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Abstract We discuss a model for the dynamics of the

primary current density vector field within the grey matter

of human brain. The model is based on a linear damped

wave equation, driven by a stochastic term. By employing

a realistically shaped average brain model and an estimate

of the matrix which maps the primary currents distributed

over grey matter to the electric potentials at the surface of

the head, the model can be put into relation with recordings

of the electroencephalogram (EEG). Through this step it

becomes possible to employ EEG recordings for the pur-

pose of estimating the primary current density vector field,

i.e. finding a solution of the inverse problem of EEG

generation. As a technique for inferring the unobserved

high-dimensional primary current density field from EEG

data of much lower dimension, a linear state space mod-

elling approach is suggested, based on a generalisation of

Kalman filtering, in combination with maximum-likelihood

parameter estimation. The resulting algorithm for estimat-

ing dynamical solutions of the EEG inverse problem is

applied to the task of localising the source of an epileptic

spike from a clinical EEG data set; for comparison, we

apply to the same task also a non-dynamical standard

algorithm.

Keywords EEG � Source localization � Inverse problem

Introduction

The human brain represents one of the most complex

systems known in nature; its elementary constituents, the

neurons, encode, process and relay information predomi-

nantly by electrical pulses, known as action potentials. The

electrical activity of large assemblies of neurons gives rise

to electromagnetic fields which can be detected outside the

head. The electrical fields can be observed as weak volt-

ages by electrodes attached to the skin and connected to

differential amplifiers, giving rise to the electroencepha-

logram (EEG) (Nunez 1981).

EEG time series contain a considerable amount of

detailed information on brain activity; they are known to

possess high temporal resolution, while the spatial resolu-

tion is much poorer, resulting from the fact that the

measurement of the EEG voltages at the surface does not

directly permit localisation of the sources of these voltages

inside the head. These sources are commonly modelled by

current dipoles, forming a time-dependent distribution over

all electrically active parts of the brain. To which extent the

field of a single dipole can be detected by a given pair of

electrodes will depend not only on the position, but also on

the direction of the dipole. Moreover, each pair of elec-

trodes will record a superposition of the fields of all current

dipoles that have suitable positions and directions.

If detailed information about the activity at particular sites

of the cortex or within deeper structures is required, it is

usually necessary to attach electrodes directly to the brain
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tissues in question, i.e. to resort to invasive methods. As an

alternative to invasive approaches one could try to estimate

the time-dependent distribution of source currents from the

EEG time series data by appropriate numerical procedures;

this task represents the inverse problem of EEG generation.

Numerous methods have been developed for the purpose of

estimating approximative solutions of this inverse problem

(Baillet et al. 2001); a class of these methods is based on

solving underdetermined equation systems by constrained

least-squares techniques, employing Tikhonov regularisation

(Neumaier 1998; Hansen et al. 2000). In the case of the

inverse problem of EEG generation one of these approaches

has become known as ‘‘Low-Resolution Electromagnetic

Tomography’’ (LORETA) (Pascual-Marqui et al. 1994;

Pascual-Marqui 2002). Generally these methods are instan-

taneous, i.e. they are applied repeatedly to the data recorded at

each point of time, without taking the information into account

which is encoded in the temporal order of the available data.

It can easily be seen that by ignoring the temporal order

a huge amount of information is neglected. The temporal

order of the data directly reflects the dynamics of the

sources, which plays no role in instantaneous methods.

Recently, methods have been developed which aim at

solving the inverse problem of EEG generation by

exploiting temporal information (Galka et al. 2004a, b;

Yamashita et al. 2004).

As soon as temporal information is analysed, the

dynamics of the sources becomes an additional object of

investigation. The dynamics of neural assemblies has been

studied and modelled by a large number of authors, and a

wide variety of models have been developed, ranging from

substructures of individual neurons on one extreme to neural

masses of billions of neurons on the other extreme (Lopes da

Silva et al. 1974; Freeman 2000; Robinson et al. 2003; So-

tero et al. 2007). For the case of neural masses it is natural to

apply a continuum approximation, although for the purpose

of numerical computations, it will finally be necessary to

apply again a discretisation step, which, however, is unre-

lated to the actual neural constituents of brain tissue.

The task of relating models for the dynamics of neural

masses, possibly represented by stochastic differential

equations, to actual EEG data in a quantitative framework

poses considerable mathematical and computational chal-

lenges, and research in this field is still at an early stage. In

this paper we will formulate a particular linear model, a

stochastic variant of a standard damped wave equation, and

demonstrate how this model can be employed for modelling

EEG data. This approach will lead to a linear state space

(LSS) model which describes the generation of the EEG by

the primary current density vector field; for the inverse

direction, i.e. for the estimation of the primary current den-

sity from the EEG, a generalised variant of Kalman filtering

will be employed. After fitting the LSS model to the data,

estimates for the time-dependent primary currents density

can be obtained. Furthermore, the fitting process itself pro-

vides also estimates for the parameters of the model, which is

attractive since it provides a data-based justification for the

corresponding parameter values.

The focus of this paper lies on methodology; after pre-

senting and discussing the model and the estimation

algorithm, a practical example will also be presented, but it

will serve only for the purpose of demonstrating the

practicability of the proposed methodology.

The results reported in this paper are based on earlier work

(Galka et al. 2004a; Yamashita et al. 2004) which we intend

to extend and update with respect to a number of points. In

particular we now discuss a damped wave equation as a

generalised continuous-time model, serving as a basis for

deriving the discretised state space model to be used in the

actual implementations. The discretised state space model

will be formulated in a different way than in the earlier

papers; this will allow us to add moving-average (MA) terms

to the dynamics, leading to a more powerful model. The

modified state space representation offers a very efficient

implementation of this generalised predictive model.

As another generalisation we will propose a new model

for the state-adaptive covariance within the Kalman filter,

to be termed ‘‘state space GARCH’’; such models were

introduced in Galka et al. (2004b), but in that paper we had

not yet been able to estimate the additional model param-

eters within the maximum-likelihood framework. This has

become possible now through several modifications and

improvements, enabling us to present for the first time a

case of successful application of state space GARCH

modelling to clinical EEG data.

Furthermore, with respect to the actual implementation,

we have considerably improved the numerical procedures

for nonlinear maximisation of likelihood, such that

parameter estimates of better quality can be obtained; as a

result, the direct comparison with LORETA via informa-

tion criteria such as AIC and BIC now demonstrates that

the dynamical model offers a much superior description of

the data, as compared to LORETA.

Methodology for modelling

Stochastic damped wave equation model

Let the unobserved primary current density vector field be

denoted by j(r,t), where r and t denote space and time,

respectively. j(r,t) shall be defined as a 3-dimensional

column vector. In the linear approximation, the dynamics

in a spatially extended passive medium can be described by

stochastic partial differential equations, such as the damped

linear wave equation
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o2jðr; tÞ
ot2

þ 2fx
ojðr; tÞ

ot
þ x2jðr; tÞ ¼ b

o2jðr; tÞ
or2

þ gðr; tÞ;

ð1Þ

where gðr; tÞ denotes a stochastic driving noise term, and f,

x and b denote model parameters; x represents a fre-

quency, while f represents a damping coefficient.

Equation 1 expresses the dynamics for continuous time

(and continuous space), therefore the simultaneous presence

of a stochastic term and of time derivatives creates certain

mathematical difficulties; since we will next introduce tem-

poral, and also spatial, discretisations, we will ignore these

difficulties; see Jazwinski (1970) for a thorough discussion.

Discretised wave equation: local model

In practical work, the volume of brain is discretised into a

rectangular grid of Nv voxels, and also the wave equation is

transformed into a discrete-time dynamical model; the

resulting model for the evolution of the primary current

density j(v,t) (where v = 1, …, Nv labels voxels, and

t = 1, …, Nt denotes time, measured in units of the sam-

pling time) represents a linear state space (LSS) model.

The local vectors j(v,t) are collected (stacked) into a global

state vector JðtÞ ¼ jð1; tÞy; . . .; jðNv; tÞy
� �y

; the dimension

of J(t) is given by NJ = 3Nv. At the level of an individual

voxel, the equation for the evolution of the state is given by

a 3-variate autoregressive (AR) model

jðv; tÞ ¼ a1 jðv; t � 1Þ þ a2 jðv; t � 2Þ
þ b1 LJðt � 1Þ½ �vþc0 gðv; tÞ; ð2Þ

where the discrete Laplacian L is defined as

L ¼ INv
� 1

6
N

� �
� I3; ð3Þ

here INv
denotes the Nv-dimensional identity matrix, and N

denotes the neighbourhood matrix of the voxel set, i.e. a

Nv 9 Nv matrix with Nij = 1 if voxels i and j are spatial

neighbours, and Nij = 0 otherwise. The symbol � denotes

Kronecker multiplication. Comparing with Eq. 1, L repla-

ces the operator o2=or2: The product LJðt � 1Þ represents a

vector with the same dimension as J(t-1); by the notation

LJðt � 1Þ½ �v we denote those 3 elements of this vector

which correspond to voxel v.

The elements of the AR state transition matrices a1; a2

and b1 are model parameters and may depend on the voxel

index v; however, here we choose a simpler model where

these matrices are defined as

a1 ¼ a1I3; a2 ¼ a2I3; b1 ¼ b1I3; ð4Þ

here I3 denotes the 3-dimensional identity matrix. The

parameters a1, a2 and b1 are regarded as global parameters,

i.e. they do not depend on the voxel index v. Through the

discretisation of Eq. 1 they are related to the parameters f,

x and b by

a1 ¼
2ð1þ fxDtÞ

1þ 2fx Dt þ x2Dt2
; ð5Þ

a2 ¼
�1

1þ 2fx Dt þ x2Dt2
; ð6Þ

b1 ¼
�6bDt2

Dr2
; ð7Þ

where Dt and Dr denote the temporal and spatial discreti-

sation units, respectively. However, since for the

parameters f, x and b no reliable values are available, it is

recommended to estimate a1, a2 and b1 directly from EEG

data; this will be discussed below in sections ‘‘Spatiotem-

poral Kalman filtering and parameter estimation’’ to

‘‘Information criteria for model comparison’’.

In Eq. 2 we have expressed the driving noise term as

c0 gðv; tÞ; here we assume for the covariance matrix of gðtÞ
sg � EðggyÞ ¼ I; ð8Þ

(where the symbol Eð:Þ denotes expectation); consequently

all cross-correlations between the components of the

driving noise term are described by the additional input

gain matrix c0: In this paper, c0 is modelled as c0 ¼ c0I3;

where c0 is another global parameter of the model.

Moving-average terms and state space representation

The local model of Eq. 2 represents an AR model of sec-

ond order, denoted as AR(2); it can be further generalised

by adding a moving-average (MA) term:

jðv; tÞ ¼ a1 jðv; t � 1Þ þ a2 jðv; t � 2Þ
þ b1 LJðt � 1Þ½ �vþc0 gðv; tÞ þ c1 gðv; t � 1Þ; ð9Þ

where the additional MA parameter matrix c1 is modelled

in the same way as c0; i.e. c1 ¼ c1I3: This model is denoted

as ARMA(2,1). More generally, ARMA(p,q) models for

arbitrary model orders p and q may be defined, but in this

paper we will only explore the ARMA(2,1) case.

It is well known, that ARMA models of arbitrary order

can be reformulated as linear state space (LSS) models

(Akaike 1974; Deistler 2006); for the model of Eq. 9 a

corresponding LSS model is given by

jðv; tÞ
~jðv; tÞ

� �
¼

a1 I3

a2 0

� �
jðv; t � 1Þ
~jðv; t � 1Þ

� �

þ
b1 0

0 0

� �
LJðt � 1Þ½ �v

0

� �
þ

c0

c1

� �
gðv; tÞ;

ð10Þ

Among the four possible formulations for the state

transition matrix, here we have chosen the left companion
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form
a1 I3
a2 0

� �
; often, the upper companion form,

a1 a2

I3 0

� �
; is used instead, however, it has the

disadvantage that the MA parameters need to be

incorporated into the observation equation, instead of the

dynamical equation, as shown in Eq. 10, where the MA

parameters remain with the stochastic term of the model.

As can be seen from Eq. 10, in this model the state space is

6-dimensional, i.e. the original 3-dimensional primary current

density vector j(v,t) has been augmented by a vector~jðv; tÞ; by

this augmentation the second-order AR component of the

model has been reformulated as a first-order AR model, as it is

required in a LSS model. The additional state component
~jðv; tÞ can be interpreted as a stochastic variable correspond-

ing to a one-step-ahead prediction of the primary current

density vector, ĵðv; t þ 1Þ (Akaike and Nakagawa 1988).

A LSS model consists of two equations, a dynamical

equation, given by Eq. 10, and an observation equation. In

this case, the observation equation simply redefines the first

three state components, j(v,t), to be the observation, while

the additional state components, ~jðv; tÞ; are not observed.

Note, however, that this problem has its intrinsic physical

observation equation, as will be shown below in section

‘‘Observation equation’’.

Discretised wave equation: global model

The set of local LSS models, as defined by Eq. 10 for each

voxel, corresponds to a global LSS model

JðtÞ
~JðtÞ

� �
¼ A1 INJ

A2 0

� �
Jðt � 1Þ
~Jðt � 1Þ

� �
þ C0

C1

� �
HðtÞ; ð11Þ

where J(t) is the global state vector defined in section

‘‘Discretised wave equation: local model’’, and ~JðtÞ collects

in the same way all the additional state components ~jðv; tÞ:
The global state transition matrices are given by

A1 ¼ a1INv
þ b1L and A2 ¼ a2INv

: ð12Þ

The Laplacian, Eq. 3, arises here, because we have

limited dynamical interactions between voxels to nearest

neighbours, and we have defined the corresponding

coupling parameter b1 to be global, i.e. not to depend on

the voxel index. Since we have limited these interactions to

first-order, there is no Laplacian term for A2:

In Eq. 11, the global vector of the stacked driving noise

terms gðv; tÞ has been denoted by H(t) (‘‘capital eta’’), and

the input gain and MA matrices are given by

C0 ¼ c0INv
and C1 ¼ c1INv

: ð13Þ

In this model, most elements of the parameter matrices

A1;A2;C0 and C1 are zero, i.e. the matrices are sparse. This

model design considerably simplifies numerical model fitting,

since it allows us to decompose the high-dimensional global

model into the voxel-wise low-dimensional local models and

to work only on the level of these local models most of the

time, hence avoiding time- and memory-consuming

operations on huge matrices. The local models are coupled

by the neighbourhood terms b1 LJðt � 1Þ½ �v:
We note that choosing a non-zero value of the parameter

b1 has the important benefit of ensuring observability of the

global LSS model (Kalman et al. 1969; Galka et al.

2004a); it is precisely this property which renders it pos-

sible to estimate state components from the subspace which

is inaccessible to direct inversion of Eq. 15.

Spatial whitening

If the high-dimensional global state estimation problem is

to be decomposed into a set of coupled local low-dimen-

sional state estimation problems, also the covariance

matrix SH of the global driving noise vector H(t) is

required to be diagonal. This, however, is a very strong

assumption, which usually is not justified. SH describes

very fast interactions and instantaneous correlations

between the voxels, and it has been observed (Galka et al.

2004a) that the possibility for such correlations is essential

for successful modelling of real EEG data.

In order to save the convenient decomposition approach,

it has been suggested (Galka et al. 2004a; Yamashita et al.

2004) to define, as an approximation, a non-diagonal SH

with a particular form given by

SH ¼ ðLyL Þ�1; ð14Þ

where L denotes again the Laplacian matrix of Eq. 3. Since

L and Ai ; i ¼ 1; 2; commute, this ansatz is equivalent to

assuming that after replacing J(t) by LJðtÞ in Eq. 11, the

correspondingly transformed covariance matrix SLH will

indeed be diagonal. We call the transformation JðtÞ !
LJðtÞ ‘‘spatial whitening’’ and will from now on denote by

J(t) exclusively the spatially whitened global state vector,

and the diagonal covariance matrix of the transformed

global driving noise by SLH ¼ INv
: Note that no additional

model parameter should be added to the definition of SLH ;

since the corresponding degree of freedom has already

been allocated to the parameter c0 in Eq. 13.

Observation equation

As mentioned above, any LSS model needs an observation

equation. For the inverse problem of EEG generation, the

observation equation is given by

YðtÞ ¼ KJðtÞ þ EðtÞ; ð15Þ

where Y(t) denotes the vector of observations, i.e. the EEG

voltages, with dimension Ny, K denotes an observation
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matrix of dimension Ny 9 NJ, and EðtÞ denotes a vector of

observational noise of dimension Ny, assumed to be

gaussian and white, for which we define the covariance

matrix SE ¼ EðEEyÞ: We model this matrix as SE ¼ r2
EINy

;

i.e. we assume that the same amount of noise is present in

each EEG electrode.

The observation matrix K is known as lead field matrix;

it can approximately be calculated for given head model

and electrode locations by the ‘‘boundary element method’’

(Ary et al. 1981; Pascual-Marqui et al. 1994; Riera et al.

1998). In this paper we use a lead field matrix obtained by

the method of Riera et al. (1998).

Since usually the number of EEG electrodes Ny is much

smaller than the number of voxels Nv, solving Eq. 15 for

Y(t) directly is impossible. By employing techniques such

as pseudo-inversion and regularisation, as employed in the

Low Resolution Electromagnetic Tomography (LORETA)

method (Pascual-Marqui et al. 1994; Pascual-Marqui

2002), a unique solution may be obtained, but still a large

subspace of the state space will remain inaccessible. For

practical work this fact has the effect that there exist many

different primary current densities which are consistent

with a given set of EEG voltages. Dynamical analysis by

LSS modelling provides an alternative to pseudo-inversion

and regularisation.

Two more remarks need to be added. First, due to the

spatial whitening transform, discussed in section ‘‘Spatial

whitening’’, we are using a transformed state space instead

of the original. When we move from states to observations,

this transformation needs to be undone, such that the

observation matrix which we are using, is not K; but KL�1:

Second, we mentioned in section ‘‘Moving-average

terms and state space representation’’ that when rewriting

the ARMA model into a LSS model, an observation

equation is automatically contributed; on the global level, it

defines j(v,t) as observation, while ~jðv; tÞ remains unob-

served. Here, we have to merge this observation equation

with the physical observation equation, Eq. 15, so we

observe the first part of the augmented state vector, J(t)

through Eq. 15—thereby reducing its dimension consider-

ably—while the additional part ~JðtÞ remains unobserved;

this can be achieved formally by augmenting the lead field

matrix by a matrix of zeros of appropriate size.

State space GARCH

In principle, the dynamical model, as it has been described

in sections ‘‘Discretised wave equation: local model’’ to

‘‘Observation equation’’, is sufficient for estimating inverse

solutions from EEG data by LSS modelling; however, we

would like to add a further generalisation. So far, the model

for the dynamics and for the stochastic driving noise is

completely stationary, since all its main properties are

encoded in constant parameters. Six model parameters

have been defined so far: a1, a2, b1, c0, c1 and r2
E: A further

limitation of the model is that these parameters are the

same for all voxels, i.e. they are global parameters.

Now we choose to allow c0 and c1, or more precisely the

corresponding matrices c0 and c1; to change with time,

thereby providing more flexible modelling of the stochastic

component of the dynamics; furthermore we allow these

changes to occur at each voxel independently, thereby c0

and c1 become not only time-dependent, but also voxel-

dependent. For this purpose we define a ‘‘second-level’’

dynamical system, following the example of generalised

autoregressive conditional heteroscedasticity (GARCH)

modelling, a famous method for modelling financial and

econometric time series (Engle 1982; Bollerslev 1986); but

in contrast to standard GARCH modelling, here we for-

mulate a GARCH variant which can be applied to LSS

models, to be abbreviated as SSGARCH. At voxel v, the

model is given by

c0ðv; tÞ
c1ðv; tÞ

� �
¼

c0ð0Þ
c1ð0Þ

� �
þ �A

c0ðv; t � 1Þ
c1ðv; t � 1Þ

� �

þ �B x̂ðv; t � 1Þ; ð16Þ

where the parameter matrices are defined by

c0ð0Þ
c1ð0Þ

� �
¼

c0ð0Þ
c1ð0Þ

� �
� I3; �A ¼

a11 a12

a21 a22

� �
� I3;

�B ¼
b11 b12

b21 b22

� �
� I3: ð17Þ

This model can be regarded as an AR(1) model for

c0ðv; tÞ; c1ðv; tÞð Þy: Higher AR model order, as well as MA

terms, are also possible, but according to our experience

they seem to offer little additional benefit. The model of

Eq. 16 consists of three terms:

• a constant term c0ð0Þ; c1ð0Þð Þy: corresponding to the

parameters c0 and c1 in the case without SSGARCH; if

all other SSGARCH model parameters are zero, the

stationary case is retrieved by these two parameters;

• an AR term, adding a 2 9 2 parameter matrix aij,

i,j = 1,2, to the set of parameters;

• a driving noise term, adding a 2 9 2 parameter matrix

bij, i,j = 1,2, to the set of parameters.

The driving noise term requires a driving noise input,

denoted by x̂ðv; tÞ; which presents a problem, since in a

standard GARCH model this noise term would be provided

by the innovations, i.e. the residuals of the predictions of

the data. In contrast, in the SSGARCH case this driving

noise needs to be local at each voxel site, directly in state

space. Since by definition no data directly from state space

is available, the innovations cannot be used directly, and an

estimator for ‘‘state space innovations’’ needs to be defined.
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A simple estimator was introduced in Galka et al. (2004b);

here we use an improved estimator that was recently pro-

posed in Wong et al. (2006), given by

x̂ðv; tÞ ¼ diag
�
scðv; tÞ � scðv; tÞkyðvÞS�1

m ðtÞkðvÞscðv; tÞ
þ gðv; tÞmðtÞmyðtÞgyðv; tÞÞ; ð18Þ

where we have defined the covariance matrix scðv; tÞ ¼
c0ðv; tÞ; c1ðv; tÞð Þy c0ðv; tÞ; c1ðv; tÞð Þ; by kðvÞ those 3 col-

umns within the lead field matrix are denoted which map

the state at voxel v to the observations, i.e. the EEG elec-

trodes; also 3 further columns of zeros are added,

representing those state components which remain unob-

served, such that kðvÞ has size Ny 9 6. mðtÞ denotes the

innovations vector and SmðtÞ the corresponding innovation

covariance matrix. gðv; tÞ denotes the local Kalman gain

matrix at voxel v. The algebraic expression on the right-

hand side of Eq. 18 provides a square matrix, therefore we

define the noise estimates for the individual state compo-

nents x̂ðv; tÞ as the diagonal values of this matrix.

This estimator provides estimates of the squared state

prediction errors (‘‘state space innovations’’), not of the

state prediction errors themselves, but we have found that

the dynamical model of SSGARCH can be driven well by

these squared estimates, if the model parameters are

appropriately optimised.

Note that the additional model parameters of

SSGARCH, c0(0), c1(0), aij and bij, are global parameters,

such that the total number of model parameters remains

small. In order to reduce it further, in this paper we have

chosen to use non-zero values only for c0(0), c1(0), a11 and

b11, while the other aij and bij were kept at zero. Future

work may investigate whether these omitted parameters

would play an important role within SSGARCH modelling.

Spatiotemporal Kalman filtering and parameter

estimation

The dynamical model, as presented so far, depends on a

number of parameters, which shall be collected in a

parameter vector

J ¼ a1; a2; b1; r
2
E; c0ð0Þ; c1ð0Þ; a11; b11

� �
: ð19Þ

The dimension of J; i.e. the number of model

parameters, shall be denoted as NJ: Fitting the model to

data corresponds to estimating values for these parameters.

For any given set of estimates the LSS model of Eqs. 11

and 15 can be solved iteratively by Kalman filtering; at

each time point, two steps are performed. The Kalman filter

iterates in forward direction (i.e. in the direction of time)

through the data, producing predictions of states and

observations (first step), and then corrects these predictions

after comparison with the actual observations (second

step). The corrected predictions of states are known as

filtered state estimates; they serve as starting points for the

state prediction step at the next time point.

It is obvious that an algorithm for modelling time series

data by predictions will necessarily have to exploit infor-

mation that is contained in the temporal ordering of the

data, including the direction of time, i.e., information that

is ignored by non-dynamical methods like LORETA. An

efficient implementation of Kalman filtering for high-

dimensional state spaces, known as spatiotemporal Kalman

filtering, has been presented in Galka et al. (2004a); its

core idea is to replace a single (3Nv)-dimensional filtering

problem by a set of Nv coupled 3-dimensional filtering

problems, each of which is localised at a single voxel,

corresponding to the local models of Eq. 10.

Each application of the Kalman filter to a given time

series can be regarded as a mapping of the time series to a

corresponding innovation time series, representing those

components of the data which are non-predictable within

the chosen model. From these innovations and their cor-

responding covariance matrix, a logarithmic likelihood can

be computed as

LðJÞ ¼
XNt

t¼1

logjSmðtÞj þ myðtÞS�1
m ðtÞ mðtÞ þ Nylogð2pÞ

� �

ð20Þ

Maximisation of this log-likelihood represents a non-

convex optimisation task, whence numerical nonlinear

optimisation needs to be performed. The design of a

suitable optimisation methodology is of crucial

importance; the quality of the obtained solution can be

assessed in various ways. Most prominently, the ability of

the model to predict the data serves as a measure of model

quality; the better the predictions, the larger the

(logarithmic) likelihood. Poor parameter choices will

reveal themselves immediately by poor performance of

the Kalman filter; even if the model is very simple and

therefore incapable of good predictions, the Kalman filter

should still be able to track the data, like in a random-walk

predictor. Experience has shown that the Kalman filter is

very robust against poor model choice, if appropriate

parameters are chosen.

Furthermore, the local structure of the likelihood func-

tion in a neighbourhood around the obtained solution can

be analysed by the local Hessian matrix; if all its eigen-

values are negative, the solution is indeed a maximum,

while some positive and some negative eigenvalues would

indicate a saddle point.

With respect to these ways of assessment of solutions,

we have found an iterative sequence of Broyden–Fletcher–

Goldfarb–Shanno (BFGS) secant method steps and Nel-

der–Mead simplex method steps to provide solutions of
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sufficient quality, within the limitations of the chosen

model class (Dennis and Schnabel 1983). It seems to be

particularly beneficial to limit some of the optimisation

steps to subsets of parameters, such as the dynamical

parameters a1, a2, b1, the driving noise covariance/MA

parameters c0(0), c1(0), the SSGARCH dynamics parame-

ters a11, b11 and the observation noise covariance

parameter r2
E:

However, we note that so far no results on the topology

of the log-likelihood function Eq. 20 are known to us, such

that we cannot rule out the possibility that our optimisation

procedure will only provide local maxima, instead of glo-

bal maxima. This limitation is shared with other

applications of numerical nonlinear optimisation in con-

temporary science, e.g. protein folding. The risk of getting

caught in local maxima could possibly be reduced by

introducing stochastic elements into the optimisation pro-

cedure, such as simulated annealing; but such approach

would be expensive with respect to computational time

consumption.

On the other hand, since we know that we are employing

a massively simplified model structure, we believe that we

do not depend critically on finding globally optimal

parameters; we expect that in practice a good local maxi-

mum will be as useful as the global maximum. For

practical application there is also the need for a trade-off

between the quality of the solution and the computational

time consumption. Depending on the time series length Nt,

the number of EEG channels Ny and the number of voxels

Nv, our optimization procedure may still consume several

hours of CPU time. Typical values of our analyses are

Nt = 512, Ny = 18 and Nv = 3564.

Information criteria for model comparison

When different models are fitted to the same data set, a

comparison of their performance is required, in order to

decide which model provides a superior description of the

data; the log-likelihood itself is not well suited for this

purpose since it will typically favour models with many

parameters; the more data-adaptive parameters a model

has, the better it will fit the data. In order to prevent

overfitting and provide a measure of model quality that can

be compared even between unrelated model classes,

information criteria like the Akaike Information Criterion

(AIC) (Akaike 1974) or the Bayesian Information Criterion

(BIC) (Schwarz 1978) have been defined:

AICðJÞ ¼ �2LðJÞ þ 2NJ;
BICðJÞ ¼ �2LðJÞ þ ðlogNtÞNJ:

ð21Þ

These measures correct (-2) times the log-likelihood by

a penalty term for the number of model parameters; for

BIC this penalty term is larger than for AIC, and increases

with increasing time series length Nt. Also for the

LORETA method similar quantities can be defined, such

as the Akaike Bayesian Information Criterion (ABIC)

(Akaike 1980), which can be directly compared with the

AIC (Galka et al. 2004a; Yamashita et al. 2004). Despite

its name, the ABIC contains the same penalty term 2NJ as

the AIC, not the penalty term ðlogNtÞNJ of BIC.

Therefore, if we intend to compare ABIC to BIC, we

should replace this penalty term by the corresponding

penalty term from BIC. The resulting quantity will, for

simplicity, be denoted as ‘‘BBIC’’, ignoring for the

moment the awkward double appearance of ‘‘Bayesian’’

in this acronym.

An application example

We will now present an example of the application of the

modelling algorithm discussed in this paper so far. We

choose a short multivariate time series, selected from a

clinical EEG recording. Inverse solutions will be computed

for this data set using LORETA and LSS modelling.

Description of time series data

The selected time series is a clinical EEG recording,

recorded from a 9-year old awake male patient suffering

from Rolandic epilepsy. The data is shown in Fig. 1. The

length of the chosen data set was 2.0 s; the sampling rate

was 256 Hz. Electrode positions correspond to the clinical

10–20 system; electrical reference potential of the data was

the average of the F3 and F4 electrodes, while for further

Fig. 1 EEG time series data from an awake epilepsy patient with

eyes closed; electrode labels according to the clinical 10–20 system

are indicated on the vertical axis. The data is shown in average

reference representation

Cogn Neurodyn (2008) 2:101–113 107

123



analysis the data was converted to average reference. In

order to remove the redundancy from the data set, resulting

from including the reference potential, the data from the PZ

electrode was discarded after the change of reference.

Furthermore the data was standardised to zero-mean unit-

variance, as follows : after removing the mean from each

channel, the standard deviation of the concatenated time

series of all channels was computed and its inverse was

used as a normalisation factor.

No filtering was applied, except for careful removal of a

50 Hz hum noise component and two of its higher har-

monics (at 100 and 106 Hz). In Fig. 1 it can be seen that in

the selected time interval, at about t = 1.4 s, a pronounced

epileptic spike-wave event had occurred, visible in most

electrodes. Furthermore, the occipital electrodes O1 and

O2 display a clear alpha oscillation, as it is typical of the

awake closed-eyes state.

Method of analysis

The time series, as shown in Fig. 1, was analysed by LO-

RETA and by the LSS modelling algorithm, as proposed in

this paper. A voxel set based on the Montreal Neurological

Institute average brain model was employed (Mazziotta

et al. 1995), consisting of 3,546 voxels covering the grey-

matter brain tissues of the model brain, including cortex

and basal ganglia, but excluding the cerebellum. Voxel grid

spacing was 7 mm in all directions; the voxel set was

layered into 18 horizontal slices.

The Kalman filter needs to converge to its steady state, i.e.

a transient has to die out. We can estimate the length of this

transient by plotting the incremental log-likelihood versus

time; in other words, we plot the term which is summed over

in Eq. 20. A typical result is shown in Fig. 2; note that here

(-2) times the log-likelihood is displayed, which is the

quantity needed in the definition of AIC and BIC. The

transition from the transient to the steady state after about

0.39 s, corresponding to about 100 sample points, can be

seen clearly. Therefore, during optimisation and model

comparison we omit the contributions to the log-likelihood

within the first 100 samples. Since LORETA is a non-

dynamical algorithm, it is not affected by transients; never-

theless, in order to keep model comparisons referring to

precisely the same data set, we omit the same interval from

the evaluation of ABIC and BBIC for LORETA.

Results: model

Numerical maximisation of likelihood (or, equivalently,

minimisation of AIC or BIC) yields a LSS model with

parameters a1 = 1.610, a2 = -0.637, b1 = -1.786 9 10-2,

r2
E ¼ 2:350�10�7; c0(0) = 7.238 9 10-13, c1(0) = -6.009

9 10-4, a11 = 0.102 and b11 = -100.442. We note that for

the given values of a1 and a2 the AR state transition matrix

a1 I3
a2 0

� �
has two real eigenvalues 0.909 and 0.701 (each of

them threefold, strictly speaking), therefore the AR dynamics

is stable; also the SSGARCH dynamics is stable, since its AR

parameter a11 does not exceed unity.

Furthermore the observation noise covariance parameter

r2
E assumes a very small value; it was a major weakness of the

solutions reported in Galka et al. (2004a) that r2
E was

allowed to assume comparatively large values. Such results

correspond to the case of a sizable fraction of the power in the

data representing purely observational noise; while this

could be true, it seems unlikely for standard EEG, and in time

series modelling we should altogether aim at describing as

much power in the data as possible by predictable dynamics,

while keeping the power to be attributed to unpredictable

noise as low as possible. Therefore, during the numerical

optimisation procedure, r2
E was kept at a very small value

while the other model parameters were fitted, and only after

they had assumed stable values was r2
E itself optimised.

The values of AIC and BIC, corresponding to the final

maximum-likelihood result, were -4812.0735 and -

4779.8859, respectively. Note that these are both loga-

rithmic quantities, so they may easily assume negative

values for suitably scaled data; but only differences of

these quantities are relevant. For comparison, the corre-

sponding results for LORETA are ABIC = 15337.11 and

BBIC = 15345.15; since AIC and ABIC (and likewise BIC

and BBIC) can be directly compared, it is obvious that the

dynamical model provides a far superior description of the

data. These results all refer to a data set of 412 sample

points length, since the first 100 points were reserved for

the transient of the Kalman filter.

Fig. 2 Contributions to (-2) times the logarithm of the likelihood as

function of time, for linear state space modelling of the data shown in

Fig. 1
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We also mention that if we omit the SSGARCH part of

the model, i.e. set a11 = b11 = 0, we obtain AIC = -

4716.4521 and BIC = -4692.3114. This result demon-

strates that the SSGARCH part of the model actually

contributes to improving the likelihood, resp. the AIC/BIC;

the first paper discussing SSGARCH (Galka et al. 2004b)

had not yet succeeded to achieve such improvement.

Results: inverse solution

For the given time series data, the LSS modelling step

produces an estimate of the unobserved states, i.e. an

inverse solution. It consists of current density vectors for

each voxel and each time point; time points within the

transient are discarded. Vectors consist of x, y and z

components, and in general the direction of the estimated

vectors at a given voxel will change with time. The same is

true for inverse solutions estimated by LORETA. Here we

ignore these time-varying directions and focus on the

modulus of the vectors.

We discuss the inverse solutions both with respect to

space and time. To begin with space, Fig. 3 shows a set of

9 horizontal slices of the voxel set; these are slices 8–16 out

of a total of 18 slices, where slice numbers increase from

the bottom to the top (vertex) of the head (slice numbers

are given in the lower left corner of each subfigure). For

both LORETA (left) and LSS (right), the moduli of the

estimated vectors are displayed in a colour code which

represents zero and small values by blue and green, while

large values are represented by yellow and red. The map-

ping of the colours to the values of the estimated moduli

was chosen differently for LORETA and for LSS model-

ling, such that in both cases the full range of colour was

employed; at most time points, LORETA values were

considerably smaller than LSS values.

Figure 3 displays the inverse solutions at a fixed point of

time which was chosen to coincide with the peak of the

epileptic spike that occurred at a time of around 1.4 s. As

can be seen, both LORETA and LSS locate the origin of

this spike in the left hemisphere; for LSS the maximum of

the corresponding activity is well localised in an area of

slice 15, corresponding to the postcentral gyrus. In the

same area also LORETA finds strong activity; however, in

the LORETA solution this activity extends far downwards

into temporal cortex, until slices 8–10, where a second

focus of strong activation can be seen.

In Fig. 4 we show the time series of the moduli of the

estimated vectors at these two locations (slice 15, left

postcentral gyrus; slice 9, left superior temporal gyrus),

corresponding to the apparent foci of activity during the

epileptic spike. By comparing the LORETA (left) and LSS

(right) results, it can be clearly seen that LSS moduli are

larger than LORETA moduli. Furthermore, it can be seen

that also LSS finds increased activation at the temporal

cortex location; however, while for LORETA the peak

modulus amplitude at the two locations is approximately

Fig. 3 Spatial distribution of moduli of estimated primary current

density vectors for the data shown in Fig. 1, as estimated by

LORETA (left set of subfigures) and LSS modelling (right set of

subfigures). The figure shows the estimates at time t = 1.4 s,

corresponding to the peak of the epileptic spike visible in the data.

The subfigures represent 9 horizontal cross sections (slices) through a

brain model, where slice numbers are given in the lower left corner;

slice numbers increase towards the top of the head (vertex). Vector

moduli are colour-coded with blue and green representing small

values, while yellow and red represent large values. The mapping of

the colours to the values of the moduli was chosen differently for

LORETA and for LSS modelling, such that in both cases the full

range of colour was employed
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equal, for LSS it is considerably stronger in the postcentral

gyrus than in the superior temporal gyrus. This result

shows that the differences between the LORETA and LSS

inverse solutions are not limited to a general change of

modulus scale; there are, in addition, qualitative differ-

ences of the activation maps, which, in this case,

correspond to a different conclusion on the probable origin

of the epileptic spike.

The motivation for introducing the SSGARCH gener-

alisation into the model is given by the lack of local

flexibility in the stationary state space model. Sudden large

values in the data cannot be predicted well by the model,

such that large innovations result. In principle, the Kalman

filter can, through its two-step structure, adapt to this sit-

uation, but only if the corresponding driving noise

covariance parameters are sufficiently large. The purpose

of the SSGARCH dynamics is to increase these covariance

parameters at the appropriate time, and in particular at

those voxels that have, via the lead field matrix, a strong

influence on the given pattern of innovations. This will

immediately reduce the following innovations and thereby

improve the likelihood. It will also have an immediate

effect on the estimated states themselves, since these will

become considerably larger, with respect to moduli, at the

corresponding set of voxels. Larger local driving noise

covariance will necessarily lead to larger state estimates;

this effect contributes much to the qualitative differences

which we find between LORETA and LSS. A LSS model

without SSGARCH would also outperform LORETA, due

to its ability to exploit temporal information; but it would

lack local flexibility, and therefore its state estimates would

differ less from the LORETA estimates; this was demon-

strated clearly, both for simulated and real data, in Galka

et al. (2004a).

Note that from the qualitative differences between the

LORETA and LSS inverse solutions we cannot infer which

of the two comes closer to the unobserved truth; it is still

possible that, for a sufficiently unfavourable situation, both

solutions may completely miss the true distribution of

activation. So far, this remains an inherent caveat applying

to all work on inverse solutions based on EEG or MEG

time series data. All that can be inferred from our analysis,

is that LSS provides a much superior description of the

data, in terms of the maximum-likelihood or minimum-

AIC/ABIC/BIC/BBIC criterion. Further work needs to

investigate whether and to which extent these superior

models provide useful and reliable information about the

sources of the human EEG. In this paper, the application to

epileptic spikes has only served as an example of a

potential area of application.

Conclusion

In this paper we have presented an approach for dynamical

modelling of EEG time series, with the particular aim of

obtaining an estimate of the spatial distribution of the

primary current vector field which is assumed to be the

Fig. 4 Time series of moduli of

estimated primary current

density vectors for the data

shown in Fig. 1, as estimated by

LORETA (left pair of

subfigures) and LSS modelling

(right pair of subfigures). The

figure shows the estimates at a

voxel within slice 9,

corresponding to the left

superior temporal gyrus (top

pair of subfigures) and a voxel

within slice 15, corresponding

to left postcentral gyrus (bottom

pair of subfigures). For the LSS

results, the first 0.39 s have

been omitted, since these

estimates are affected by the

transient of the Kalman filter
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source of the electromagnetic fields that are represented by

the EEG; such estimate provides a solution to the inverse

problem of EEG generation.

Following earlier work (Galka et al. 2004a, b; Ya-

mashita et al. 2004), we have chosen an approach based on

linear state space modelling, where the state space is clo-

sely related to physical space, namely a discretisation of

those parts of brain volume which are occupied by grey-

matter tissue. The dynamical aspect of the model is given

by the assumption that the electrical activity of this tissue

can be described by a linear stochastic damped wave

equation; discretisation of this equation with respect to

space and time naturally leads to a state space model.

The inverse problem of EEG generation represents a

twofold estimation problem; first, a model of the dynamics

and of the observation needs to be estimated, and second,

given this model, the actual inverse solution needs to be

estimated. The second problem requires inversion of a

highly underdetermined observation equation, a task which

the LORETA method solves by regularised pseudo-inver-

sion; here we have argued that Kalman filtering, based on

state space modelling, provides a natural and powerful

alternative, since it has, in theory, the potential of removing

or at least reducing the underdetermination by using

dynamical information. For practical work we recommend

an approximative algorithm which we have called spatio-

temporal Kalman filtering (Galka et al. 2004a).

The first of the two estimation problems can be

expressed as a problem of parameter estimation through

maximisation of likelihood or, preferably, minimisation of

an information criterion, such as AIC or BIC; the appli-

cation of the maximum-likelihood method and its

extensions to estimating parameters of state space models

is well established in statistical data analysis (Kitagawa and

Gersch 1996; Durbin and Koopman 2001). Luckily, the

close relationship between state space and physical space

simplifies the problem, since it renders it possible to esti-

mate the observation matrix (known as the lead field

matrix) from first principles, i.e. through electromagnetic

modelling; this decreases massively the number of model

parameters to be estimated by numerical optimisation. It

would, however, remain possible, and possibly advisable,

to estimate certain parameters required by this electro-

magnetic modelling, such as tissue conductivities, within

the maximum-likelihood framework; so far, the conduc-

tivity values used for estimating the lead field matrix are

standard values taken from literature.

There remain various other issues that require further

work. Perhaps the main issue concerns the improvement of

the model. In time series modelling it is intended to remove

all correlations, both instantaneous and dynamical (i.e.,

involving time delays), from the data by building a pre-

dictive model; if the model is optimal, the prediction

errors, also known as innovations, will consist of feature-

less, and therefore unpredictable, white noise. The

innovations need to be white, since any structure in the

power spectrum could be employed for designing an

improved predictor. In turn, improved predictors would

reduce the amplitude of the innovations and thereby,

according to Eq. 20, increase the likelihood.

Due to the obvious fact that the dynamical model, as

described in sections ‘‘Discretised wave equation: local

model’’ to ‘‘Spatial whitening’’, is massively oversimpli-

fied, with respect to what is known about ‘‘true’’ brain

dynamics, we cannot expect ‘‘perfect’’ predictions and

truly white innovations. Nevertheless, by introducing

generalisations into the model, we can hope to remove

further structure from the innovations, render them

‘‘whiter’’ and improve the likelihood. The SSGARCH part

of the model is an attempt to provide such generalisation,

not by improving the predictor term of the model, i.e. the

deterministic part of the dynamics, but by improving the

driving noise term, i.e. the stochastic part of the dynamics.

In a recent study on the decomposition of univariate time

series a similar SSGARCH model has been shown to per-

form well in improving the likelihood (Wong et al. 2006).

The situation of modelling a full multivariate EEG time

series is more demanding, and it is not obvious how pre-

cisely a SSGARCH model needs to be defined for optimal

results. The detailled SSGARCH model, as described in

section ‘‘State space GARCH’’, will probably still require

further modifications, before it may approach optimal

performance.

Other open issues concern the stability of the Kalman

filter and the computational time consumption of the

numerical estimation of model parameters. If the Kalman

filter iteration is applied ‘‘out-of-sample’’, there is a risk of

gradual divergence of the state estimates, a behaviour

which in the current state of the algorithm needs to be

countered by refitting the model parameters. The model

fitting itself tends to be time-consuming, since the spatio-

temporal Kalman filter needs to iterate twice through all

voxels for each time point (Galka et al. 2004a); currently,

due to the large number of voxels, each full Kalman filter

iteration over a time series of a few hundred time points

will consume several minutes of CPU time. In a numerical

optimisation scheme, the Kalman filter iteration has to be

repeated many times, before the parameter estimates

converge.

There exist approaches to the inverse problem of EEG

generation which employ different source models than

LORETA and LSS, such as the scalar model of ELECTRA

(Grave de Peralta Menendez et al. 2000). While this

approach would reduce the state space dimension by a

factor of three, it would not offer an easy way to signifi-

cantly reduce the high computational time consumption of
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the parameter fitting step of the LSS approach, since this

time consumption is mainly caused by the large number of

voxels; due to the use of the spatio-temporal Kalman fil-

tering algorithm, we are already avoiding the problem of

huge state space dimension. The high computational time

consumption of LSS stands in marked contrast to instan-

taneous methods, such as LORETA or ELECTRA, which

offer the advantage of the availability of fast and efficient

implementations.

In this paper, we do not discuss the problems of Kalman

filter stability and of computational time consumption

further, but we would like to mention them as topics for

future research.

We briefly mention another possible generalisation of

the method. In contemporary brain research, stimuli are

commonly applied to subjects while recording their EEG,

such that stimulus responses (known as ‘‘event-related

potentials’’, ERP) can be investigated. From a dynamical

systems perspective, stimuli correspond to the presence of

a known external input signal to the system; such input

signal provides additional information which can also be

included into the model. In the common case of a block

design, this input signal would correspond to a time series

of zeros, corresponding to absence of stimulus, and ones,

corresponding to presence of stimulus. This time series

could be made available to each voxel, and additional

model parameters could be defined for its contribution to

the prediction of local states. However, since we expect,

that different brain areas react differently to a given stim-

ulus, these additional parameters should not be global, but

should depend on the voxel index; within the current

implementation of this method, optimisation of such a

large set of model parameters would be impracticable.

Therefore, alternative approaches need to be developed for

incorporating stimulus information into this class of high-

dimensional state space models.

Finally, we mention that in this paper we have limited

the presentation and discussion to methodological aspects;

the application example, i.e. the estimation of the sources

of an epileptic spike in an EEG time series from an awake

patient, has served only for the purpose of demonstrating

the practicability of the proposed algorithm and introduc-

ing a potential field of application. In order to assess the

potential usefulness and reliability of inverse solutions

estimated by LSS modelling and to compare them with

other competing algorithms, such as LORETA, extended

studies on data bases of clinical EEG time series will be

required.
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