systems with sector-bounded nonlineari-

ties. The conditions are simple convex feasibility constraints which can be used to stabilize

systems with multi-model uncertainty. Additionally, a method is proposed for obtaining H∞
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performance for systems with uncertain gains within these sectors.

By convexifying the H∞ problem, the global optimal solution to an approximate problem

is obtained. For low-order controllers, the solution to this approximate problem may lead

to solutions far from the optimal solution of the true H∞ problem. Thus two methods are

proposed to address this issue for low-order controllers. In one method, a non-convex problem

is formulated which optimizes the basis function parameters of a controller while guaranteeing

the stability of the closed-loop systems. In another method, a set of convex problems are

solved in an iterative fashion to obtain the desired performance (which also guarantees the

closed-loop stability of the system). With both methods, the local solution to the H∞ problem

for fixed-structure controllers is obtained. However, the convex problem is computationally

tractable and can also consider H2 performance.

The effectiveness of the proposed method(s) is illustrated by considering several case studies

that require robust controllers for achieving the desired performance. The main applicative

work in this dissertation is with respect to a power converter control system at the European

Organization for Nuclear Research (CERN) (which is used to control the current in a magnet

to produce the desired field in controlling particle trajectories in particle accelerators). The

proposed design methods are implemented in order to satisfy the challenging performance

specifications set by the application while guaranteeing the system stability and robustness

using data-driven design strategies.

Key words: Convex optimization, data-driven control, fixed-structure control, H∞ control,

H2 control, nonlinear control, power converter control, robust control, sector nonlinearity.
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Résumé
L’objectif de cette thèse est de développer des méthodes de domaine fréquentiel pilotées par

les données pour la conception de contrôleurs robustes grâce à l’utilisation d’algorithmes

d’optimisation convexe. De nombreux procédés industriels actuels deviennent de plus en

plus complexes et il peut être impossible de modéliser des modèles physiques précis pour ces

plantes en utilisant les principes premiers. Bien qu’un modèle puisse être disponible ; cepen-

dant, un tel modèle peut être trop complexe à considérer pour une conception de contrôleur

appropriée. Avec les développements accrus dans le monde informatique, de grandes quan-

tités de données mesurées peuvent être facilement collectées et enregistrées à des fins de

traitement. Les données peuvent également être collectées et utilisées en ligne. Il serait donc

judicieux de tirer pleinement parti de ces données pour la conception du contrôleur, l’évalua-

tion des performances et l’analyse de la stabilité. Les méthodes de conception imposées dans

ce travail garantissent que la dynamique d’un système est capturée dans une expérience et

évite le problème de la dynamique non modélisée associée aux modèles paramétriques. Les

méthodes développées prennent en compte des conceptions robustes pour les systèmes à

entrée unique à sortie unique (SISO) linéaire invariant de temps (LTI) et pour certaines classes

de systèmes non-linéaires.

Dans cette thèse, une approche basée sur les données utilisant la fonction de réponse en

fréquence d’un système est proposée pour concevoir des contrôleurs robustes avec des per-

formances H∞. Les conditions nécessaires et suffisantes sont dérivées pour obtenir des

performances H∞ tout en garantissant la stabilité en boucle fermée d’un système. Un algo-

rithme d’optimisation convexe est implémenté pour obtenir les paramètres du contrôleur

qui assurent la robustesse du système ; le contrôleur est robuste par rapport aux incertitudes

dépendantes de la fréquence de la fonction de réponse en fréquence. En effet, pour une

certaine classe de non-linéarités, la méthode proposée peut être utilisée pour obtenir une

meilleure approximation linéaire avec une incertitude dépendante de la fréquence associée

pour garantir la stabilité et la performance du système linéaire sous-jacent aux distorsions

non-linéaires.

Le contrôleur pour ce schéma de conception est présenté comme un ratio de deux fonctions

de transfert paramétrées linéairement ; dans cette manière, le numérateur et le dénominateur

d’un contrôleur sont simultanément optimisés. Avec cette construction, on peut montrer qu’à

mesure que l’ordre du contrôleur augmente, la solution au problème convexe converge vers la

solution optimale globale du problème H∞. Cette méthode est ensuite étendue au contrôleur

à temps discret à 2 degrés-de-liberté où les conditions nécessaires et suffisantes sont imposées
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pour des fonctions de sensibilité pondérées multiples.

Les concepts qui sous-tendent ces méthodes de conception sont ensuite utilisés pour conce-

voir les conditions nécessaires et suffisantes pour assurer la stabilité en boucle fermée des

systèmes avec des non-linéarités liées au secteur. Les conditions sont de simples contraintes

de faisabilité convexes qui peuvent être utilisées pour stabiliser des systèmes avec une incerti-

tude multimodèle. De plus, une méthode est proposée pour obtenir des performances H∞
pour les systèmes dont les gains sont incertains dans ces secteurs.

En convexisant le problème H∞, on obtient la solution optimale globale à un problème

approximatif. Pour les contrôleurs de bas-ordre, la solution à ce problème approximatif peut

conduire à des solutions loin de la solution optimale du vrai problème H∞. Ainsi, deux

méthodes sont proposées pour résoudre ce problème pour les contrôleurs de bas-ordre. Dans

une méthode, un problème non convexe est formulé qui optimise les paramètres de fonction

de base d’un contrôleur tout en garantissant la stabilité des systèmes en boucle fermée. Dans

une autre méthode, un ensemble sur des problèmes convexes est résolu de manière itérative

pour obtenir la performance désirée (ce qui garantit également la stabilité en boucle fermée

du système). Avec les deux méthodes, la solution locale au problème H∞ pour les contrôleurs

de structure fixe est obtenue. Cependant, le problème convexe est informatiquement tractable

et peut également considérer H2 performance.

L’efficacité de la méthode proposée est illustrée en considérant plusieurs exemples qui néces-

sitent des contrôleurs robustes pour atteindre la performance souhaitée. Le principal travail

applicatif de cette thèse porte sur un système de contrôle de convertisseur de puissance au

CERN (qui est utilisé pour contrôler le courant dans un aimant afin de produire le champ

souhaité pour contrôler les trajectoires de particules dans les accélérateurs). Les méthodes de

conception proposées sont mises en œuvre afin de satisfaire les spécifications de performance

difficiles définies par l’application tout en garantissant la stabilité et la robustesse du système

à l’aide de stratégies de conception pilotées par les données.

Mots clefs : Optimisation convexe, contrôle piloté par les données, contrôle à structure fixe,

contrôle H∞, contrôle H2, contrôle non-linéaire, contrôle du convertisseur de puissance,

contrôle robuste, non-linéarité sectorielle.
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Nomenclature
List of Operators and Conventions

RH∞ The set of all stable, proper, real-rational transfer func-

tions with bounded infinity norms.

ρ⊤ Transponse of the vector ρ.

H ≺ 0 Strict matrix inequality of a symmetric matrix H .

ℑ{·} Imaginary part of a complex variable.

C The set of all complex numbers.

R The set of all real numbers.

R
n The set of all real vectors of dimension n.

R
m×n The set of real m ×n matrices.

R+ The set of all real numbers greater than zero.

Z The set of non-negative integers.

F {·} Fourier transform of the argument.

Φ(u) Nonlinear function of an input signal u.

ℜ{·} Real part of a complex variable.

σ2
x y = 1

Q−1

∑Q
q=1(x[q] −x)(y [q] − y)∗ Sample covariance of Q realizations of x and y .

σ2
x = 1

Q−1

∑Q
q=1 |x

[q] −x|2 Sample variance of Q realizations of x.

A( jω) Frequency response function of A(s).

A(e jω)/A(e− jω) Frequency response function of A(z)/A(z−1).

A(s) Transfer function of continuous-time system.

A(z)/A(z−1) Transfer function of discrete-time system.
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A∗ Complex conjugate of the complex number A.

C (β,rd ) Disk associated with Circle criterion (centered at β

with radius rd ).

f : A → B f is a function on the set of the domain of f ⊆ A into

the set B .

|A| =
√

[ℜ{A}]2 + [ℑ{A}]2 The magnitude of a complex number A.

||A||∞ = supω |A( jω)| Infinity norm of the complex function A( jω) (the same

operation applies for A(e− jω)) .

||A||p =
[

1
2π

∫

Ωc
|A( jω)|p dω

]p−1

p-norm of A( jω) for p ∈ [1,2, . . . ,∞[ .

List of Symbols

α Uncertain gain within a sector-bounded nonlinearity.

αp The significance level of a χ2 distribution.

β Center of the disk C (β,rd ).

β1,β2 Slopes of the lines which bound a sector nonlinearity.

φ Vector of stable orthogonal basis functions.

ρ Vector of decision variables.

θp Vector of parameteric uncertainties.

δm Additive disk uncertainty parameter associated with

the coprime M .

δn Additive disk uncertainty parameter associated with

the coprime N .

ℓ Number of models of a multimodel process.

ι Constriction coefficient of PSO algorithm.

Di Frequency spectrum of a process input disturbance.

Do Frequency spectrum of a process output disturbance.

Nd Describing function of a nonlinearity.
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Nt The set of all sector-bounded time-varying nonlineari-

ties.

R Frequency spectrum of the signal r .

Sq q th sensitivity function of a closed-loop system.

S d
q Desired q th sensitivity function of a closed-loop sys-

tem.

S i
q q th sensitivity function of a closed-loop system with

respect to the i th plant model.

U Frequency spectrum of the signal u.

Un Frequency spectrum of un .

V A class of nonlinear systems (i.e., Wiener systems).

X Frequency spectrum of a signal for identifying the co-

prime factors of a linear system in a nonlinear closed-

loop structure.

Y Frequency spectrum of the signal y .

YS Spectrum of error term which is used to describe a

nonlinear system in V .

Ω The set of discrete-time frequencies.

ω Frequency in rads−1.

Ωc The set of continuous-time frequencies.

σ2
A Variance associated with the measurements of system

A.

θ1,θ2,θ3 Cognitive learning rate, social learning rate, and learn-

ing rate, respectively (used in the PSO algorithm).

M̃ Set of additive uncertainty associated with coprime

M .

Ñ Set of additive uncertainty associated with coprime N .

ϑ PSO penalty factor.

ξ Laguerre parameter for continuous-time controller.

ξz Laguerre parameter for discrete-time controller.
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ζd Desired damping factor associated with a second order

transfer function.

ζi Poles of a generalized orthonormal basis function.

fd Desired closed-loop bandwidth.

G General representation of a linear plant model.

Gi i th model of a multimodel process.

GV A plant model which belongs to the class of systems in

V .

K Controller for 1-degree-of-freedom structure.

L General representation of an open-loop system.

M Coprime factor of a plant model G .

mp mp sided polygon to approximate the ellipse from a

model’s parameteric uncertainty.

N Coprime factor of a plant model G .

nr ,ns ,nt Order of the polynomials R, S, and T , respectively.

px Number of particles in PSO algorithm.

R Polynomial of discrete-time controller.

r Reference input of a closed-loop system.

rd Radius of the disk C (β,rd ).

S Polynomial of discrete-time controller.

s Laplace transform variable.

T Polynomial of discrete-time 2DOF RST controller.

Ts Sampling time of a discrete-time system.

u Input signal of a plant/process.

un Output signal of a sector-bounded nonlinearity.

Wq Weighting filter associated with the q th sensitivity func-

tion Sq .

X Coprime factor of controller K .
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Y Coprime factor of controller K .

y Output signal of a plant/process.

z Z-transform variable.
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1 Introduction

1.1 Motivation

1.1.1 Brief History on Automatic Control

The initial use and implementation of feedback control is claimed to have originated from

the Hellenic worlds; the earliest known construction of a feedback control mechanism was an

ancient water clock invented by a Greek mechanician named Ktesibios in the third century

B.C. [1]. The invention of devices for automatic control of temperature (i.e., the thermostat)

and windmills were established in the 17th and 18th century. The flyball governor (initially

conceptualized by James Watt in 1788) was a feedback system that implemented the principle

of proportional control to regulate steam engines; an analysis of this type of system was

performed by James Clerk Maxwell [2]. This system led to an uprising in the art of modern

control theory which sprouted the industrial revolution. The increased use of engines in the

modern era led to further investigation of feedback control by Bode [3] (who introduced the

notions of gain and phase margins) and Nyquist [4] who published his celebrated frequency-

domain encirclement criterion. Poincaré and Lyapunov also published important works in

modern and state space approaches.

As time progressed, the emergence of other sophisticated control algorithms of feedback

systems have been devised in response to the technological advances of industrial settings. The

introduction of digital technologies in the late 1950s brought enormous changes to automatic

control. Digital computers made it possible to implement more advanced control algorithms

that were being developed in the 1970s [5]. Control methods such as adaptive control have a

long history; however, it was the digital computer which offered the advantage of identifying

the system parameters, making decisions about the required modifications to the control

algorithm, and implementing the changes in a timely manner. Optimal and robust control

techniques (such as model-predictive-control (MPC), linear-quadratic-Gaussian (LQG) and

H∞ approaches) could not be realized for practical applications without the help of digital

computers [6]. However, at that time, computers were not sophisticated enough to solve

such problems in a reasonable manner and solutions for these problems were attempted
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Chapter 1. Introduction

to be derived analytically (which was a very difficult task). However, as time progressed,

technological advances were made in the computing world which allowed computers to

solve these problems very efficiently. As our increasingly advanced technologies enable us

to build larger, more capable, more complex systems, the role of design becomes ever more

important. Due to the complexity of many of today’s industrial processes (transportation

systems, aerospace systems, communication systems, etc.,), the modeling of these systems

by using first principles may be impossible. Even though a physical model is available, these

models tend to be too complex for analysis and controller implementation. Data-driven

control schemes seek to alleviate this problem by synthesizing controllers without the need of

a physical model.

1.1.2 The Data-Driven Paradigm

In industrial schemes, the dynamics of plants are typically approximated by low-order models,

since the controller synthesis is easier to implement for lower order processes. However,

this approximation can impede the performance of a controller, since low-order models are

subject to model uncertainty. In a data-driven design setting, a controller is designed by

directly using online or offline input/output data (instead of designing a controller based on

first modeling of a given plant). Data-driven methods aim to design controllers through direct

usage of the process data while eliminating the challenging and tedious issues associated with

the modeling process. In this manner, stability and performance can still be guaranteed under

certain reasonable assumptions. A survey on the differences associated with model-based

control and data-driven control has been addressed in [7] and [8]; the authors assert that

model-based control methods are inherently less robust due to the unmodeled dynamics of a

process, and that these controllers may possibly be unsafe for practical applications. With the

data-driven control scheme, the parametric uncertainties and the unmodeled dynamics (for

linear time-invariant systems) are irrelevant and the only source of uncertainty comes from

the measurement process.

Given the available resources of a digital computer, access to huge amounts of measured

process data can easily be collected due to the well-developed information technology (i.e.,

collected information from stored historical data or online data in real-time during process

runs). The information can be collected and interpreted in the time-domain or frequency-

domain. The frequency-domain approach offers many advantages compared to time-domain

methods:

• Without knowledge of the transfer function, the dynamics of a system can be captured

experimentally through the frequency response.

• Relative and absolute stability of a closed-loop system can be determined with the

knowledge of the open-loop frequency response.

• Noise disturbance generated in the system can be easily determined using frequency
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analysis.

• Frequency-domain analysis can also be carried out for nonlinear systems (including

systems with strong nonlinearities such as chaos and bifurcation [9]).

In addition to avoiding the problem of unmodeled dynamics, the use of controllers with

pre-defined structures is also important. In the classical robust control design method, the

order of the resulting full-order controllers can be quite large; in fact, the order can be as

large as the order of the augmented plant [10]. This can be problematic since it is known that

computers possess cost-limited hardware and are limited in computing resources. However,

the increased dependency on computers for control systems has fostered a need for control

designs in a digital framework. Thus the notion of fixed-structure controller synthesis becomes

an important subject in today’s controller design scheme. In fact, the proportional-integral and

proportional-integral-derivative (PI/PID) controllers are still the most widely used controller

structures in today’s industry due to their ease of implementation. It is known that more than

90% of all control loops are PID [11].

Fixed-structure robust controller design schemes for linear systems (in a data-driven setting)

have been the focus of ongoing research. To a certain degree, the effects of nonlinearities could

be ignored because they did not impair system performance. However, due to the increased

performance demands on today’s industrial systems, the effects of certain nonlinearities can

impact the behavior of these systems. For many of today’s systems, the effects of nonlinearities

can no longer be neglected (see [12] and [13]). Due to the extensive use of frequency-domain

techniques for linear systems within the control systems community, and given the need for

analyzing the effects of nonlinear systems, it is thus natural to extend the frequency-domain

analysis and control schemes for linear systems where nonlinear distortions can occur. A

comparative study of frequency-domain methods for nonlinear systems has recently been

addressed in [14].

1.2 State of the Art

In this section, a review of the current literature on data-driven control schemes that include

fixed-structure H2 and H∞ design methods for linear systems is presented, as this is one

of the major research topics covered in this dissertation. Additionally, a review of nonlinear

controller design methods (using frequency-domain data) is also presented.

1.2.1 Data-driven Control

Data-driven controller design is a very attractive research field within the control community

(see [8, 7, 15]). In this method, a controller is designed by using either the time-domain

or frequency-domain data of a system rather than using a parametric model of the plant

(where the intermediate identification procedure or first principle modeling is not required).
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A comparative analysis shows that although model-based approaches are statistically more

efficient in terms of the variance of the controller parameters, a data-driven approach can

outperform the model-based approach in terms of the final control cost [16]. Data-driven

controllers can be synthesized either on-line or off-line.

On-line Methods

On-line methods refer to design schemes where the parameters of a controller are adjusted in

real-time while the system is running in closed-loop operation. The classical model-reference

adaptive control (MRAC) [17] may be considered as the first data-driven attempt to solve

the model-reference problem in an on-line manner. This method attempts to minimize

the tracking error and adjust the controller parameters from an on-line identification of the

process model.

Model-free adaptive control (MFAC) [18] is a more recent data-driven approach that imple-

ments a dynamic linearization of the process whose controller design and stability analysis

merely depend on the measured input and output data of the controlled plants. This method

can be used to design discrete-time controllers for nonlinear systems and multiple-input-

multiple-output (MIMO) processes [19, 20]. More recent extensions and applications which

implement this method can be found in [21, 22, 23, 24].

Unfalsified control (UC) [25] is yet another on-line control strategy which uses a fictitious

reference signal to control a closed-loop system. The unfalsified control theory views the

control problem as an identification problem where a control law is identified based on control

performance goals, problem constraints, and evolving observational data. With this method,

a controller is discarded when the fictitious signals do not satisfy the desired specifications.

A non-iterative approach for controller design using unfalsified control is presented in [26];

however, this method is limited to stable systems. [27] extends on the concepts of unfalsified

control by using Riccati-based parameterization of H∞ controllers. Note that an off-line

non-iterative method for UC has recently been proposed in [28].

Off-line Methods

Off-line design schemes can synthesize controllers before they are applied to a system. Thus

when there is no need for adaptation (and the process is time-invariant), these methods

are favorable due to their ease of implementation. However, these methods rely on finite

amount of data that is generated from a given identification experiment. The widely used

PID controller is usually tuned based on a set of time-domain or frequency-domain data. The

first examples of automated tuning using PID controllers were based on empirical methods

proposed by Ziegler and Nichols [29].

Iterative feedback tuning (IFT) [30, 31] is an offline control methodology that uses an iterative

technique to solve a non-convex problem to obtain the controller parameters; this method can
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consider fixed-structure controllers. The main goal is to obtain unbiased gradient estimates

and optimize for time-domain performance. The gradient of a criterion (with respect to the

controller parameters) is computed such that a desired specification is satisfied (which is

usually accomplished by minimizing a desired performance criterion). A typical performance

criterion is to minimize the error between the reference signal and the actual output. The

controller parameters are updated based on data obtained from multiple experiments. How-

ever, stability is not guaranteed with this method. Some works which devised robust stability

conditions for the IFT method are asserted in [32, 33], and recent applications of robust IFT

controller design methods have been addressed in [34, 35].

The virtual reference feedback tuning (VRFT) [36] is an offline one-shot method which min-

imizes the (filtered) H2 norm of the difference between a desired reference model and the

achieved closed-loop system. In this method, a controller is computed based on the mea-

sured plant input when fed by a “virtual” error. This signal is computed assuming that the

experiment was “virtually” performed in closed-loop with the controller achieving the desired

specifications based on a given reference model. This idea was first proposed in [37], where it

was denoted as Virtual Reference Direct Design. The authors in [38] give an overview of data-

driven methods for the general H2 control problem. Recent developments and extensions

using the VRFT technique for SISO systems ([39],[40]) and MIMO systems ([41],[42],[43]) have

also been studied.

Iterative Correlation based Tuning (ICbT) [44] is another off-line approach where the objective

is to adjust and fine tune the controller parameters by decorrelating the closed-loop output

error and the reference signal. It implements the concepts of system identification where

the predictor of the plant output is adjusted to make the prediction error uncorrelated with

the plant input. An extension of this method to MIMO systems has been presented in [45].

However, in [46], a correlation-based tuning (CbT) approach is presented (which is a non-

iterative version of ICbT) where the stability issue and the influence of measurement noise in

the model-reference problem are studied.

A comparative study of different data-driven model-reference methods for non-minimum

phase plants has been recently given in [47]. Note that VRFT, IFT, CbT, and the unfalsified

control strategies are model-reference based schemes; these types of problems require special

care since minimization of a desired reference model can lead to poor stability and robustness

margins.

1.2.2 Fixed-Structure Controller Design

Controller synthesis methods belonging to the H∞ control framework minimizes the H∞
norm of a weighted closed-loop sensitivity function. In the general H∞ synthesis problems,

controllers are computed using semidefinite programing (SDP) algorithms [48] or algebraic

Riccati equations [49]. The solutions of these H∞ control problems refer to the full-order

case (which are convex). The controllers that result from these algorithms, however, are
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typically of very high order, which complicates implementation. As discussed above, due

to the ease of implementation of low-order controllers (such as the PID) and the limited

computational resources of today’s embedded systems, the control engineer is confined to

design fixed-structure controllers. It is well known that fixed-structure controller design in the

model-based setting is a non-convex optimization problem. In fact, some of the problems

in [49] for fixed-structure controllers are regarded as NP-hard [50], which makes the H∞
problem (with fixed-structure controllers) an inherently difficult problem to solve. Non-

smooth optimization methods for fixed-structure controllers are used in [51], [52] and [53];

these methods are implemented in the MATLAB Robust Control Toolbox (which is called with

the hinfstruct command). In parallel, a code package for fixed-order optimization called

HIFOO was being developed that considered the same non-smooth problem formulation as

[51], but can consider H2 synthesis as well. However, these non-smooth techniques cannot

synthesize controllers based on the frequency response of the system (they need a parametric

model), and are limited to certain system dynamics (i.e., a pure delay must be approximated

by a Padé function).

Design Using Frequency-Domain Data

Frequency-domain based controller synthesis methods are design schemes that continue to

spark the interest of many researchers. Controller design methods which synthesize controllers

by only using the frequency-domain data of a process can be categorized as a data-driven

control scheme (since no parametric model is used for the actual synthesis). Therefore, given

the fact that the modeling process for today’s systems is inherently problematic, it is natural to

implement and develop a data-driven design methodology to design robust controllers.

A robust frequency-domain controller design method has been established in [54]. In this

method, upper and lower bounds are set on the desired closed-loop specifications where

rational controllers are computed; however, this method requires a solution to a nonlinear

optimization problem. Additionally, closed-loop stability is not guaranteed a-priori. Another

frequency-domain loop-shaping approach to design fixed-structure controllers is presented

in [55]. In this method, a convex optimization problem can be formulated if a linearly pa-

rameterized (LP) controller is considered; however, as in [54], the closed-loop stability is not

guaranteed and should be verified a-posteriori. A more recent loop-shaping method has

been proposed in [56] where the authors address the H∞ problem for stable SISO and MIMO

systems. The authors impose multiple line constraints in the Nyquist diagram to achieve both

the closed-loop stability and performance. Feasibility constraints are proposed which are

multilinear when LP controllers are used; for special controller cases, the feasibility constraints

become convex.

In [57], a frequency-domain approach is realized where a convex optimization algorithm is

formulated by considering a convex approximation of the H∞ criterion. The constraints are

convexified around a desired open-loop transfer function where a non-iterative algorithm

is proposed to optimize a set of LP controllers that guarantee the closed-loop stability. This
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method is extended to data-driven gain-scheduled controller design in [58] and multivariable

decoupling controller design in [59]. A toolbox that implements the methods used in these

works has been devised in [60].

In [61, 62], a frequency-response method is proposed based on the Q-parametrization to

guarantee the H∞ performance for fixed-structure controllers. This method linearizes the

non-convex H∞ constraint using a first-order Taylor expansion around an operating point;

in this manner, the local solution to the fixed-structure H∞ problem is obtained. An ini-

tial stabilizing controller is needed in order to guarantee the closed-loop stability. Another

frequency-domain approach for computing LP controllers is presented in [63] where the H∞
constraints are convexified around an initial stabilizing controller; an iterative algorithm is

used that converges to a local optimal solution of the non-convex problem. In [64], the authors

also linearize a non-convex constraint around an initial stabilizing controller and implement

an iterative method for obtaining a local solution; however, in this work, the objective was

to minimize the integrated error under H∞ robustness constraints. The convex-concave

approximation of the H∞ constraint in [64] leads to the same constraint as in [57] for PID

controllers. The extension of this method to design multivariable PID controllers for stable

systems is presented in [65] (where the linearization is performed with respect to a quadratic

matrix inequality). More recent works that implement an iterative method that ensures H∞
performance have been devised in [66]. The non-convex H∞ constraints here are also lin-

earized around an initial stabilizing controller, but the method is not limited to LP controllers

and stable systems and can consider H2 performance as well.

1.2.3 Nonlinear Control

In principle, all real-world systems are nonlinear and it would seem appropriate to consider

nonlinear control theory for real applications. In general, it is very difficult to generalize

a controller design method to apply to all nonlinear systems; thus various theories have

been developed by considering specific classes of nonlinear systems. The limit cycle theory,

Poincaré maps, Lyapunov stability theory, and describing functions are some methods that are

used for stabilizing and controlling systems that include specific classes of nonlinearities. The

theory of nonlinear control is very broad; in this dissertation, the focus is placed on nonlinear

control using the H∞ criterion and in a data-driven setting (as this is the framework of this

dissertation).

H∞ Control of Nonlinear Systems

There are many works that have addressed the H∞ problem in the linear framework; however,

only several works have been established for H∞ control of nonlinear systems. In [67], a

solution of the problem of disturbance attenuation with internal stability via measurement

feedback is presented. The authors in [68] derived the necessary conditions for the existence

of an output feedback controller such that the Hamilton-Jacobi-Isaacs (HJI) equations related
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to the closed-loop system have a positive smooth solution; they confirmed the separation

principle for the nonlinear H∞ control problem (although stability was not guaranteed). The

HJI equations are a set of nonlinear partial differential equations which in general cannot be

solved analytically [69]. The solution to these equations give necessary and sufficient optimal

control conditions for systems modeled by nonlinear dynamics. When the system is LTI, the

HJI equations reduce to the familiar algebraic Riccati equations (AREs). The work in [70]

implements a Galerkin approximation to obtain the solution of the HJI equations for H∞
control. In [71], state-dependent Riccati equation (SDRE) techniques are used in an iterative

fashion (i.e., by solving a set of convex optimization problems) to approximate the solution of

the HJI equations and obtain H2 or H∞ performance. SDREs, however, are computationally

expensive where convergence to a solution may take significant time. The recent work in [72],

however, proposed an update algorithm in a data-driven setting to learn the solution of HJI

equations iteratively and provide a convergence proof.

Data-Driven Control of Nonlinear Systems

Data-driven methods for controlling systems with nonlinearities is a field which continues

to grow and evolve. The describing function (DF) method was first conceptualized by the

authors in [73] and is one of the few widely applicable methods for analyzing a certain class

of nonlinear systems. This method uses the frequency response method for analyzing linear

systems that are subject to time-invariant odd nonlinearities. DFs approximate the dynamics

of a nonlinearity by only considering the fundamental component of the nonlinear response;

the justification for considering only the fundamental component is made by the fact that for

real physical systems, the linear subsystem of the overall nonlinear system is a low-pass filter

which attenuates the higher frequency components of the nonlinearity. In this manner, an

approximate model can be formed for the nonlinearity. Some recent works and applications

using the DFs are proposed in [74, 75, 76]. The DF method, however, can fail badly for systems

which emphasize higher harmonics of the nonlinearity. Some examples of this have been

presented in [77] for bang-bang systems.

More recent data-driven methodologies for controlling nonlinear systems have also been

studied in the literature. The authors in [19] present a model-free approach to design con-

trollers that guarantee stability for a class of nonlinear discrete-time systems; in [20], this

method is extended to the MIMO nonlinear system. A VRFT method is proposed in [78] to

design controllers for nonlinear plant models using a direct “one-shot" method. The authors

in [79] build on the iterative learning control data-driven algorithm to design controllers for a

class of nonlinear autoregressive exogenous models. A method for designing controllers in a

data-driven setting for constrained linear systems is presented in [80]. A specific 2-degree-of-

freedom (2DOF) controller structure is used in [81, 82] where a nonlinear controller is used

in parallel with a linear controller to control nonlinear systems by using the VRFT design

approach. The work in [83] extends on the concept of the VRFT method and implements a

data-driven scheme to design linear parameter-varying (LPV) model-reference controllers.
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Frequency-domain methods for stabilizing systems with nonlinearities has also been inves-

tigated in literature. One of the most remarkable theories in systems and control theory is

the Kalman – Yakubovich – Popov (KYP) lemma [84, 85], which established the equivalence

between frequency-domain conditions (e.g., Circle and Popov criteria) and time-domain con-

ditions for absolute stability of Lur’e systems. The Circle and Popov criterion have proposed

frequency-domain methods that stabilize systems with sector-bounded nonlinearities. There

are many variations of these theories that have been recently proposed in literature to control

nonlinear systems [86, 87, 88, 89, 90, 91, 92].

1.3 Research Objectives

1.3.1 Global Solution of H∞ problem

The first objective of this dissertation is to implement a data-driven method (using frequency-

domain data) and develop a convex optimization problem such that the global optimal solu-

tion to the H∞ problem is obtained. Formulating convex problems are desired since (1) they

are computationally tractable, and (2), a convex objective function ensures that all local optima

are global optima [93]. Many works have been published for optimizing LP controllers using

frequency domain-data and convex optimization algorithms. In these works, LP controllers

were specifically chosen since this convexifies the H∞ problem.

In this dissertation, it is desired to develop a necessary and sufficient (convex) condition for

attaining H∞ performance while guaranteeing the closed-loop stability of a system (using

controllers that are not LP where a controller’s numerator and denominator are simultaneously

optimized). By convexifying the H∞ problem, the global solution to an approximate problem

is obtained; given the necessity and sufficiency of the convex problem, the solution to the

convex problem will converge to the global optimal solution of the true H∞ problem as the

controller order is increased.

The outcome of the objective asserted in the previous paragraph is based on systems with

1-degree-of-freedom controller structures in a continuous-time framework. Since the pro-

posed method in this dissertation implements a data-driven frequency-domain approach for

controller synthesis, it is natural to extend the above controller design methodology for

• systems using a 2-degree-of-freedom controller in a discrete-time framework

• systems which are corrupted by nonlinear distortions

• systems which require constraints on multiple sensitivity functions

It will be desired to implement the proposed data-driven methodology to a particle accelerator

power converter control system at CERN. In this system, the controller structure is fixed with

a 2-degree-of-freedom discrete-time RST controller; this type of controller is implemented

9



Chapter 1. Introduction

due to the fact that these systems require both very precise tracking capabilities and sufficient

robustness margins.

The next objective is to further extend the proposed design methodology to nonlinear systems

with sector-bounded nonlinearities. The Circle criterion provides a necessary and sufficient

condition for stabilizing this class of nonlinear systems; thus the data-driven scheme can be

combined with the ideas presented by the Circle criterion to achieve closed-loop stability.

The main objective, however, is to formulate necessary and sufficient (convex) feasibility

conditions for achieving the desired stability requirements.

1.3.2 Fixed-Structure Controller Design

With the objectives asserted in the previous subsection, it is evident that although convergence

to the global optimal solution of the H∞ problem is obtained with increasing controller order,

the solution may be far from optimal for low-order controllers (since the global solution

to an approximate problem is obtained). Thus the next research objective is to optimize

the controller performance for low-order controllers using frequency-domain data (while

guaranteeing the closed-loop stability of the system); this can be accomplished by finding a

local solution to the H∞ problem using fixed-structure low-order controllers. Two methods

are proposed for achieving this specification:

• Solve a non-convex problem (in a data-driven setting) to obtain a local solution to the

fixed-structure H∞ problem.

• Solve a set of convex problems in an iterative fashion (in a data-driven setting) to obtain

a local solution to the fixed-structure H∞ problem

Note that the objective here is to optimize non-LP fixed-structure controllers. In the previous

subsection, the objective was to formulate a convex problem using non-LP controllers; the

solution to this convex problem, however, does not guarantee that the local solution to the

H∞ problem (for fixed-structure low-order controllers) is obtained. Thus the main differ-

ence between the objective here and the objective discussed in the previous subsection is that

convergence to a local solution for a given controller order is desired.

The non-convex H∞ constraints do not guarantee the closed-loop stability of a given system;

thus it is desired to formulate a non-convex problem which optimizes all of the fixed-structure

controller parameters while guaranteeing the closed-loop stability. It is known that non-

convex problems are difficult to solve since the quality of solutions depend heavily on the

initial conditions. Thus a particle swarm optimization (PSO) algorithm is presented to solve

this problem; PSO is a powerful optimization method that can solve both linear and nonlinear

problems and can be used to solve problems without specifying initial conditions. However,

when the problem is of large dimension, the quality of the solution or the optimization time

can be inadmissible. Thus it is desired to compare the local solutions obtained from the non-
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convex H∞ problem and the convex H∞ problem (for fixed-structure non-LP controllers,

linearized around a stabilizing operating point) to determine the validity and practicability of

both methods.

The fixed-structure design is implemented on the same CERN converter that was discussed in

the previous subsection, but with a different load and a different reference signal to track. The

local solution to the fixed-structure problem is obtained using the convex formulation since

(1), this method can consider other performance criterion (i.e., H1 and H2 performance),

and (2), the method is more efficient in a computational sense.

1.3.3 Contributions

The following main contributions of this dissertation are highlighted as follows:

• It derives the necessary and sufficient conditions for achieving robust stability and ro-

bust performance in a data-driven setting by minimizing the infinity norm of a weighted

sensitivity function. The designed controller is robust with respect to the uncertainties

captured in an identification experiment (which can be modeled as additive uncertain-

ties).

• It derives the necessary and sufficient conditions for a certain class of models with

frequency-domain polytopic uncertainties that are caused by measurement noise or

multi-model incertitude.

• It shows that the solution to a convex problem converges monotonically to the global

solution of the true H∞ problem as the controller order increases (while guaranteeing

the closed-loop stability).

• It proposes a method to design controllers for linear systems that are subjected to

nonlinear distortions.

• It derives necessary and sufficient conditions for stabilizing systems with sector-bounded

nonlinearities. It also derives a sufficient condition for guaranteeing the closed-loop

performance for all uncertain gains within the sector nonlinearity.

• It presents a method for obtaining the local optimal solution of the H∞ problem for

fixed-structure controllers. This method uses a PSO algorithm for achieving the solution

in a data-driven setting.

• It proposes a convex model-reference problem for fixed-structure non-LP controllers

where local optimal solutions to the H2 or H∞ problems are obtained. Closed-loop

stability of the system is guaranteed with a given initial stabilizing controller. It also

proposes a method for obtaining H1 performance.

• It implements the design methods for a power converter control system at CERN.
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1.4 Dissertation Structure

The structure and general layout of this dissertation is now provided. Since the class of models

and controllers vary from chapter to chapter, a dedicated chapter has been inserted in order

to clarify all of the class of models and controllers that are presented in this work.

Chapter 2: Preliminaries

This chapter is dedicated to defining all of the class of models, uncertainties, and controllers

that are used throughout the paper.

Chapter 3: Robust H∞ Controller Design

This chapter deals with the problem of robust stability and robust performance for LTI-SISO

systems. Necessary and sufficient conditions are derived for guaranteeing the stability of the

closed-loop system and H∞ performance. A convex optimization problem is formulated in

which a controller is parameterized as a ratio of two LP transfer functions; in this manner,

the controllers numerator and denominator are optimized. It is shown that as the controller

order increases, the global optimal solution to the H∞ problem is obtained. The robustness

of the closed-loop system is established by considering an additive uncertainty of coprime

factors (which can be easily obtained by spectral analysis of measured data). With this method,

conditions for ensuring the performance and stability for systems with frequency-domain

polytopic uncertainties are also derived. The simulation and experimental results at the end

of the chapter show the effectiveness of the proposed method.

Chapter 4: RST Controller Design for Particle Accelerator Power Converters

In this chapter, the necessary and sufficient conditions for obtaining H∞ performance that

were developed in Chapter 3 are extended to multiple weighted sensitivity functions where the

controller structure used is a 2-degree-of-freedom RST controller. Additionally, a method for

obtaining H∞ performance for linear systems which are subjected to nonlinear distortions is

presented. The main idea of this approach is to model a nonlinear system as a linear system

with an added noise source. The methods presented in this chapter are applied in simulation

and for a power converter control system at CERN where the objective is to control the current

in a magnet given a desired reference signal.

Chapter 5: Robust Control of Systems With Sector Nonlinearities

This chapter uses the celebrated Circle criterion to develop necessary and sufficient (convex)

feasibility conditions for stabilizing systems with sector-bounded nonlinearities (in a data-

driven setting). The conditions are developed for several different cases in which the lines that

bound the nonlinearity can vary (i.e., lines with positive and negative slopes). Additionally, a

sufficient condition is presented for obtaining H∞ performance for systems with uncertain

gains that lie within the sector nonlinearity. A case study is presented which considers multi-

model uncertainty for a class of switched time-varying nonlinear systems.
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Chapter 6: H∞ Design for Low-Order Fixed-Structure Controllers

In this chapter, the necessary and sufficient conditions presented in Chapter 3 are used to

design low-order fixed-structure controllers. This problem, however, is non-convex; thus a

sufficient condition is presented which ensures that the local solution of the H∞ problem is

obtained for fixed-structure controllers. The proposed optimization problem can be expressed

in a bilinear form if the controllers are LP. However, in the case when the controllers are not LP,

a PSO algorithm is proposed to obtain the local solution of the problem.

Chapter 7: Model-Reference Control for Particle Accelerator Power Converters

In this chapter, a sufficient condition is developed for obtaining the local solution to the

H2 and H∞ problems through the usage of linear matrix inequalities (LMIs). Non-convex

constraints are linearized around an operating point such that the closed-loop stability is guar-

anteed if the initializing controllers of the algorithm are stabilizing. This method optimizes

fixed-structure controllers for the model-reference problem; however, the methods described

in this chapter can also be applied to minimize a desired weighted sensitivity function. Ad-

ditionally, a 2-step method is proposed for obtaining H1 performance (which is a desired

criterion for many applications). The methods in this chapter are applied to several problems

including the power converter control system that was studied in Chapter 4 (with a different

load and a different reference signal to track).

Chapter 8: Conclusion

This chapter states the concluding remarks and discusses the possible future outlook of the

research presented in this dissertation.

Appendix

The appendix contains the work related to frequency-domain approaches for controlling

MIMO time-delayed processes using the Smith predictor structure [94]. However, the control

methodology here differs from the methods discussed in the main chapters of this dissertation.
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2 Preliminaries

This chapter is devoted to classifying the class of models and controllers that are used through-

out this work. Each chapter of this dissertation implements a particular process and controller

structure, and it is convenient to first define them here. The process models will be repre-

sented in both polynomial form and coprime form; the set of uncertainties for these processes

are also defined. This dissertation also presents methods for controlling certain classes of

nonlinear systems; these classes are also defined in this chapter. The controllers considered in

this work will be 1-degree-of-freedom (1DOF) (continuous-time and discrete-time controllers)

and 2DOF discrete-time RST controllers.

2.1 Class of models

The class of models considered in this dissertation are defined in this section.

2.1.1 General Plant Representation

Given a process input signal u(t ) and output signal y(t ) of a continuous-time LTI-SISO plant

model G(s) (with U ( jω) and Y ( jω) defined as the frequency spectrums of u(t) and y(t),

respectively), then the frequency response function (FRF) of the plant model is represented as

G( jω), where the following relation holds:

Y ( jω) =G( jω)U ( jω), ∀ω ∈Ωc ,

where Ωc :=R∪ {∞}.

A similar representation can be made for discrete-time systems. Given a process input signal

u[k] and output signal y[k] of a discrete-time LTI-SISO plant model G(z−1) (with U (e− jω) and

Y (e− jω) defined as the frequency spectrums of u[k] and y[k], respectively), then the FRF of
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the plant model is represented as G(e− jω), where the following relation holds:

Y (e− jω) =G(e− jω)U (e− jω), ∀ω ∈ [−π/Ts ,π/Ts],

where Ts [s] is defined as the sampling period of the discrete-time system, and k is a discrete-

time instant. Note that due to the symmetry of the spectrums, it is sufficient to consider

ω ∈Ω := [0,π/Ts] for practical applications.

Remark. When the Shannon-Nyquist sampling theorem is met for discrete-time systems, the

FRFs for continuous-time and discrete-time processes are nearly identical (i.e., G( jω) ≈G(e− jω)).

For the remaining portions of this chapter, when the dependency in ω is neglected, it signifies

that the definition/equation applies to both continuous-time and discrete-time systems.

Class of Uncertainties

Multimodel Uncertainty:

In general, a set G can be formulated to represent a plant model containing ℓ FRF models:

G = {Gi (e− jω); i = 1, . . . ,ℓ; ∀ω ∈Ω}

for discrete-time systems and

Gc = {Gi ( jω); i = 1, . . . ,ℓ; ∀ω ∈Ωc }

for continuous-time systems. These sets define a system which is subject to multi-model

uncertainty.

Multiplicative Uncertainty:

The set of all LTI-SISO strictly proper frequency response models belonging to the family of

perturbed plants with multi-model and multiplicative uncertainty can be defined as

Gm = {Gi [1+∆W2i
]; i = 1, . . . ,ℓ}, (2.1)

where Gi is the nominal FRF of the process, W2i
is an uncertainty weight with bounded infinity

norm, and ∆ is an unknown stable transfer function satisfying ‖∆‖∞ < 1.

Parametric uncertainty:

The approach proposed in this dissertation requires only the frequency response of a model to

design a robust controller. However, if a parametric model is available, the approach can still

be used by computing the frequency response of the model. It is well known that the interval

deterministic parametric uncertainty cannot be converted to the ellipsoid uncertainty in the

frequency-domain. In a data-driven framework, for an identified parametric model using

noisy data, the parametric uncertainties have stochastic bounds and can be transferred to the
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frequency-domain in a stochastic sense.

In a data-driven approach, a parametric model of the plant is identified together with its

parametric uncertainty using the classical prediction error methods (see [95]). The parametric

uncertainty is characterized by an ellipsoid in the parameter space and can be computed

using the asymptotic covariance matrix of the parameters for a given probability level. Thanks

to the invariance property of the Maximum Likelihood Estimators, any function of the esti-

mated parameters will converge to a normal distribution with a covariance matrix that can

be computed based on the derivative of the function with respect to the parameters and its

covariance matrix. In the complex plane, this parametric uncertainty is represented by an

ellipse at each frequency that is well approximated with an mp -sided polygon (mp > 2) of

minimum area that circumscribes each ellipse. In this manner, the parametric uncertainty

can be taken into account using the frequency-domain polytopic uncertainty with almost no

conservatism.

Suppose that a stable parametric model Ĝ(θp ) is identified from a set of noisy data and

the covariance matrix of the parameters, cov(θp ), is computed (where θp ∈ R
n is a vector

of parametric uncertainties). Then, the frequency response of the identified model can be

computed with its real and imaginary parts put in vector form as

Ĝv (ω,θp ) =
[

ℜ{Ĝ(θp )} ℑ{Ĝ(θp )}
]⊤

. (2.2)

This vector has a joint normal distribution with the covariance CG (ω,θp ) that can be estimated

from cov(θp ) using a linear approximation as follows:

CG (ω) =
(

∂Ĝv (ω,θp )

∂θp

)

cov(θp )

(

∂Ĝv (ω,θp )

∂θp

)⊤

. (2.3)

Note that cov(θp ) ∈R
n×n and CG (ω,θp ) ∈R

2×2. Then, the true frequency response will belong

to the following ellipse in the complex plane with a probability of 1−αp :

[

x̄ −ℜ{Ĝ(θp )}

ȳ −ℑ{Ĝ(θp )}

]⊤

C−1
G (ω,θp )

[

x̄ −ℜ{Ĝ(θp )}

ȳ −ℑ{Ĝ(θp )}

]

≤χ2
2(αp ), (2.4)

where χ2
2 is the chi-square distribution with two degrees of freedom. For a confidence interval

of 0.95 (αp = 0.05), we have χ2
2(0.05) = 5.99. Since the uncertainty set is an ellipse, an mp -sided

polygon with minimum area that circumscribes it can be used to represent the uncertainty,

and is approximated by frequency-domain polytopic uncertainty as

G(λ,θp ) =
mp
∑

k=1

λi Ĝk (θp ), (2.5)
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where

Ĝk (θp ) = Ĝ(θp )+ [1 j ]
√

5.99CG (ω,θp )





cos(2πk/mp )
cos(π/mp )

sin(2πk/mp )
cos(π/mp )



 . (2.6)

The last vector in (2.6) represents the k-th coordinate of a vertex of a polygon circumscrib-

ing the unit circle while the matrix
√

5.99CG (ω,θp ) designates the size and direction of the

uncertainty (for 0.95 probability).

Acquisition of FRFs

Suppose that u[k] and y[k] are measurable and that these signals are noise-free and have zero

initial and final conditions (i.e., u[k] = y[k] = 0 for k ≤ 0 and k > Ks). Then, the FRF of the

system is obtained as G(e− jω) =Y (e− jω)U −1(e− jω), where

U (e− jω) =
Ks
∑

k=0

u[k]e− jωTs k (2.7)

Y (e− jω) =
Ks
∑

k=0

y[k]e− jωTs k (2.8)

are the frequency spectrums of the input and output signals. Under these assumptions, it is

evident that from a set of sampled time-domain data, one is able to obtain a continuous FRF.

If the data is noisy, then G(e− jω) is characterized as the Empirical Transfer Function Estimate

(ETFE) and is asymptotically unbiased [95]. For such systems, an additive uncertainty model

can be considered to ensure robustness in the presence of noise perturbations.

The FRF of the process can be determined by considering the frequency response of a paramet-

ric model or from a set of input/output data. For example, a Pseudorandom binary sequence

(PRBS) signal can be used as an excitation signal to identify the dynamics of a plant, since this

type of signal has properties similar to white noise and excites all frequencies. Sine-sweep

methods can also be used for this identification.

2.1.2 Coprime Representation

Suppose that a SISO unity feedback control system structure is used, where the plant is

represented as G(s) = N (s)M−1(s) such that {N (s), M (s)} ∈ RH∞. As asserted in [10] and [96], if

N (s) and M(s) are coprime, then G(s) = N (s)M−1(s) is called a coprime factorization of G(s)

over RH∞.

The frequency response of such a factorized SISO system is given by:

G( jω) = N ( jω)M−1( jω), ω ∈Ωc , (2.9)
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2.1. Class of models

where N ( jω), M( jω) are the FRFs of bounded analytic functions in the right half plane. It is also

assumed that G( j∞) = 0, which implies that N ( j∞) = 0 and M( j∞) 6= 0. This representation

includes time-delayed systems as well as unstable plants with unbounded infinity norms.

A similar coprime factorization can be considered for discrete-time systems. In this case, the

plant is represented as G(z−1) = N (z−1)M−1(z−1) such that {N (z−1), M(z−1)} ∈ RH∞ (where

N (z−1) and M(z−1) are coprime factorizations over RH∞). Let the FRF of the plant be defined

as G(e− jω) = N (e− jω)M−1(e− jω) for all ω ∈Ω. N (e− jω) and M(e− jω) must be FRFs of bounded

analytic functions outside the unit circle.

Class of Uncertainties

Additive coprime uncertainty:

Suppose that the frequency response of the coprimes are represented with additive uncertainty,

given as

Ñ = N +|Wn |δne jθn

M̃ = M +|Wm |δme jθm ,
(2.10)

where |δn | ≤ 1, |δm | ≤ 1; θn ,θm ∈ [0 , 2π]; Wn and Wm are computed from the covariance of the

estimates for a given confidence interval. These types of models can be easily obtained by

spectral analysis of measured data. Suppose that N is obtained from the Fourier transform of

the input signal u and output signal y such that Y = NU . The estimates of ℜ{N } and ℑ{N }

are asymptotically uncorrelated and normally distributed (thanks to the central limit theorem)

with a variance of Θv (ω)/2|U |2, where Θv (ω) is the spectrum of the disturbance v at the output

of the plant [95]. As a result, the model uncertainty in the complex plane will be a disk centered

at N and its radius |Wn | will follow the Rayleigh distribution and can be computed for any

probability level. For example, the true frequency response at each frequency belongs to a

disk of radius |Wn | with a probability of 0.95, where

|Wn | =

√

5.99Θv (ω)

2|U |2
. (2.11)

The spectrum of disturbance can be estimated from the data by [95]:

Θv (ω) =Θy (ω)−
|Θuy (ω)|
Θu(ω)

, (2.12)

where Θu(ω) is the input spectrum, Θy (ω) is the output spectrum and Θuy (ω) is the cross-

spectral density of input and output signals.

Frequency-domain polytopic uncertainty:
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Let the frequency-domain polytopic uncertainty be defined as

G(λ, jω) = N (λ, jω)M−1(λ, jω), (2.13)

where

N (λ, jω) =
ℓ

∑

i=1

λi Ni ( jω) ; M(λ, jω) =
ℓ

∑

i=1

λi Mi ( jω)

and λi ≥ 0,
∑w

i=1λi = 1. Note that λ is a w-dimensional vector that belongs to the convex hull

of λi ’s. This uncertainty should not be confused with the parametric polytopic uncertainty,

which is defined in the parameter space in model-based robust control approaches.

Acquisition of FRFs

Finding the coprime factors of a given linear plant is a standard problem in control when

the model of the plant is available [97]. Although, the coprime factors are not unique for a

given system, their choice has only an effect for low-order controller design and this effect

will be reduced by increasing the controller order (as will be shown in the next chapter). In a

data-driven setting, for stable systems, a trivial choice is N =G and M = 1.

For unstable systems, a stabilizing controller is needed in order to properly formulate N and

M . In this case, N is the FRF between the reference signal and the measured output, while M

is the FRF between the reference signal and the plant input. Given these formulations, it is

evident that N M−1 represents the FRF of the plant model.

2.1.3 Nonlinear Models

There are two classes of nonlinear systems that will be considered in this work: nonlinear

systems that can be represented by a linear system with additive stochastic distortions and

linear systems which are in cascade with sector-bounded nonlinearities.

Nonlinear Wiener Systems

The class of nonlinearities for these types of systems are now addressed with the following

definition:

Definition 2.1. Class V of nonlinear systems. V is the set of nonlinear systems for which the

following properties hold:

• The influence of the initial conditions vanishes asymptotically.

• The steady state response to a periodic input is a periodic signal with the same period

as the input. Phenomena such as bifurcation, chaos, and sub-harmonics are excluded;

however, strong nonlinearities such as saturation and discontinuities are permitted.
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u

un

β1u

β2u

Φ(u)

0

Figure 2.1 – Nonlinear sector that is bounded by two lines with slopes β1 and β2.

• Only a point wise approximation of the output is obtained.

A common type of nonlinearity in V is the sector-bounded time-invariant (memoryless)

nonlinearity in which the input un to a linear plant model is a nonlinear function of the

process input u (i.e., un =Φ(u)). However, the nonlinear systems described by V include a

wider class of nonlinearities (i.e., the so called Wiener systems [98]). A nonlinear system which

abides by the above definition will be denoted as GV (·) (i.e., GV (·) ∈ V ).

Sector-Bounded Time-Varying Nonlinearities

The second class of nonlinearities that will be addressed in this work is of the sector type

(which will be denoted as Φ(·)) and is defined as

Nt = {Φ(t ,u) : β1u <Φ(t ,u) <β2u,∀t ≥ 0,∀u ∈ [a,b]}, (2.14)

where u is the input signal of the nonlinearity, {β1,β2} ∈ R and {(a,b) ∈ R : a < 0 < b}. This

condition can be interpreted as a nonlinearity which is bounded by two straight lines with

slopes β1 and β2 that pass through the origin. Let un represent the output signal of the

nonlinear function Φ(·); Fig. 2.1 depicts this sector nonlinearity when Nt in (2.14) holds

globally (i.e., when the nonlinearity remains bounded for all values of u).

Acquisition of FRFs

Nonlinear Wiener Systems:

Suppose that the signals u[k] and y[k] are measurable; according to [99], for a certain class
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Nonlinear System

Linear System +

U (e− jω)

U (e− jω) Y (e− jω)

YL(e− jω)

YS (e− jω)

Y (e− jω)

Figure 2.2 – Representation of a nonlinear system by a linear system for a certain class of
inputs.

of reference signals and nonlinear systems, the FRF obtained during an experiment with a

nonlinear plant can be described by a linear system plus an error term YS(e− jω) (see Fig. 2.2).

The class of nonlinear systems that can be considered with this approach are those in V .

The idea asserted in [99] is to perform multiple experiments with full or random phase multi-

sines as the reference input. Averaging of the FRFs over the consecutive periods quantifies

the noise level. Averaging of these mean FRFs over multiple experiments quantifies the level

of the stochastic nonlinear distortions (with the sum of the remaining noise level). A best-

linear-approximation (BLA) of the nonlinear system can then be obtained with an associated

variance (which fully characterizes the underlying linear system).

Definition 2.2. Random Phase Multi-sine: u(t ) is a random phase multi-sine if

u(t ) =
Ks /2−1

∑

k=−Ks /2+1

Uk e j 2π fs kt/Ks , (2.15)

where Uk =U ∗
−k

= |Uk |e jϕk , (·)∗ denotes the complex conjugate of the argument, fs is the clock

frequency of the waveform generator, Ks is the number of samples in the signal period, and the

phases ϕk are a realization of an independent distributed random process in [0,2π), where the

expected value of e jϕk is equal to zero.

Stable Plant:

Let us first consider the case when the plant model is stable; for a given known input signal,

an open-loop experiment can be performed to obtain the FRF BLA and the variance. Let us

define G [q,p](e− jω) as the FRF estimate of GV (·) for the p-th period of a q-th experiment (with

P denoting the total number of periods in each experiment and Q being the total number of

experiments):

G [q,p](e− jω) =
Y [q,p](e− jω)

U [q](e− jω)

=G(e− jω)+G
[q]
S

(e− jω)+E
[q,p]
G

(e− jω),

(2.16)

22



2.1. Class of models

Transient G[1,1] G[1,2] G[1,P ]

P periods

G[2,1] G[2,2] G[2,P ]

G[Q,1] G[Q,2] G[Q,P ]

Q
re
a
li
za
ti
o
n
s

Figure 2.3 – Procedure for measuring the BLA from the FRF of the nonlinear system. G [q,p] is
the FRF estimate of the pth period of the q th experiment.

where G is the FRF BLA, G
[q]
S

= Y
[q]

S
/U [q] (i.e., the stochastic nonlinear contributions) and

E
[q,p]
G

are the errors due to the output noise; Fig. 2.3 shows the measurement process of this

estimate. The sample mean and the sample variance of the FRF estimates over P periods are

determined as follows:

G [q](e− jωk ) =
1

P

P
∑

p=1
G [q,p](e− jωk )

σ
2[q]
n (k) =

1

P (P −1)

P
∑

p=1

∣

∣

∣G [q,p](e− jωk )−G [q](e− jωk )
∣

∣

∣

2
,

(2.17)

where σ
2[q]
n is the sample noise variance of the sample mean G [q]. The BLA of the plant G with

the associated sample total variance σ2
G can then be determined with the following relations

[99]:

G(e− jωk ) =
1

Q

Q
∑

q=1
G [q](e− jωk )

σ2
G (k) =

1

Q(Q −1)

Q
∑

q=1

∣

∣

∣G [q](e− jωk )−G(e− jωk )
∣

∣

∣

2
.

(2.18)

Unstable Plant:

Let us now consider the case when the plant model is unstable; in this case, an open-loop

experiment cannot be performed to obtain the FRFs. A stabilizing controller would first need

to be implemented in order to stabilize the closed-loop system. Now, suppose that the signal
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r is measurable, where the spectrum of r is denoted as R(e− jω). Additionally, let us define

N (e− jω) as the FRF BLA between the signals r to y and M(e− jω) as the FRF BLA between the

signals r to u. Since the nonlinear system is described by a linear system plus an error term

YS(e− jω), then it is evident that the FRF BLA of the plant model G(e− jω) = N (e− jω)M−1(e− jω).

This is known as a coprime factorization of the FRF G , where N and M are coprime functions

which are analytic outside the unit circle [10].

According to [99], the sample means and total (co)variances can be determined as follows:

Y (e− jωk ) =
1

Q

Q
∑

q=1
Y [q](e− jωk )

σ2
Y (k) =

1

Q(Q −1)

Q
∑

q=1
|Y [q](e− jωk )−Y (e− jωk )|2

σ2
Y R(k) =

1

Q(Q −1)

Q
∑

q=1

[

Y [q](e− jωk )−Y (e− jωk )
][

R[q](e− jωk )−R(e− jωk )
]∗

σ2
UR(k) =

1

Q(Q −1)

Q
∑

q=1

[

U [q](e− jωk )−U (e− jωk )
][

R[q](e− jωk )−R(e− jωk )
]∗

,

(2.19)

where the spectrums and variances for the signals u (i.e., U (e− jωk ) and σ2
U

(k)) and r (i.e.,

R(e− jωk ) and σ2
R

(k)) are computed in the same manner as Y (e− jωk ) and σ2
Y

(k), respectively.

Finally, the FRF of the BLA for each coprime can then be obtained as

N (e− jωk ) =Y (e− jωk )R−1(e− jωk ), M(e− jωk ) =U (e− jωk )R−1(e− jωk ), (2.20)

where the associated total variance for each coprime is calculated as follows:

σ2
N (k) =

∣

∣

∣N (e− jωk )
∣

∣

∣

2
(

σ2
Y

(k)

|Y (e− jωk )|2
+

σ2
R

(k)

|R(e− jωk )|2
−2ℜ

{

σ2
Y R

(k)

Y (e− jωk )R∗(e− jωk )

})

σ2
M (k) =

∣

∣

∣M(e− jωk )
∣

∣

∣

2
(

σ2
U

(k)

|U (e− jωk )|2
+

σ2
R

(k)

|R(e− jωk )|2
−2ℜ

{

σ2
UR

(k)

U (e− jωk )R∗(e− jωk )

})

.

(2.21)

Remark. Note that in [99], the FRF estimate of G(e− jω) (and the associated uncertainty) can

be obtained from the signals u and y directly. However, the coprime formulation was needed

in this chapter in order to apply the proposed controller design schemes (which are asserted in

subsequent chapters).

Given the BLA of the nonlinear system and total variance of each coprime, the additive

uncertainty relations in (2.10) can be used to ensure that the dynamics of the underlying linear

system are captured in the frequency response measurements. For example, if it is desired to

construct an uncertainty disk such that the true frequency response lies within the disk with a
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probability level of 0.95, then the radius of this disk(s) associated with the set in (2.10) will be

|Wn(e− jωk )| =
√

5.99σ2
N

(k)

|Wm(e− jωk )| =
√

5.99σ2
M

(k).
(2.22)

Remark. Note that for stable systems, N (e− jω) =G(e− jω) and M(e− jω) = 1 can be selected for

the coprimes. In this case,

N̂ (e− jω) =G(e− jω)+|Wg (e− jω)|δg e jθg ,

where |δg | ≤ 1; θg ∈ [0,2π]; |Wg (e− jω)| =
√

5.99σ2
G

.

Sector-Bounded Time-Varying Nonlinearities:

The method to obtain the coprimes for the linear system with the sector-bounded nonlinearity

will now be formulated (i.e., with Φ(·) ∈Nt ). To keep the context of the work presented in this

section in a data-driven framework, the following assumption is asserted:

Assumption 1. The signal un is assumed to be measurable, which allows the dynamics of the

linear system to be captured in an identification experiment.

• Stable Process: If the plant is stable, then a simple choice for the coprimes is N (e− jω) =
G(e− jω) and M(e− jω) = 1. In a data-driven setting, G(e− jω) can be obtained by simply

performing an open-loop experiment and applying an excitation signal (such as a

PRBS or sine-sweep signal) at the input of the process. The FRF is then obtained as

G(e− jω) =Y (e− jω)/Un(e− jω) (where Un(e− jω) is the frequency spectrum of the signal

un[k]).

• Unstable Process: If the plant is unstable, we assume that a stabilizing controller K (z−1)

exists that can be used for data acquisition. In this case, the closed-loop system is

excited with an excitation signal and un[k] and y[k] are recorded. Then, in an offline

manner, the signal x[k] will be generated using the structure shown in Fig. 2.4 (where

the frequency spectrum of x[k] can be obtained, which is denoted as X (e− jω)). The

fixed gain βl should be selected inside the sector nonlinearity such that if we replaced

the sector nonlinearity with the fixed gain βl , the resulting linear closed-loop system

would be stable (i.e., the roots of 1+βl G(k−1)K (z−1) are inside the unit circle). With the

structure shown in Fig. 2.4, it is easy to see that the transfer function between x and un

(that can be called M(z−1)) is

M(z−1) =
[

1+βl G(z−1)K (z−1)
]−1

,

which is stable. Furthermore, the transfer function between x and y (that can be called

N (z−1)) is

N (z−1) =G(z−1)
[

1+βl G(z−1)K (z−1)
]−1

,
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G(z−1)
−

+

Φ(·)K (z−1)

r e u un y

+
+

x

K (z−1)βl

Figure 2.4 – Structure to be used in obtaining the coprimes for an unstable process.

which is also stable. Therefore, with a closed-loop experiment where the identifying

signal is injected into the reference input, the coprimes can be obtained as

N (e− jω) =
Y (e− jω)

X (e− jω)
, M(e− jω) =

Un(e− jω)

X (e− jω)
, (2.23)

where it is evident that G(e− jω) = N (e− jω)M−1(e− jω).

2.2 Class of controllers

This dissertation considers various types of controller structures. Thus it is appropriate to

define all of the class of controllers considered in this work.

2.2.1 Polynomial 1DOF Controller

The structure of this controller is represented as a ratio of two polynomial functions K (z−1) =
R(z−1,ρ)S−1(z−1,ρ). The functions R(z−1,ρ) and S(z−1,ρ) each represent polynomials in z−1,

i.e.,

R(z−1,ρ) = r0 + r1z−1 +·· ·+ rnr
z−nr (2.24)

S(z−1,ρ) = 1+ s1z−1 +·· ·+ sns
z−ns , (2.25)

where ri and si are the controller parameters and {nr ,ns} are the orders of the polynomials R

and S, respectively. The vector of controller parameters ρ is defined as

ρ⊤ = [r0,r1, . . . ,rnr
, s1, s2, . . . , sns

], (2.26)

where ρ ∈R
nr s with nr s = nr +ns +1.
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Figure 2.5 – RST controller structure.

2.2.2 RST 2DOF Controller

The RST controller is a 2DOF controller which can be used to synthesize the tracking and

regulation requirements independently from each other [100]. The general structure of this

controller is shown in Fig. 2.5. Each controller is realized as a polynomial function as follows:

R(z−1,ρ) = r0 + r1z−1 +·· ·+ rnr
z−nr (2.27)

S(z−1,ρ) = 1+ s1z−1 +·· ·+ sns
z−ns (2.28)

T (z−1,ρ) = t0 + t1z−1 +·· ·+ tnt
z−nt , (2.29)

where {nr ,ns ,nt } are the orders of the polynomials R,S and T , respectively. The controller

parameter vector ρ ∈R
nr st (vector of decision variables) is defined as

ρ⊤ = [r0,r1, . . . ,rnr
, s1, s2, . . . , sns

, t0, t1, . . . , tnt
],

where nr st = nr +ns +nt +2.

2.2.3 Coprime 1DOF Controller

Consider the controller structure, K (s) = X (s)Y −1(s), where X (s) and Y (s) are stable transfer

functions with bounded infinity norm (X (s),Y (s) ∈ RH∞). These transfer functions may be

discrete- or continuous-time1.

The functions X and Y are linearly parameterized as X (ρ) =ρ⊤
x φ and Y (ρ) =ρ⊤

y φ, whereρ⊤
x =

[ρx0 , . . . ,ρxn
] and ρ⊤

y = [1,ρy1 , . . . ,ρyn
] are the vectors of the controller parameters (where ρx ∈

R
n+1 and ρy ∈R

n+1) and φ⊤ = [1,φ1 · · · ,φn] is a vector of stable orthogonal basis functions. A

1Note that the term “coprime controller” is used in this dissertation to remain in the same convention as that of
the coprime plant model. However, the functions X and Y are not actually coprime factorizations of K (i.e., they
do not necessarily have to satisfy the Bezout identity N X +MY = 1). The are simply transfer functions that belong
in RH∞.
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simple choice is the Laguerre basis functions given by [101]:

φi (s) =
√

2ξ(s −ξ)i−1

(s +ξ)i
(2.30)

with ξ> 0 and i = 1, · · · ,n for continuous-time systems and

φi (z) =

√

1−ξ2
z

z −ξz

(

1−ξz z

z −ξz

)i−1

(2.31)

with −1 < ξz < 1 for discrete-time systems.

A PID controller can also be represented in this form. Suppose that the desired controller

structure is given as

K (s,ρ) = kp +ki
1

s
+kd

s

T f s +1
, (2.32)

where T f ∈R+. Then the controller can be expressed as K (ρ) = X (ρ)Y −1(ρ) with

ρ⊤
x = [ρ1 ρ2 ρ3]

ρ⊤
y = [T f 1 0]

φ(s,ξ) = [s2 s 1]⊤(s +ξ)−2,

(2.33)

where the parameters of ρx are ρ1 = kp T f +kd , ρ2 = kp +ki T f , ρ3 = ki .

2.3 Control Performance

Throughout this dissertation, the objective will be to design a controller that meets some

constraints on the infinity norm of the weighted sensitivity functions. Thus it is convenient

to now define the various sensitivity functions for the different structures considered in this

work. Before defining these quantities, it is appropriate to first define the notion of Hurwitz

and Schur systems.

Definition 2.3. (Hurwitz system) A continuous-time transfer function A(s) is called Hurwitz if

the poles of A(s) are located in the open left half-plane of the complex plane, that is, the real

part of every pole is negative.

Definition 2.4. (Schur system) A discrete-time transfer function Ad (z) is called Schur if the

poles of Ad (z) lie in the open unit disk of the complex plane, that is, the magnitude of each pole

is less than one.

Note that both Hurwitz and Schur systems relate the notion of stability for both continuous-

time and discrete-time processes. Therefore, the terms “stable” and “Hurwitz” (or “stable” and

“Schur”) are used interchangeably throughout this dissertation.
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2.3. Control Performance

2.3.1 Sensitivity Functions for 1DOF Structure

The sensitivity functions associated with the unity feedback control system structure (using a

1DOF coprime controller and a coprime representation for the plant model) are given by:

Ss(ρ) =
E

R
=

1

1+GK (ρ)
=

MY (ρ)

N X (ρ)+MY (ρ)
(2.34)

St (ρ) =
Y

R
=

GK (ρ)

1+GK (ρ)
=

N X (ρ)

N X (ρ)+MY (ρ)
(2.35)

Su(ρ) =
U

R
=

K (ρ)

1+GK (ρ)
=

M X (ρ)

N X (ρ)+MY (ρ)
(2.36)

Sv (ρ) =
Y

Di
=

G

1+GK (ρ)
=

N Y (ρ)

N X (ρ)+MY (ρ)
, (2.37)

where E =R−Y and Di is the frequency spectrum of the plant input disturbance. For the

1DOF controllers that are represented in polynomial form, a similar representation of the

above sensitivity functions can be made with X (ρ) = R(ρ) and Y (ρ) = S(ρ).

2.3.2 Sensitivity Functions for RST Structure

It is appropriate to consider the various sensitivity functions associated with the RST con-

troller structure (since the definitions differ from the 1DOF case). Some sensitivity functions

for this process (using a coprime representation for the plant) can be asserted as follows:

S1(ρ) =
Y

Do
=

MS(ρ)

N R(ρ)+MS(ρ)
=

MS(ρ)

ψ(ρ)
(2.38)

S2(ρ) =
Y

R
=

N T (ρ)

N R(ρ)+MS(ρ)
=

N T (ρ)

ψ(ρ)
(2.39)

S3(ρ) =
E

R
=

N R(ρ)+MS(ρ)−N T (ρ)

N R(ρ)+MS(ρ)
=

ψ(ρ)−N T (ρ)

ψ(ρ)
(2.40)

S4(ρ) =
U

R
=

MT (ρ)

N R(ρ)+MS(ρ)
=

MT (ρ)

ψ(ρ)
, (2.41)

where ψ(ρ) = N R(ρ)+MS(ρ) and Do is the frequency spectrum of the output disturbance.

Note that all of the sensitivity functions are Schur if the zeros of ψ(ρ) lie within the unit circle.

The sensitivity functions defined above (and all other sensitivity functions of interest) all

contain the same transfer function ψ(ρ). Therefore, a general construction of the sensitivity

function can be expressed as Sq (ρ) =∆q (ρ)/ψ(ρ), where ∆q (ρ) is a linear function of R(ρ),

S(ρ) and/or T (ρ). The subscript q ∈ {1,2, . . . ,c} denotes the q-th sensitivity of interest and c is

the total number of sensitivity functions.

Remark. The proposed data-driven methods in this work do not consider parametric models

in the synthesis problems; for this reason, both continuous-time and discrete-time models

can be considered in the framework of this dissertation. Thus discrete-time controllers can

be synthesized for continuous-time models, and vice versa. This is a typical scenario in real
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applications since continuous-time systems are usually controlled with discrete-time controllers

(which is the case with the CERN power converter control system).

2.4 Optimization Problems

Throughout this dissertation, convex and quasi-convex optimization problems will be formu-

lated for optimizing controllers based on a given criterion. Thus it is convenient to define

what convex functions are along with some properties associated with convex problems.

Definition 2.5. (Convex set) A set C is convex if the line segment between any two points in C

lies in C . In other words, if for any x1, x2 ∈C and any λ with 0 ≤λ≤ 1, we have

λx1 + (1−λ)x2 ∈C .

Definition 2.6. (Convex function) A function f : Rn →R is convex if the domain of f is a convex

set and if for all x1, x2 in this domain, and λ with 0 ≤λ≤ 1, we have

f (λx1 + (1−λ)x2) ≤λ f (x1)+ (1−λ) f (x2).

Definition 2.7. (Quasi-convex function) A function f : Rn → R is called quasi-convex if its

domain and all its sublevel sets

Sα = {x| f (x) ≤αq },

for αq ∈R, are convex.

Based on the decision variables defined for the controllers in Section 2.2, the following notation

is used to describe the problem of finding a ρ that minimizes f0(ρ) among all ρ that satisfy

the conditions fi (ρ) ≤ 0, i = 1, ...,m f , and hi (ρ) = 0, i = 1, ...,mh :

minimize
ρ

f0(ρ)

subject to: fi (ρ) ≤ 0, i = 1, ...,m f ,

hi (ρ) = 0, i = 1, ...,mh .

(2.42)

The decision vector ρ is the optimization variable (whose dimension varies based on the

controller structure used), while f0(ρ) is the objective function to be minimized. A point ρ⋆
o

is a global optimum if it is feasible and if f0(ρ⋆
o ) ≤ f0(ρ) for all feasible ρ. If the objective

function or any of the constraints are non-convex functions of ρ, then, in general, one can

only guarantee a local optimal solution to the problem.

Definition 2.8. (Local optimum) A feasible point ρ+ is a local optimum of (2.42) if it is an

optimum on some ball centered at ρ+, i.e., there exists a B > 0 such that

f0(ρ+) = inf
{

f0(ρ) : fi (ρ) ≤ 0, i = 1, ...,m f , hi (ρ) = 0, i = 1, ...,mh , ‖ρ−ρ+‖2 ≤ B
}
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The most important property of convex optimization problems is that any locally optimal

point is also globally optimal. For the optimization problem in (2.42) to be convex (quasi-

convex), f0(ρ) must be a convex (quasi-convex) function of ρ and fi (ρ) ∀i must be convex

functions of ρ while hi (ρ) ∀i must be affine functions of ρ. The problems formulated in this

dissertation will be presented in epigraph form, i.e.,

minimize
γ,ρ

γ

subject to: f0(ρ)−γ≤ 0

fi (ρ) ≤ 0, i = 1, ...,m f ,

hi (ρ) = 0, i = 1, ...,mh ,

(2.43)

where γ ∈R. This problem is equivalent to the problem in (2.42). The epigraph formulation is

particularly useful for solving quasi-convex optimization problems. In this dissertation, many

of the objective functions will posses the following form:

f0(ρ) = fc (ρ) f −1
l (ρ),

where fc (ρ) is a convex function of ρ such that fc (ρ) ≥ 0, and fl (ρ) is a linear function of ρ

such that fl (ρ) > 0 (with γ ∈ R+). With this formulation, it can be shown that the function

f0(ρ) is indeed quasi-convex [93]. Given this construction for the objective function, note that

f0(ρ) ≤ γ ⇐⇒ fc (ρ)−γ fl (ρ) ≤ 0,

where fc (ρ)−γ fl (ρ) is convex for a fixed γ. The usual manner in solving (2.43) with this

formulation is by specifying upper and lower bounds on γ and implementing a bisection

algorithm in order to obtain the global solution to the optimization problem (within a given

tolerance).

Remark. In the bisection method, an initial value is assigned for γ such that γ0 = 0.5(γmi n +
γmax ) to solve the optimization problem, where γmi n and γmax are the minimum and max-

imum bounds set for γ. In an iterative algorithm, if the problem is feasible for γi , then

γi+1 = 0.5(γmi n +γi ), and the solution to the optimization problem in (2.43) is recalculated

with γi+1. If the problem is infeasible for γi , then γi+1 = 0.5(γmax +γi ). This process is repeated

until a solution is obtained within a given tolerance γtol .

The following notation is used to characterize the type of solution obtained from a given

optimization problem:

• For a given convex (or quasi-convex) optimization problem, the global optimal solutions

are denoted as γ⋆ and ρ⋆.

• For a given non-convex optimization problem, the local optimal solutions are denoted

as γ+ and ρ+.
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2.5 Conclusion

This chapter has asserted all of the necessary class of models and controllers for the work

presented in this dissertation. The models considered in this work consist of both linear and

nonlinear systems. The linear plant model can be represented in a coprime form; the same

principle can be applied to a controller. This representation is needed in order to develop some

important theoretical results (which will be seen in subsequent chapters). Additionally, 1DOF

and 2DOF controllers are considered for various types of applications that will be analyzed

in this dissertation. In the beginning of each remaining chapter, the class of models and

controllers will be referenced appropriately to the sections of this chapter.
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3 Robust H∞ Controller Design

3.1 Introduction

In this chapter, the necessary and sufficient conditions for the existence of robust controllers

that guarantee bounded infinity norm on the sensitivity functions are developed. It is shown

that these conditions depend only on the frequency response of the plant model and can

be represented by convex constraints with respect to the controller parameters. By using

fixed-order rational controllers, a convex optimization problem is formulated which pro-

duces a solution that ensures H∞ performance. The results are extended to systems with

frequency-domain polytopic uncertainties that are caused by measurement noise or multi-

model incertitude. The developed conditions are necessary and sufficient for Hurwitz systems

and only sufficient for unstable systems with polytopic uncertainties.

In this chapter, a continuous-time representation of coprime processes (see Section 2.1.2) with

1DOF coprime controllers (see Section 2.2.3) are considered. Thus the sensitivity functions

with a 1DOF structure are considered.

3.2 Convex parameterization of robust controllers

3.2.1 Controller objective

An upper bound on the infinity-norm of H( jω,ρ) = W1( jω)Ss( jω,ρ) will be considered,

where W1 : R∪ {∞} →C is the frequency function of a Hurwitz system with bounded infinity

norm and Ss : R2n+1 × (R∪ {∞}) → C is the FRF of the sensitivity function in (2.34) (with n

denoting the controller order). Therefore, the control objective is to find a stabilizing controller

K (ρ) such that

sup
ω∈Ωc

|H( jω,ρ)| < γ, (3.1)
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N ( jω)X ( jω,ρ)+M( jω)Y ( jω,ρ)

γ
−1|W1( jω)M( jω)Y ( jω,ρ)|

ℑ

ℜ0

Figure 3.1 – Graphical representation of the constraint in 3.1.

where γ ∈R+. This condition can easily be extended to the other weighted sensitivity functions

asserted in equations (2.35-2.37). There are two problems associated with the condition in

(3.1); the constraint is not convex and a controller which satisfies this condition does not

necessarily guarantee the closed-loop stability of a system.

The main objective is to find a set of convex constraints (with respect to X and Y ) to satisfy

the constraint in (3.1). Note that this constraint can be expressed as

γ−1
∣

∣W1( jω)M( jω)Y ( jω,ρ)
∣

∣< |N ( jω)X ( jω,ρ)+M( jω)Y ( jω,ρ)|, ∀ω ∈Ωc . (3.2)

For any given frequency ω ∈Ωc , this condition is equivalent to a disk in the complex plane

that is centered at

N ( jω)X ( jω,ρ)+M( jω)Y ( jω,ρ)

and has a radius of γ−1
∣

∣W1( jω)M( jω)Y ( jω,ρ)
∣

∣; this circle does not intersect with or include

the origin. Fig. 3.1 displays a graphical interpretation of this condition. The following results

are recalled before preceding with the theoretical contributions of this chapter.

Definition 3.1. (Strictly Positive Real (SPR) System [102]) A transfer function A(s) is strictly

positive real if

ℜ{A(s)} > 0, ∀ℜ{s} > 0.

Lemma 3.1. (Conditions of SPR Systems [102]) A transfer function A(s) is strictly positive real if

and only if

• A(s) is Hurwitz

• ℜ{A( jω)} > 0 for all ω ∈Ωc
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3.2. Convex parameterization of robust controllers

• The poles of A(s) on the jω axis are simple (i.e., distinct) and the associated residues are

real and non-negative

The geometrical construction in Fig. 3.1 will now be used to prove the following lemma:

Lemma 3.2. Suppose that

H( jω,ρ) =W1( jω)M( jω)Y ( jω,ρ)
[

N ( jω)X ( jω,ρ)+M( jω)Y ( jω,ρ)
]−1

is the frequency response of a bounded analytic function in the right half plane. Then, (3.1) is

met if and only if there exists a stable proper rational transfer function F (s) that satisfies

ℜ
{[

N ( jω)X ( jω,ρ)+M( jω)Y ( jω,ρ)
]

F ( jω)
}

> γ−1
∣

∣W1( jω)M( jω)Y ( jω,ρ)F ( jω)
∣

∣ , ∀ω ∈Ωc .

Proof : The basic idea is similar to that of the proof of Theorem 1 in [103]. It is clear that (3.1) is

satisfied if and only if the disk of radiusγ−1|W1( jω)M( jω)Y ( jω,ρ)| centered at N ( jω)X ( jω,ρ)+
M( jω)Y ( jω,ρ) does not include the origin for all ω ∈Ωc , i.e.,

|N ( jω)X ( jω,ρ)+M( jω)Y ( jω,ρ)| > γ−1|W1( jω)M( jω)Y ( jω,ρ)|.

This is equivalent to the existence of a line passing through the origin that does not intersect

the disk. Therefore, at every given frequency, ω, there exists a complex number f ( jω) that can

rotate the disk such that it lays inside the right hand side of the imaginary axis. Hence, we

have

ℜ
{[

N ( jω)X ( jω,ρ)+M( jω)Y ( jω,ρ)−γ−1|W1( jω)M( jω)Y ( jω,ρ)|e jθ
]

f ( jω)
}

> 0

∀ω ∈Ωc ,∀θ ∈ [0 , 2π[.
(3.3)

Since f ( jω) = | f ( jω)|e jθ f , then the above condition can be expressed as

ℜ
{[

N ( jω)X ( jω,ρ)+M( jω)Y ( jω,ρ)
]

f ( jω)
}

> γ−1|W1( jω)M( jω)Y ( jω,ρ) f ( jω)|cos(θ+θ f )

∀ω ∈Ωc ,∀θ ∈ [0 , 2π[.

(3.4)

However, (3.4) is satisfied if and only if:

ℜ
{[

N ( jω)X ( jω,ρ)+M( jω)Y ( jω,ρ)
]

f ( jω)
}

> γ−1|W1( jω)M( jω)Y ( jω,ρ) f ( jω)|, ∀ω ∈Ωc .

(3.5)

In [103], it is shown that f ( jω) can be approximated arbitrarily well by the frequency response

of a stable transfer function F (s) if and only if

Z =
(

N ( jω)X ( jω,ρ)+M( jω)Y ( jω,ρ)−γ−1|W1( jω)M( jω)Y ( jω,ρ)|e jθ
)−1

(3.6)
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is analytic in the right half plane for all γ0 > γ and all θ ∈ [0 , 2π[. However, [N ( jω)X ( jω,ρ)+
M( jω)Y ( jω,ρ)]−1 is stable because of the stability of H( jω,ρ). On the other hand, by de-

creasing γ0 from infinity to γ, the poles of Z move continuously with γ0. Therefore, Z is not

analytic in the right half plane if and only if Z−1( jω) = 0 for a given frequency, which is not the

case because the origin is not in the interior of the circle γ−1
0 |W1( jω)M( jω)Y ( jω,ρ)|e jθ for all

ω ∈Ωc . �

For notation purposes, and for the remaining sections of this chapter, the dependency in jω

will be omitted and reiterated when deemed necessary. However, the dependency in ρ will

continue to be highlighted.

3.2.2 Nominal and robust performance

The set of all controllers that meet the nominal performance condition defined by the weighted

norm of sensitivity functions is asserted in the following theorem.

Theorem 3.1. Given the frequency response model G in (2.9) and the frequency response of a

bounded weighting filter W1, the following statements are equivalent:

(a) There exists a controller K (ρ) that stabilizes G and

sup
ω∈Ωc

∣

∣

∣W1
[

1+GK (ρ)
]−1

∣

∣

∣< γ. (3.7)

(b) There exist X (ρ),Y (ρ) ∈ RH∞ with K (ρ) = X (ρ)Y −1(ρ), such that

γ−1
∣

∣W1MY (ρ)
∣

∣<ℜ
{

N X (ρ)+MY (ρ)
}

, ∀ω ∈Ωc . (3.8)

Proof : (b ⇒ a)

N X (ρ)+MY (ρ) is analytic in the right half plane and its real part is positive for all ω ∈Ωc .

However, it is evident that

ℜ
{

N X (ρ)+MY (ρ)
}

> 0 ⇐⇒ ℜ
{

[N X (ρ)+MY (ρ)]−1}> 0, ∀ω ∈Ωc .

Thus by the SPR condition in Lemma 3.1, [N X (ρ)+MY (ρ)]−1 is Hurwitz and therefore K (ρ)

stabilizes G . On the other hand, we have

∣

∣N X (ρ)+MY (ρ)
∣

∣≥ℜ
{

N X (ρ)+MY (ρ)
}

, ∀ω ∈Ωc ,

which leads to
∣

∣W1MY (ρ)
∣

∣< γ
∣

∣N X (ρ)+MY (ρ)
∣

∣ , ∀ω ∈Ωc

and consequently to (3.7) in Statement (a).

(a ⇒ b)

Assume that K (ρ′) = X (ρ′)Y −1(ρ′) satisfies Statement (a) but not Statement (b). Then, ac-
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cording to Lemma 3.2, there exists a stable proper rational transfer function F (s) such that

ℜ
{[

N X (ρ′)+MY (ρ′)
]

F
}

> γ−1
∣

∣W1MY (ρ′)F
∣

∣ , ∀ω ∈Ωc .

Therefore, there exist X (ρ) = X (ρ′)F and Y (ρ) = Y (ρ′)F with K (ρ) = X (ρ)Y −1(ρ) = X (ρ′)Y −1(ρ′),

such that Statement (b) holds. �

Robust stability:

The necessary and sufficient conditions for robust stability of closed-loop systems with disk-

type frequency-domain uncertainty can be developed in a similar manner. The robust stability

condition for the coprime factor uncertainty is given by [96, 104]

∥

∥

∣

∣WmSs(ρ)M−1
∣

∣+
∣

∣WnSt (ρ)N−1
∣

∣

∥

∥

∞ < 1. (3.9)

This condition can be written in the frequency domain as

∣

∣WmY (ρ)
∣

∣+
∣

∣Wn X (ρ)
∣

∣<
∣

∣N X (ρ)+MY (ρ)
∣

∣ , ∀ω ∈Ωc . (3.10)

Therefore, by the necessary and sufficient conditions in Theorem 3.1, the following convex

constraint ensures robust stability:

∣

∣WmY (ρ)
∣

∣+
∣

∣Wn X (ρ)
∣

∣<ℜ
{

N X (ρ)+MY (ρ)
}

, ∀ω ∈Ωc . (3.11)

Robust performance:

On the other hand, if we consider the nominal performance as ‖W1Ss(ρ)‖∞ < γ, the perfor-

mance will be satisfied for all models in the uncertainty set in (2.10) if ‖W1S̃s(ρ)‖∞ < γ, or:

∣

∣W1M̃Y (ρ)
∣

∣< γ
∣

∣M̃Y (ρ)+ Ñ X (ρ)
∣

∣ , ∀ω ∈Ωc . (3.12)

By substituting the relations from (2.10) into the above condition, we obtain the following

constraint:
∣

∣

∣W1MY (ρ)+W1|Wm |δme jθm Y (ρ)
∣

∣

∣< γ
∣

∣

∣MY (ρ)+N X (ρ)

+|Wm |δme jθm Y (ρ)+|Wn |δne jθn X (ρ)
∣

∣

∣

∀ω ∈Ωc ,∀θm ∈ [0 , 2π],∀θn ∈ [0 , 2π].

(3.13)

As a worst case consideration, δn = δm = 1 can be considered (which represents the outer-

most disk of the uncertain set in (2.10)). A sufficient condition for the above constraint is:
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sup
ω∈Ωc

∣

∣W1MY (ρ)
∣

∣+
∣

∣W1WmY (ρ)
∣

∣

∣

∣N X (ρ)+MY (ρ)
∣

∣−
∣

∣Wn X (ρ)
∣

∣−
∣

∣WmY (ρ)
∣

∣

< γ. (3.14)

Equivalently, for any ω ∈Ωc , a disk of radius

rµ(ρ) = γ−1|W1MY (ρ)|+γ−1|W1WmY (ρ)|+ |Wn X (ρ)|+ |WmY (ρ)| (3.15)

centered at N X (ρ)+MY (ρ) should not include the origin. This can be presented as a set of

convex constraints with respect to X (ρ) and Y (ρ) as

rµ(ρ) <ℜ
{

N X (ρ)+MY (ρ)
}

, ∀ω ∈Ωc . (3.16)

Note that the above constraint ensures also the robust stability constraint in (3.11).

Remark. The conservatism of the constraint in (3.14) can be reduced by choosing:

rµ(ρ,θm) <ℜ
{

N X (ρ)+MY (ρ)+|Wm |e jθm Y (ρ)
}

, ∀ω ∈Ωc ,∀θm ∈ [0 , 2π], (3.17)

where

rµ(ρ,θm) = γ−1
∣

∣

∣W1MY (ρ)+W1|Wm |e jθm Y (ρ)
∣

∣

∣+
∣

∣Wn X (ρ)
∣

∣ . (3.18)

The implementation of this constraint requires gridding inω and θm , which leads to a significant

increase in the number of constraints and computational burden. However, for Hurwitz systems,

since M = 1 and there is no disk uncertainty associated to M, the term W1|Wm |e jθm Y will be

removed from the above equation.

3.2.3 Multi-model and frequency-domain polytopic uncertainty

It is clear that the following constraints

γ−1
∣

∣W1Mi Y (ρ)
∣

∣<ℜ
{

Ni X (ρ)+Mi Y (ρ)
}

, ∀ω ∈Ωc , for i = 1, . . . ,ℓ (3.19)

are necessary and sufficient conditions for robust performance of the closed-loop system with

multi-model uncertainty. However, it can be shown that there are only sufficient conditions

for frequency-domain polytopic uncertainty. It suffices to compute the convex combination

of the constraints in (3.19) as

γ−1
ℓ

∑

i=1

λi

∣

∣W1Mi Y (ρ)
∣

∣<ℜ
{

ℓ
∑

i=1

λi

[

Ni X (ρ)+Mi Y (ρ)
]

}

, ∀ω ∈Ωc .
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Noting that:

∣

∣

∣

∣

∣

ℓ
∑

i=1

λi W1Mi Y (ρ)

∣

∣

∣

∣

∣

≤
ℓ

∑

i=1

λi |W1Mi Y (ρ)|, (3.20)

we obtain:

γ−1
∣

∣W1M(λ)Y (ρ)
∣

∣<ℜ
{

N (λ)X (ρ)+M(λ)Y (ρ)
}

, ∀ω ∈Ωc .

Then, according to Theorem 3.1, the upper bound for the weighted sensitivity function is

satisfied for all λ.

Although the constraints for polytopic uncertainty are only sufficient, necessary and sufficient

conditions can be developed for some class of models and some sensitivity functions. The

following theorem represents the results for systems that have frequency-domain polytopic

uncertainty only in N .

Theorem 3.2. Consider the model given in (2.13) with N (λ, jω) =
ℓ
∑

i=1
λi Ni ( jω) and M(λ, jω) =

M( jω). Then, the following statements are equivalent:

(a) Controller K (ρ) stabilizes G(λ) = N (λ)M−1 and

sup
ω∈Ωc

∣

∣

∣W1
[

1+G(λ)K (ρ)
]−1

∣

∣

∣< γ.

(b) There exist X (ρ),Y (ρ) ∈ RH∞ such that K (ρ) = X (ρ)Y −1(ρ), and

γ−1
∣

∣W1MY (ρ)
∣

∣<ℜ
{

Ni X (ρ)+MY (ρ)
}

, ∀ω ∈Ωc , for i = 1, . . . ,ℓ. (3.21)

Proof : (b ⇒ a)

The convex combination of the constraints in (3.21) leads to

γ−1
∣

∣W1MY (ρ)
∣

∣<ℜ
{

N (λ)X (ρ)+MY (ρ)
}

(3.22)

for all ω ∈Ωc and for all λ. So Statement (a) can be concluded using the result of Theorem 3.1.

(a ⇒ b)

Suppose that (a) is satisfied with the controller K (ρ′) = X (ρ′)Y −1(ρ′). Therefore, all disks of

the same radius, γ−1|W1MY (ρ′)|, centered inside a polygon with ℓ vertices, Ni X (ρ′)+MY (ρ′),

do not include the origin. This represents a convex set, which is the convex hull of the ℓ disks.

Therefore, there exists a line that passes through the origin and does not intersect this convex

set. As a result, similar to the proof of Lemma 3.2, there exists a stable transfer function F (s)

such that:

ℜ
{[

Ni X (ρ′)+MY (ρ′)−γ−1|W1MY (ρ′)|
]

F ( jω)
}

> 0, ∀ω ∈Ωc , for i = 1, . . . ,ℓ.
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[N2X (ρ)+M2Y (ρ)]

ℑ

ℜ

γ
−1|W1M3Y (ρ)|

γ
−1|W1M1Y (ρ)|

Figure 3.2 – Illustration of the constraints for polytopic uncertainty with 3 vertices.

Hence X = X (ρ′)F and Y = Y (ρ′)F satisfies the inequalities in Statement (b). �

Theorem 3.2 considers only the plant model with polytopic uncertainty in N . This represents

the class of Hurwitz systems that may have some fixed poles on the imaginary axis. The

theorem also holds for unstable systems with no uncertainty in M . A polytopic uncertainty

in M will change the radius of the disks centered at Ni X (ρ)+Mi Y (ρ), such that the whole

set of the disks will not be necessarily convex. Figure 3.2 shows a case in which the set of the

disks is not convex but is inside the convex hull of the disks. This is always true because of the

constraint in (3.20). In the special case shown in Fig. 3.2, we observe that the set of disks does

not include the origin but the convex hull does. Similarly, Statement (b) in Theorem 3.2 is a

sufficient condition for satisfying an upper bound on the weighted sensitivity functions St (ρ)

or Sv (ρ), since the radius of the disks, at each frequency, will not be constant for the whole

polygon. However, it will be necessary and sufficient for an upper bound on the weighted

sensitivity function Su(ρ) in (2.36).
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Table 3.1 – Procedure for optimizing low-order controllers.

Algorithm: Convex optimization for low-order controller design

1. Choose a large arbitrary value for ζ and a very large controller order n. Then, compute
Xn and Yn by solving the optimization problem in (3.23).

2. Find n◦ ≪ n dominant poles [ζ1, . . . ,ζn◦] of Xn and Yn by frequency analysis or model
reduction methods.

3. Consider a generalized orthonormal basis function [105] using the estimated dominant
poles as

φi (s) =
√

ℜ{ζi−1}

s +ζi−1

i−2
∏

k=1

(

s −ζ∗
k

s +ζk

)

, i = 2, . . . ,n◦+1, (3.24)

where ζ∗
k

is the complex conjugate of ζk . Then, compute Xn◦ and Yn◦ using the optimiza-
tion problem in (3.23).

3.3 Fixed-order controller design

The minimization of ‖W1Ss(ρ)‖∞ becomes an optimization problem that can be solved as

follows:

minimize
γ,ρ

γ

subject to:
∣

∣W1MY (ρ)
∣

∣< γℜ
{

N X (ρ)+MY (ρ)
}

∀ω ∈Ωc .

(3.23)

In general, this optimization problem is not convex. However, by linearly parameterizing the

coprime factors of the controller X (ρ) and Y (ρ), it becomes a quasi-convex optimization

problem and can be solved by using a bisection algorithm to obtain the optimal solution for

γ. Within a given tolerance, the bisection algorithm ensures the convergence to the global

optimum solution. There are several practical and implementation issues in this optimization

problem that will be addressed in this section.

3.3.1 Controller parameterization

The basis functions defined in (2.30) have only one parameter to be selected (ξ). It will

be shown that for high-order controllers, the choice of the basis function is not important.

However, for low-order controllers, this choice has a significant effect on the performance.

Although a rigorous method for the optimal choice of the basis functions is an open problem,

a three-step practical procedure (for continuous-time systems) is described in Table 3.1.
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3.3.2 Convergence to the optimal solution

In this sub-section, we will show that the optimal solution (γ⋆n ) to the optimization problem

in (3.23) (for a linear parameterization of X (ρ) and Y (ρ) by the orthogonal basis functions of

order n) will converge to the least upper bound of the infinity norm of the weighted sensitivity

function when n goes to infinity. The following Lemma is required to prove this convergence:

Lemma 3.3. Let X †
n(s) be the projection of Xo(s) ∈ RH∞ into the subspace spanned by the

orthogonal basis functions φ(s) in (2.30). Then [106] :

lim
n→∞

∥

∥

∥Xo −X †
n

∥

∥

∥

∞
= 0.

Theorem 3.3. Suppose that the controller Ko(s) achieves the optimal H∞ performance for the

plant model G = N M−1 such that

γ⋆o = inf
K

sup
ω

∣

∣W1(1+GK )−1
∣

∣= sup
ω

∣

∣W1(1+GKo)−1
∣

∣ .

Suppose also that γ⋆n is the optimal solution of the convex optimization problem in (3.23) when

X and Y are parameterized by an n dimensional orthogonal basis function. Then γ⋆n converges

monotonically from above to γ⋆o when n →∞.

Proof : According to Theorem 3.1, there exist Xo(s),Yo(s) ∈ RH∞ such that Ko(s) = Xo(s)Y −1
o (s)

and

γ⋆o = sup
ω∈Ωc

∣

∣

∣

∣

W1MYo

ℜ{N Xo +MYo}

∣

∣

∣

∣

. (3.25)

Take X †
n and Y †

n as the projections of Xo and Yo into the subspace spanned by n-dimensional

orthogonal basis functions and define

γ†
n = sup

ω∈Ωc

∣

∣

∣

∣

∣

W1MY †
n

ℜ{N X †
n +MY †

n }

∣

∣

∣

∣

∣

. (3.26)

We assume that γ†
n is bounded, i.e., ℜ{N X †

n +MY †
n } 6= 0 for all ω ∈Ωc . This can be proved if n

is large enough using contradiction and based on the fact that ℜ{N Xo +MYo} > ǫ> 0. Assume

that jω† is a zero of ℜ{N X †
n +MY †

n }. Therefore, at ω=ω†, one has

ℜ{N Xo +MYo} =ℜ{N (Xo −X †
n)+M(Yo −Y †

n )} > ǫ. (3.27)

However, ℜ{N (Xo −X †
n)+M(Yo −Y †

n )} can be made arbitrarily small by increasing n, which

shows that for large but finite n, ℜ{N X †
n +MY †

n } 6= 0.
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3.3. Fixed-order controller design

Now, let us compute |γ⋆o −γ†
n | using (3.25) and (3.26):

∣

∣

∣γ⋆o −γ†
n

∣

∣

∣≤ sup
ω∈Ωc

∣

∣

∣

∣

∣

|W1MYo |
ℜ{N Xo +MYo}

−
|W1MY †

n |
ℜ{N X †

n +MY †
n }

∣

∣

∣

∣

∣

. (3.28)

On the other hand, according to Lemma 3.3 we have

lim
n→∞

∥

∥

∥Xo −X †
n

∥

∥

∥

∞
= 0, lim

n→∞

∥

∥

∥Yo −Y †
n

∥

∥

∥

∞
= 0.

Therefore, limn→∞ |Y †
n |→ |Yo |, limn→∞ℜ{X †

n} →ℜ{Xo} and limn→∞ℜ{Y †
n } →ℜ{Yo} for all ω ∈

Ωc . As a result, we obtain

lim
n→∞

∣

∣

∣γ⋆o −γ†
n

∣

∣

∣= 0. (3.29)

On the other hand, γ⋆n , the solution of the optimization problem in (3.23), is always less than

or equal to γ†
n and greater than the optimal solution γ⋆o . Thus γ⋆n converges from above to

γ⋆o and this convergence is monotonic because the basis functions of order n are a subset of

those of order n +1, which ensures that γ⋆n+1 ≤ γ⋆n . �

This result shows that there is a trade-off between the controller complexity and the achieved

performance. Increasing the controller order leads to a more complex optimization problem

and possible numerical implementation problems associated with high-order controllers.

3.3.3 Finite number of constraints

The constraints in (3.23) should be satisfied for all ω ∈Ωc , which is an infinite set. This problem

is known as a semi-infinite programming (SIP) problem and there exist different methods

to solve it. A very simple and practical solution to this problem is to choose a finite set of

frequencies Ωη = {ω1,ω2, · · · ,ωη} and satisfy the constraints for this set. In this manner, the

optimization problem is converted to a SDP problem which can be solved efficiently with

solvers that are readily available.

The frequency points may be equally spaced, logarithmically spaced or chosen based on some

information about the frequency response of the plant model and the desired bandwidth

(more frequency points around the resonance frequencies and closed-loop bandwidth). The

optimal choice of the frequency points is an open problem. However, the complexity of the

optimization algorithm grows linearly with the number of frequency points (since the problem

is quasi-convex) and so it can be chosen large enough.

An alternative is to use a randomized approach where the constraints are satisfied for a finite

set of randomly chosen frequencies. In this approach, a bound on the violation probability

of the constraints can be derived and approaches zero when the number of samples goes to

infinity (see [107] and [108]). It should be mentioned that in a data-driven framework, the

frequency domain uncertainties are given by some stochastic bounds. Therefore, even if the
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constraints are met for all ω, the stability, robustness and performance are guaranteed within a

probability level. As a result, the use of randomized methods to solve the robust optimization

problem in (3.23) is fully compatible with the uncertainty description of the frequency-domain

model of the proposed approach.

3.3.4 Solution by linear programming

The convex constraints in (3.23) are equivalent to the following linear constraints:

ℜ
{

N X (ρ)+MY (ρ)−γ−1e jθW1MY (ρ)
}

> 0, ∀ω ∈Ωc (3.30)

and ∀θ ∈ [0 , 2π[. In fact, γ−1e jθW1MY (ρ) represents the circle in Fig. 3.1. Note that e jθ can

be very well approximated by a polygon of pc > 2 vertices with least area that circumscribes it.

By gridding ω and bounding the circle e jθ, a finite set of linear constraints can be obtained as

ℜ
{

N ( jωi )X ( jωi ,ρ)+M( jωi )Y ( jωi ,ρ)−γ−1 e j 2πk/pc

cos(π/pc )
W1( jωi )M( jωi )Y ( jωi ,ρ)

}

> 0

(3.31)

for i = 1, . . . ,η and k = 1, . . . , pc . Therefore, the convex constraints in (3.30) can be replaced by

η×pc linear constraints. and then γ can be minimized by an iterative bisection algorithm.

At each iteration, a linear feasibility problem can be solved efficiently even if the number of

constraints are large.

3.4 Case Studies

3.4.1 Case 1: Multi-model uncertainty

In this example, a simulation is carried out to compare the traditional µ-synthesis method

and the proposed approach for a set of unstable models. The controlled plants are taken from

an example in the robust control toolbox of MATLAB. The nominal plant model is a first-order

unstable system G0(s) = 2(s −2)−1, and the family of perturbed plants are variations of G0(s)

as follows:

G1(s) =G0(s)
1

0.06s +1

G2(s) =G0(s)
502

s2 +10s +502

G3(s) =G0(s)
702

s2 +28s +702

G4(s) =G0(s)e−0.04s

G5(s) =
2.4

s −2.2

G6(s) =
1.6

s −1.8

(3.32)

Compared with the nominal plant, G1 has an extra lag, G2 and G3 have high frequency reso-

nance modes, G4 has an additional time delay, G5 and G6 have pole and gain migrations.
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Remark. It is imperative to note that these models are simply used to obtain the frequency

response functions of the perturbed plants. The actual controller synthesis does not rely on these

parametric models.

The control task is to design a linear controller to simultaneously stabilize this family of

unstable plants and minimize the infinity norm of the weighted sensitivity functions, i.e.:

minimize
γ,ρ

γ

subject to:
∥

∥

∥W1S
i

s (ρ)
∥

∥

∥

∞
< γ

∥

∥

∥W2S
i

t (ρ)
∥

∥

∥

∞
< γ

for i = 0, . . . ,6, ∀ω ∈Ωc ,

where

W1(s) =
0.33s +4.248

s +0.008496
; W2(s) =

0.1975s2 +0.6284s +1

7.901 ·10−5s2 +0.2514s +400

and where S i
s (ρ) and S i

t (ρ) represent the sensitivity functions with respect to the i th plant

model in Gi . The µ-synthesis method from the MATLAB robust control toolbox is used to solve

this problem. The multi-model uncertainty is approximated with a fourth-order uncertainty

weighting filter and a 18th-order controller is designed that achieves a performance of γ⋆µ =
1.0248. Comparable performance is achieved after reducing the controller order to 6.

Continuous-time Laguerre basis functions of order 5 with ξ= 20 and an integrator are used for

the controller parameterization. A high frequency pole at 100 is used for constructing Ni and

Mi for the models. For example, for G6(s) = N6(s)M−1
6 (s):

N6(s) =
1.6

s +100
, M6(s) =

s −1.8

s +100
.

The frequency response of the model is computed at η= 200 logarithmically spaced frequency

points between 10−3 and 104 rads−1. The linearized constraints in (3.31) are used with a

polygon of pc = 25 vertices for over bounding e jθ. Solving the optimization problem leads to

the following controller:

K (s) =
0.26773(s +1)(s +2348)(s2 +19.82s +131.3)(s2 +28.5s +3510)

s(s +7.759)(s2 +27.77s +556.5)(s2 +94.5s +12440)

which leads to the step disturbance response depicted in Fig. 3.3. The resulting performance

obtained from the proposed optimization problem is γ⋆ = 0.8852. This is much smaller

than that of the µ-synthesis method; in the proposed approach, there is no conservatism

in modeling the multi-model uncertainties. It should be mentioned that in the µ-synthesis

approach, the time delay in G4(s) is approximated with a first-order Padé function; in the

proposed approach, the time-delay is taken into account with no approximation.
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Figure 3.3 – Step responses for the family of closed-loop systems.

3.4.2 Case 2: Convergence to optimal performance

Consider a discrete-time SISO system given as

G(z) =
z −0.186

z3 −1.116z2 +0.465z −0.093
, (3.33)

which uses a sampling time of Ts = 1 s. The goal is to design a controller with an integrator

that minimizes
∥

∥W1Ss(ρ)
∥

∥

∞, where

W1(z) =
0.4902(z2 −1.0431z +0.3263)

(z −1)(z −0.282)
. (3.34)

For discrete-time controller synthesis, the controller is parameterized by discrete-time La-

guerre basis functions as follows:

K (z) = X (z)Y −1(z) ; X (z) =ρT
x φ(z) , Y (z) =ρT

y φ(z),

where φT (z) = [1,φ1(z), . . . ,φn(z)] and n is the controller order (with the Laguerre functions

defined in (2.31)). It will be shown that by increasing the controller order, the side effect of the

selection of the Laguerre parameter, ξz , is reduced.

In this example, η = 50 equally spaced frequency points between 0 and π are chosen. In

order to have an integrator in the controller and to avoid unboundedness of W1 at ω= 0, the

basis functions for Y (z) are multiplied by (z −1)/z. Since the system is Schur, we choose
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Controller Order

Figure 3.4 – γ⋆n versus the controller order with different Laguerre parameters.

N (e jω) =G(e jω) and M(e jω) = 1. The convex constraints are linearized by approximating e jθ

with a polygon of pc = 50 vertices.

The standard H∞ control method in the Robust Control toolbox of MATLAB leads to the

global optimal value of γ⋆o = 0.5522 with a 6th order controller. Fig. 3.4 shows the optimal

value, γ⋆n , for different values of the parameter ξz in the Laguerre basis functions for varying

controller orders n. It can be observed that the optimal solution converges monotonically and

is independent of the value of ξz .

3.4.3 Case 3: Flexible Transmission System

In this example, experimental data is used to compute a robust controller which takes into

consideration the frequency-domain uncertainty from the measurement process. An electro-

mechanical flexible transmission system which consists of three disks connected by elastic

belts was considered. The first disk was coupled to a servo motor which is derived by a current

amplifier. The position of the third disk was measured with an incremental encoder and

controlled by a proportional controller. The input of the system was the reference position

for the third disk (see Fig. 3.5). This system was excited by a Pseudorandom binary sequence

(PRBS) signal with a sampling period of Ts = 40 ms where data with length 765 was collected.

Figure 3.6 shows the experimental data that was used to identify a frequency domain model

using the spa command in the Identification toolbox of MATLAB. The Nyquist diagram of this

spectral model together with the uncertainty disks of 0.95 probability are given in Fig. 3.7.

The uncertainty disks were approximated by a polygon of m = 20 vertices and the goal was to
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Figure 3.5 – Flexible transmission system

design a stabilizing controller that minimized γ, where
∥

∥W1Ss(ρ)
∥

∥

∞ < γ, with

W1(z) =
z −0.96

z −1
.

In the proposed method, discrete-time Laguerre basis functions of order 4 with ξz = 0 (FIR

filter) are considered for X and Y . The resulting controller is

K (z) =
20.3(z2 −1.88z +0.92)(z2 −1.278z +0.6057)

(z +0.72)(z −1)(z2 +0.209z +0.563)
,

which achieves an optimal performance of γ⋆ = 2.12. Figure 3.8 shows the magnitude of the

Bode diagram of the sensitivity function for the nominal model. It can be observed that the

sensitivity function is small at low frequencies and its maximum value is less than 5dB, which

guarantees a good stability margin.

3.5 Conclusion

A robust controller design method for LTI-SISO systems based on frequency-domain data is

proposed. The necessary and sufficient conditions for the existence of a robust controller

are represented by an infinite set of convex constraints and approximated with a finite set of

linear constraints. This method can be easily applied to both continuous-time systems and

discrete-time systems with time delay and multi-model uncertainty. In comparison with the

classical H∞ controller design methods, the following features can be highlighted:
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Figure 3.6 – Experimental identification data.
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Figure 3.7 – Nyquist diagram of the spectral model together with uncertainty disks.
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Figure 3.8 – Magnitude of the FRF of sensitivity function Ss .

• The frequency response of the plant is the only requisite for controller synthesis where

no parametric model is required

• Pure input/output time delay is considered with no approximation.

• Frequency-domain uncertainty is taken into account with reduced conservatism.

• Parametric uncertainty in identified models with noisy data can be considered in a

stochastic sense with reduced conservatism.

• Fixed-order controllers can be designed in a convex optimization problem that considers

a finite amount of constraints in the frequency domain.

It is shown that the choice of the basis functions affects the optimization results for low-

order controllers. Chapters 6 and 7 will address this issue and consider designs for low-order

controllers.
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4 Robust RST Controller Design with

Applications to Power Converters

4.1 Introduction

The method proposed in this chapter is an extension of the work in Chapter 3, where the nec-

essary and sufficient conditions that ensures the H∞ performance for multiple weighted sen-

sitivity functions are presented using a discrete-time RST controller structure. The methods

presented in Chapter 3 are combined with the ideas presented in [99] to develop a data-driven

controller design methodology that guarantees H∞ performance and closed-loop stability

for linear systems that are subject to nonlinear distortions. With this method, a nonlinear

system in V can be modeled as a BLA with an associated frequency-dependent uncertainty.

By performing a set of identification experiments on the nonlinear system, the dynamics

of the underlying linear system are guaranteed to lie in the set of these uncertainties. Addi-

tionally, since the parameters of the controller’s denominator are the optimization variables,

this method can lead to unstable controllers. Therefore, a sufficient condition is presented

to ensure that the controller remains stable. Moreover, it is shown that as the controller

order increases, the solution to the convex H∞ problem converges to the global solution

(for the RST controller structure that considers multiple weighted sensitivity functions). The

proposed method is used to design robust controllers for four different case studies; two in

simulation and two for real applications. For one of the industrial-based case studies, (which

constitutes the main applicative focus of this chapter), a robust RST controller is designed for

power converters in particle accelerators at CERN. The designed controller is implemented

in the power converters to control their output current with extremely high precision, which

represent its major challenge. The main advantage of the proposed data-driven method for

this application is to simultaneously ensure the robustness margins, attain the required closed-

loop bandwidth, guarantee the controller stability, and ensure a small tracking error while

avoiding the long and tedious manual tuning process intrinsically involved in the classical

pole-placement model-based approach.

In this chapter, a discrete-time representation of coprime processes (see Section 2.1.2) with

RST controllers (see Section 2.2.2) are considered. Thus the sensitivity functions with the
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RST structure in Section 2.3.2 are considered.

4.2 H∞ Performance via Convex Optimization

4.2.1 General Design Specifications

As discussed in the previous chapter, the objective of the general H∞ control problem is to

find the controller parameter vector ρ such that

sup
ω∈Ω

∣

∣

∣Hq (e− jω,ρ)
∣

∣

∣< γ, (4.1)

where γ ∈R+, Hq (e− jω,ρ) =Wq (e− jω)Sq (e− jω,ρ) and Wq : R→C is the FRF of a Schur weight-

ing filter such that Hq (e− jω,ρ) has a bounded infinity norm. For notation purposes, the

dependency in e− jω will be omitted, and will only be reiterated when deemed necessary. The

condition in (4.1) can also be expressed as follows:

γ−1
∣

∣Wq∆q (ρ)
∣

∣<
∣

∣ψ(ρ)
∣

∣ , ∀ω ∈Ω. (4.2)

It is desired to minimize the upper bound γ such that the H∞ performance condition is

satisfied. Therefore, the following optimization problem can be considered:

minimize
γ,ρ

γ

subject to: γ−1
∣

∣Wq∆q (ρ)
∣

∣<
∣

∣ψ(ρ)
∣

∣

∀ω ∈Ω ; q ∈Q ⊂ {1,2, . . . ,c}.

(4.3)

Notice that (4.3) is a non-convex optimization problem.

Consider a circle in the complex plane at a specific frequency in Ω which is centered at ψ(ρ)

and has radius γ−1|Wq∆q (ρ)|. As described in Chapter 3 (in the case with a 1DOF controller),

the constraint in (4.2) ensures that for any frequency point in Ω, the circle associated with this

frequency point will not encircle the origin. Fig. 4.1 displays the graphical interpretation of

this condition. The following results are recalled (for discrete-time systems) before preceding

with the theoretical contributions of this chapter.

Lemma 4.1. (Conditions of SPRness for discrete-time systems [109]) A transfer function Ad (z−1)

is strictly positive real if and only if

• Ad (z−1) is Schur.

• ℜ
{

Ad (e− jω)
}

> 0, ∀ω ∈Ω.

• The poles of Ad (z−1) on the unit circle are simple and distinct and the associated residues

are real and non-negative.
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ψ(ρ)

γ−1|Wq∆q (ρ)|

ℑ

ℜ0

Figure 4.1 – The graphical interpretation of H∞ constraints in the complex plane.

The geometrical construction in Fig. 4.1 will now be used to prove the following Lemma:

Lemma 4.2. Suppose that

Hq (e− jω,ρ) =Wq (e− jω)∆q (e− jω,ρ)ψ−1(e− jω,ρ)

is the frequency response of a bounded analytic function outside the unit circle. Then, the

following constraint is met

sup
ω∈Ω

∣

∣

∣Hq (e− jω,ρ)
∣

∣

∣< γ (4.4)

if and only if there exists a stable function F (z−1) that satisfies

ℜ
{

ψ(ρ)F (e− jω)
}

> γ−1
∣

∣

∣Wq∆q (ρ)F (e− jω)
∣

∣

∣ , ∀ω ∈Ω

Proof : The basic idea is similar to that of the proof of Lemma 3.2. It is clear that (4.4) is satisfied

if and only if the disk of radius γ−1|Wq∆q (ρ)| centered at ψ(ρ) does not include the origin

for all ω ∈Ω, i.e. |ψ(ρ)| > γ−1|Wq∆q (ρ)|. This is equivalent to the existence of a line passing

through the origin that does not intersect the disk. Therefore, at every given frequency ω, there

exists a complex number f (e− jω) that can rotate the disk such that it lays inside the right hand

side of the imaginary axis. Hence, we have

ℜ
{[

ψ(ρ)−γ−1|Wq∆q (ρ)|e jθ
]

f (e− jω)
}

> 0, ∀ω ∈Ω,∀θ ∈ [0 , 2π[. (4.5)
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Since f (e− jω) = | f (e− jω)|e jθ f , then (4.5) can be expressed as

ℜ
{

ψ(ρ) f (e− jω)
}

> γ−1
∣

∣

∣Wq∆q (ρ) f (e− jω)
∣

∣

∣cos(θ+θ f ), ∀ω ∈Ω,∀θ ∈ [0 , 2π[. (4.6)

However, (4.6) is satisfied if and only if:

ℜ
{

ψ(ρ) f (e− jω)
}

> γ−1
∣

∣

∣Wq∆q (ρ) f (e− jω)
∣

∣

∣ , ∀ω ∈Ω. (4.7)

In [103], it is shown that, f (e− jω) can be approximated arbitrarily well by the frequency

response of a stable transfer function or FIR function F (z−1) if and only if

Z =
(

ψ(ρ)−γ−1
0 |Wq∆q (ρ)|e jθ

)−1
(4.8)

is analytic outside the unit circle for all γ0 > γ and all θ ∈ [0 , 2π[. However, ψ−1(ρ) is stable

because of the stability of Hq (ρ). On the other hand, by decreasing γ0 from infinity to γ, the

poles of Z move continuously with γ0. Therefore, Z is not analytic outside the unit circle (i.e.,

Z has poles outside the unit circle) if and only if Z−1(e− jω) = 0 for a given frequency, which is

not the case because the origin is not in the interior of the circle γ−1
0 |Wq∆q (ρ)|e jθ. �

The set of all controllers that meet the performance condition defined by the weighted norm

of sensitivity functions is asserted in the following theorem.

Theorem 4.1. Given the frequency response function G(e− jω) = N (e− jω)M−1(e− jω) and the

frequency response of a weighting filter Wq (e− jω), then the following statements are equivalent

for a given q ∈Q:

(a) There exists an RST controller that stabilizes G and

sup
ω∈Ω

∣

∣WqSq (ρ)
∣

∣< γ. (4.9)

(b) There exists an RST controller such that

ℜ
{

ψ(ρ)
}

> γ−1
∣

∣Wq∆q (ρ)
∣

∣ , ∀ω ∈Ω. (4.10)

Proof : (b ⇒ a)

ψ(ρ) is analytic outside the unit circle and its real part is positive for all ω ∈Ω. Additionally,

note that

ℜ
{

ψ(ρ)
}

> 0 ⇐⇒ ℜ
{

ψ−1(ρ)
}

> 0.

Therefore, by the conditions in Lemma 4.1, ψ−1(ρ) is Schur. This implies that R(ρ) and S(ρ)

stabilizes G . On the other hand, we have

∣

∣ψ(ρ)
∣

∣≥ℜ
{

ψ(ρ)
}

, ∀ω ∈Ω
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which leads to |Wq∆q (ρ)| < γ|ψ(ρ)| for all ω ∈Ω and to (4.9) in Statement (a).

(a ⇒ b)

Assume that R(ρ′), S(ρ′), and/or T (ρ′) satisfies Statement (a) but not Statement (b). Then,

according to Lemma 4.2, there exists a FIR function F (z−1) such that

ℜ
{

ψ(ρ′)F (e− jω)
}

> γ−1
∣

∣

∣Wq∆q (ρ′)F (e− jω)
∣

∣

∣ (4.11)

for all ω ∈Ω. Therefore, there exists a higher order RST controller with R = R(ρ′)F , S = S(ρ′)F ,

and/or T = T (ρ′)F such that Statement (b) holds. �

The above theorem gives a necessary and sufficient condition for satisfying the H∞ criterion

for one sensitivity function. However, in typical control system applications, it is desired to

shape several sensitivity functions simultaneously and impose multiple constraints on the

weighted sensitivity functions. The following theorem ensures necessity and sufficiency of the

H∞ criterion when multiple sensitivity functions are considered:

Theorem 4.2. Given the frequency response function G(e− jω) = N (e− jω)M−1(e− jω) and the

frequency response of weighting filters Wq (e− jω) for ∀q ∈Q, then the following statements are

equivalent:

(a) There exists an RST controller that stabilizes G and

sup
ω∈Ω

∣

∣WqSq (ρ)
∣

∣< γ, ∀q ∈Q. (4.12)

(b) There exists an RST controller such that

ℜ
{

ψ(ρ)
}

> γ−1
∣

∣Wq∆q (ρ)
∣

∣ , ∀ω ∈Ω,∀q ∈Q. (4.13)

Proof : (b ⇒ a)

The proof for this condition is similar to the proof presented in Theorem 4.1. By satisfying the

constraint in (4.13) for all q ∈Q, the condition in (4.12) for each corresponding q is obtained.

(a ⇒ b)

Assume that R(ρ′), S(ρ′), and/or T (ρ′) satisfies Statement (a) but not Statement (b). Then,

according to Lemma 4.2, there exist FIR transfer functions Fq (z−1) such that

ℜ
{

Fqψ(ρ′)−γ−1
∣

∣FqWq∆q (ρ′)
∣

∣

}

> 0 (4.14)

for all ω ∈Ω and for all q ∈Q. For Statement (b) to hold, there must exist a common F for all

q ∈Q such that R = R(ρ′)F , S = S(ρ′)F , and/or T = T (ρ′)F .

For a given frequency, the constraints in (4.12) will represent disks in the complex-plane that
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are centered exactly at ψ(ρ′) with varying radii (where the radii depend on each q). Let us

define the following quantities at every ω ∈Ω:

Ψ(e− jω,ρ′) =
{∣

∣

∣W1∆1(e− jω,ρ′)
∣

∣

∣ , . . . ,
∣

∣

∣Wc∆c (e− jω,ρ′)
∣

∣

∣

}

rΨ(e− jω,ρ′) = γ−1 max
q∈Q

Ψ(e− jω,ρ′).
(4.15)

For any ω, the disk with radius rΨ(ρ′) does not include the origin, and all of the other disks

with smaller radii are enclosed in the disk with radius rΨ(ρ′), i.e. :

γ−1
∣

∣

∣Wq∆q (e− jω,ρ′)
∣

∣

∣≤ rΨ(e− jω,ρ′).

Therefore, for a given frequency, the complex number fq which is used to rotate the disk

associated with radius rΨ(e− jω,ρ′) ensures that all of the disks with γ−1|Wq∆q (e− jω,ρ′)| ≤
rΨ(e− jω,ρ′) are also rotated such that they all lie in the right-hand side of the imaginary axis.

Therefore, there will always exist a common F that interpolates all fq (different q in different

frequencies) such that the conditions in (4.14) hold true for all q ∈Q. �

4.2.2 Robust Design

With the proposed method, it is possible to design a fixed-structure controller which accounts

for the uncertainties of a given FRF. Given the additive uncertainty in (2.10), a desired perfor-

mance condition ‖WqSq (ρ)‖∞ < γ will be satisfied for all models in the uncertain set (2.10) if

‖WqS̃q (ρ)‖∞ < γ, where S̃q (ρ) = ∆̃q /ψ̃(ρ) and ψ̃(ρ) = Ñ R(ρ)+M̃S(ρ). For example, consider

the nominal performance condition ‖W3S̃3(ρ)‖∞ < γ, where W3 : R→C and S̃3 : Rnr st ×R→C

with

∆̃3(ρ) = M̃S(ρ)+ Ñ [R(ρ)−T (ρ)].

As a worst case consideration, δm and δn can be selected to be equal to one in (2.10) (which

ensures that the uncertainty in the entire disk is taken into account). By substituting the

expressions in (2.10) into this condition, the following constraint can be devised:

∣

∣

∣W3

[

ψ(ρ)−N T (ρ)+S(ρ)|Wm |e jθm +C (ρ)|Wn |e jθn

]∣

∣

∣

< γ
∣

∣

∣ψ(ρ)+R(ρ)|Wn |e jθn +S(ρ)|Wm |e jθm

∣

∣

∣ (4.16)

∀ω ∈Ω,∀{θn ,θm} ∈ [0,2π[, where C (ρ) = R(ρ)−T (ρ). For notation purposes, let ψ′(ρ,θn) :=
ψ(ρ)+R(ρ)|Wn |e jθn be defined. Then for a given {ω,θn ,θm}, (4.16) represents a circle centered

at ψ′(ρ,θn)+S(ρ)|Wm |e jθm with a radius of

xp (ρ,θm ,θn) = γ−1|W3|
∣

∣

∣ψ′(ρ,θn)+S(ρ)|Wm |e jθm −T (ρ)[N +|Wn |e jθn ]
∣

∣

∣ . (4.17)
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According to Theorem 4.1, a necessary and sufficient condition for (4.16) can be constructed

as follows:

xp (ρ,θm ,θn) <ℜ
{

ψ′(ρ,θn)+S(ρ)|Wm |e jθm

}

, ∀ω ∈Ω,∀{θm ,θn} ∈ [0,2π[. (4.18)

By gridding in ω, θm and θn , then (4.18) becomes a convex constraint (with respect to ρ);

however, gridding in all of these variables can be computationally expensive. Therefore, a

sufficient condition for (4.16) can be devised as follows:

sup
ω∈Ω

|W3|
[

|ψ(ρ)−N T (ρ)|+ |C (ρ)Wn |+ |S(ρ)Wm |
]

|ψ(ρ)|− |R(ρ)Wn |− |S(ρ)Wm |
< γ. (4.19)

With this condition, the dependency in θm and θn has been removed, and gridding in only

one variable (i.e., ω) is required.

The condition in (4.19) can be represented as a disk in the complex plane which is centered at

ψ(ρ) and has radius

xr (ρ) = γ−1|W3|
[

|ψ(ρ)−N T (ρ)|+ |C (ρ)Wn |+ |S(ρ)Wm |
]

+|R(ρ)Wn |+ |S(ρ)Wm |. (4.20)

Therefore, a set of convex constraints is devised with xr (ρ) <ℜ{ψ(ρ)} for all ω ∈Ω. This con-

straint has the same structure as that of the sensitivity functions and so can readily be included

in the optimization problem. Note that (4.19) introduces some conservatism; however, this

conservatism can always be reduced by imposing (4.18) (at the cost of a larger computation

time).

Remark. For stable plants, M = 1 may be selected. Therefore, the disk uncertainty associated

with M is |Wm | = 0. From (4.17) and (4.18), it can be observed that with |Wm | = 0, the de-

pendency on θm is removed, and no gridding in θm is required. The necessary and sufficient

condition then becomes

xp (ρ,θn) <ℜ
{

ψ′(ρ,θn)
}

, ∀ω ∈Ω,∀θn ∈ [0,2π[, (4.21)

where xp (ρ,θn) = γ−1|W3||ψ′(ρ,θn)−T (ρ)[N +|Wn |e jθn ]|.

4.2.3 Controller Stability

For a stable plant, computation of an unstable controller should generally be avoided [100].

For the RST structure, it is evident that if the polynomial S(z−1,ρ) possesses zeros outside the

unit circle, then the open-loop system will become unstable. In order to avoid this impairment,

it is required to impose a constraint such that the polynomial S(z−1,ρ) possesses zeros inside

the unit circle. This rationalization leads to the following lemma:

Lemma 4.3. Suppose that S(z−1,ρ) is parameterized as in (2.28). Then a sufficient (convex)
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condition to ensure that the zeros of S(z−1,ρ) remain inside the unit circle is

ℜ{S(ρ)} > 0, ∀ω ∈Ω. (4.22)

Proof : ℜ{S(ρ)} > 0 implies that ℜ{S−1(ρ)} > 0; from Lemma (4.1), this further implies that

S−1(ρ) is Schur. �

4.2.4 Tracking Specifications

In certain design strategies, it may sometimes be desired to track different reference signals

with no steady-state error, such as a step or a ramp input. For the systems addressed in this

thesis, it will be desired to track a step input. Minimization of the error sensitivity function

is a soft constraint, and may not lead to the ideal tracking performance. Therefore it is

advantageous to consider conditions that ensure proper tracking of a step input by imposing

hard convex constraints. Note that in an RST structure, the existence of an integrator in the

open-loop transfer function does not guarantee a zero steady-state error for tracking a step

input. The necessary and sufficient condition for a zero steady-state error is recalled in the

following lemma.

Lemma 4.4. Suppose that the reference signal is a step function given as r (z−1) = A(1− z−1)−1,

where A is the amplitude of the step function. Additionally, suppose that the controller S(z−1,ρ)

possesses an integrator (i.e., S(z−1,ρ) = (1− z−1)S′(z−1,ρ), where S′(z−1,ρ) is linearly parame-

terized). A necessary and sufficient condition to obtain a zero steady-state error for a step input

is

R(1,ρ) = T (1,ρ) 6= 0. (4.23)

Proof. The proof for this condition can be established by using the final value theorem. For

perfect tracking of an arbitrary reference signal r [k], it is required that limk→∞(r [k]− y[k]) = 0,

or

lim
z→1

(1− z−1)r (z−1)[1−S2(z−1,ρ)] = 0. (4.24)

For a step input, the condition for achieving a zero steady-state error can be expressed as

lim
z→1

[1−S2(z−1,ρ)] = 0. (4.25)

By substituting (2.39) into (4.25) (and noting that S(z−1,ρ) = (1−z−1)S′(z−1,ρ)), one can arrive

to the following condition:

lim
z→1

N (z−1)[R(z−1,ρ)−T (z−1,ρ)]

M(z−1)S(z−1,ρ)+N (z−1)R(z−1,ρ)
=

R(1,ρ)−T (1,ρ)

R(1,ρ)
= 0 (4.26)
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which evidently leads to the condition asserted in (4.23). �

4.2.5 Convex Optimization via Semi-Definite Programming

Suppose that it is desired to obtain H∞ performance for a sensitivity function (i.e., minimize

γ in ‖WqSq (ρ)‖∞ < γ). Then according to the results in Theorem 4.2, one can formalize an

optimization problem to obtain the admissible R(ρ), S(ρ), and/or T (ρ) controllers as follows:

minimize
γ,ρ

γ

subject to: γ−1
∣

∣Wq∆q (ρ)
∣

∣<ℜ
{

ψ(ρ)
}

∀ω ∈Ω ; q ∈Q.

(4.27)

For LP controllers, the optimization problem in (4.27) is quasi-convex. The classical solution

to this problem is to implement a bisection algorithm in order to obtain the global solution.

As in the problems considered in Chapter 3, the problem in (4.27) is a SIP problem since there

are a finite number of optimization variables and an infinite number of constraints. To solve

this problem, the optimization algorithm can be converted to a SDP problem. A predefined

frequency grid can be implemented in order to solve a finite number of constraints.

It can be shown that by increasing the controller order, the optimal solution to (4.27) converges

to the global optimal solution of the H∞ problem.

Lemma 4.5. Suppose that the RST controller achieves the optimal H∞ performance for the

plant model G = N M−1 such that

γ⋆o = sup
ω

∣

∣Wq∆q (ρ)ψ−1(ρ)
∣

∣ , ∀q ∈Q.

Additionally, suppose that γ⋆n is the optimal solution of the convex optimization in (4.27)

when R(ρ), S(ρ) and/or T (ρ) are parameterized by an n-th order FIR filter. Then γ⋆n converges

monotonically from above to γ⋆o when n →∞.

Proof : The proof of a similar condition has been established in Theorem 3.3 (for one sensitivity

function and for a 1DOF controller), and has been omitted to conserve space. However,

the necessary and sufficient condition from Theorem 4.2 can be combined with the ideas

presented in Theorem 3.3 to ensure that the solution to (4.27) converges to the global optimal

solution of the H∞ problem as n increases (∀q ∈Q). �

Table. 4.1 displays a general method for designing a controller using the proposed approach.
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Table 4.1 – Procedure for computing an RST controller

Algorithm: Convex optimization for optimal performance

1. Excite the system with a multi-sinus or PRBS signal and identify the FRF of the system.
If the process is stable, select N = G and M = 1. If the process is unstable, see Section
2.1.2 for obtaining the coprime factors.

2. Compute the uncertainty for Wn and Wm using the covariance of the estimates [95]
and define the performance filters in ‖WqSq (ρ)‖∞.

3. Formulate the control problem as minimizing the infinity norm of multiple weighted
sensitivity functions.

4. Start with a first-order RST controller (with n = nr = ns = nt ) and solve the optimiza-
tion problem in (4.27) by using a frequency grid to obtain γn . The constraint should be
modified based on which sensitivity function is considered.

5. If the desired performance is met, stop. Otherwise, increase the order by one (i.e.,
n = n +1).

6. Solve the problem in (4.27) to obtain the new γn and go to Step 5.

4.3 Simulation Examples

4.3.1 Case 1: Multi-model uncertainty

Consider the following unstable system reported in [110] which describes the dynamics of a

magnetic levitation system linearized around an operating point (airgap of 17 mm):

G(s) =
a1

(s +131.3)(s −a2)(s +a2)
, (4.28)

where a1 = 163863.6 and a2 = 29.85. The input u is proportional to the inductor current and

the output y is proportional the measured airgap. To demonstrate the effectiveness of the

proposed method, it is supposed that there exists some uncertainty with the mass of the

steel ball where the gain and poles of the system belong in the sets ã1 ∈ {0.9a1, a1,1.1a1} and

ã2 ∈ {0.7a2, a2,1.3a2}. With the proposed approach, a multi-model design can be implemented

where stability and performance is guaranteed for all of the uncertainties associated with the

system. The plant can be expressed as Gi (s) for i = 1, . . . ,9 (which represents the plant model

with respect to the i th unique combination of the uncertain parameters).

Remark. Note that these models are simply used to obtain the FRFs of the plants and the

controller synthesis does not rely on these parametric models. As a result, both continuous- and

discrete-time plant models can be considered for the synthesis.
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Performance Specifications

For this particular case study, it was desired to obtain the best performance for disturbance

rejection (i.e., by minimizing ‖W1S
i

1 (ρ)‖∞ ∀i , where S i
1 (ρ) denotes the sensitivity function

with respect to the i th plant model from the set Gi ). Note that this is a regulation problem, and

the polynomial T (ρ) is not included in the design process. Additionally, in order to have a zero

steady-state error, the controller should include an integrator (i.e., S(ρ) = (1− z−1)S′(ρ)). The

weighting filter was selected as W1(s) = (s +ωd )s−1, which was designed in accordance with

the methods described in [10]. The rejection bandwidth ωd [rads−1] was selected as ωd = 100π.

Note that W1( jω) is unbounded at ω= 0; however, due to the fixed integrator in the controller,

‖W1S
i

1 (ρ)‖∞ remains bounded ∀i and ∀ω.

Controller Synthesis

Since each model is unstable, then each coprime factor must be selected such that {Ni (s), Mi (s)} ∈
RH∞ for all i . A simple choice is to divide both the numerator and denominator of each model

by a factor (s +10)3.

Remark. If a parametric model is not available for acquiring the FRFs of these coprimes, then a

closed-loop identification experiment can be performed to obtain them (see Section 2.1.2).

The problem in (4.27) was solved for q = 1 by considering all models in the set Gi and a linearly-

spaced grid of 300 points from 0 to π/Ts rads−1 (where a working sampling time of Ts = 0.002s

was selected, as asserted in [110]). The optimal solution γ⋆ for various controller orders

have been computed and compared with the solutions obtained with the frequency-domain

method in [111] (which requires the selection of a desired open-loop transfer function). Fig. 4.2

depicts the optimal solution as a function of the controller order; it can be observed that as

the controller order increases, the solution obtained with the proposed method achieves

better performance (i.e., converges monotonically to the global optimal solution of the H∞
problem). For comparative purposes, the optimization times with both the proposed method

and the method in [111] for a 5th order controller (with γmax = 5, γmi n = 10−3, and a tolerance

of 10−5 set for the bisection algorithm) are 111.5 s and 9.8 s, respectively. The difference in

optimization times stems from the fact that the method in [111] fixes the polynomial S(ρ)

a-priori such that R(ρ) is the only polynomial to be optimized; with the proposed method,

the parameters in both R(ρ) and S(ρ) are optimized. The optimization times were calculated

based on a computer having the following hardware specifications: Intel-Core i7, 3.4 GHz

CPU, 8 GB RAM. The optimization algorithm was run using MATLAB version (R2015b) on a

Windows 7 platform (64-bit).

4.3.2 Case 2: Nonlinear Distortions

In this case study, a 1DOF controller (i.e., with R(ρ) = T (ρ) in the RST structure) for a DC

motor with a typical nonlinearity encountered in practice is considered. The model of the
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Figure 4.2 – Optimal solution γ⋆ as a function of the controller order. Solutions obtained with
the proposed method (dashed-blue line); solutions obtained with the method which requires
the selection of a desired open-loop transfer function (dashed-red line).

brushless DC motor is taken from [112]:

G(z) =
0.0143z +0.0142

(z −1)(z −0.9725)
, (4.29)

where the sampling time of the process is given as Ts = 2.048 ms. A typical nonlinearity that

is encountered with motor applications is the dead-zone nonlinearity (see [113, 114]). This

nonlinearity would occur at the input of the plant, and can be expressed as follows:

un =



















0, for −d ≤ u ≤ d

mn(u −d), for u > d

mn(u +d), for u <−d

(4.30)

where un is the output to the nonlinearity, mn is the slope of the line, and d ∈]0,∞[ is the value

of u at which the discontinuity occurs. Note that this type of nonlinear system belongs to the

class of systems in V .

The objective of this case study will be to demonstrate the effectiveness of the proposed robust

design method by applying a random-phase multi-sine signal that excites the dead-zone

nonlinearity; the FRF obtained from this identification will then be used to model a BLA with

an associated uncertainty (as discussed in Section 2.1.3) and design a robust controller that

minimizes ‖W3S̃3(ρ)‖∞. For simplicity, the values of the nonlinearity are selected as mn = 1

and d = 0.1 for this case study. It will also be desired to investigate the response of a controller

when the uncertainties in the design are neglected and the FRF of the coprimes are obtained
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Figure 4.3 – Random phase multi-sine input r (t ) along with the plant input u(t ) and output
y(t ). For presentation purposes, the signals are shown for 2 full periods.

from a given time-domain experiment.

Note that G(z) possesses an integrator; therefore, the closed-loop method will be used where

the BLAs for the coprimes N and M are formulated. To accomplish this task, the closed-loop

system must first be stabilized. For this case study, the closed-loop system is stabilized when

a proportional controller is implemented with a unity-feedback structure (with the value of

the controller equal to 0.15). The closed-loop system was excited with a periodic random

phase multi-sine (with an amplitude range of ±50); 10 experiments were performed where the

system was excited with 15 periods of this signal where the period length was 2000 samples and

each period contains 500 sinusoids with random phases. The input and output time-domain

signals are shown in Fig. 4.3.

For comparative purposes, it was desired to compare the design scheme when the uncertain-

ties of the proposed method were neglected and the nominal FRF was obtained directly from

the data in Fig. 4.3. The FRF BLAs with the associated uncertainties for Ñ and M̃ are shown in

Fig. 4.4 and Fig. 4.5, respectively. The radii of the uncertainty circles for each coprime were

computed using (2.22). It can be observed that at some frequencies, the FRF of the coprimes

for a given experiment are not included in the uncertainty disks. The BLA variances for each

coprime are shown in Fig. 4.6.

Controller Synthesis

With the BLA and the uncertainty for the coprimes, a controller was computed in order to

obtain H∞ performance for the underlying linear system. A SDP problem can be formulated

to design robust controllers (which takes into account the uncertainties from the nonlinear
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Figure 4.4 – N (dashed-blue line) with the associated uncertainties at each frequency (black
circles). The FRF obtained between r to y for a given experiment with no uncertainties
(dashed-red line).

Figure 4.5 – M (dashed-blue line) with the associated uncertainties at each frequency (black
circles). The FRF obtained between r to u for a given experiment with no uncertainties
(dashed-red line).
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4.3. Simulation Examples

Figure 4.6 – Variances of coprimes caused by nonlinear distortions

distortions) as follows:

minimize
ρ,γ

γ

subject to: ℜ
{

ψ(e− jωk ,ρ)
}

> xr (e− jωk ,ρ)

for k = 1, . . . ,η,

(4.31)

where η= 500 and xr (e− jωk ,ρ) is defined as in (4.20). To invoke integral action, the controller

will be prefixed with an integrator.

Weighting filter selection

The weighting filters Wn and Wm for the uncertainties in Ñ and M̃ were calculated using (2.22).

The weighting filter W3 was selected based on a desired closed-loop reference model. For

the underlying linear system, it is known that S2 +S3 = 1. A simple first-order closed-loop

reference model was selected as the desired complementary function S d
2 (z) = (1−cd )(z−cd )−1,

where cd = e−ωd Ts and ωd [rads−1] is the desired bandwidth. For this case study, the desired

bandwidth was selected as ωd = 100π. Thus W3 was formulated as [1−S d
2 (z)]−1. Note that

the controller was prefixed with an integrator, and ‖W3S̃3(ρ)‖∞ remains bounded ∀ω.

Simulation Results

The problem in (4.31) was solved with a 5th order controller. Two design schemes were

considered:
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Figure 4.7 – Step response of the nonlinear system. The desired closed-loop response (black
line); the response with the proposed method (including uncertainties in design) (blue line);
the response with no uncertainties considered (red line).

Table 4.2 – Parameters resulting from the bisection algorithm.

Parameter Value Unit

γmax 5 -
γmin 0 -
γtol 10−3 -
γ⋆ 1.252 -

Optimization time 108.2 s

Number of constraints 500 -

• A design in which the FRF BLA with the associated frequency dependent uncertainties

were considered.

• A design where no uncertainties are considered (i.e., |Wn | = |Wm | = 0) and the FRF of

the coprimes is obtained from a given experiment.

The closed-loop step response of the nonlinear system is shown in Fig. 4.7; it can be observed

that when the frequency-dependent uncertainties are considered in the design, good per-

formance and stability is achieved. When the uncertainties are neglected in the design, the

settling time is significantly larger. This is caused by the modeling error from the closed-loop

experiment (which can be seen in figures 4.4 and 4.5 where the FRF lies outside the uncertainty

disks at various frequency points). Thus with the proposed method, the performance and

stability of the underlying linear system can be guaranteed by considering the frequency de-

pendent uncertainties obtained from the random-phase multi-sine identification experiments

performed on a nonlinear system.
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Figure 4.8 – Power converter control system.

4.4 Case Study: Power Converter Control

4.4.1 Power Converters for Particle Accelerators

The framework of the system discussed in this case study is part of the CERN Large Hadron

Collider (LHC) Injector Upgrade Project [115], which was implemented to mitigate space-

charge effects and to increase the beam brightness in order to fulfill the needs of the High

Luminosity LHC [116]. The Q-STRIP magnet (i.e., the load, which is constituted of two chains

of quadrupole magnets) is used in this framework to control the particle trajectories via the

power converter control system.

Power converters can be seen as systems comprised of three main subsystems: (i) a power

source (usually a voltage source) (ii) a measuring system and (iii) a controller unit. The

current is usually measured with a particularly accurate current transducer called a direct

current-current transformer (DCCT) [117]. The current measurement signal is fed back to a

digital controller unit which usually includes a high precision analog-to-digital converter that

implements the digital control algorithm([118], [119]).

The general configuration of the CERN power converter control system is depicted in Fig.4.8.

The control loop consists of a magnet (i.e., the load), a voltage source Vs , low-pass anti-aliasing

analog and digital filters (ALPF, DLPF), a digital-to-analog converter (DAC), and an analog-

to-digital converter (ADC). The DAC (optional) and ADCs are integrated in the control unit

labeled as the function generator controller (FGC, [120]) whose main function is to execute

the control algorithm; it also implements all the diagnostics and communication functions

with higher layers of the control architecture up to the accelerators control rooms. The DLPF

may also include a decimator to reduce the sampling rate of the signal. The COMM block

represents the delay associated with the communications link. The RST block represents the

discrete-time controller that is used to control the magnet current iD given a reference current

iR .
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Figure 4.9 – Fractional dynamics of magnet caused by Eddy currents.

Magnet Dynamics

The magnet bearings of this system are subject to Eddy currents. In solid core structures,

Faraday’s law shows that Eddy currents are induced when the magnetic field changes in

conductors [121]. These Eddy currents alter the dynamics of the magnet where simple integer-

based transfer functions are incapable of modeling such systems with high precision.

Fig. 4.9 shows a basic schematic of the load dynamics with the effect of Eddy currents (where

f (sa) is an impedance as a function of the fractional order Laplace variable with 0 < a < 1).

This impedance represents a fractional order system; in fact, it has been shown in [122, 123,

124] that fractional order systems correctly represent the dynamics of systems subject to Eddy

currents. Therefore, the data-driven controller scheme using frequency-domain data is an

appropriate technique for controlling such systems since all of the synthesis and stability

criteria are addressed in the frequency-domain (where the performance and stability criteria

in the frequency-domain is equivalent for fractional and non-fractional systems [125]).

4.4.2 Experimental Test Setup

The experimental test setup consists of a CERN AC-DC Narrow Converter (CANCUN), a

dummy load and a proprietary software diagnostics tool:

• The CANCUN is based on a full bridge phase shifted topology followed by a 4 quadrant

switching stage to allow 4 quadrant operation. Fig. 4.10 shows a CANCUN that incorpo-

rates three main parts: i ) Two high precision current sensors (DCCTs) which are able to

measure DC or pulsed current at the required precision; i i ) A voltage (or power) module;

i i i ) A digital controller (FGC3) which implements the digital control loop together with

CERN designed control and diagnostics electronics. The ratings of the CANCUN for the

Q-STRIP application is ±100 A and ±30 V.

• The dummy load is (ideally) an RL-series load whose characteristics match those of the
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Figure 4.10 – The CANCUN used for the control application.

Q-STRIP magnets.

• The software diagnostics tool interfaces with the main digital controller module, the

FGC3 [120], and is able to acquire the relevant signals at a sampling rate of 10K samples

per second. The acquired signals are the reference current and voltage, the measured

current and voltage, and the current error.

4.4.3 Control Objective

The main objective is to design an RST controller such that the error obtained from a specific

desired current profile, shown in Fig. 4.11, meets the desired specifications.

The magnet is represented as an RL circuit, and the dynamics of this circuit are dominant

over the other components of the system. Thus a first order model with delay (i.e., Gm(s) =
e−sTd (Lm s +Rm)−1, where Rm is the circuit resistance, Lm is the circuit inductance, and Td is

the time delay) is appropriate to approximate the dynamics of the plant. For this case study,

the model parameters are identified as: Rm = 164.3 mΩ, Lm = 736.4µH and Td = 275.4µs.

At CERN, the above model is discretized using the zero-order-hold method and used to design

an RST controller based on the model-reference control (MRC) strategy [100]. The main

difficulty is that the choice of the observer poles that lead to a good robustness margin is not

trivial; the design of a working controller is a time consuming iterative process.

A PRBS signal was used as the input voltage reference of the open-loop system in order to

capture the dynamics of the process. A total of 5 experiments were performed with the PRBS
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Figure 4.11 – The desired reference current profile. The blue-dashed line indicates the time
when the error must remain within ±1000 parts-per-million (ppm); the red-dashed line
indicates the time when the error must remain within ±100 ppm.

clock period Tcl = 100µs; the acquired periods (with transients removed in post-processing)

could then be merged together. A custom FGC signal is limited to 1023 samples; therefore, a 9-

bit PRBS signal was used for identification purposes. For a signal of length 511, the frequency

resolution is limited to 255 points. The uncertainty was obtained from the covariance of

the estimates with a 95% confidence interval. Fig. 4.12 shows the input and output signals

acquired from the identification experiment.

4.4.4 Weighting filter selection

For this particular case study, it was desired to obtain the best tracking performance (i.e., by

minimizing ‖W3S3(ρ)‖∞) while ensuring reasonable stability margins. It is evident that S d
2 +

S d
3 = 1, where S d

2 and S d
3 are the desired complementary and error sensitivity functions,

respectively. Based on this condition, the weighting filter W3 was selected as W3 = [S d
3 ]−1.

S d
2 was chosen as a standard second order model S d

2 (s) =ω2
d

(s2 +2ζdωd s +ω2
d

)−1, where ζd

is the damping factor and

ωd = 2π fd

[

1−2ζ2
d +

√

2−4ζ2
d
+4ζ4

d

]−0.5

and fd [Hz] is the desired closed-loop bandwidth.

A simulation was performed to determine the required bandwidth to satisfy the desired error

specifications. At CERN, the error is calculated with respect to a delayed reference input

(i.e., e(t) = r (t − τ)− y(t)); τ is determined by shifting the reference signal such that the
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Figure 4.12 – PRBS signal used for the input voltage v(t ) of the open-loop system along with
the resulting output current i (t ).

minimum peak error is achieved. By assuming that the closed-loop response behaves as S d
2 ,

the bandwidth fd can be selected such that the error between the delayed reference input and

output remains within the requirements set by the application (which are shown in Fig. 4.11);

the simulation results led to fd = 300 Hz and ζd = 0.8.

4.4.5 Synthesis and Experimental Results

The voltage applied to the magnet by the voltage source and the relative current are both

sampled at 10 kHz while the control loop is run 3 times slower (i.e., Ts = 300 µs). Since

the plant is Schur, then a possible selection for the coprime factors is N (e− jω) = G(e− jω)

and M(e− jω) = 1. With a minimum value of md = 0.5 set for the modulus margin (i.e., the

minimum distance between the critical point (−1+ j 0) and the Nyquist plot of the open-loop

transfer function), the following optimization problem must be solved:

minimize
γ,ρ

γ

subject to: ℜ
{

ψ(e− jωk ,ρ)
}

> xr (e− jωk ,ρ)

ℜ
{

ψ(e− jωk ,ρ)
}

> xm(e− jωk ,ρ)

ℜ
{

S′(e− jωk ,ρ)
}

> 0

R(1,ρ) = T (1,ρ) 6= 0

(4.32)
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Figure 4.13 – Comparison between the error resulting from the model-based design (solid-
black line with red error-bars) and the error resulting with the proposed method (solid-black
line with green error-bars).

for k = 1, . . . ,255, where S(z−1,ρ) = (1− z−1)2S′(z−1,ρ), xr (e− jωk ,ρ) is defined as in (4.20), and

xm(e− jωk ,ρ) = |md S(e− jωk ,ρ)|+ |R(e− jωk ,ρ)Wn(e− jωk )|. The first inequality in (4.32) ensures

that H∞ nominal performance is achieved for the RST structure whilst considering the

frequency dependent uncertainties. The second inequality ensures that the modulus margin

is at least 0.5 (a requirement for robust stability at CERN). The third inequality ensures that

S(ρ) has no unstable zeros (another requirement at CERN) while the fourth equality constraint

ensures that the steady-state error is zero.

The semidefinite programming solver (SDPT3) was used in conjunction with MATLAB to per-

form the bisection algorithm [126]. A 9th order controller was used to achieve the desired

results (by following the steps outlined in Section 4.2.5). An optimal value of γ⋆ = 1.202 was

obtained after 61.3 s using the same computer as in the previous example.

A total of 10 experiments were performed; the error for both the model-based MRC method

and data-driven based designs (with the associated error-bars showing the minimum and

maximum errors at each sampling instant) are shown in Fig. 4.13. It can be observed that

both designs are comfortably within the ±1000 ppm fast-transient requirement and within the

±100 ppm steady-state requirement. Indeed, both controllers achieve ±100 ppm even during

the fast-transients. However, the proposed method ensures that all of the design requirements

are met while eliminating the iterative process of attaining robust performance from the

model-based methodology.
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Figure 4.14 – Torsional apparatus (ECP model 205a) used for the experimental analysis. The
three disks are comprised of block masses which can be added or removed to alter the inertia
of each disk (and thus alter the dynamics of the system). Each disk is vertically suspended on
a spring with a variable spring constant. The actuator is located on the bottom of the device.

4.5 Case Study: Torsional Control

An RST controller will now be designed for a multi-model torsional apparatus (ECP Model

205a), as shown in Fig.4.14. This system contains three disks with variable inertias suspended

vertically on anti-friction ball bearings. The disks are connected through a non-rigid cable

with an adjustable spring constant. The actuator (a high torque brushless motor with a 2 Nm

rating) is located at the bottom of the apparatus and is directly connected to the bottom

disk via a rigid timing belt. The position of the disks are measured with a high resolution

encoder (16,000 count/rev) and is used as feedback to control the closed-loop system. For

this experiment, the dynamics of the apparatus will be altered by varying the inertias of the

top disk.

An RST controller will be designed for various inertial configurations. Three different configu-

rations will be considered for this design; the bottom disk and the middle disk will possess

fixed inertias, while the inertia for the top disk will be varied. The inertia is varied by altering

the number of block masses that are arranged on the disk.

The input to the system is the current of the actuator and the output is the position of the third

disk. Therefore, the plant model has an integrator and is marginally stable; thus it is required

to obtain the FRF’s of the various configurations in a closed-loop structure. A stabilizing

controller must be used to obtain N (e− jω) and M(e− jω). For this plant, a PID controller was

designed to stabilize the closed-loop system. A reference input with a PRBS is implemented to
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Figure 4.15 – Time-domain response of the closed-loop system with a PRBS excitation signal
(shown only for the system configuration with two block masses on the top disk): the PRBS
reference input r (t ) with a register length of 511 (solid-blue); control output u(t ) (solid-red);
output response y(t ) (solid-black).

excite the closed-loop system with a sampling frequency of 25 Hz. The time-domain signals

for the reference input r (t ), control output u(t ), and output y(t ) for this system are depicted

in Fig.4.15 (for brevity, the figure shown is for one of the configurations). The FRF of N (e− jω)

is then obtained with the spectral analysis command in MATLAB (i.e., spa(·)) by using the

time-domain data of r (t) and y(t). Similarly, the FRF of M(e− jω) is obtained in a similar

fashion by using the time-domain data of r (t ) and u(t ). The FRF of the plant model can then

be described as G(e− jω) = N (e− jω)M−1(e− jω). The FRFs for each of the three configurations

are shown in Fig. 4.16.

It will be desired to minimize the tracking error and to reject a step disturbance at the output. In

order to achieve these specifications, an integrator will be included in S(z−1,ρ) (i.e., S(z−1,ρ) =
(1−z−1)S′(z−1,ρ), where S′(z−1,ρ) is linearly parameterized as in (2.28)). Additionally, a weight

will be designated to limit the control effort. Therefore, the optimization problem formulated

in (4.27) will be implemented for this design scheme with q ∈ {3,4}. Thus the following
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Figure 4.16 – FRF’s of the plant model obtained from the closed-loop time-domain response
of each system configuration. The loads on the bottom and middle disk are fixed while the
load on the top disk is varied: FRF with one block mass on the top disk (solid-blue); FRF with
two block masses on the top disk (solid-green); FRF with four block masses on the top disk
(solid-red).

optimization problem will be considered:

minimize
ρ,γ

γ

subject to: γ−1
∣

∣

∣W3(e− jωk )[ψi (e− jωk ,ρ)−Ni (e− jωk )T (e− jωk ,ρ)]
∣

∣

∣−ℜ
{

ψi (e− jωk ,ρ)
}

< 0

γ−1
∣

∣

∣W4(e− jωk )Mi (e− jωk )T (e− jωk ,ρ)
∣

∣

∣−ℜ
{

ψi (e− jωk ,ρ)
}

< 0

R(1,ρ) = T (1,ρ) 6= 0

for i = 1,2,3 and k = 1, . . . ,η,

(4.33)

where ψi (e− jωk ,ρ) = Mi (e− jωk )S(e− jωk ,ρ)+Ni (e− jωk )R(e− jωk ,ρ).

4.5.1 Weighting filter selection

As in the previous case study, the weighting filter W3 will be chosen based on the fact that

S d
2 +S d

3 = 1. S d
2 is chosen as a first order transfer function such that the step response

will have a time constant τ = 1 s (which corresponds to a closed-loop bandwidth of ωd =
1 rads−1). The transfer function which satisfies these requirements can be formulated as

S d
2 (s) = (τs +1)−1. Given this desired closed-loop model, an appropriate filter for the error
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sensitivity function can be devised as W3(s) = (s+ωd )s−1. Note again that since the polynomial

S−1(ρ) contains an integrator, ‖W3S3(ρ)‖∞ remains bounded for all ω.

It will also be desired to minimize the control effort at high frequencies; therefore, a viable

choice for the control weighting function W4 is

W4(s) =
s +ωu/Mu

ωu
, (4.34)

where Mu is the maximum controller gain, and ωu is the controller bandwidth [10]. For the

torsional system considered in this chapter, an appropriate choice for these parameters are

Mu = 103 and ωu = 3 rads−1.

4.5.2 Experimental results

The optimization problem in (4.33) was solved by considering a logarithmically spaced fre-

quency grid with η= 400 points. The SDPT3 software package was used in conjunction with

MATLAB to solve the optimization problem. The algorithm in Table. 4.1 was used to design a 8th

order controller. The solution obtained from the bisection algorithm produces the following

controllers:

R(z−1) = 34.19−113.7z−1 +160z−2 −100.3z−3 −10.66z−4 +60.08z−5

−32.94z−6 −2.093z−7 +5.542z−8

S(z−1) = 1+0.3538z−1 +0.2304z−2 −0.07627z−3 −0.2845z−4 −0.2575z−5 −0.08136z−6

−0.1705z−7 −0.2921z−8 −0.422z−9

T (z−1) = 0.00942+0.01295z−1 +0.01548z−2 +0.01646z−3 +0.01116z−4 +0.01683z−5

+0.01491z−6 +0.01329z−7 +0.01008z−8

The optimal value of γ obtained from the optimization was γ⋆ = 2.228. The step responses

obtained for each of the inertial configurations are depicted in Fig. 4.17. From the multi-

model step responses, it can be observed that the system is stable and robust to the dynamic

variations of the torsional apparatus. Moreover, the load variations do not significantly impact

the tracking performance (which is expected, since the same weighting filter was used in the

multi-model optimization problem). The closed-loop FRF’s of all three system configurations

are shown in Fig. 4.18. It can be observed that the achieved closed-loop bandwidth for all

three configurations is approximately 1 rads−1, which was the bandwidth that was specified to

form the weighting filter W3(s). This confirms the feasibility of the solution obtained from the
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Figure 4.17 – Step response for each load configuration: response with one block mass on the
top disk (solid-blue); response with two block masses on the top disk (solid-green); response
with four block masses on the top disk (solid-red).

optimization problem in (4.33).

4.6 Conclusion

The necessary and sufficient conditions for the existence of RST controllers that achieve H∞
performance for multiple weighted sensitivity functions have been established with a set of

convex constraints. Additionally, a method has been devised to design controllers for linear

systems that were subject to nonlinear distortions (where a nonlinear system was represented

as a BLA with an associated uncertainty). Moreover, constraints have been devised in order

to design a controller which considers the frequency dependent uncertainties and to assure

the controller stability. The simulation and experimental results show that the proposed

data-driven method offers an optimization-based systematic approach that leads to RST

controllers meeting the challenging specifications required by each application.
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Figure 4.18 – Closed-loop frequency response functions of all three system configurations:
closed-loop FRF with one block mass on the top disk (solid-blue); closed-loop FRF with two
block masses on the top disk (solid-green); closed-loop FRF with four block masses on the top
disk (solid-red).
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5 Robust Control of Systems With Sec-

tor Nonlinearities

5.1 Introduction

In the previous chapters, robust controller design methods have been devised for linear sys-

tems. In Chapter 4, a method for designing controllers for linear systems subject to nonlinear

distortions was considered; however, this method did not guarantee the stability or perfor-

mance for the true nonlinear system. The objective of this chapter is to investigate systems

with sector-bounded nonlinearities and use the Circle criterion to stabilize the closed-loop

system in a data-driven setting. The necessary and sufficient conditions of stability using the

Circle criterion are derived using only the FRF of a plant. The conditions are simple convex

constraints that can be applied to systems with multi-model uncertainty as well. Moreover,

a sufficient condition is presented to guarantee H∞ performance and stability for systems

with time-invariant sector-bounded nonlinearities represented by describing functions. The

theory presented in this work extends on the concepts from chapters 3 and 4 to establish the

stability and performance conditions for nonlinear systems.

In this chapter, a discrete-time representation of coprime processes (see Section 2.1.2) is used

to represent the class of linear systems. The class of controllers used are the 1DOF polynomial

structures asserted in Section 2.2.1. The class of nonlinear systems addressed in this chapter

are the sector bounded nonlinearities asserted in Section 2.1.3. Fig. 5.1 shows the general

structure of the overall closed-loop system.

N (z−1)

M(z−1)−

+ +

Φ(·)
R(z−1,ρ)

S(z−1,ρ)

r e u un y

di

+

do

Figure 5.1 – Discrete-time controller structure.
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S(z−1,ρ)
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Figure 5.2 – Equivalent block diagram in autonomous form.

5.2 The Circle Criterion Revisited

The Circle criterion provides a necessary and sufficient condition for ensuring the closed-loop

stability with a sector nonlinearity Φ(·) ∈ Nt [127]. In order to analyze the stability of the

closed-loop system with the nonlinearity Φ(·), let us consider the autonomous form of the

block diagram in Fig. 5.1, which is shown in Fig. 5.2. The open-loop transfer function can be

defined as

L(z−1,ρ) = N (z−1)R(z−1,ρ)
[

M(z−1)S(z−1,ρ)
]−1

.

One of the conditions for ensuring the closed-loop stability with Φ(·) ∈Nt is as follows:

ℜ
{

1+β2L(e− jω,ρ)

1+β1L(e− jω,ρ)

}

> 0, ∀ω ∈Ω, (5.1)

where L : Rnr s ×R→C. The condition in (5.1) can be interpreted as a disk C (β,rd ) (with radius

rd centered at β) that does not intersect with L(e− jω,ρ), where rd and β are defined as follows:

β=−
β1 +β2

2β1β2
, rd =

1

2

∣

∣

∣

∣

β2 −β1

β1β2

∣

∣

∣

∣

. (5.2)

Depending on the signed values of β1 and β2, (5.1) can be interpreted in several different

manners:

• If 0 <β1 <β2, then (5.1) can be interpreted as a disk C (β,rd ) in the complex plane such

that the Nyquist plot of L(e− jω,ρ) lies outside of the disk (without intersecting it).

• If β1 < 0 < β2, then (5.1) represents a disk C (β,rd ) in the complex plane such that the

Nyquist plot of L(e− jω,ρ) lies completely in the interior of the disk (without intersecting

it).

• If 0 =β1 <β2, then (5.1) represents a vertical line in the complex plane that intersects

the real axis at −β−1
2 , where the Nyquist plot of L(e− jω,ρ) lies to the right of this line.

Fig. 5.3 displays the graphical representations for each case.
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5.2. The Circle Criterion Revisited

L(e− jω,ρ)

−
1
β1

−
1
β2−β

ℜ

ℑ

0

L(e− jω,ρ)

−
1
β2

−
1
β1β

ℜ

ℑ

0

−
1
β2

0

L(e− jω,ρ)

(a) C (β,rd ) when 0 <β1 <β2 (b) C (β,rd ) when β1 < 0 <β2

(c) Line when 0 =β1 <β2

ℑ

ℜ

rd

rd

Figure 5.3 – Absolute stability condition for the sector nonlinearity in (2.14) when different
conditions for β1 and β2 are considered.

The Circle criterion states that given any sector nonlinearity in Nt , the closed-loop system is

globally asymptotically stable at the origin if and only if

LT (e− jω,ρ) = L(e− jω,ρ)
[

β+L(e− jω,ρ)
]−1

is Schur and the above disk conditions hold for the appropriate values of β1 and β2. By the

Nyquist criterion, LT is Schur if and only if the Nyquist plot of L(e− jω,ρ) does not intersect the

point (−β+ j 0) and encircles it exactly m times in the counterclockwise direction, where m is

the number of poles of L with |z| > 1. The necessary and sufficient conditions of the Circle

criterion for this class of nonlinearities is recalled from [127]:

Theorem 5.1. Consider an open-loop transfer function L(z−1) and {β1,β2} ∈ R with β1 < β2.

Then the following two statements are equivalent:

(a) The negative feedback interconnection of L(z−1) and any sector nonlinearity Φ(·) ∈ Nt is

stable.

(b) The transfer function L(z−1) satisfies one of the following conditions, as appropriate:

• Case 1: 0 <β1 <β2

– The Nyquist plot of L(e− jω) does not intersect the interior of the disk C (β,rd ) and

encircles the interior of the disk C (β,rd ) exactly m times in the counter-clockwise
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direction, where m is the number of poles of L(z−1) with |z| > 1.

• Case 2: β1 < 0 <β2

– L(z−1) is Schur and the Nyquist plot of L(e− jω) lies in the interior of the disk C (β,rd ).

• Case 3: β1 = 0

– L(z−1) is Schur and

ℜ
{

L(e− jω)
}

>−
1

β2
, ∀ω ∈Ω (5.3)

Remark. As discussed in [85] and [127], the Circle criterion provides only a sufficient condition

for the stability of a closed-loop nonlinear system (with a sector-bounded nonlinearity) when

the problem is concerned with a specific nonlinearity in a closed sector. However, for any

nonlinearity in a closed-sector, the Circle criterion then becomes necessary and sufficient. The

proof for the above Theorem can be found in [127].

5.3 Stabilization via the Circle Criterion

This section is concerned with developing convex constraints for ensuring the closed-loop

stability of the system in Fig. 5.1 given a nonlinearity in the set Nt . The results of the Circle

criterion asserted in the previous section will be used to formulate these conditions; the

conditions for each case professed in Theorem 5.1 will be considered. For notation purposes,

the dependency in e− jω will be omitted and will only be reiterated when deemed necessary.

The dependency in ρ will continue to be highlighted.

5.3.1 Case 1: 0 <β1 <β2

For this case, the condition from the Circle criterion can be expressed as follows:

sup
ω∈Ω

∣

∣

∣

∣

rd

β+L(e− jω,ρ)

∣

∣

∣

∣

< 1. (5.4)

This inequality will ensure that the Nyquist plot of L(ρ) will remain outside the disk C (β,rd )

and never intersect it. However, stability is not ensured with this condition since the inequality

does not necessarily guarantee that the Nyquist criterion is met. Moreover, this constraint is

not convex, which creates additional computation burdens. However, if [β+L(ρ)]−1 is Schur,

then by the Nyquist criterion, the Nyquist plot of L(ρ) will not intersect the point (−β+ j 0)

and encircle it m times in the counterclockwise direction. Thus by Theorem 5.1, if [β+L(ρ)]−1

is Schur and (5.4) is satisfied, then the closed-loop system with sector nonlinearity Φ(·) ∈Nt is

stable.

With the control structure used in this chapter, the condition in (5.4) can also be expressed as
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5.3. Stabilization via the Circle Criterion

ψβ(ρ)

|rd MS(ρ)|

ℑ

ℜ0

D
(

ψβ, |rd MS|
)

Figure 5.4 – A graphical interpretation of the constraint (5.5) in the complex plane.

follows:

∣

∣rd MS(ρ)
∣

∣<
∣

∣ψβ(ρ)
∣

∣ , ∀ω ∈Ω, (5.5)

where ψβ(ρ) = N R(ρ)+βMS(ρ). Consider a disk in the complex plane D(ψβ, |rd MS|) at a

specific frequency in Ω which is centered at ψβ(ρ) and has radius |rd MS(ρ)|. The constraint

in (5.5) ensures that for any frequency point in Ω, the disk associated with this frequency point

will not include the origin. Fig. 5.4 displays a graphical interpretation of this condition for a

given ω. This geometrical construction will be used to prove the following Lemma:

Lemma 5.1. The feedback interconnection of L(z−1) and any sector nonlinearity Φ(·) ∈Nt with

0 <β1 <β2 is stable if and only if there exists a finite-impulse-response (FIR) function F (z−1)

that satisfies

ℜ
{

ψβ(ρ)F (e− jω)
}

>
∣

∣

∣rd MS(ρ)F (e− jω)
∣

∣

∣ , ∀ω ∈Ω. (5.6)

Proof : From the necessary and sufficient condition in Theorem 5.1, stability of the closed-loop

nonlinear system imposes the following condition:

sup
ω∈Ω

∣

∣

∣

∣

rd MS(ρ)

ψβ(ρ)

∣

∣

∣

∣

< 1.

It is clear that the above condition is satisfied if and only if the disk D(ψβ, |rd MS|) does not

include the origin for all ω ∈Ω, i.e. |ψβ(ρ)| > |rd MS(ρ)|. This is equivalent to the existence

of a line passing through origin that does not intersect the disk. Therefore, at every given

frequency, ω, there exists a complex number f (e− jω) that can rotate the disk such that it lays
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inside the right hand side of the imaginary axis. Hence, we have

ℜ
{[

ψβ(ρ)−|rd MS(ρ)|e jθ
]

f (e− jω)
}

> 0, ∀ω ∈Ω,∀θ ∈ [0 , 2π[. (5.7)

Since f (e− jω) = | f (e− jω)|e jθ f , then the above condition can be expressed as

ℜ
{

ψβ(ρ) f (e− jω)
}

>
∣

∣

∣rd MS(ρ) f (e− jω)
∣

∣

∣cos(θ+θ f ), ∀ω ∈Ω,∀θ ∈ [0 , 2π[. (5.8)

However, (5.8) is satisfied if and only if:

ℜ
{

ψβ(ρ) f (e− jω)
}

>
∣

∣

∣rd MS(ρ) f (e− jω)
∣

∣

∣ , ∀ω ∈Ω. (5.9)

In [103], it is shown that, f (e− jω) can be approximated arbitrarily well by the frequency

response of a stable transfer function or FIR function F (z−1) if and only if

Z =
(

ψβ(ρ)−δ−1|rd MS(ρ)|e jθ
)−1

(5.10)

is analytic outside the unit circle for all θ ∈ [0 , 2π[ and for all δ> 1. However, by the necessary

and sufficient condition in Theorem 5.1, ψ−1
β

(ρ) is Schur because the closed-loop nonlinear

system is stable. Additionally, by decreasing δ from infinity to 1, the poles of Z move continu-

ously with δ. Therefore, Z is not analytic outside the unit circle if and only if Z−1(e− jω) = 0

for a given frequency, which is not the case because the origin is not in the interior of the disk

D(ψβ, |rd MS|). �

The set of all controllers that meet the stability condition given by the Circle criterion is

asserted in the following theorem.

Theorem 5.2. Given the frequency response function G(e− jω) = N (e− jω)M−1(e− jω) and any

sector nonlinearity Φ(·) ∈Nt with 0 <β1 <β2, then the following statements are equivalent:

(a) There exist polynomials R and S that stabilizes the nonlinear system.

(b) There exist polynomials R and S such that

ℜ
{

ψβ(ρ)
}

>
∣

∣rd MS(ρ)
∣

∣ , ∀ω ∈Ω. (5.11)

Proof : (b ⇒ a)

ℜ{ψβ(ρ)} > 0 signifies that the Nyquist plot of ψβ(ρ) will not encircle the origin ∀ω. However,

note that

ℜ
{

ψβ(ρ)
}

> 0 ⇐⇒ ℜ
{

1

ψβ(ρ)

}

> 0.

By the SPR condition in Lemma (4.1), the positive real constraint implies that ψ−1
β

(ρ) =
[MS(ρ)]−1[β+L(ρ)]−1 is Schur. On the other hand, note that

∣

∣ψβ(ρ)
∣

∣≥ℜ
{

ψβ(ρ)
}

, ∀ω ∈Ω. (5.12)
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5.3. Stabilization via the Circle Criterion

From (5.11), this implies that

∣

∣rd MS(ρ)
∣

∣<
∣

∣ψβ(ρ)
∣

∣ , ∀ω ∈Ω (5.13)

which leads to
∣

∣

∣

∣

rd

β+L(ρ)

∣

∣

∣

∣

< 1, ∀ω ∈Ω. (5.14)

Therefore, the Nyquist plot of L(ρ) does not intersect the disk C (β,rd ) and consequently,

according to Theorem 1, the closed-loop nonlinear system is stable.

(a ⇒ b)

Assume that R(ρ′), and S(ρ′) satisfies Statement (a) but not Statement (b). Then, according to

Lemma 5.1, there exists an FIR function F (z−1) such that

ℜ
{

ψβ(ρ′)F (e− jω)
}

>
∣

∣

∣rd MS(ρ′)F (e− jω)
∣

∣

∣ , ∀ω ∈Ω. (5.15)

Therefore, there exists a higher order controller with R = R(ρ′)F and S = S(ρ′)F such that

Statement (b) holds. �

5.3.2 Case 2: β1 < 0 <β2

For this case, the condition from the Circle criterion can be expressed as follows:

sup
ω∈Ω

∣

∣

∣

∣

rd

β+L(ρ)

∣

∣

∣

∣

> 1. (5.16)

This inequality will ensure that the Nyquist plot of L(ρ) will remain in the interior of the disk

C (β,rd ) and never intersect it. By Theorem 5.1, if L(ρ) is Schur, then the above condition

guarantees the stability of the closed-loop nonlinear system. With the control structure used

in this chapter, the above condition can also be expressed as follows:

∣

∣ψβ(ρ)
∣

∣<
∣

∣rd MS(ρ)
∣

∣ , ∀ω ∈Ω. (5.17)

Note that this condition is the same as that in (5.5) with the direction of the inequality sign

changed. This condition represents a disk at a particular frequency in Ω in the complex plane

which is centered at rd MS(ρ) and has radius |ψβ(ρ)|. The constraint in (5.17) ensures that for

any frequency point in Ω, the disk associated with this frequency point will not include the

origin. Note that this geometrical construction is the same as (5.5), but with the radius and

center interchanged (i.e., the disk is now represented as D(rd MS, |ψβ|)).

Lemma 5.2. For a stable plant model, the feedback interconnection of L(z−1) and any sector

nonlinearity Φ(·) ∈ Nt with β1 < 0 < β2 is stable if and only if there exists a finite-impulse-
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response (FIR) function F (z−1) that satisfies

ℜ
{

rd MS(ρ)F (e− jω)
}

>
∣

∣

∣ψβ(ρ)F (e− jω)
∣

∣

∣ , ∀ω ∈Ω. (5.18)

Proof : The proof is very similar to the proof asserted in Lemma 5.1. By simply interchanging

the radius and center from Lemma 5.1, the same steps can be carried out to prove the above

statements. However, for this case, the open-loop system L(ρ) must be Schur for ensuring the

closed-loop stability of the nonlinear system.

Note that the constraint in (5.18) implies ℜ{[rd MS(ρ)F ]−1} > 0; from the SPR conditions in

Lemma (4.1), ℜ{[rd MS(ρ)F ]−1} > 0 signifies that [MS(ρ)F ]−1 is Schur. Therefore, S−1(ρ) is

stable (which ensures that L(ρ) is Schur). �

The set of all controllers that meet the stability condition given by the Circle criterion is

asserted in the following theorem.

Theorem 5.3. Given the frequency response function of a stable plant G(e− jω) = N (e− jω)M−1(e− jω)

and any sector nonlinearity Φ(·) ∈Nt with β1 < 0 <β2, the following statements are equivalent:

(a) There exist polynomials R and S that stabilizes the nonlinear system.

(b) There exist polynomials R and S such that

ℜ
{

rd MS(ρ)
}

>
∣

∣ψβ(ρ)
∣

∣ , ∀ω ∈Ω. (5.19)

Proof : (b ⇒ a)

Since

ℜ
{

rd MS(ρ)
}

> 0 ⇐⇒ℜ
{

[

rd MS(ρ)
]−1

}

> 0,

then by the SPR condition in Lemma 4.1, ℜ{rd MS(ρ)} > 0 implies that [rd MS(ρ)]−1 is stable.

This signifies that S−1(ρ) is stable (and thus L(ρ) is Schur since G is stable). Furthermore, we

have

∣

∣rd MS(ρ)
∣

∣≥ℜ
{

rd MS(ρ)
}

, ∀ω ∈Ω (5.20)

which leads to

∣

∣ψβ(ρ)
∣

∣<
∣

∣rd MS(ρ)
∣

∣ , ∀ω ∈Ω (5.21)

and consequently to

∣

∣

∣

∣

rd

β+L(ρ)

∣

∣

∣

∣

> 1, ∀ω ∈Ω. (5.22)

Therefore, the Nyquist plot of L(ρ) remains inside the disk C (β,rd ) and according to Theorem

1, the closed-loop nonlinear system is stable.
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(a ⇒ b)

The proof for this condition is very similar to the proof in Theorem 5.2 (by using the condition

in Lemma 5.2 instead on Lemma 5.1). �

5.3.3 Case 3: 0 =β1 <β2

The necessary and sufficient condition for absolute stability in this case (as stated in Theo-

rem 5.1) is that the Nyquist plot of L(e− jω,ρ) lies on the right-hand side of the vertical line

intersecting the point −β−1
2 . A solution for realizing this case is to apply the necessary and

sufficient convex constraints in Theorem 5.3 with β1 =−ǫ (where 0 < ǫ<< 1); this introduces

some conservatism since we are restricting the Nyquist plot to be within the disk C (β,rd ).

However, this conservatism can be reduced by decreasing the value of ǫ (which expands the

disk C (β,rd )).

5.4 A Multi-Model Approach for Ensuring H∞ Performance

In the previous section, necessary and sufficient conditions were developed for stabilizing

systems with sector-bounded nonlinearities in Nt . These conditions were established by using

the properties of the Circle criterion. In this section, a method for ensuring H∞ performance

of the closed-loop system is developed. Since the H∞ performance is well defined for linear

systems, the performance is guaranteed for uncertain fixed gains inside the sector nonlinearity.

Consider replacing the nonlinearity Φ(u) in Fig. 5.1 with a simple gain α inside the sector;

the entire control system then becomes linear. The output of this gain can then be expressed

as un = αu, which is a line in the u −un plane with slope α in Fig. 2.1. This gain can be

absorbed in the plant model as αN M−1. In this linear framework, the sensitivity functions of

the control system can be properly defined. As asserted in Chapter 2, a general construction

of the sensitivity function can be expressed as Sq (ρ) =∆q (ρ)/ψ(ρ), where ∆q (ρ) is a linear

function of R(ρ) or S(ρ) and ψ(ρ) = αN R(ρ)+MS(ρ). The subscript q ∈ {s, t ,u, v} denotes

the q-th sensitivity of interest. As an example, the sensitivity function Ss from r to r − y is

∆s(ρ)/ψ(ρ), where ∆s(ρ) = MS(ρ).

In the general H∞ control problem for linear systems, the objective is to minimize an upper

bound γ to find the controller parameter vector ρ such that

sup
ω∈Ω

∣

∣

∣Wq (e− jω)Sq (e− jω,ρ)
∣

∣

∣< γ, (5.23)

where Sq : Rnr s ×R→C, γ ∈R+, and Wq : R→C is the FRF of a stable weighting filter such that

WqSq (ρ) has a bounded infinity norm. The results from Theorem 4.1 are reiterated in this

framework in order to establish the main results of this section.

Lemma 5.3. Given the frequency response function G(e− jω) = αN (e− jω)M−1(e− jω) and the

frequency response of a weighting filter Wq (e− jω), then the following statements are equivalent:
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(a) There exist polynomials R and S that stabilize G and

sup
ω∈Ω

∣

∣WqSq (ρ)
∣

∣< γ. (5.24)

(b) There exist polynomials R and S such that

ℜ
{

ψ(ρ)
}

> γ−1
∣

∣Wq∆q (ρ)
∣

∣ , ∀ω ∈Ω. (5.25)

Proof : The proof of a similar condition can be found in Theorem 4.1. �

The above Lemma is only valid when the nonlinearity is replaced with a simple gain, and the

overall system becomes linear. The following Theorem will now show how this result can be

applied in order to guarantee H∞ performance for all fixed gains in the sector.

Theorem 5.4. Given the FRF of the modified plant model G(e− jω) =αN (e− jω)M−1(e− jω) and

stable weighting filter Wq (e− jω), the linearly parameterized functions R(ρ) and S(ρ) achieve

H∞ performance for all α ∈ [β1,β2] if

ℜ
{

ψ(ρ)
}

> γ−1|Wq∆q (ρ)|, α ∈ {β1,β2},∀ω ∈Ω. (5.26)

Proof : The inequality in (5.25) is linear with respect to α. Therefore, if the constraint (5.25)

in Theorem 5.3 is satisfied for α=β1 and α=β2 (for the modified plant model G =αN M−1),

then the constraint is satisfied for all α ∈ [β1,β2]. �

According to the results in Theorem 3.3, it can be shown that when γ is minimized, the

optimal solution to the above problem converges to the global optimal solution of the true

H∞ problem as the controller order increases.

Let Nd (U ) denote the describing function (DF) of Φ(u) when this nonlinearity is odd, time-

invariant, and memoryless (where U is the amplitude of a sinusoidal signal injected at the

input of Φ(u)). Note that for this class of nonlinearities, Nd (U ) : R→ R. Recall that the DF

is obtained by applying a sinusoidal signal U sin(ωt) at the input of the nonlinearity and

calculating the ratio of the Fourier coefficient of the first harmonic at the output to U . Thus

the expression for determining the DF is [85]:

Nd (U ) =
2

πU

∫π

0
Φ(U sinθ)sinθ dθ. (5.27)

Note that the DF for a nonlinear element is analogous to the transfer function for a linear

element, reducing identically to this transfer function in the purely linear case. For exam-

ple, consider the sensitivity function Ss(ρ); if the nonlinearity is replaced with the DF, the
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sensitivity function Ss(ρ) would then be expressed as

Ss(ρ) =
MS(ρ)

NNd (U )R(ρ)+MS(ρ)
. (5.28)

In [85], it was shown that when Φ(u) is sector-bounded by the lines with slopes β1,β2, then

β1 ≤Nd (U ) ≤β2, ∀U ≥ 0.

In other words, the describing function remains bounded by the slopes β1,β2 when the

nonlinearity itself is bounded by the lines with slopes β1,β2. Therefore, by the results of

Theorem 5.4, if the performance is guaranteed for all α ∈ [β1,β2], then the performance is also

guaranteed for the system described by Nd (U ). Thus stability and performance of a given

(or multiple) sensitivity function(s) is guaranteed with respect to the fundamental frequency

component of the nonlinearity.

5.4.1 Convex Optimization via Semi-Definite Programming

With the constraints developed in Theorem 5.4, an optimization problem can be formulated

to guarantee H∞ performance for the nonlinear system described by Nd (U ) (i.e., the perfor-

mance for the fundamental component of the nonlinearity) and for fixed uncertain gains in a

sector. However, the closed-loop stability with the sector nonlinearity Φ(u) ∈Nt is guaranteed

when the constraints in Theorem 5.2 and 5.3 (depending on the type of the sector) are added.

Thus for 0 < β1 < β2, the following optimization problem can be considered for the final

design:

minimize
γ,ρ

γ

subject to: ℜ
{

ψi (ρ)
}

> γ−1
∣

∣W1Mi S(ρ)
∣

∣

ℜ
{

ψβ,i (ρ)
}

>
∣

∣rd Mi S(ρ)
∣

∣

i = 1, . . . ,ℓ; α ∈ {β1,β2}; ∀ω ∈Ω,

(5.29)

where ψi (ρ) = αNi R(ρ)+ Mi S(ρ) and ψβ,i (ρ) = Ni R(ρ)+βMi S(ρ). The first constraint is

related to the nominal performance, i.e., ‖W1S
i

s ‖∞ < γ for all i , where S i
s is the sensitivity

function with respect to the i th model in the set G . The second inequality in the above problem

can be altered for different sector cases. Therefore, closed-loop stability is guaranteed for

Φ(·) ∈Nt while the performance is guaranteed for the fundamental component of the (time-

invariant) nonlinearity.

This optimization problem is quasi-convex. However, for a fixed γ, the problem becomes

convex; therefore, to solve this problem, a bisection algorithm can be realized where an

iterative approach is implemented in order to obtain an asymptotically convergent solution

for γ. Additionally, as with the problems in chapters 3 and 4, the above optimization problem

also possesses an infinite number of constraints; thus a SDP algorithm can be implemented
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Table 5.1 – Procedure for computing a controller with H∞ performance (with respect to the
fundamental frequency of a sector-bounded nonlinearity)

Algorithm: Convex optimization for optimal performance

1. Excite the system with a multi-sinus or PRBS signal and identify N (e− jω) and M(e− jω)
(as discussed in Section 2.1.3). The procedure can be repeated to find several models in
different operating points.

2. Define the performance filters in ‖WqS i
q (ρ)‖∞ and formulate the control problem as

minimizing the infinity norm of a multi-model process.

3. Start with a first-order controller (i.e., n = nr = ns = 1) and solve the optimization prob-
lem in (5.29) by using a frequency grid to obtain γ⋆n . The constraint should be modified
based on the sensitivity function to be minimized and the type of sector nonlinearity.

4. If the desired performance is met, stop. Otherwise, increase the order by one (i.e.,
n = n +1).

5. Solve the problem in (5.29) to obtain the new γ⋆n and go to Step 4.

where a predefined frequency grid is used in order to solve a finite number of constraints.

Table. 5.1 displays a general method for designing a controller using the proposed approach.

5.5 Case Study

This section will now demonstrate the effectiveness of the proposed method(s) by investigating

a case study that will implement the necessary and sufficient condition in Theorem 5.2 to

design a stabilizing controller for a given time-varying sector-bounded nonlinearity. The

condition in Theorem 5.4 is then used in conjunction with the condition in Theorem 5.2 to

design controllers that provides stability for Φ(·) ∈Nt and performance for the fundamental

component of the nonlinearity.

The nonlinear system considered in this case study is of the switching type; a switched system

is a family of dynamical systems endowed with a rule that determines, at every time, which

dynamical system is responsible for the time evolution. Among the various problems in this

field, much research has been devoted to the study of the stability of switched nonlinear

systems [128, 129].

Two sector-bounded systems will be switched at every time instant Tn [s]. Let Φtd
(u) denote

the nonlinearity that is switched on at time instant td . Then the time-varying nonlinear system

for this case study can be characterized as follows:

Φ2kTn
(u) = {u ∈R : un = u + sin(u)} (5.30)
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5.5. Case Study

Figure 5.5 – Time-varying sector nonlinearity used for the case study. The nonlinearity switches
at every positive integer multiple of Tn between the dashed-red line and the solid-red line.

while Φ(2k+1)Tn
(u) will possess the following characteristics:

un =































κ tanh(u), for |u| ≤ a1

(u −a1)2 +κ, for a1 < u ≤ a2

−(u +a1)2 −κ, for −a2 ≤ u <−a1

ςu, for |u| > a2

(5.31)

for k = 0,1, . . . ,kn , where a1 = 10, a2 = a1 +3,κ= 2, and ς= a−1
2 [9+κ]. The bounding slopes

can be analytically determined as follows:

β1 = 2

[

√

a2
1 +κ−a1

]

, β2 = κ. (5.32)

Fig. 5.5 shows the time-varying sector nonlinearity for the conditions defined for Φd (u).

For this case study, the MATLAB software was used in conjunction with the YALMIP interface

[130] to solve all of the problems in this work. A computer having the following hardware

specifications was used: Intel-Core i7, 3.4 GHz CPU, 8GB RAM. The optimization algorithms

were run using MATLAB version (R2017a) on a Windows 7 platform (64-bit).
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5.5.1 Stabilization via the Circle Criterion

Consider the following family of unstable continuous-time systems:

G1(s) =
10

s2 −3s +1
, G2(s) =

8

2s2 −7s +3

G3(s) =
0.2s +5

3s2 −5s +10
, G4(s) =

0.7s +10

1.5s2 −4s +0.5
.

(5.33)

This example will illustrate the effectiveness of the proposed method developed in Theorem 5.2

by designing one stabilizing R(ρ) and S(ρ) controller for all models Gi (s) with the sector-

bounded nonlinearity defined in (5.31). For the given values of this nonlinearity, the disk

can be represented as C (−2.76,2.26); thus by the Circle criterion defined in Theorem 5.1,

the open-loop FRF must encircle this disk C (−2.76,2.26) m times in the counter-clockwise

direction.

The coprime factors Ni (s) and Mi (s) for each Gi (s) must be selected such that {Ni (s), Mi (s)} ∈
RH∞ for all i . A simple choice is to divide both the numerator and denominator of each

coprime by (s +1)2; for example, the coprimes for G1(s) can be selected as follows:

N1(s) =
10

(s +1)2
, M1(s) =

s2 −3s +1

(s +1)2
, (5.34)

where it is evident that G1(s) = N1(s)M−1
1 (s). Note that selecting a different function in formu-

lating the coprimes would not affect the stabilization of the closed-loop system.

The convex constraint in (5.11) is solved for all the models in (5.33) by implementing an

SDP algorithm and considering a logarithmically spaced frequency grid of 500 points with

ω ∈ [0.02π,π/Ts] (where Ts = 2 ms is the sampling time of the discrete-time controller). Note

that (5.11) is a simple feasibility problem (i.e., the goal is to find a controller that satisfies the

constraint with no objective function needed). A second-order polynomial was selected for

both R(ρ) and S(ρ); the resulting controller is produced from the algorithm:

R(z−1) = 3.75 ·104(1−0.9978z−1)(1−0.2053z−1)

S(z−1) = (1−0.2135z−1)(1+0.1891z−1).
(5.35)

Note that S(z−1) has stable zeros; therefore, since Gi (z−1) possesses 2 unstable poles for all i ,

the Nyquist plot of the open-loop FRF Li (e− jω) for each Gi must encircle the disk C (−2.76,2.26)

2 times in the counter-clockwise sense (without intersecting the disk). Fig. 5.6 shows the

Nyquist plot of Li (e− jω) for all i along with the disk C (−2.76,2.26); it can be observed that the

Nyquist plot for each plant model does indeed encircle the disk 2 times without intersecting

it. Thus with a simple second-order controller, the closed-loop system is stable for the given

family of unstable plants with a sector-bounded nonlinearity. The optimization time for

obtaining this controller was calculated as 11.9 s.
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Figure 5.6 – Nyquist plot of Li (e− jω) for i = 1, . . . ,4 (solid-blue line); disk C (−2.76,2.26) (solid-
red line). The Nyquist criterion for the sector-bounded nonlinearity is satisfied for all models.

5.5.2 Stabilization with Performance

The previous section illustrated how one can obtain stability of the closed-loop system with

the sector-bounded nonlinearity; this section will now show how both stability for Φ ∈Nt and

H∞ performance can be obtained in the presence of this nonlinearity (when the nonlinearity

is switched at a rate of Tn = 0.02 s). However, instead of simply defining the coprime factors

parametrically (as in (5.34)), an identification experiment will be performed (in simulation) to

obtain the FRFs of Ni and Mi .

Frequency Response Calculation: The case study considers a family of unstable systems. There-

fore, the methods asserted in Section 2.1.3 can be used to obtain Ni and Mi . The controller

in (5.35) was used to stabilize the closed-loop system. Since the bounds of the nonlinearity

include Φ(·) = 1, then the gain βl can be set to 1 in Fig. 2.4

There are many types of reference signals that can be used for identifying these coprimes. For

this case study, a PRBS signal was used in order to capture the dynamics of the process. The

PRBS is a deterministic signal which has characteristics similar to that of white noise and is

usually used for system identification. In order to obtain good resolution at lower frequencies,

a 15-period PRBS signal was injected as the reference input (where each period has a length of

32767 (15-bits))1. Fig. 5.7 displays a portion of the signals of interest (for the plant G1) when

the PRBS signal was injected. Note that the sampling time for this process is identical to that

1Note that the FRF is calculated based on one period of the PRBS (i.e., the final period, which is when the
transients have disappeared.)
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Figure 5.7 – The PRBS signal injected as the reference signal r (t ) with the measured responses
for un(t), x(t) and y(t). For illustrative purposes, the figure displays only a small portion of
the total signal for the plant G1.

Figure 5.8 – Calculated FRFs for N1 (solid-blue line), N2 (solid-red line), N3 (solid-orange line),
N4 (solid-purple line).
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Figure 5.9 – Calculated FRFs for M1 (solid-blue line), M2 (solid-red line), M3 (solid-orange
line), M4 (solid-purple line).

of the previous section (i.e., Ts = 2 ms). With these signals, the FRF of the coprimes were then

calculated using the frequency spectrum of each time-domain signal (using the relations in

(2.23)). Figures 5.8 and 5.9 show the resulting magnitude and phase for each coprime Ni and

Mi , respectively.

Weighting filter selection: For nominal performance of the nonlinear system, the optimization

problem in (5.29) can be used to synthesize a controller. The weighting filter W1 was selected

such that the closed-loop FRF is shaped based on the desired reference model given by

S d
t = (τs +1)−1, where τ is the desired time constant. It is known that Ss +St = 1; thus it

is also required that S d
s +S d

t = 1, where S d
s is the desired FRF from r to r − y . Thus the

weighting filter can be selected as W1(s) = [S d
s ]−1 = s−1(s +τ−1). Note that the controller

will be prefixed with an integrator (in order to have integral action); therefore, the weighted

function ‖W1S
i

s ‖∞ remains bounded ∀i and for all ω.

Controller Synthesis and Results: A 5th-order controller was designed such that it had integral

action (by using the algorithm in Table 5.1). From the available frequency points obtained

from the PRBS identification simulation (a total of 16384 linearly spaced points), 500 points

were randomly selected from this grid using the methods described in [59] (with violation

and confidence parameters set to 0.05). Thus by solving the problem in (5.29), a total of

6000 constraints must be satisfied (i.e., 1000 constrains for the performance criterion, 500

constraints for the stability requirement, satisfied for all 4 models). The desired closed-loop

bandwidth was selected as 25 Hz, which corresponds to a time constant of τ= (50π)−1 s. The

bisection algorithm was used to solve the problem in (5.29) with γmax = 2.5, γmi n = 0, and

γtol = 10−4; with these parameters, the optimization time was calculated to be 291.1s and the
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Figure 5.10 – Closed-loop step responses for all models Gi . The reference signal is shown with
the dashed-black line.

optimal solution obtained was γ⋆ = 1.432. The step response of the closed-loop nonlinear

system for all 4 models is shown in Fig. 5.10. At t = 0.2 s, a step disturbance was injected

at do with an amplitude of 0.2. It can be observed that the proposed approach ensures the

closed-loop stability for the time-varying nonlinear system and good closed-loop performance

is achieved.

Remark. Fig. 5.11 shows the Nyquist plot of L1(e− jω) when (5.29) was solved with and without

the time-varying stability constraint. It can be observed that without the time-varying sta-

bility constraint, the Nyquist plot of L1(e− jω) enters the disk C (β,rd ); this is because the H∞
performance criterion can only guarantee the stability and performance for the fundamental

component of the nonlinearity and may violate the stability condition for the true nonlinear

system. With the added stability constraint, it can be observed from Fig. 5.11 that the Nyquist

plot of L1(e− jω) satisfies the Nyquist criterion for stabilizing the time-varying nonlinear system.

5.6 Conclusion

In the previous chapter, a method for designing a controller for the underlying linear system of

a nonlinear model was presented; however, stability or performance could not be guaranteed

for the true nonlinear system. In this chapter, necessary and sufficient conditions have been

formulated in order to design stabilizing controllers for systems with sector-bounded time-

varying nonlinearities. This formulation used the results from the Circle criterion to derive

conditions in a data-driven setting. All of the methods developed for stabilizing the true

(time-varying) nonlinear system did not use any approximations or linearization techniques

to achieve the desired results. Moreover, a sufficient condition was developed to achieve
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Figure 5.11 – Nyquist plot of L1 with the stability constraint (blue-line) and without the stability
constraint (red-line).

both stability and H∞ performance for the nonlinear system represented by a describing

function (i.e., the performance with respect to the fundamental frequency component of a

sector-bounded (time-invariant) nonlinearity).
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6 H∞ Design for Low-Order Fixed-

Structure Controllers

6.1 Introduction

In Chapter 3, a new data-driven method for H∞ controller design by convex optimization

was proposed; a controller was represented as a ratio of two transfer functions that were

linearly parameterized using a vector of basis functions. It was shown that as the order of

these transfer functions increased, the solution to the convex problem converged to the global

optimal solution of the H∞ problem (regardless of the basis function that was used). For a

low-order controller, however, the results depend on the choice of the basis functions and is

not necessarily optimal. By convexifying the H∞ problem, the global optimal solution to an

approximate problem is obtained; however, a question one may ask is why are convexification

methods imposed to find a solution to the approximate H∞ problem when one can simply

use nonlinear solvers to find a local solution of the true H∞ problem? This is the question

that will be addressed in this chapter.

This chapter presents an extension of the work in Chapter 3, and its purpose is to devise a data-

driven approach for improving the H∞ performance for low-order fixed-structure controllers.

Several non-convex optimization problems are proposed to optimize the basis function param-

eters for fixed-structure low-order controllers (while guaranteeing the closed-loop stability).

In particular, a new PSO algorithm is formulated to optimize the controller parameters and

guarantee the stability of the closed-loop system while ensuring robust performance (without

any approximation). PSO is a very powerful population-based metaheuristic which uses an

iterative method to improve a candidate solution and makes little to no assumptions about the

problem being optimized. A major advantage of the PSO algorithm is that the cost function

need not be differentiable; additionally, the algorithm can be applied to problems of large

dimensions, and often produces quality solutions more rapidly than alternative methods.

Recent works have utilized this method for solving the H∞ problem [131, 132, 133]. As with

all nonlinear solvers, there are trade-offs that exist between the optimization time and the

quality of the optimal solution; these trade-offs will be investigated by comparing the optimal

solutions from various methods.
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In this chapter, a continuous-time representation of systems with multiplicative uncertainty

are considered. The plant is represented in coprime form (see Section 2.1.2) and 1DOF

coprime controllers (see Section 2.2.3) are considered. Thus the sensitivity functions with a

1DOF structure are considered.

6.1.1 Robust Performance via Convex Optimization

Consider a process from the multiplicative uncertainty set in (2.1). Given a performance

weighting filter W1( jω) with bounded infinity norm, a necessary and sufficient condition for

achieving robust performance is given by [96]:

∥

∥|W1Ss(ρ)|+ |W2St (ρ)|
∥

∥

∞ < γ, (6.1)

where γ= 1. However, the problem of minimizing the upper bound γ will be considered in

this chapter, where γ ∈R+. The condition in (6.1) can also be expressed as

|W1( jω)Ss( jω,ρ)|+ |W2( jω)St ( jω,ρ)| < γ, ∀ω ∈Ωc . (6.2)

For notation purposes, the dependence in jω will be omitted and will only be reiterated when

deemed necessary. The dependence on ρ will continue to be highlighted. By substituting the

frequency responses of (2.34) and (2.35) into (6.2), the condition for robust performance can

be expressed as

γ−1 [

|W1MY (ρ)|+ |W2N X (ρ)|
]

< |ψ(ρ)|, ∀ω ∈Ωc , (6.3)

where ψ(ρ) = N X (ρ)+MY (ρ). Consider a disk in the complex plane at a specific frequency in

Ωc which is centered at ψ(ρ) and has radius

γ−1 [

|W1MY (ρ)|+ |W2N X (ρ)|
]

.

As with the constraint presented in Chapter 3, the constraint in (6.3) ensures that for any

frequency point in Ωc , the disk associated with this frequency point will not encircle the origin.

In Lemma 3.2, it was shown that there exists a function F that can rotate this disk such that it

lies on the right-hand side of the jω axis of the complex plane (i.e., all values on and within

the disk have positive real parts). A necessary and sufficient condition for robust performance

is considered with the following Lemma:

Lemma 6.1. Suppose that

H1(ρ) =W1MY (ρ)ψ−1(ρ)

H2(ρ) =W2N X (ρ)ψ−1(ρ)

are frequency responses of bounded analytic functions in the right-half plane. Then, the follow-
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ing constraint is met

sup
ω∈Ωc

(

|H1(ρ)|+ |H2(ρ)|
)

< γ (6.4)

if and only if there exists a stable transfer function F (s) that satisfies

ℜ
{

ψ(ρ)F
}

> γ−1 [

|W1MY (ρ)F |+ |W2N X (ρ)F |
]

for all ω ∈Ωc .

Proof : The proof has been omitted to conserve space. However, the proof of a similar condition

can be found in Lemma 3.2. �

With the above Lemma, a necessary and sufficient condition can be derived for attaining

robust performance whilst ensuring the closed-loop stability. In Chapter 3, it was shown that

if X (ρ) and Y (ρ) are linearly parameterized, then a quasi-convex optimization problem can

be formulated as follows:

minimize
γ,ρ

γ

subject to: γ−1 [

|W1MY (ρ)|+ |W2N X (ρ)|
]

<ℜ{ψ(ρ)}

∀ω ∈Ωc .

(6.5)

This optimization problem is quasi-convex and can be solved by implementing a bisection

algorithm. The problem is solved in a SDP form where a finite number of frequency points are

defined a-priori (as discussed in Chapter 3).

6.2 Optimization Problems For Fixed-Struture Design

In order to preserve the convexity of the H∞ problem in (6.5) (with fixed-structure controllers),

it is necessary to invoke linearly parameterized transfer functions for X (ρ) and Y (ρ), where

both transfer functions contain basis functions with fixed values. For example, if the Laguerre

basis functions in (2.30) are used to formulate the controller, then the value of ξ (i.e., the

Laguerre parameter) must be fixed a priori. In Chapter 3, it is shown that when the orders

of X (ρ) and Y (ρ) increase, then γ from (6.5) converges monotonically to the global optimal

solution of the H∞ problem. However, it is impractical and sometimes impossible to im-

plement the resulting high-order controllers to real systems. For low-order controllers, the

optimal solution from the convex problem may be far from the global solution, and is very

sensitive to the pre-set values of the basis function parameters. A solution to this problem is

to simultaneously optimize the controller parameters ρ and the basis function parameter ξ by

a nonlinear optimization algorithm.

An alternative is to formulate an optimization problem based on the results of Lemma 6.1 in

order to improve the performance for low-order controllers.
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Theorem 6.1. The local optimal solution for obtaining H∞ performance and closed-loop

stability using the fixed-structure controllers X (ρ) and Y (ρ) is achieved if F (ρ f ) is parameter-

ized with a set of stable orthogonal basis functions and the following optimization problem is

realized:

minimize
γ,ρ,ρ f

γ

subject to: γ−1|F (ρ f )|
[

|W1MY (ρ)|+ |W2N X (ρ)|
]

<ℜ
{

F (ρ f )ψ(ρ)
}

∀ω ∈Ωc .

(6.6)

Proof : According to Lemma 6.1, it is known that there exists a stable transfer function F such

that the constraint to the H∞ problem is satisfied. Therefore, F = F (ρ f ) can be chosen such

that it incorporates stable basis functions (such as the Laguerre basis functions). Thus the

local optimal solution to the H∞ problem can be obtained by minimizing γ, fixing the orders

of X (ρ) and Y (ρ), and implementing the optimization problem in (6.6).

The constraint in this problem implies that ℜ{F (ρ f )ψ(ρ)} > 0, which further implies that

ℜ{[F (ρ f )ψ(ρ)]−1} > 0 for all ω ∈Ωc . Therefore, by the SPR conditions professed in Lemma 3.1,

[F (ρ f )ψ(ρ)]−1 is Hurwitz and the closed-loop system is stable. �

For continuous-time systems, the function F (ρ f ) can be selected as F (ρ f ) =ρ⊤
f
φ(ξ f ), where

ρ⊤
f
= [ρ f ,0, . . . ,ρ f ,n f

] with ρ f ∈ R
n f +1 and φ(ξ f ) is the vector of Laguerre basis functions

asserted in (2.30) with the Laguerre parameter defined as ξ f ∈ R+. It is imperative to note

that F (ρ f ) is not part of the controller; it is a function which realizes the necessary and

sufficient condition in Lemma 6.1. The type of optimization problem in (6.6) depends on the

parameterization of X (ρ), Y (ρ), and F (ρ f ).

6.2.1 Bilinear Programming

If X (ρ), Y (ρ), and F (ρ f ) are linearly parameterized (where the Laguerre parameter ξ and

ξ f are fixed for each function), then the optimization problem in (6.6) becomes a bilinear

problem (BP) when a bisection algorithm is used to compute the optimal γ. It is known that if

(b+
1 ,b+

2 ) is a local solution to a BP given an objective function f (b1,b2), then

min
b1

f (b1,b+
2 ) = f (b+

1 ,b+
2 ) = min

b2

f (b+
1 ,b2). (6.7)

Given this property of BPs, the local solution to the BP can be obtained by solving a finite

set of convex optimization problems until convergence is achieved. The advantage of this

method is that the local solution is obtained without the need to explicitly solve a nonlinear

problem where a SDP approach can be used. The basic idea for solving (6.6) in this manner

is to first solve the problem with X (ρ) and Y (ρ) linearly parameterized while F (ρ f ) = 1. The

optimal solution to this convex problem will generate X (ρ⋆) and Y (ρ⋆). Now construct a 1st

order linearly parameterized function for F (ρ f ) and solve the following optimization problem
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(using the bisection algorithm):

minimize
γ,ρ f

γ

subject to: γ−1|F (ρ f )|
[

|W1MY (ρ⋆)|+ |W2N X (ρ⋆)|
]

<ℜ{F (ρ f )ψ(ρ⋆)}

∀ω ∈Ωc .

(6.8)

The optimal solution to this convex problem will generate F (ρ⋆

f
). Now repeat the process of

linearly parameterizing X (ρ) and Y (ρ) and use F (ρ⋆

f
) to solve the optimization problem. Once

convergence is achieved, then the order of F (ρ f ) can be increased (while keeping the orders

of X (ρ) and Y (ρ) fixed). This process is repeated for increasing n f until the optimal solution

γ⋆ converges to a constant value (i.e., converges to a local solution γ+). This optimization

technique is known as the “Mountain Climbing" method [134].

Remark. Note that γ⋆ represents the global solution to the convex problem while γ+ represents

the local solution to the fixed-structure H∞ problem.

6.2.2 Particle Swarm Optimization

When the basis function parameters ξ and ξ f in X (ρ), Y (ρ) and F (ρ f ) are decision variables,

then the problem in (6.6) becomes nonlinear. One of the problems with solving this nonlinear

problem is defining the initial values for the decision variables. Since there can be many

variables involved in this optimization problem, defining the initial variables to achieve the

global optimal solution to the H∞ problem may not be trivial.

PSO is a powerful optimization method that can solve both linear and nonlinear problems

and can be used to solve the problem in (6.6) without specifying initial conditions. It is based

on the principle that groups of individuals work together to improve both their collective and

individual performance [135]. Due to the constraints imposed in (6.6), an exterior method (i.e.,

Non-Death-Penalty approach) will be implemented in order to obtain the optimal solution to

the problem. With this method, the constrained optimization problem can be transformed to

the following unconstrained problem:

minimize
x

Λ( jω, x), (6.9)

where x⊤ = [ρ⊤,ρ⊤
f

,ξ⊤,γ], ξ= [ξ,ξ f ]⊤ is the vector of basis function parameters, and

Λ( jω, x) = γ+
1

η

η
∑

k=1

ϑk Zk ( jωk , x)

Zk ( jωk , x) = [max(0, zk ( jωk , x))]℘

zk ( jωk , x) = |W1( jωk )M( jωk )Y ( jωk , x)F ( jωk , x)|
+ |W2( jωk )N ( jωk )X ( jωk , x)F ( jωk , x)|−γℜ

{

F ( jωk , x)ψ( jωk , x)
}

.

(6.10)
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The value of ℘ is usually taken to be 1 or 2 and ϑk ∈ R+ is the penalty factor [135]. In this

chapter, ℘ = 1 will be considered. A very large penalty factor will ensure fast convergence

to a local solution (even if it is far from the optimal), while a small penalty factor will cause

the PSO algorithm to spend much time searching in infeasible regions and may converge to

an infeasible solution [136]. For this particular problem, the value of ϑk will be a constant,

since the weighting factor for each constraint should be the same (ϑk =ϑ). In other words, the

constraint should not be weighted differently for varying frequencies.

The PSO algorithm seeks to find an optimal solution by implementing a swarm of px particles.

Let xi denote the position of the i th particle; for the decision variables considered in (6.10),

the i th particle occupies the position

x⊤
i := [ρ⊤

i ,ρ⊤
fi

,ξ⊤i ,γi ]⊤, (6.11)

where i ∈ {1, . . . , px }. The velocity of the i th particle (at which it moves though the search space)

is denoted as vi . One approach in expressing the manner in which the position and velocity of

the i th particle is updated can be realized as

x l+1
i = x l

i +v l+1
i

v l+1
i = ι

[

v l
i +θ1r l

1,i (bl
i −x l

i )+θ2r l
2,i (hl

i −x l
i )+θ3r l

3,i (g l −x l
i )

]

,
(6.12)

where ι ∈ R+ is the constriction coefficient, and θc ∈ R+ for c ∈ {1,2,3} are the learning rates

(θ1 is the cognitive learning rate, θ2 is the social learning rate, and θ3 is the learning rate

influencing the best individual found so far since the first generation). The random numbers

r l
c,i are uniformly distributed in [0,1] and represent the stochastic behavior associated with

the algorithm. For a stable PSO algorithm, the constriction coefficient should be chosen as

follows [135]:

ι=
2kϑ

θT −2
, (6.13)

where kϑ ∈ (0,1) and θT = θ1 +θ2 +θ3. The best-so-far position of the i th particle is defined as

bl
i = argmin

x t
i

{Λ(x t
i ),0 ≤ t ≤ l }. (6.14)

For a given neighborhood size σ, the best-so-far position of σ close neighbors is determined

as follows:

hl
i = argmin

x t
i

{Λ(x t
i ),0 ≤ t ≤ l | x t

i ∈ H t
i }, (6.15)

where H t
i

are the σ nearest neighbors of x t
i
. The best position of the entire swarm for the
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Table 6.1 – Procedure for executing the PSO algorithm

Algorithm: PSO for optimal performance

1. Initialize a population of px particles with random positions x0
i
∀i and velocities v 0

i
= 0.

Set l = 0 and determine b0
i

, h0
i

, and g 0.

2. Apply the update equations in (6.12) and evaluate the cost function with the new
population.

3. If the termination criterion is satisfied, then the algorithm returns the optimal solution

x+ = argmin
xk

i

{Λ(xk
i ),∀i ,k}. (6.17)

Otherwise, go to the next step.

4. Set l = l +1 and determine bl
i
, hl

i
, and g l . Then return to Step 2.

current iteration l is defined as

g l = argmin
x l

i

{Λ(x l
i ),∀i }. (6.16)

The PSO algorithm can be implemented with the steps outlined in Table 6.1.

The optimal values of θc may vary depending on the problem that is being analyzed; in general,

it is recommended that θc = 2.1 ∀c [135]. These will be the values used for the examples in the

next section. A similar rationalization can be made with the selection of kϑ; a larger value of

kϑ encourages exploration while a smaller value of kϑ bolsters exploitation.

6.3 Simulation Examples

Let us now consider two examples in order to determine the validity of the proposed method.

The YALMIP library [130] in conjunction with MATLAB was used to solve the convex problem

(i.e., the sequential set of convex problems to solve the BP).

For each example, the proposed method will be used where the non-convex problem is solved

using three different approaches:

• Method 1: Linearly parameterizing X (x), Y (x), and F (x) (where the basis function

parameters in ξ are fixed a-priori) and use the BP algorithm to solve a sequential set of

convex problems until convergence is achieved for increasing n f .

• Method 2: Formulate non-LP functions for X (x) and Y (x) (with F (x) = 1) and use the

PSO algorithm to optimize ρ and ξ.
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• Method 3: Formulate non-LP functions for X (x), Y (x) and F (x) and use the PSO algo-

rithm to optimize all parameters in x .

It will be of interest to compare the solutions from each method with the associated optimiza-

tion time. For comparative purposes, the solutions from all three methods will be compared

to the solution obtained from the hinfstruct function in MATLAB. As a result, examples from

the literature with parametric models are chosen.

Remark. It is emphasized that a direct comparison with hinfstruct is not the objective of

these examples, since the proposed method does not synthesize controllers based on parametric

models (only the frequency data are used in the optimization problems).

All optimization problems were solved using a computer with an Intel-i7 core (3.4 GHz)

processor and with 8 GB of RAM running on a 64-bit Windows 7 platform. The MATLAB version

(R2015b) was used for running all algorithms.

6.3.1 Case 1: Robust PID Design

Consider the unstable non-minimum phase system analyzed in [137] and [138] (which is

subject to multiplicative uncertainty):

G(s) =
s −1

s2 +0.8s −0.2
. (6.18)

The objective of this case study is to design a stabilizing PID controller such that the following

performance condition is satisfied:

‖W1Ss(ρ)‖∞ < γ and ‖W2St (ρ)‖∞ < γ. (6.19)

The weighting filters for this design will be chosen as those defined in [137]: W1(s) = 10(100s +
1)−1 and W2(s) = (s+0.1)(s+1)−1. Since G(s) is unstable, the coprime functions can be selected

as follows:

N (s) =
s −1

(s +1)2
, M(s) =

(s2 +0.8s −0.2)

(s +1)2
, (6.20)

where it is evident that G(s) = N (s)M−1(s). For a PID controller, the structure of the functions

X (x) and Y (x) can be selected with the vectors defined in (2.33). Therefore, the following

optimization problem is considered for satisfying (6.19):

minimize
x

γ

subject to: γ−1|W1MY (x)F (x)| <ℜ{ψ(x)F (x)}

γ−1|W2N X (x)F (x)| <ℜ{ψ(x)F (x)}

ω ∈Ωc .

(6.21)
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Figure 6.1 – Optimal solution to the convex problem for varying ξ.

Simulation Results

First, consider the optimal solution to the convex problem (i.e., F (x) = 1 with X (x) and Y (x)

linearly parameterized) as the basis function parameter ξ is varied. The problem is solved by

converting it to an SDP problem and gridding the frequency from 10−2 to 102 rads−1 (using

200 logarithmically spaced points). Fig. 6.1 displays how the optimal solution γ varies with

the basis function parameter ξ. It can be observed that the optimal solution to the convex

problem is highly sensitive to the basis function parameter.

The problem in (6.21) is now solved using the proposed method with the same frequency

grid. First, consider the case when the basis function parameters (i.e., ξ,ξ f ) are fixed and so

F (x) is linearly parameterized; this signifies that (6.21) becomes a BP and Method 1 must be

considered. Let γ+n f
denote the (local) optimal solution to the problem for a given order n f of

F (x). The BP is solved with the iterative convex method (i.e., the Mountain Climbing method)

for different basis function values (with ξ = ξ f ); Fig. 6.2 displays the optimal solution as a

function of n f . It can be observed that regardless of the basis function parameter, the solution

converges to the same value (which in this case, is γ+ = 0.737). The hinfstruct function from

MATLAB produces the same value.

Now consider the parameterizations of Method 2 and Method 3; with Method 3, F (x) was

selected with n f = 2. Since the PSO method implements a stochastic search algorithm, 5 itera-

tions for each method were initiated where each iteration was terminated when convergence

was achieved (within a tolerance of 10−5). The minimum value of γ that achieves feasibility for

all iterations was considered as the optimal. A swarm of px = 50 with a penalty factor ϑ= 10

and kϑ = 0.95 was used in the algorithm. Table. 6.2 compares the optimal solutions obtained

with the optimization time for each method. The convex method refers to the algorithm in

Chapter 3 with ξ= 1. Note that the optimization time of Method 1 varies based on which basis

function parameter is used. The variation time shown in this table is based on the values used
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Figure 6.2 – Optimal solution to (6.21) using the proposed bilinear and PSO algorithms. The
optimal solution produced by hinfstruct (solid-red line).

Table 6.2 – Comparison of optimal solutions from convex and non-convex problems (with
optimization time)

γ+ Optimization Time [min]

Method 1 0.737 [4,21]

Method 2 0.799 0.48

Method 3 0.737 0.50

Convex Method γ⋆ = 1.113 0.84

hinfstruct 0.737 0.18

in Fig. 6.2. The advantage of Method 1 is that a sequence of convex problems are solved and

no stochastic search algorithms are required (at the cost of a significantly larger optimization

time). Method 3 achieves a low optimal value with little time; therefore, in a data-driven

sense, optimizing X (x), Y (x) and F (x) using the PSO algorithm proves to be the more efficient

solution for this problem.

Fig. 6.2 also displays the solution for varying n f using Method 3. It can be observed that

when these basis function parameters are optimized, a 1st order function for F (x) produces

a solution approximately equal to the solution from hinfstruct. Thus optimizing the basis

function parameters using the PSO algorithm proves to be more efficient, since convergence

to a solution is obtained without implementing high orders of F (x).

6.3.2 Case 2: Multi-model Uncertainty

For this example, a robust controller will be designed for a family of unstable systems. This

example is taken from the Robust Control Toolbox of MATLAB (which is the same example
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considered in Section 3.4.1). For this problem, the control objective is to minimize γ and

satisfy the following criteria for all seven models:

‖W1S
i

s (ρ)‖∞ < γ and ‖W2S
i

t (ρ)‖∞ < γ (6.22)

for i = 0, . . . ,6. The weighting filters W1 and W2 are chosen to be equal to those in Section

3.4.1).

The hinfstruct function in MATLAB’s Robust Control Toolbox uses this criteria to design a

controller, and achieves a local optimal solution of γ+ = 0.886 (with 200 random initiations)

when a 6th order controller is used (with integral action).

The same problem is now solved using the proposed approach. First, the coprime factors Ni (s)

and Mi (s) for i = 0, . . . ,6 must be established. Since each model is unstable, then each coprime

factor must be selected such that {Ni (s), Mi (s)} ∈ RH∞ for all i . A simple choice is to divide

both the numerator and denominator of each model by a factor (s +υ)di , where υ ∈R+ and di

is the largest degree of the denominator of the i -th respective plant model. For example, the

coprime factors for the plant G2(s) can be formed as follows:

N2(s) =
2 ·502

(s +υ)3

M2(s) =
(s −2)(s2 +10s +502)

(s +υ)3
.

(6.23)

From these relations, it is evident that G2(s) = N2(s)M−1
2 (s). To further simplify the design, the

same υ= 100 (as defined in the case study presented in Section 3.4.1) can be selected for each

i -th coprime.

The optimization problem (with the proposed approach) for the mixed H∞ criteria in (6.22)

can be formulated as follows:

minimize
x

γ

subject to: γ−1|W1Mi Y (x)F (x)| <ℜ{ψi (x)F (x)}

γ−1|W2Ni X (x)F (x)| <ℜ{ψi (x)F (x)}

ω ∈Ωc , i = 0, . . . ,6,

(6.24)

where ψi (x) = Ni X (x)+Mi Y (x).

Simulation Results

The problem in (6.24) is solved by considering a logarithmically spaced frequency grid with

300 points from 10−1 to 104 rads−1. First, consider the parameterization process asserted in

Method 1; a 6th order controller is designed (5th order controller with one integrator) using the

Laguerre basis functions defined in (2.30) with ξ= 20 (as defined in Section 3.4.1) and with
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Table 6.3 – Comparison between optimal solutions and optimization time for multi-model
problem

γ+ Optimization Time [min]

Method 1 0.817 606

Method 2 0.880 207

Method 3 0.817 401

Convex Method γ⋆ = 0.881 15

hinfstruct 0.886 212

ξ f = 20. The BP is then solved using the “Mountain Climbing" method until convergence is

achieved (within 10−5) for n f = 10.

Now consider the parameterization method asserted in Method 2 and Method 3 (where

Method 3 will use a function F (x) with n f = 10). Fifty iterations for each method were initiated

where each iteration was terminated when convergence was achieved. The minimum value of

γ that achieves feasibility for all iterations was considered as the optimal. For this problem, a

swarm of px = 150 particles was used with a penalty factor ϑ= 2 and kϑ = 0.95. A comparison

of the optimal solutions with the optimization time for each method satisfying the criteria

in (6.22) are tabulated in Table.6.3 (where each method implements a 6th order controller).

From all of these algorithms, it can be observed that the proposed method using Method 1

and Method 3 yield the best solutions for this problem. Additionally, Method 2 achieves a

better optimal solution than hinfstruct with a lower optimization time; however, it should

be noted that selecting a lower number of random initializations (i.e., 10 initializations) with

hinfstruct produces a solution very close to the solution with 200 initializations (with a

difference of approximately 1%). In other words, there is no significant improvement in the

optimal solution when the number of random initializations are increased.

In contrast with the solutions obtained in Case 1, the optimization time for the convex problem

in the multi-model case is much lower than those using the other methods. Therefore, for

larger order controllers with more problem constraints, there exists a trade-off between the

optimization time and the quality of the optimal solution.

Figure. 6.3 shows the step response of Ss(s) (disturbance response) for all seven models

using the solution obtained with the hinfstruct command, while Figure. 6.4 shows the step

response of Ss(s) using the proposed PSO method (with function parameterization as asserted

in Method 3). It can be observed that the proposed data-driven method produces shorter

settling times and reduced overshoot (at the expense of a larger optimization time). However,

all of the results are comparable.
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Figure 6.3 – Step response of Ss(s) for all seven models using the controller designed with
hinfstruct (with 200 random initializations).

0 0.5 1 1.5 2
Time [s]

-0.5

0

0.5

1

A
m
p
li
tu
d
e

Figure 6.4 – Step response of Ss(s) for all seven models using the proposed PSO algorithm.
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6.4 Conclusion

A data-driven approach has been implemented in order to design robust low-order controllers

that achieve H∞ performance. With the methods developed in chapters 3 and 4, the optimal

solution obtained with low-order controllers may be far from the global solution of the H∞
problem (since these methods solve an approximate (convex) problem). Therefore, in this

chapter, an optimization problem was formulated to obtain a local solution to the H∞ prob-

lem using fixed-structure low-order controllers (while guaranteeing the closed-loop stability).

This optimization problem was non-convex; therefore, a PSO algorithm was formulated in

a data-driven setting to solve this optimization problem and optimize all parameters of a

fixed-structure controller. Thanks to the results obtained from Lemma 3.2, the local optimal

solution to the true H∞ problem (for fixed-structure controllers) was achieved. The sim-

ulation examples show that for very low-order controllers (such as the PID controller), the

solutions to the non-convex optimization problems yield better results in a short amount

of time. For higher order controllers, the convex method produces a reasonable value (with

respect to the optimal values of the non-convex problems) in a relatively short time. For future

work, it will be desired to compare the solutions and optimization times using other nonlinear

solvers (such as genetic algorithms, evolutionary programming, and differential evolution).
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7 Model-Reference Control for Particle

Accelerator Power Converters

7.1 Introduction

The design methodology described in the previous chapter was based on computing fixed-

structure controllers by finding the local solution to a non-convex problem. However, it was

seen that for larger order controllers, the optimization time can be quite large; additionally,

the selection of the free parameters of the nonlinear solver (i.e., the constriction coefficient,

the learning rates, and the penalty factor) for larger order controllers can significantly alter

the quality of the optimal solution. Therefore, since convex problems are computationally

tractable, it is natural to extend on the methods in the previous chapter by finding the local

solution to the H∞ problem through a convex optimization algorithm. With the BP formu-

lated in the previous chapter, a local solution was obtained by implementing the “Mountain

Climbing” method (i.e., solving a set of convex problems); however, this method relied on an

iterative scheme where multiple SDP problems were solved (using a bisection algorithm) until

convergence was achieved, which was extremely time consuming for problems with many

constraints.

The method proposed in this chapter is an extension of [66] and [139] to the model-reference

control problem and invokes a data-driven control scheme to design fixed-structure con-

trollers. In [139], a convex optimization problem was proposed in order to obtain the local

solution to the H∞ problem (for the model-reference objective); an LMI construction was

realized where the local solution to the problem was obtained without the need to implement

a bisection algorithm (which significantly reduces the computation time). In addition to

obtaining H∞ performance, this chapter presents a new approach for obtaining H1 and H2

performance using frequency-domain data. Two distinct methods are proposed to design a

2DOF controller by using convex optimization algorithms; however, the methods described in

this chapter can also be applied to mixed H2 and H∞ problems (i.e., minimizing the norm of

weighted sensitivity functions). Additionally, with certain trivial initializations of the controller

parameters, it is shown that the closed-loop stability is guaranteed. The methods presented in

this chapter are implemented for a specific power converter application at CERN.
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The class of models considered in this chapter will be LTI-SISO discrete-time systems where

the FRF of the plant model is described as G(e− jω). Unlike the system structure presented

in previous chapters, the plant is not represented as a function of coprimes. It is assumed

that G(e− jω) is bounded in all frequencies except for a set Bg which includes a finite number

of frequencies that correspond to the poles of G on the unit circle. Therefore, the set of

frequencies defined for the FRF plant is

ω ∈Ωg :=
{

ω
∣

∣

∣−
π

Ts
≤ω≤

π

Ts

}

\ Bg .

In general, a set Gg can be formulated to represent a plant model containing ℓ FRF models:

Gg = {Gi (e− jω); i = 1, . . . ,ℓ; ∀ω ∈Ωg }. (7.1)

For simplicity, one model from the set Gg will be considered, and the subscript i will be

omitted. However, in general, the design procedures outlined in this chapter can be applied to

the multi-model case (as will be shown in the case studies).

The class of controllers will be the RST controller structure asserted in Section 2.2.2. Thus the

sensitivity functions considered will be those in Section 2.3.2. Note that since the plant model

is not represented in coprime form, then the sensitivity functions can be expressed with N =G

and M = 1. The set of frequencies of all roots of S(z−1,ρ) on the stability boundary (i.e., on the

unit circle) is denoted by Bs . Note that S(e− jω,ρ) should be invertible for all ω ∈Ω :=Ωg \ Bs .

7.2 Control Performance

In this section, it will be demonstrated that the performance specification of the control

problem will be achieved by formulating a convex optimization problem. The controllers will

be synthesized by only considering the FRF of the system.

7.2.1 Convex Approximation

In subsequent sections, it will be shown that the type of optimization problem that will be

considered will have the following form:

minimize
ρ,γ

γ

subject to: g∗(ρ)γ−1g (ρ)−ψ∗(ρ)ψ(ρ) < 0,
(7.2)

where γ ∈R+, g : Rnr st ×R→C and ψ : Rnr s ×R→C are linear functions of the decision vector

ρ and (·)∗ denotes the complex conjugate of the argument. This type of problem is convex-

concave (due to the −ψ∗(ρ)ψ(ρ) term). To convexify this constraint, the term ψ∗(ρ)ψ(ρ) can

be linearized around an initial operating point ρ0. It can be shown that ψ∗(ρ)ψ(ρ) is always
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greater than or equal to a linear function of ρ for any initial vector ρ0:

ψ∗(ρ)ψ(ρ) ≥ψ∗(ρ)ψ0 +ψ(ρ)ψ∗
0 −ψ∗

0ψ0, (7.3)

where ψ0 =ψ(ρ0). The condition in (7.3) can easily be established by realizing the following

inequality:

[ψ(ρ)−ψ0]∗[ψ(ρ)−ψ0] ≥ 0. (7.4)

With this linearization, a sufficient condition for the inequality in (7.2) can be developed as

follows:

g∗(ρ)γ−1g (ρ)−
[

ψ∗(ρ)ψ0 +ψ(ρ)ψ∗
0 −ψ∗

0ψ0
]

< 0. (7.5)

By using the Shur Complement Lemma [140], the above condition can be expressed in terms

of a LMI:

[

ψ∗(ρ)ψ0 +ψ(ρ)ψ∗
0 −ψ∗

0ψ0 g∗(ρ)

g (ρ) γ

]

≻ 0. (7.6)

This type of formulation will be used in the next section in order to construct a model-reference

control objective.

For a Schur SISO system X (z−1), the H1, H2 and H∞ norms are defined as follows:

‖X ‖1 :=
Ts

2π

∫π/Ts

−π/Ts

|X (e− jω)|dω

‖X ‖2 :=

√

Ts

2π

∫π/Ts

−π/Ts

∣

∣X (e− jω)
∣

∣

2
dω

‖X ‖∞ := sup
ω∈Ω

|X (e− jω)|

It is imperative to note that the boundedness of spectral norm X does not guarantee the

stability of X .

A model-reference criterion can be considered as a form of control performance. If S2 :

R
nr st ×R→C is the closed-loop FRF and S d

2 : R→C is the desired FRF, then one can consider

minimizing (S2(ρ)−S d
2 ) in the Hp sense (for p = {1,2,∞}) in order to shape S2.

Remark. Note that the theory developed in subsequent sections will discuss shaping the FRF of

S2 (i.e., a model-reference control objective). However, one can consider shaping any sensitivity

function of interest with the presented methods.
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7.2.2 H∞ Performance

In this section, a method for optimizing the parameters of the RST polynomials in one

optimization problem is presented (i.e., the RST polynomials are simultaneously optimized

to obtain the desired H2 or H∞ performance). The closed-loop FRF for the RST structure is

S2(ρ) =∆2(ρ)ψ−1(ρ) (with ∆2(ρ) =GT (ρ), as given in (2.39) with N =G). In the H∞ sense,

the objective is to minimize ‖S2(ρ)−S d
2 ‖∞; an equivalent representation of this objective is

to minimize γ such that ‖S2(ρ)−S d
2 ‖2

∞ < γ (which is the epigraph form of the minimization

criterion). This criterion is satisfied if the following optimization problem is considered:

minimize
ρ,γ

γ

subject to:
[

S2(ρ)−S d
2

]∗ [

S2(ρ)−S d
2

]

< γ
(7.7)

for all ω ∈Ω. It can be observed that the constraint in (7.7) is not convex. Given the definition

of S2(ρ), this constraint can be written as:

[

∆2(ρ)−ψ(ρ)S d
2

]∗
γ−1[

∆2(ρ)−ψ(ρ)S d
2

]

−ψ∗(ρ)ψ(ρ) < 0.

Note that this constraint has the exact form as the constraint in (7.2); therefore, the LMI

formulation in (7.6) can be utilized to construct the model-reference optimization problem as

follows:

minimize
ρ,γ

γ

subject to:

[

ψ∗(ρ)ψ0 +ψ∗
0ψ(ρ)−ψ∗

0ψ0
(

∆2(ρ)−ψ(ρ)S d
2

)∗

∆2(ρ)−ψ(ρ)S d
2 γ

]

≻ 0
(7.8)

for all ω ∈Ω, where

ψ0 =ψ(ρ0) =GR(ρ0)+S(ρ0)

and ρ0 is the vector of initializing parameters for R and S, i.e.,

ρ0 = [r0,0,r1,0, . . . ,rnr ,0, s1,0, s2,0, . . . , sns ,0].

7.2.3 H2 Performance

In a similar manner, an optimization problem can be formulated for minimizing the square of

the H2 model-reference objective (i.e., minimizing ‖S2(ρ)−S d
2 ‖2

2); the optimization problem
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for this criteria can be expressed as follows:

minimize
ρ,γ,Γ

γ=
∫π/Ts

−π/Ts

Γ(ω)dω

subject to:
[

S2(ρ)−S d
2

]∗ [

S2(ρ)−S d
2

]

< Γ(ω)

(7.9)

for all ω ∈Ω, where Γ(ω) is an unknown function of ω. Therefore, by using the results obtained

in Section 7.2.1, the following convex optimization problem can be considered:

minimize
ρ,γ,Γ

γ=
∫π/Ts

−π/Ts

Γ(ω)dω

subject to:

[

ψ∗(ρ)ψ0 +ψ∗
0ψ(ρ)−ψ∗

0ψ0
(

∆2(ρ)−ψ(ρ)S d
2

)∗

∆2(ρ)−ψ(ρ)S d
2 Γ(ω)

]

≻ 0

(7.10)

for all ω ∈Ω. For this H2 problem, note that Γ(ω) can be selected as a simple linear polynomial

function of finite order, i.e.,

Γ(ω) =
h
∑

i=0

Γiω
i , (7.11)

where h is the order of the polynomial. In the case when the constraints are evaluated at

a finite number of frequencies (i.e., ω ∈Ωη = {ω1, . . . ,ωη}), then Γ(ω) can be replaced by an

optimization variable Γk at each frequency ωk for k = 1, . . . ,η.

Remark. Note that the choice of the initializing controllers in ψ0 may affect the stability of the

closed-loop system (for either the optimization problems concerning the H∞ or H2 norms).

Section 7.3 will discuss how to select these initializing controllers in order to ensure stability.

To obtain the local optimal solution to the problem in (7.7) (respectively 7.9), the convex

problem in (7.8) (respectively 7.10) must be solved in an iterative fashion. The basic procedure

for implementing this iterative algorithm is summarized in Table 7.1 for the problem in (7.8)

(which is similar to the procedure for the problem in (7.10)). By executing this algorithm,

the solution to the convex problem converges to a local solution of the fixed-structure H∞
(respectively H2) problem (i.e., liml→∞γ⋆

l
→ γ+ and liml→∞ρ⋆

l
→ρ+).

7.2.4 H1 Performance

In the previous section, convex optimization problems were formulated in order to satisfy

the model-reference problem; one convex optimization problem can be considered for this

design approach to obtain all of the controller parameters and achieve either H2 or H∞
performance (i.e., obtain the local solutions to the Hp problems for p ∈ {2,∞}). However, in

many applications (as in the power converter application considered in this work, which is

discussed in Section 7.5), minimizing the H1 norm of the model-reference objective may be

desired. It is known that minimizing different Hp norms in the frequency-domain will be
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Table 7.1 – Procedure for obtaining local optimal solution with convex formulation

Algorithm: Convex optimization for optimal performance

1. Define a tolerance for γ (γtol ) and set l = 1 (where l denotes
the iteration number).

2. Solve the problem in (7.8) for a given controller order and a
given ψ0 and obtain the optimal solutions for γ⋆

l
and ρ⋆

l
.

Formulate ψ(ρ⋆

l
) and then let l = l +1.

3. Let ψ0 =ψ(ρ⋆

l−1) and solve the problem in (7.8) to obtain γ⋆
l

and ρ⋆

l
.

4. If γ⋆
l−1 −γ⋆

l
< γtol , stop. Otherwise, let l = l +1 and return

to step 3.

interpreted in different manners in the time-domain. For example, given a bounded discrete-

time signal x[k], the relationship between the frequency-domain and time-domain for the

H2 norm is ‖X ‖2 = ‖x‖2 according to the well-known Parseval theorem, where X (e− jω) is the

frequency spectrum of x[k]. The relationship between ‖X ‖1 and ‖x‖∞ is given as follows:

‖x‖∞ = sup
k

|x[k]| = sup
k

∣

∣

∣

∣

Ts

2π

∫π/Ts

−π/Ts

X (e− jω)e j kTsωdω

∣

∣

∣

∣

≤ sup
k

Ts

2π

∫π/Ts

−π/Ts

∣

∣

∣X (e− jω)e j kTsω
∣

∣

∣dω=
Ts

2π

∫π/Ts

−π/Ts

∣

∣

∣X (e− jω)
∣

∣

∣dω= ‖X ‖1 .

(7.12)

Similarly, it can be shown that ‖X ‖∞ ≤ ‖x‖1. Therefore, if one is interested in minimizing the

peak error in the time-domain, then minimizing the H1 norm of the error in the frequency-

domain can be considered.

The H1 model-reference problem can be formulated as follows:

minimize
ρ,γ,Γ

γ=
∫π/Ts

−π/Ts

Γ(ω)dω

subject to:
∣

∣

∣S2(ρ)−S d
2

∣

∣

∣< Γ(ω)

(7.13)

for all ω ∈ Ω. The convexification methods used to obtain H2 and H∞ performance (as

discussed in Sections 7.2.2 and 7.2.3) cannot be used in formulating the H1 problem since

the constraint in this problem cannot be expressed as in (7.2). Linearization does not pose as

a viable solution since Γ(ω) is a vector of decision variables and a straightforward bisection

algorithm cannot be performed to obtain the local solution to the problem. Therefore, a

different approach is taken to solve the H1 model-reference problem; a two-step design

method is implemented where the R(ρ) and S(ρ) polynomials are optimized separately from

the polynomial T (ρ). For this reason, let us define the following vectors:

ρ1 = [r0,r1, . . . ,rnr
, s1, s2, . . . , sns

]; ρ2 = [t0, t1, . . . , tnt
]. (7.14)
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A sequential set of convex problems are formulated as follows: in the first problem, the

polynomials R(ρ1) and S(ρ1) are optimized for regulation. In this step, the appropriate

stability and robustness margins can be attained for the closed-loop system. Once these

polynomials are formulated, the sensitivity functions defined in Section 2.3.2 become linear

functions of ρ2. A convex optimization problem for the H1 model-reference objective can

then be easily implemented in order to obtain the final polynomial in the RST structure T (ρ2).

Suppose that it is desired to obtain a minimum value for the modulus margin (which ensures

both the closed-loop stability and sufficient robustness margins). The modulus margin is the

minimum distance between the Nyquist plot of the open-loop FRF and the point (−1+ j 0).

Thus one must consider satisfying ‖md S1(ρ1)‖∞ < 1 for all ω ∈Ω, where md is the desired

minimum value of the modulus margin. By applying the methods described in Section 7.2.2, a

convex constraint for satisfying the modulus margin criterion can be formulated as follows:

[

ψ∗(ρ1)ψ0 +ψ∗
0ψ(ρ1)−ψ∗

0ψ0
(

md S(ρ1)
)∗

md S(ρ1) 1

]

≻ 0, ∀ω ∈Ω. (7.15)

The above constraint ensures a sufficient robustness margin with the parameter md . With

a feasible solution to the problem in (7.15), the admissible parameters for R(ρ⋆

1 ) and S(ρ⋆

1 )

are obtained (where ρ⋆

1 is the feasible solution to the problem). The solution to (7.15) will

guarantee the closed-loop stability and desired robustness margin ifψ0 is chosen appropriately

(which will be discussed in Section 7.3). Once the admissible parameters are obtained for

R(ρ⋆

1 ) and S(ρ⋆

1 ), one then simply considers the following unconstrained model-reference

optimization problem:

minimize
ρ2

∥

∥

∥S2(ρ⋆

1 ,ρ2)−S d
2

∥

∥

∥

1
, ∀ω ∈Ω. (7.16)

The feasible solution to this problem satisfies the H1 model-reference objective. Note that

S2(ρ⋆

1 ,ρ2) is now linear with respect to the decision vector ρ2, and the objective function in

(7.16) is convex.

7.3 Stability Analysis

The model-reference constraints developed in Sections 7.2.2 and 7.2.3 do not guarantee

the stability of the closed-loop system. Setting a desired FRF to shape a closed-loop FRF is

analogous to bounding the closed-loop FRF; it can be shown that unstable systems can still

possess bounded FRFs.

The initializing controllers in ψ0 play an important role in guaranteeing the stability of the

closed-loop system. By using the Nyquist criterion, the stability of the closed-loop system can

be ensured if certain conditions are met for these initializing controllers.

The following definition and properties will be needed in order to properly analyze the stability
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conditions of the system:

Definition 7.1. Let wno{A(z)} refer to the winding number around the origin, in the counter-

clockwise sense, of the image of A(z) when z traverses the Nyquist contour (with small detours

around the poles of A(z) on the unit circle). Then the following properties hold:

wno
{

A1(z)A2(z)
}

= wno
{

A1(z)
}

+wno
{

A2(z)
}

(7.17)

wno
{

A(z)
}

=−wno
{

A∗(z)
}

(7.18)

wno
{

A(z)
}

=−wno
{

A−1(z)
}

(7.19)

The open-loop FRF of the RST structure is given as L(ρ) = GR(ρ)S−1(ρ). By the Nyquist

stability criterion, the closed-loop system is stable if and only if the Nyquist plot of

1+L(ρ) = 1+GR(ρ)S−1(ρ)

makes nG +nK counterclockwise encirclements of the origin (where nG and nK are, respec-

tively, the number of poles outside the unit circle of G and R(ρ)S−1(ρ)). The Nyquist plot of

1+L(ρ) must also not pass through the origin. Therefore, to ensure the closed-loop stability of

the system, we must have wno{1+L(ρ)} = nG +nK . Note that nK is also equal to the number

of zeros outside the unit circle of S(ρ).

Theorem 7.1. Suppose that R(ρ0) and S(ρ0) are stabilizing initial controllers and that R(ρ)

and S(ρ) are feasible solutions to the following constraint:

ψ∗(ρ)ψ0 +ψ∗
0ψ(ρ) > 0, ∀ω ∈Ω. (7.20)

Then the closed-loop system is stable if S(ρ) and S(ρ0) share the same zeros on the stability

boundary (i.e., the zeros on the unit circle).

Proof: The proof is based on the Nyquist stability criterion and the properties of the winding

number. The winding number of ψ∗(ρ)ψ0 is given as follows:

wno{ψ∗(ρ)ψ0} = wno{ψ∗(ρ)}+wno{ψ0}

=−wno{GR(ρ)+S(ρ)}+wno{GR(ρ0)+S(ρ0)}

=−wno{S(ρ)}−wno{1+L(ρ)}+wno{S(ρ0)}+wno{1+L(ρ0)}.

(7.21)

Since S(ρ) and S(ρ0) share the same poles on the unit circle, the phase variation of ψ∗(ρ)ψ0

for the small detours around the poles on the unit circle is zero and the winding number of

ψ∗(ρ)ψ0 can be evaluated over Ω instead of the Nyquist contour. Additionally, the constraint

in (7.20) implies that ℜ{ψ∗(ρ)ψ0} > 0 since

ℜ{ψ∗(ρ)ψ0} =
1

2

[

ψ∗(ρ)ψ0 +ψ∗
0ψ(ρ)

]

This signifies that the Nyquist plot of ψ∗(ρ)ψ0 will not pass through or encircle the origin and
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wno{ψ∗(ρ)ψ0} = 0. Therefore, from (7.21), the following condition can then be realized:

wno{1+L(ρ)} = wno{S(ρ0)}+wno{1+L(ρ0)}−wno{S(ρ)}. (7.22)

However, if the initializing controllers are stabilizing, then wno{1+L(ρ0)} = nG +nK0 , where

nK0 is the number of poles outside the unit circle of R(ρ0)S−1(ρ0) (which is also equal to the

number of zeros outside the unit circle of S(ρ0)). Note that the polynomial S(ρ) in (2.28) is

equivalent to

S(z,ρ) =
zns + s1zns−1 +·· ·+ sn

zns
. (7.23)

Now, consider a contour that incorporates the unit circle; by the Cauchy principle of argument,

it can be observed from (7.23) that

wno{S(ρ)} = ns −nK −ns =−nK .

By the same principle, it is evident that

wno{S(ρ0)} = ns0 −nK0 −ns0 =−nK0 ,

where ns0 is the order of S(ρ0). Therefore, from (7.22), we have the following condition:

wno{1+L(ρ)} =−nK0 +nG +nK0 +nK = nG +nK (7.24)

and the closed-loop system will be stable. �

Remark. According to the above Theorem, S(ρ) and S(ρ0) must share the same zeros on |z| = 1

to guarantee the closed-loop stability. Assume that the number of prefixed integrators in S−1(ρ)

and S−1(ρ0) are identical. Therefore, to ensure that the criterion in the Theorem is met when the

problems in Sections 7.2.2 or 7.2.3 are solved, the constraint |S(ρ)| > 0∀ω ∈Ω can be imposed

(which ensures that S(ρ) will not possess additional zeros on |z| = 1). However, |S(ρ)| > 0 is a

concave function of ρ; therefore, the linearization techniques implemented in Section 7.2.1 can

be used to linearize this constraint as follows:

S∗(ρ)S(ρ0)+S(ρ)S∗(ρ0)−S∗(ρ0)S(ρ0) > 0, ∀ω ∈Ω. (7.25)

Thus imposing the above constraint to any of the optimization problems will ensure that the

stability criterion in Theorem 7.1 is satisfied.

7.3.1 Initial Stabilizing Controller

In a data-driven setting, and for practical applications, a stabilizing controller is typically

already available for unstable systems; these controllers can be used in ψ0 to initialize the

optimization algorithm. For stable systems a controller with small gain is always stabilizing,
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however, one should take care of poles on the unit circle (such as pure integrators, as discussed

in Theorem 7.1).

If a model has been given by an application, a feasibility problem can be formulated to design

a stabilizing controller. The following Lemma can be used for this purpose:

Lemma 7.1. Let the plant model be represented as

G(e− jω) = N (e− jω)M−1(e− jω),

where N (e− jω) and M(e− jω) are coprime factorizations of G(e− jω) [96] and are both analytic

outside the unit circle. Then the system with the RST structure is internally stable if a feasible

solution is obtained in the following problem:

find ρ0

subject to: ℜ
{

ψ(ρ0)
}

> 0

∀ω ∈Ω,

(7.26)

where ψ(ρ0) = N R(ρ0)+MS(ρ0).

Proof: When the plant is represented as a coprime factorization G = N M−1, then the zeros of

ψ(ρ0) represent the poles of all of the sensitivity functions of the closed-loop system. Therefore,

the stability of ψ−1(ρ0) implies the stability of all sensitivity functions.

ℜ{ψ(ρ0)} > 0 signifies that the Nyquist plot of ψ(ρ0) will not encircle the origin ∀ω. However,

note that

ℜ{ψ(ρ0)} > 0 ⇐⇒ ℜ
{

1

ψ(ρ0)

}

> 0.

Then by the SPR conditions in Lemma 4.1, the positive real constraint implies that

ψ−1(ρ0) = [MS(ρ0)]−1[1+L(ρ0)]−1

is stable (where L(ρ0) = N R(ρ0)[MS(ρ0)]−1 is the open-loop FRF), and thus the closed-loop

system is stable. �

The feasible solution to this problem will generate a controller which will stabilize the closed-

loop system and can be used in ψ0 for the initialization.

7.4 Simulation Examples

Two simulation examples will now be presented in order to demonstrate the effectiveness

of the proposed methods. The first example considers a controller design for an uncertain

heat conducting system. The second example will investigate the performance for a family of

unstable, non-minimum phase systems. The following criterion is used for measuring and
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comparing the attained performance for each case study:

J⋆

p,i =
∥

∥

∥S i
2 (ρ⋆)−S d

2

∥

∥

∥

p

for p ∈ {1,2,∞}, where the p-norm is calculated as stated in Section 7.2.1. When a single model

is considered, the subscript i is removed. For all of the case studies, the MATLAB software was

used in conjunction with the YALMIP interface [130] to solve all of the problems in this work.

A computer having the following hardware specifications was used: Intel-Core i7, 3.4 GHz

CPU, 8GB RAM. The optimization algorithms were run using MATLAB version (R2017a) on a

Windows 7 platform (64-bit).

Remark. As with the preceding chapters, all of the optimization problems considered in this

chapter are SIP problems since there are a finite number of optimization variables ρ and an

infinite number of constraints with respect to ω. To solve any of these problems, the optimization

algorithm can be converted to a SDP problem. In this manner, a predefined frequency grid

can be implemented in order to solve a finite number of constraints. In other words, a set of

frequency points Ωη = {ω1, . . . ,ωη} is defined, where η constraints must be satisfied for each

feasibility condition added to the optimization problem.

7.4.1 Case 1: Heat Conductor

The proposed design method has the advantage of designing controllers for fractional order

systems. Consider the heat conduction process which has the following transfer function:

Gi (s) = e−
p

s/ãi , (7.27)

where the output is the temperature of the system at a given position, the input is a constant

temperature set at a boundary, and ãi is the conduction constant and is an uncertain parame-

ter which lies in the set ãi ∈ {2,2.5,3} rads−1 for i = 1,2,3. The objective of this case study is

to design an RST controller (with H2 and H∞ performance) with integral action to ensure

performance and stability for all of the uncertain values in ãi . In other words, it will be desired

to minimize ‖S i
2 −S d

2 ‖p for all i and for p ∈ {2,∞}.

Controller Synthesis

As shown in Theorem 7.1, a stabilizing initial controller is needed in order to ensure the

closed-loop stability and desired performance. Since it was desired to have a controller with

integral action, a simple initial stabilizing controller was selected as R(z−1,ρ0) = 10−2 and

S(z−1,ρ0) = 1−z−1 (which was confirmed to stabilize all Gi by investigating the Nyquist plot of

the open-loop FRF). With this initializing controller, a 2nd order controller (with integral action)

was designed for achieving H2 and H∞ performance (by using the methods in Sections 7.2.2

and 7.2.3 with the added constraint in (7.25)). These problems were solved using the SDP

algorithm with a logarithmically spaced grid from 10−3 to π/Ts rads−1 (with η = 200 and
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Figure 7.1 – Closed-loop FRFs for each Gi obtained by solving the H2 problem (dashed-blue)
and solving the H∞ problem (dashed-red). The desired closed-loop FRF is shown with the
solid-black line.

Table 7.2 – Optimization results for H2 and H∞ problems

H2 Design H∞ Design

R S T R S T

1 29.48 1 2.63 16.77 1 1.56
z−1 -21.67 -1.54 1.99 -26.70 -2.16 -0.46
z−2 -2.99 0.54 0.21 10.52 1.16 -0.51

Optimization
Time [s]

65.1 41.2

maxi J⋆

2,i 0.016 0.027

maxi J⋆

∞,i 0.038 0.030

Ts = 0.1 s). For this case study, the desired reference model was selected as a simple first

order transfer function, i.e., S d
2 = (τs +1)−1, where τ is the desired time constant (which was

selected as (0.5π)−1 s). The tolerance for γ was selected as γtol = 10−3.

Fig. 7.1 shows the magnitude of the closed-loop FRFs (for both the H2 and H∞ designs)

for all Gi . Table 7.2 shows the resulting optimization parameters for each design method

with the associated optimization time. The parameters in the RST columns correspond

to the polynomial variable in the left-most column. For example, the polynomial S(z−1) =
1−1.54z−1 +0.54z−2 corresponds to the polynomial S in the H2 design method. From all of

these results, it can be observed that even with an uncertain fractional-order transfer function,

the proposed method can be used to obtain the desired model-reference objective with a

low-order fixed-structure controller.

124



7.4. Simulation Examples

7.4.2 Case 2: Unstable robot prototype

Consider the following unstable, non-minimum phase system for the climbing robot prototype

reported in [110] (which represents the dynamics for the axial movement of one of the robots’

components):

G(z) =−0.006
(z −6.502)(z +ν)(z +0.6731)

(z −1.021)(z −0.5054)(z −0.1672)
, (7.28)

where ν = 3.890 and the sampling time is given as Ts = 0.025 s. Suppose that the unstable

zero ν is an uncertain parameter that can vary to ±30% of its nominal value. Therefore, this

parameter lies in the interval ν̂ = ν[0.7,1.3]. With the proposed approach, a multi-model

design can be implemented where the uncertain parameter can be gridded with a finite set of

values and a controller designed to ensure the performance for all of the gridded values. For

this problem, the grid was chosen as ν̂i = ν{0.7,0.8, . . . ,1.3} for i = 1, . . . ,7. Thus the plant can

be expressed as Gi (z) (which represents the plant model with respect to the i th parameter in

ν̂i ).

Initial Stabilizing Controller Design

A stabilizing initial controller is needed in order to ensure the closed-loop stability and perfor-

mance; therefore, the problem in (7.26) can be used to ensure the closed-loop stability for all of

the models in Gi . The coprime factors Ni (z) and Mi (z) for i = 1, . . . ,7 must first be established.

Since each model is unstable, then each coprime factor must be selected such that Ni (z) and

Mi (z) are stable and proper for all i . A simple choice is to divide both the numerator and

denominator of each model by a factor (z − ξ̃)3, where ξ̃ ∈]−1,1[. To simplify the design, the

same ξ̃= 0 can be selected for each i th coprime. For example, the coprime factors for the plant

G1(z) can be formed as follows:

N1(z) =
−0.006(z −6.501)(z + ν̂1)(z +0.6731)

z3

M1(z) =
(z −1.021)(z −0.5054)(z −0.1672)

z3
.

(7.29)

From these relations, it is evident that G1(z) = N1(z)M−1
1 (z).

The problem in (7.26) was solved using a 5th order controller and with a logarithmically spaced

frequency grid of 100 points from 10−2 to π/Ts . Since there are i = 7 models to consider in the

problem, then there will be a total of 700 linear constraints to satisfy. The optimization time for

obtaining the polynomials R(z−1,ρ0) and S(z−1,ρ0) was calculated as 2.7 s; these controllers

ensure the closed-loop stability for all of the models in Gi .

R(z−1,ρ0) = 15.09−2.349z−1 +1.873z−2 −6.644z−3 +5.061z−4 +0.4924z−5

S(z−1,ρ0) = 1+2.142z−1 +0.8225z−2 −1.185z−3 −1.896z−4 −0.8832z−5.
(7.30)
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Table 7.3 – Performance for different optimization criteria

Criteria H1 H2 H∞

maxi J⋆

1,i 0.401 0.425 0.426

maxi J⋆

2,i 0.455 0.453 0.456

maxi J⋆

∞,i 1.615 1.250 0.561

Note that S(z−1,ρ0) was prefixed with a term (1− z−1) (since it was desired to have a final

controller with integral action).

Controller Synthesis

A controller was designed to obtain Hp performance and stability for p ∈ {1,2,∞} for all of

the models Gi . A 5th order polynomial for both R(ρ) and S(ρ) are selected; however, to obtain

adequate performance for the H1 model-reference objective, a 10th order polynomial for T (ρ)

was selected. For comparative purposes, the same controller orders were used for all of the

Hp model-reference objectives.

• For the H2 and H∞ objectives, ψ0 was selected such that it incorporated the stabilizing

controllers obtained in (7.30). The tolerance used for γ was selected as γtol = 10−3. The

constraint in (7.25) was imposed on all problems in order to ensure that the conditions

of Theorem 7.1 were satisfied.

• For the H1 objective, the final polynomials for R(ρ1) and S(ρ1) are given in (7.30) and

T (ρ2) is the only polynomial left to be optimized

For this case study, the desired reference model was selected as a simple first order transfer

function, i.e., S d
2 = (τs +1)−1, where τ is the desired time constant (which was selected as

(5π)−1 s).

The frequency grid that was used for the stabilizing controller design was also used for all of

the model-reference optimization problems. Figure 7.2 shows the closed-loop step responses

with Hp performance for the nominal plant model (i.e., when ν̂i = ν). It can be observed

that the responses are comparable. In order to conserve space, all of the closed-loop step

responses for each model and each method are not shown. However, Table 7.3 shows the

associated performance criteria for each Hp model-reference objective. As expected, the

minimum value of maxi J⋆

p,i is obtained when the respective Hp model-reference objective

is minimized (which was also the case in the previous case study).
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Figure 7.2 – Closed-loop step response for the nominal plant model with H1 performance
(blue-line), H2 performance (green-line), and H∞ performance (red-line). The dashed-black
line is the desired response.

7.5 Case Study: Power Converter Control

The system considered in this case study is the power converter control system investigated

in the case study of Chapter 4. Fig. 4.8 shows the structure of the control system. For this

application, the same CANCUN converter is used to drive the load (which is shown in Fig. 4.10);

however, for this application, the load and the reference profile are different (where a much

larger closed-loop bandwidth is required to properly track the desired reference profile). The

details with regards to the desired specifications are discussed in subsequent sections.

7.5.1 Controller Design

For this application, the following requirements must be satisfied:

• Achieve optimal tracking performance (i.e., minimize ‖S2(ρ)−S d
2 ‖p ) and obtain the

desired error requirements (in parts-per-million (ppm)) for a specific reference profile

(shown in Fig. 7.3).

• Obtain a modulus margin of at least 0.5.

• Ensure that the controller [S′(ρ)]−1 is stable (which is a requirement set within the

proprietary software of the CERN controller [141, 117]), where S(ρ) = (1− z−1)nI S′(ρ)

and S′(ρ) is the polynomial given in (2.28) (which signifies that nI ∈ [1,2, . . . ,∞[ pure

integrators are allowed in the design).
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Figure 7.3 – The desired reference current iR . The error between the blue-dashed line and
the red-dashed line must remain within ±1000 ppm; the error after the red-dashed line must
remain within ±100 ppm.

Given these constraints, the following optimization problem can be considered:

minimize
ρ

‖S2(ρ)−S d
2 ‖p

subject to: ‖md S1(ρ)‖∞ < 1

ℜ{S′(ρ)} > 0

∀ω ∈Ω.

(7.31)

The first constraint in this problem ensures the desired modulus margin for md = 0.5 while the

second constraint ensures the stability of [S′(ρ)]−1. Note that this second constraint implies

that all of the zeros of S′(ρ) are in |z| < 1; therefore, the constraint in (7.25) is not needed to

guarantee the closed-loop stability.

Desired Reference Model

The tracking signal and error requirements for this application are shown in Fig. 7.3. At CERN,

the error is calculated with respect to a delayed reference input (i.e., e(t) = r (t −τs)− y(t));

τs can be determined by shifting the reference signal such that the minimum peak error is

achieved. The calculation for obtaining the error in ppm is performed by taking the raw data

for the error e(t ) and scaling it by a factor of 106/100. The factor of 100 represents the nominal

current (100 A) of the power converter for this application.

It is known that the open-loop process contains a fractional delay that lies in the interval
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[200,400] µs; this delay comes from the filtering elements within the FGC along with the

communication delay inherent in the system. This application requires a very large closed-

loop bandwidth and this delay can inhibit the desired performance (since it is known that a

delay limits the achievable closed-loop bandwidth [142]). Therefore, S d
2 should be selected

such that the effect of the open-loop delay is compensated for and the desired bandwidth can

be obtained. One such transfer function which can accomplish this requirement is as follows:

S d
2 (s) =

ω2
d

s2 +2ζωd s +ω2
d

e−sTd , (7.32)

where ζ is the damping factor, Td [s] is the desired shift of the reference profile, and

ωd = 2π fd

[

1−2ζ2 +
√

2−4ζ2 +4ζ4

]−0.5

,

where fd [Hz] is the desired closed-loop bandwidth. As a worst case consideration, the delay

shift can be selected as Td = 400µs. Thus with respect to tracking, the delay shift Td allows the

effect of the open-loop delay to be nullified so that the bandwidth and damping requirements

can be satisfied.

A simulation was performed to determine the bandwidth that was required in order to satisfy

the desired error specifications. By assuming that the closed-loop response behaves as S d
2 ,

the bandwidth and damping factor can be selected such that the error between the delayed

reference input and output remains within the requirements set by the application (which are

shown in Fig. 7.3); it was determined that fd = 2000Hz with ζ= 0.8 satisfies these requirements.

Synthesis and Experimental Results

A PRBS signal was used as the input voltage reference of the open-loop system in order to

capture the dynamics of the process. A total of 10 experiments were performed with the

PRBS clock period Tcl = 100µs (which is equal to the sampling time of the control loop); the

acquired periods (with transients removed in post-processing) could then be merged together.

A custom FGC signal is limited to 1023 data points; therefore, a 9-bit PRBS signal was used for

identification purposes (which corresponds to a period with a length of 511 samples). For a

signal of length 511, the frequency resolution is limited to 255 points. Fig. 7.4 shows the input

and output signals acquired from the identification experiment. The FRF of the process was

then obtained as G(e− jω) =F {i (t )}/F {v(t )}.

For comparative purposes, it was desired to compare the controller obtained from a model-

based design methodology (such as the SYSTUNE toolbox from the MATLAB environment) with

the proposed methods. This method uses a non-smooth optimization algorithm to tune

fixed-structure control systems in order to achieve a desired model-reference objective (in

the H2 sense). This method requires a model to synthesize a controller; therefore, a 4th order

model was identified with MATLAB by using the PRBS input and output data. The following

129



Chapter 7. Model-Reference Control for Particle Accelerator Power Converters

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

-0.05

0

0.05

v
(t
)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time [s]

-0.4

-0.2

0

0.2

0.4

i
(t
)

Figure 7.4 – PRBS signal used for the input voltage v(t ) of the open-loop system along with the
resulting output current i (t ).

non-minimum phase model with delay was obtained through the identification experiment

(using the ARX method):

Gm(z−1) =
0.7319(1+1.196z−1)z−4

(1−0.948z−1)(1+0.295z−1)(1−0.073z−1 +0.273z−2)

The calculated model fit percentage was given as 93.5% (which was the value provided by

MATLAB). Note that when the superposed noise is not white, the coupling between the deter-

ministic and stochastic dynamics can bias the estimation of the ARX model [143]. Thus it

is of interest to compare the proposed data-driven method with a biased model in order to

determine how the modeling errors impact the stability and performance of the closed-loop

system.

Remark. Note that SYSTUNE cannot impose constraints to ensure controller stability and mod-

ulus margin (of the closed loop system). However, constraints for the gain and phase margins

can be imposed. A modulus margin of 0.5 implies that the gain margin is at least 6 dB and that

the phase margin is at least 29 °; these values were therefore used to ensure the stability margins.

However, to obtain the controller stability, different optimization iterations were performed

until this specification was obtained (since the method used by this toolbox produces different

results for different iterations).

For this case study, it was desired to have integral action for the final controller. Therefore,

since the plant is stable, a simple selection for the initial stabilizing controller is R(z−1,ρ0) =
10−3 and S(z−1,ρ0) = 1− z−1 (which was confirmed to stabilize the closed-loop system in

an experiment). Therefore, these values were used to initialize the proposed optimization
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methods (i.e., ψ0 = 10−3G + (1− z−1)). All of the proposed optimization methods were solved

in SDP form (for all of the η = 255 frequency points obtained from the PRBS identification

experiment). For comparison purposes, the same order controller was used for all design

methods (i.e., a 5th order polynomial for R(ρ) and S(ρ) and a 10th order polynomial for T (ρ)).

• The following optimization problem was considered for minimizing the H∞ model-

reference objective:

minimize
ρ,γ

γ

subject to:

[

ψ∗(ρ)ψ0 +ψ∗
0ψ(ρ)−ψ∗

0ψ0
(

∆2(ρ)−ψ(ρ)S d
2

)∗

∆2(ρ)−ψ(ρ)S d
2 γ

]

≻ 0

[

ψ∗(ρ)ψ0 +ψ∗
0ψ(ρ)−ψ∗

0ψ0
(

md S(ρ)
)∗

md S(ρ) 1

]

≻ 0

ℜ
{

S′(ρ)
}

> 0

∀ω ∈Ωη.

(7.33)

A similar problem can be formulated for the H2 problem (as discussed in Section 7.2.3).

The H2 and H∞ model-reference problems were solved with γtol = 10−4.

• In solving the H1 model-reference problem, the modulus margin constraint (along with

the controller stability constraint) was first satisfied by obtaining a feasible solution to

the condition in (7.15). The optimization problem in (7.16) was then solved to obtain

T (ρ2).

Fig. 7.5 shows the error obtained by comparing the proposed design approaches with the

approach implemented by SYSTUNE. The dashed-black horizontal lines in the plot indicates

the bounds set by the application. It can be observed that the controller from SYSTUNE violates

all of the error requirements. With the proposed approaches, the H1 and H∞ designs satisfy

all of the requirements, while with H2 design violates the 100ppm error specification. Fig. 7.6

shows the magnitude of the closed-loop responses for all design approaches; it can be observed

that the SYSTUNE controller is not adhering to the desired bandwidth requirements. Thus the

modeling process and the type of model used for a real system can significantly impact the

desired specifications (due to the inherent modeling errors).

Table 7.4 shows the values of the performance criteria for each design method. The values of

J⋆
p for SYSTUNE were obtained by formulating S2 with the SYSTUNE controller and G(e− jω)

obtained from the PRBS experiment (which represents the FRF of the true process). From

this table, it can be observed that the proposed controller design methods produce the best

performance.
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Figure 7.5 – Errors obtained using the proposed designs (blue, green and orange lines); error
obtained using the SYSTUNE controller (red line).

Figure 7.6 – |S2| for all of the design methods discussed in this work.

Table 7.4 – Performance values for all methods

Criteria H1 H2 H∞ SYSTUNE

J⋆

1 0.1180 0.1183 0.1392 0.1398
J⋆

2 0.1413 0.1383 0.1467 0.1682
J⋆

∞ 0.2905 0.2446 0.1774 0.5804

132



7.6. Conclusion

Figure 7.7 – G(e− jω) (dashed-blue line) with the frequency-dependent uncertainty disks (blue
circles) and Gm(e− jω) (solid-red line).

Fig. 7.7 shows the comparison between the Nyquist plot of the process obtained via the PRBS

and the Nyquist plot obtained from the model. The disks in this plot represent the uncertainty

of the measurement process (which is assumed to be additive uncertainty, and can be obtained

from the covariance of the estimates, as described Chapter 3). The uncertainty was determined

for a 95% confidence interval; from Fig. 7.7, it can be observed that the FRF of the model is not

coherent with the dynamics of the true process (since Gm(e− jω) does not lie in the uncertain

set of G(e− jω)). Thus with the model-based controller design, it is clear that the performance

degradation comes from the modeling error. In other words, the performance degradation

does not necessarily come from the controller design methodology of SYSTUNE, but rather

from the unmodeled dynamics of the identified model. The proposed data-driven scheme,

however, allows a controller design for the true process, and avoids the problem of unmodeled

dynamics (where the acquired performance was confirmed through the experiments shown

in Fig. 7.5).

7.6 Conclusion

A new data-driven method for computing a 2DOF fixed-structure controller that attains Hp

performance (for p ∈ {1,2,∞}) has been presented. A frequency-domain approach has been

used in order to avoid the problem of unmodeled dynamics associated with parametric models.

In minimizing the H2 and H∞ model-reference objectives, a non-convex model-reference

constraint was convexified by linearizing the non-convex function around a stabilizing con-

troller. This linearization process allowed the use of the Shur Complement Lemma to con-
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struct an LMI and solve a convex optimization problem to obtain a local solution for the true

fixed-structure Hp problem. In minimizing the H1 model-reference objective, the controller

was optimized in two separate steps; in the first step, a design was implemented to ensure

closed-loop stability and sufficient robustness margins. In the second step, an unconstrained

model-reference objective was considered to achieve the desired performance. These meth-

ods have been applied in several case studies; with respect to the power converter control

system at CERN, it has been shown that a data-driven approach was necessary for attaining

the required performance of the application. In other words, the experiments have confirmed

that the data-driven approach significantly reduces the conservativeness associated with the

modeling process.
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8.1 Conclusion

This dissertation has presented a data-driven approach for computing robust controllers by

only considering the frequency-domain data of a process. By parameterizing a controller as

a ratio of two LP transfer functions, a convex optimization problem was formulated where

the optimal solution of the problem converged to the global solution of the true H∞ problem

as the controller order increased. The necessary and sufficient conditions for the existence

of robust controllers that guarantee bounded infinity norm on the sensitivity functions were

developed. However, in typical engineering problems, it is of interest to shape multiple

sensitivity functions simultaneously in order to achieve multiple desired specifications. Thus

necessary and sufficient conditions for obtaining H∞ performance and closed-loop stability

have also been devised in the case when multiple sensitivity functions are considered in

a design. This proposed method was used to design robust controllers for processes that

contain frequency dependent uncertainties. This includes uncertainties that originate from a

noise source or from a nonlinearity; in the case where a nonlinearity was present in the plant

model, the methods in [99] were used to obtain a BLA with an associated frequency dependent

uncertainty. A convex problem was then formulated to ensure the stability and performance

for the underlying linear system of the nonlinear model. The main advantages of the proposed

method(s) are as follows:

• No linearization around a given desired open-loop transfer function is performed and

the convex constraints are necessary and sufficient for obtaining H∞ performance.

• Since the controller is not LP (in contrast to most works where LP controllers are used to

convexify an optimization problem), the denominator of a controller is optimized.

• The convergence of the method to the global optimal solution is proved.

• No initialization of a controller is needed for a design.
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• Since the proposed design schemes depend only on the frequency-domain data, discrete-

time controllers can be designed for continuous-time systems (and vice versa).

By using the necessary and sufficient conditions proposed for linear systems, a similar con-

dition was derived for stabilizing linear systems that were subject to sector-bounded time-

varying nonlinearities. Thanks to the Circle criterion, convex feasibility conditions were

derived in a data-driven setting. The results for stabilizing this class of nonlinear systems

were developed in a deterministic sense where no approximations or linearization techniques

were implemented to achieve the desired specifications. Moreover, a sufficient condition was

developed to achieve both stability and H∞ performance for sector-bounded (time-invariant)

nonlinear systems represented by describing functions (where performance was guaranteed

for the fundamental component of the nonlinearity, since describing functions characterize

nonlinear systems based on the fundamental frequency component of a sinusoidal signal).

The controllers for these design schemes were parameterized by a ratio of two LP transfer

functions. These transfer functions used a set of orthogonal basis functions (i.e., Laguerre

basis functions) which required the selection of a free parameter a-priori. Thus for low-order

controllers, this method led to optimal solutions far from the true optimal solution of the

H∞ problem. Moreover, by convexifying the H∞ problem, the global optimal solution to

an approximate problem is obtained. Therefore, a non-convex problem was formulated to

obtain the local solution of the H∞ problem for fixed-structure low-order controllers. Several

non-convex problems were proposed in which the local solution was obtained; in the BP

problem, the solution was obtained by solving a set of convex optimization problems (with

increasing orders of the function F ) until convergence to a solution was obtained. For the

general non-convex problems, a PSO algorithm was proposed to find the local solution. A

major advantage of PSO is that the algorithm can be applied to problems of large dimensions,

and often produces quality solutions more rapidly than alternative methods. It was shown

that for low-order controllers (i.e., PID controllers), the PSO algorithm produces the best

optimal solution (in a data-driven sense) in a short amount of time; however, for larger order

controllers, the PSO algorithm requires more time to obtain a good solution. With the convex

optimization algorithm, a reasonable solution (with respect to the optimal values of the non-

convex problems) was obtained in a relatively short time. Thus there exists a trade off between

the quality of the optimal solution and the optimization time for larger order controllers.

In addition to the large optimization time of the PSO algorithm, the choice of the free parame-

ters within this algorithm were not trivial for large order controllers. Therefore, since convex

problems are computationally tractable, it was desired to develop a convex optimization prob-

lem which can obtain the local solution to the H∞ problem for fixed-structure controllers. A

model-reference convex problem for obtaining this local solution was devised using a 2DOF

controller where an initializing (stabilizing) controller was required to ensure the performance

and stability of the closed-loop system. However, in addition to ensuring H∞ performance,

other problems were devised for ensuring H1 and H2 performance. Developing optimization

problems with these other minimization criteria is important because minimizing different
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norms in the frequency-domain is interpreted differently in the time-domain. The H2 and

H∞ criteria were convexified by linearizing a non-convex constraint around an initial op-

erating point. Through an iterative process, the local optimal solution (for fixed-structure

controllers) could then be obtained. The H1 problem was solved in a 2-step manner where,

in the first step, a design was implemented to ensure closed-loop stability and sufficient

robustness margins. In the second step, an unconstrained model-reference objective was

considered to achieve the desired performance.

With all of the methods presented in this dissertation, it is evident what the advantages and

disadvantages of each method are. With the method in which the plant is represented as a

fraction of coprime factors, no initializing controller is needed for a design. Additionally, the

global solution of the true H∞ problem is achieved as the controller order increases. However,

for low-order controllers, the optimal solution using this method may be far from the true

optimal solution of the H∞ problem (since the global optimal solution to an approximate

(convex) problem is obtained). Thus for low-order controllers, another convex problem with

fixed-structure controllers can be considered (which linearizes the H∞ constraints); however,

this method requires an initial stabilizing controller. Moreover, additional constraints on the

controller are needed to guarantee the stability of the closed-loop system. Therefore, one

must consider the constraints of the application before selecting a method for designing an

appropriate controller.

8.1.1 Future Outlook

Extension to MIMO Systems

The results obtained from the proposed methods in chapters 3 to 5 are quite significant. The

fact that convergence to the global optimal solution of the true H∞ problem is achieved by

increasing the controller order (using a convex formulation) is a remarkable result. Thus an

important extension of this method would be to MIMO systems.

Frequency Gridding

All of the methods in this dissertation use frequency-domain data for controller synthesis

and analysis. From a theoretical standpoint, the derived Theorems and Lemmas in this work

hold for all real frequencies. However, from a practical standpoint, the optimization problems

are solved in SDP form (i.e., for a finite number of frequencies). Thus the performance and

stability for a given real system is guaranteed in a stochastic sense. This dissertation has

considered some methods in which the performance and stability can be attained within a

given probability level. However, this method may not be adequate for processes with many

resonant modes. It is known that within a very small frequency range, the magnitude and

phase at these resonant modes vary drastically. Since the proposed data-driven method uses

frequency response data for controller synthesis, these modes should be properly captured
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for an appropriate design. Thus a natural extension of the proposed method(s) is to adopt a

frequency-domain method which guarantees the performance and stability of a closed-loop

system given a finite amount of frequency-domain data.

Optimal Basis Functions

It has been observed that the proposed design schemes implement controllers with basis

functions that contain a free design parameter (i.e., the Laguerre parameters ξ,ξz ). In Chapter

3, it was shown that the effect of this parameter is reduced when the controller order increases

(and that the effect can be significant for low-order controllers). Thus by developing a method

which optimizes this parameter, the performance for low-order controller designs can be

improved. In Chapter 6, this parameter was optimized by solving a non-convex problem, and

it was shown that the results can be improved when this parameter is optimized. However, for

larger order controllers, optimization of this parameter becomes more problematic (as the

quality of the local solution is dependent on the free parameters of the nonlinear solver). Thus

is it desired to develop a technique which optimizes this parameter using convex optimization

algorithms.

Data-Driven Scheme with Nonsmooth Approach

The nonsmooth optimization technique implemented by hinfstruct in MATLAB’s Robust

Control Toolbox has been shown to be a very fast and effective approach for computing

fixed-structure controllers with H∞ performance. However, this method cannot synthesize

controllers for systems with delay (where a Padé approximation is needed to implement the

tool). Moreover, the tool cannot design controllers with a set of time-domain or frequency-

domain data. Due to the efficient nonsmooth optimization technique implemented by this

tool, it would be reasonable to consider this method in a data-driven setting and synthesize

controllers with a set of data without the need to specify a model.
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A H∞ Smith Predictor Design for Time-

Delayed MIMO Systems via Convex

Optimization
A.1 Introduction

Many dynamical systems in the industry possess unavoidable time delays. These delays

can be caused by accumulation of time lags for dynamic systems interconnected in series,

transportation delay or measurement delay [144]. Time delays in control loops can cause

significant complications in modern industrial applications. The rapid development in data

and communication network technologies has caused a need for real-time data processing

[145]. The first time-delay compensation method was proposed in the late 1950s by [146].

This method is known as the Smith Predictor (SP), and it has become one of the most widely

implemented control schemes used to regulate industrial systems with time delays.

The SP, however, is somewhat limited in its performance, since an accurate model of the system

is generally required for satisfactory operation. In certain circumstances, small modeling

errors may lead to undesirable performance, where the system can become unstable. For this

reason, research efforts have been focused on robustness issues of the SP.

Many researchers are interested in the optimal control of dead-time systems, especially H∞
control, i.e., to find a controller to internally stabilize the system and to minimize the H∞-

norm of an associated transfer function. Many relevant results have been presented in this

framework using modified versions of the SP. See, for instance, [147], [148] and [149]. Recently,

the single-input-single-output (SISO) SP has been extended and generalized for multiple-

input-multiple-output (MIMO) systems. In [150], a structured uncertainty approach was

implemented for SP’s with diagonal delay matrices. This method, however, does not consider

general and distinct time delays for each element of the plant transfer matrix. A diagonal H2

optimal controller for non-square plants is designed by factorization methods in [151]. In

[152], a generalized predictive control (GPC) method is implemented on MIMO SP systems

with multiple delays. These control techniques, although efficient, are quite complex from

both the design and implementation perspective.

There are a wide variety of industrial applications that involve MIMO processes with time
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delays, and it is of practical interest to develop robust control techniques for such systems.

The proposed control scheme is based on the ideas presented in [153] for SP design of SISO

systems and in [59] for designing decoupling MIMO controllers. However, in this paper, the

SP design method for computing H∞ controllers for SISO models is extended to MIMO SP’s

with process plants that possess uncertain time delays. A convex optimization approach is

implemented to design a linearly parameterized primary controller in a SP structure for a

MIMO system with uncertain time delays.

This paper is organized as follows: In Section (A.2), the class of models, controllers and control

objectives are defined. Section (A.3) will discuss the control design methodology and stability

conditions of the proposed method for the MIMO Smith predictor. This methodology is

based on the convex constraints in the Nyquist diagram. Section (A.4) will demonstrate the

effectiveness of the proposed method by considering several case studies from industrial

processes. Finally the concluding remarks are given in Section (A.5).

A.2 Problem Formulation

In this section, the SP for MIMO systems with generalized time delays is investigated. For

notation purposes, bold face characters will represent transfer function matrices.

A.2.1 Class of models

Let no and ni represent the number of outputs and the number of inputs of a system, respec-

tively. The set of LTI-MIMO stable strictly proper models with multiplicative uncertainty and

uncertain time delays can be defined as follows:

P = {Pc (s)[I+∆c (s)W2c
(s)]; c = 1, . . . ,m}, (A.1)

where each element in Pc (s) possesses a time delay that can vary over a range of specified

values, and W2c
is a transfer function matrix that represents the multiplicative input uncer-

tainty of the system. ∆c (s) represents the unknown stable transfer function matrix satisfying

‖∆c‖∞ < 1. For simplicity, one model from the set P will be investigated, and the subscript c

will be omitted. The uncertain no ×ni time delayed plant has the following form:

P(s) =









G11(s)e−τ11s · · · G1ni
(s)e−τ1ni

s

...
. . .

...

Gno 1(s)e−τno 1s · · · Gno ni
(s)e−τno ni

s









, (A.2)

where Gqp (s) is a strictly proper delay-free transfer function, and τqp is the uncertain time-

delay of the process for p = 1, . . . ,ni and q = 1, . . . ,no . Note that τqp is a set that is composed

of elements τqpi
for i = 1, . . . , l and belongs in the domain {τqp ∈R : τqpi

> 0 ∀ {p, q, i }}.
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A.2.2 Class of controllers

As stated in [59], an ni ×no matrix can be formed to represent the controller C(s,ρ). The

elements of C(s,ρ) will possess linearly parameterized elements

Cpq (s,ρ) =ρT
pqφpq (s), (A.3)

where ρT
pq is a vector of parameters, and φpq (s) is a vector of stable transfer functions chosen

from a set of orthogonal basis functions. The non-diagonal elements of C(s,ρ) strive to

decouple the system, while the diagonal elements aim to control the single-loop subsystems.

The main purpose of parameterizing the controller in this manner is due to the fact that the

components of the open loop transfer function can be written as a linear function of the

control parameters ρ,

ρ = [ρ11, . . . ,ρ1ni
, . . . ,ρno 1, . . . ,ρno ni

]. (A.4)

A.2.3 Design specifications

Fig. A.1 displays the SP for the MIMO case, where Gn(s) is an no ×ni nominal delay-free

transfer function matrix with elements Gqp (s), and Pn(s) is an no×ni nominal transfer function

matrix that includes the nominal values of the time delays, which is comprised of elements

Gqp (s)e−ζqp s (where ζqp represents the qp-th nominal time delay). Both Y(s) and R(s) are

no×1 column vectors that possess elements yq (s) and rq (s), respectively. The transfer function

from the inputs of C(s) to Yp (s) will represent the open-loop transfer function,

L(s) = [P(s)+H(s)]C(s), (A.5)

where H(s) = Gn(s)−Pn(s). Notice that if P(s) = Pn(s), then L(s) = Gn(s)C(s). Since the class

of controllers to be designed for this system are linearly parameterized, the elements of the

controller C(s) will actually be a linear function of the controller parameters ρ. Therefore, C(s)

will be represented as C(s,ρ) with elements Cpq (s,ρ), as asserted in (A.3).

The transfer function from the output disturbance D(s) to Y(s) is the output sensitivity function

S(s,ρ), while the transfer function from R(s) to Y(s) is the complementary sensitivity function

T(s,ρ):

S(s,ρ) = [I+H(s)C(s,ρ)]Z−1(s,ρ)

T(s,ρ) = P(s)C(s,ρ)Z−1(s,ρ),
(A.6)

where Z(s,ρ) = [I + L(s,ρ)]. The objective is to determine the controller C(s,ρ) that will

guarantee the robust performance and robust stability of the closed-loop SP system.
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Figure A.1 – MIMO representation of the Smith Predictor

A.3 Proposed method

It is well known that if a SISO model is described by unstructured multiplicative uncertainty,

and possesses both robustness and performance weighing functions W1 and W2, then the

necessary and sufficient condition for robust performance is given by [96]:

∥

∥|W1S(ρ)|+ |W2T (ρ)|
∥

∥

∞ < 1, (A.7)

where S and T are the sensitivity and complementary sensitivity functions of a SISO system,

respectively.

For the moment, assume the case when a closed-loop MIMO system is fully decoupled. Then

the MIMO sensitivity and complementary sensitivity functions can essentially be treated as

functions containing independent SISO subsystems. Thus it is judicious to define W1(s) as a

diagonal filter with diagonal elements W1q
and a diagonal filter W2(s) with diagonal elements

W2q
representing, respectively, the nominal performance and multiplicative uncertainty for

the SISO subsystems. This rationalization leads to the following theorem:

Theorem A.1. Let Mqq ( jω,ρ) represent the diagonal elements of H( jω)C( jω,ρ) and Nqq ( jω,ρ)

represent the diagonal elements of P( jω)C( jω,ρ). Suppose that S(s,ρ) and T(s,ρ) in (A.6) are

diagonal transfer function matrices (the closed-loop system is fully decoupled). Then the linearly

parameterized controller in (A.3) will guarantee the closed-loop stability of the system and satisfy

the following robust performance criterion:

∥

∥|W1q
( jω)Sqq ( jω,ρ)|+ |W2q

( jω)Tqq ( jω,ρ)|
∥

∥

∞ < 1

for q = 1, . . . ,no (A.8)
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if

{

|W1q
( jω)[1+Mqq ( jω,ρ)]|+ |W2q

( jω)Nqq ( jω,ρ)|
}∣

∣1+LDq
( jω)

∣

∣−Ψq ( jω,ρ) < 0

∀ω for q = 1, . . . ,no , (A.9)

where

Ψq ( jω,ρ) =ℜ
{

[

1+L∗
Dq

( jω)
][

1+Lqq ( jω,ρ)
]

}

and Sqq and Tqq are the q-th diagonal elements of S(s,ρ) and T(s,ρ), respectively. LDq
(s) is the

q-th diagonal element of a diagonal transfer function matrix LD (s) that contains strictly proper

transfer functions which do not encircle the critical point, and L∗
Dq

is its complex conjugate.

Proof : If the closed-loop MIMO system is fully decoupled, then the MIMO sensitivity and

complementary sensitivity functions can be considered as systems containing independent

SISO systems. Since the real part of a complex number is less than or equal to its magnitude,

we have

ℜ
{

[

1+L∗
Dq

( jω)
][

1+Lqq ( jω,ρ)
]

}

≤
∣

∣

[

1+L∗
D ( jω)

][

1+Lqq ( jω,ρ)
]∣

∣ . (A.10)

Then, by combining (A.10) and (A.9) (and noting that |1+LDq
| = |1+L∗

Dq
|), one obtains

∣

∣W1q

[

1+Mqq ( jω,ρ)
]∣

∣+
∣

∣W2q
Nqq ( jω,ρ)

∣

∣−
∣

∣1+Lqq ( jω,ρ)
∣

∣< 0

∀ω, for q = 1, . . . ,no .
(A.11)

The above equation can be rearranged and expressed as follows:

∣

∣W1q

[

1+Mqq ( jω,ρ)
]∣

∣+
∣

∣W2q
Nqq ( jω,ρ)

∣

∣

∣

∣1+Lqq ( jω,ρ)
∣

∣

< 1

∀ω for q = 1, . . . ,no .

(A.12)

Since Mqq and Nqq are the q − th diagonal elements of H(s)C(s,ρ) and P(s)C(s,ρ) in (A.6),

respectively, it can be seen that (A.12) leads directly to (A.8). �

In order to fully decouple the MIMO system, a controller must be designed such that the

off-diagonal elements of the open-loop transfer function matrix are equal to zero. The pro-

posed method will be to define a diagonal open-loop transfer function matrix LD (s), where

the diagonal elements satisfy the desired performance for single loop systems. Therefore,

by minimizing the objective function ‖L(s,ρ)−LD (s)‖2
2, a controller can be designed to si-

multaneously minimize the magnitudes of the off-diagonal elements of L(s,ρ) and drive the

diagonal elements to be approximately equal to LDq
(s).

However, the resulting controller will stabilize the closed-loop system only if it is fully de-
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coupled. In practice, with a finite order controller, it is not always possible to make the

off-diagonal elements of L( jω,ρ) equal to zero. In this case, the generalized Nyquist stability

criterion should be used to guarantee the stability of the MIMO system. According to this

theorem, the eigenvalues of the open-loop transfer function (A.5) should not encircle the

critical point. However, these eigenvalues are non-convex functions of the linear control

parameters, which complicates the design process. A possible solution to this problem is to

implement the Gershgorin band theorem in order to approximate the eigenvalues of L( jω,ρ).

The Gershgorin bands represent disks centered at the diagonal elements of a matrix that

include the eigenvalues. For the open-loop transfer matrix L( jω,ρ), the radius of these disks

are computed by:

rq (ω,ρ) =
no
∑

p=1,p 6=q

∣

∣Lqp ( jω,ρ)
∣

∣ , (A.13)

where Lqp ( jω,ρ) represents the qp-th element of L( jω,ρ). Note that rq (ω,ρ) is convex with

respect to the control parameterρ. The closed-loop stability of the MIMO system is guaranteed

if these disks do not encircle the critical point. This precondition leads to the following

theorem:

Theorem A.2. Given the open loop transfer function matrix L( jω,ρ), the linearly parameterized

controller (A.3) stabilizes the closed-loop system if

∣

∣rq ( jω,ρ)[1+LDq
( jω)]

∣

∣−Ψq (ρ,ω) < 0

∀ω, for q = 1, . . . ,no .
(A.14)

Proof : By combining the constraint in (A.14) and (A.10) (and noting that |1+LDq
| = |1+L∗

Dq
|),

one obtains

∣

∣rq ( jω,ρ)
∣

∣<
∣

∣1+Lqq ( jω,ρ)
∣

∣

∀ω for q = 1, . . . ,no .
(A.15)

The constraint in (A.15) guarantees that the disk with radius rq ( jω,ρ) centered at Lqq ( jω,ρ)

does not encircle the critical point (−1+ j 0), and thus the system remains stable for all ω. �

A.3.1 Primary controller design

In designing the controller C(s,ρ) for the MIMO SP, one must consider all of the possible

combinations of the uncertain delay parameters τqp . Suppose that the cardinality of τqp is

βqp . Then the total number of possible combinations that must be considered in the design

of the controller is given by the rule of product,

m =
∏

βqp

∀ q = 1, . . . ,no ; p = 1, . . . ,ni . (A.16)
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If the number of uncertainties are equal for each τqp (i.e., βqp = βpq = β ∀ {p, q}), then the

total number of combinations will be m =βno ni . By combining the constraints presented in

Theorems A.1 and A.2, one can define the following optimization problem for the multimodel

system:

minimize
ρ

m
∑

c=1

N
∑

k=1

∥

∥Lc ( jωk ,ρ)−LDc
( jωk )

∥

∥

F

subject to: |rqc
( jωk ,ρ)[1+LDqc

( jωk )]|−Ψqc
( jωk ,ρ) < 0

{∣

∣W1qc
( jωk )

[

1+Mqqc
( jωk ,ρ)

]∣

∣+
∣

∣W2qc
( jωk )Nqqc

( jωk ,ρ)
∣

∣

}∣

∣1+LDqc
( jωk )

∣

∣

−Ψqc
( jωk ,ρ) < 0

for k = 1, . . . , N ; ; q = 1, . . . ,no ; ;c = 1, . . . ,m,

(A.17)

where

Ψqc
( jωk ,ρ) =ℜ{[1+L∗

Dqc
( jωk )][1+Lqqc

( jωk ,ρ)]}

Mqqc
( jωk ,ρ) =

no
∑

z=1
Gqzc

( jωk )(1−e− jωkζqzc )Czqc
( jωk ,ρ)

Nqqc
( jωk ,ρ) =

no
∑

z=1
Pqzc

( jωk )Czqc
( jωk ,ρ)

and ‖·‖F is the Frobenius norm. The objective function in (A.17), which is an approximation of

the 2-norm, is convex with respect to the controller parameters ρ. Note that the first inequality

shows that the Gershgorin bands do not encircle the critical point and so the MIMO system

remains stable even if it is not fully decoupled. The second inequality guarantees the robust

performance for the SISO subsystems of the decoupled MIMO system.

A.4 Industrial Case Studies

The following examples will demonstrate the effectiveness of the proposed method for several

industrial processes proposed in literature.

A.4.1 Case 1 - SP with fixed time delays

In [59], the proposed method was applied to a unity feedback MIMO system with fixed time

delays. The plant model is represented by a 2×2 interactive chemical process which is used in

industrial applications, and was defined as:

P(s) =
[

G11(s)e−6s G12(s)e−10s

G21(s)e−12s G22(s)e−8s

]

=











10e−6s

8s +1

5e−10s

30s +1

−8e−12s

40s +1

2e−8s

10s +1











, (A.18)
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where the time scale is defined in minutes. The elements Gqp (s) for q = 1,2 and p = 1,2

represent the strictly proper delay-free transfer functions in Gn(s). A relative-gain-array (RGA)

analysis confirms that the system is not diagonally dominant.

Since the time delay parameters are fixed for this process, the nominal time-delayed plant

model Pn(s) will be chosen to be equal to P(s). In this manner, the open loop transfer function

will be L(s,ρ) = Gn(s)C(s,ρ). The performance and uncertainty filters chosen for this case will

be identical to those in [59],

W1q
= 0.5 , W2q

= 0.5

(

2s +1

s +1

)

q = 1,2. (A.19)

For comparative purposes, a PI MIMO controller will be designed for this process. Thus the

linearly parameterized controller will posses the following matrix form:

C(s,ρ) =





[ρ111 ρ112 ]φT (s) [ρ121 ρ122 ]φT (s)

[ρ211 ρ212 ]φT (s) [ρ221 ρ222 ]φT (s),



 , (A.20)

where φ(s) = [1 1/s]. Additionally, the desired diagonal open-loop transfer function LD (s) will

be chosen as simple integrators with time constants equal to 30 minutes (i.e., LD (s) = (1/30s)I).

The optimization problem in (A.17) can now be solved by repeating the stability constraints for

each ωk . The frequency grid will be chosen to be between 10−2 and 10 rad/min with N = 150

equally spaced points. The PI MIMO controller obtained from optimization is:

C(s) =







0.03289s +0.001272

s

−0.03511s −0.00311

s
0.05056s +0.004511

s

0.2128s +0.006133

s






.

Fig. A.2 displays the closed loop response of the system with the controller obtained in [59]

and with the controller obtained with the SP. It can be seen that the controller for the SP

produces no overshoot and asymptotically decouples the system much faster. Note that if the

time constant of the desired open-loop transfer function matrix is decreased to 5 minutes, the

rise and settling time of the system response is significantly improved.

A.4.2 Case 2 - SP with uncertain time delays

The proposed optimization problem will now be applied to an uncertain time-delayed MIMO

SP. Consider the 2×2 plant process P(s) (i.e., c = 1) that was analyzed in Case (1). The time

delays for this plant will now possess uncertain values that will belong to a set. This plant will
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Figure A.2 – Closed loop comparison between time delayed MIMO system with unity feedback
and time delayed MIMO SP: unit step reference signal (black, dash), response from system
with no SP structure (red, solid), response with SP and with diag(LD (s)) = 1

30s
(blue, solid),

response with SP and with diag(LD (s)) = 1
5s

(green, solid).

now be represented as follows:

P(s) =

















10e−τ11s

8s +1

5e−τ12s

30s +1

−8e−τ21s

40s +1

2e−τ22s

10s +1

















, (A.21)

where the time delays τqp possess values in the sets:

τ11 = {3,9} τ12 = {7,13} τ21 = {9,15} τ22 = {5,11}. (A.22)

The nominal model is the same as defined in (A.18). Again, the elements Gqp (s) for q = 1,2 and

p = 1,2 represent the strictly proper delay-free transfer functions in Gn(s). The performance

and uncertainty filters chosen for this example will be identical to those in section (A.4.1). The

desired diagonal open-loop transfer function LD (s) will be chosen as simple integrators with

time constants equal to 7 minutes (i.e., LD (s) = (1/7s)I).

For simplicity, a PI controller will be designed for this process. Note that in designing this

controller, all possible combinations of the uncertainties in (A.22) must be considered. There-

fore, since βqp = 2 ∀ {p, q}, there will be a total of m = 24 possible cases to consider. The

optimization problem in (A.17) can now be solved by repeating the stability constraints for

each combination of the uncertainties in (A.22). The frequency grid will be chosen to be

between 10−2 and 10 rad/min with N = 150 equally spaced points. The PI MIMO controller
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Figure A.3 – MIMO response to a unit step input: reference signal (black,dash), the remaining
Ω= 16 closed-loop responses are for all possible combinations of the time delay parameters
in (A.22).

obtained from the optimization problem is:

C(s) =







0.06234s +0.001464

s

−0.04803s −0.005408

s
0.1585s +0.0168

s

0.3113s +0.005995

s






.

Fig. A.3 displays the closed-loop MIMO response to a step input. Notice that with this

controller, the MIMO process achieves robust performance while simultaneously decoupling

the system. The Gershgorin bands are depicted in Fig. A.4 for the system possessing the largest

delay time uncertainty (τ11 = 9, τ12 = 13, τ21 = 15, τ22 = 11). The red and blue bands possess a

radius of |rq ( jωk )| for q = 1,2 and k = 1, . . . , N .

Notice how the Gershgorin bands never intersect with the performance filter centered at

(−1+ j 0). This proves that the MIMO system is stable, robust, and satisfies the optimization

criterion in (A.17).

A.4.3 Case 3 - The Shell control problem

The multivariable heavy oil fractionator (known as the Shell process) is a highly coupled

system which is predominantly used in petrochemical processes. Efficient control methods

are essential for attaining viable production rates, minimizing energy consumption, and

reducing the overall operating costs. These types of systems are difficult to control for two

reasons: the system interactions are strong, and the large time delays that are inherent to the
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Figure A.4 – Gershgorin bands centered at Lqq with the largest time delay combination in
(A.22): performance filter with |W1q

| = 0.5 (green circle), Gershgorin bands corresponding to
q = 1 (blue circles), Gershgorin bands corresponding to q = 2 (red circles). Note that Z ( jω) is
simply the complex number representation of each circle in the plot.
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system dynamics.

Consider the 2×3 industrial Shell problem in [154],

Pn(s) =
[

G11(s)e−81s G12(s)e−84s G13(s)e−81s

G21(s)e−54s G22(s)e−42s G32(s)e−45s

]

=











4.05e−81s

50s +1

1.77e−84s

60s +1

5.88e−81s

50s +1

5.39e−54s

50s +1

5.72e−42s

60s +1

6.9e−45s

40s +1











(A.23)

where the time scale is defined in minutes. Note that (A.23) is represented as the nominal

model of the process. It should be noted that the controller outputs [u1(t ) u2(t ) u3(t )]T should

be within the saturation bounds of the physical system : [−0.5, 0.5] (see [155]). The elements

Gqp (s) for q = 1,2 and p = 1,2,3 represent the strictly proper delay-free transfer functions in

Gn(s). Now consider the case when the time delays are varied to +20% of their nominal values

shown in (A.23). As with the previous example, the plant P(s) can be represented as a system

with uncertain time delays. Since βqp = 2 ∀ {p, q}, there will be a total of m = 26 = 64 possible

cases to consider.

For comparative purposes, a PI controller will be designed for this process. Thus the controller

C(s,ρ) will be a 3×2 transfer function matrix with n = 12 optimization parameters ρ. The

frequency grid will be chosen to be between 10−4 and 10 rad/min with N = 200 equally spaced

points (since the frequencies of interest of the open-loop system lie within this range). The

desired diagonal open-loop transfer function matrix will be chosen as simple integrators with

bandwidths that are approximately 20% greater than the open-loop system bandwidths (i.e.,

LD (s) = (1/35s)I). By solving the optimization problem in (A.17) for each combination of the

uncertainties (i.e., {τ11, . . . ,τqp } ∀ {p, q}, where τqp ∈ {ζqp ,1.2ζqp }), one obtains the following

PI controller

C(s) =















0.2053s +0.004997

s

−0.01315s −0.00146

s
−0.6735s −0.01008

s

0.4977s +0.008098

s
0.2839s +0.004451

s

−0.1041s −0.001432

s















.

Fig. A.5 displays the closed-loop step response of the SP for the nominal delay case, while Fig.

A.6 displays the response with the worst case delay (the case where τqp = 1.2ζqp ∀ {p, q}). The

figures also show a comparison with the controller design method in [154] , which is based on

a “squared down" approach.

From Fig. A.5 and Fig. A.6, it can be observed that the purposed method in this paper produces

improved SISO subsystem performance with minimal overshoot. In addition, the decoupling

transients are significantly reduced for both the nominal and worst case output responses. Fig.

A.7 displays the controller outputs of the system.
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Figure A.5 – MIMO SP closed-loop response to a unit step input with τqp = ζqp ∀ {p, q}:
reference signal (black,dash), output response with the proposed optimization method (blue,
solid), output response with the “squared down" method.

Figure A.6 – MIMO SP closed-loop response to a unit step input with τqp = 1.2ζqp ∀ {p, q}:
reference signal (black,dash), output response with the proposed optimization method (blue,
solid), output response with the “squared down" method.
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Figure A.7 – MIMO SP controller output response to a unit step reference: Controller output
response of proposed method with τqp = ζqp (blue, solid), controller output response of
“squared down" method with τqp = ζqp (red, solid), controller output response of proposed
method with τqp = 1.2ζqp (blue, dash), controller output response of “squared down" method
with τqp = 1.2ζqp (red, dash)

A.5 Conclusion

This paper has proposed a new method for computing multivariable SP controllers with H∞
performance. The method is based on a convex approximation of the H∞ robust perfor-

mance criterion in the Nyquist diagram. This approximation relies on the choice of a desired

open-loop transfer function LD for the dead-time free model of the plant. With a linearly

parameterized controller, one possesses the flexibility to design PI, PID, or higher order con-

trollers for a system. For the industrial processes considered in this paper, the proposed

method has been proven to be robust; H∞ performance was achieved for MIMO systems with

both multiplicative and time delay uncertainties. The solution to the optimization problem

generates a controller such that a system becomes decoupled and simultaneously optimizes

the single-loop performances of the SISO subsystems.
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