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A data-driven simulation platform to predict
cultivars’ performances under uncertain weather
conditions
Gustavo de los Campos 1✉, Paulino Pérez-Rodríguez 2✉, Matthieu Bogard 3✉, David Gouache4,6 &

José Crossa 2,5

In most crops, genetic and environmental factors interact in complex ways giving rise to

substantial genotype-by-environment interactions (G×E). We propose that computer simu-

lations leveraging field trial data, DNA sequences, and historical weather records can be used

to tackle the longstanding problem of predicting cultivars’ future performances under largely

uncertain weather conditions. We present a computer simulation platform that uses Monte

Carlo methods to integrate uncertainty about future weather conditions and model para-

meters. We use extensive experimental wheat yield data (n= 25,841) to learn G×E patterns

and validate, using left-trial-out cross-validation, the predictive performance of the model.

Subsequently, we use the fitted model to generate circa 143 million grain yield data points for

28 wheat genotypes in 16 locations in France, over 16 years of historical weather records. The

phenotypes generated by the simulation platform have multiple downstream uses; we

illustrate this by predicting the distribution of expected yield at 448 cultivar-location com-

binations and performing means-stability analyses.
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A
ccording to a recent report by the World Bank, overall
food demand will increase by more than 50% by 20501.
This remarkable increase in food demand places enor-

mous pressures on crop production. The same World Bank
report concludes that crop yields will need to grow faster than
historically to meet the anticipated food demand. The genetic
improvement of crops is one of the main ways in which modern
agriculture can maintain and increase production levels while
reducing its environmental impacts.

In plants, genetic and environmental factors can interact in
complex ways giving rise to substantial genetic-by-environment
(G×E) interactions2. This source of variation can be used to select
genotypes adapted to specific environments3. However, making
selection decisions and agronomic recommendations is excep-
tionally challenging because future environmental conditions are
mainly uncertain. Indeed, accurate predictions of future perfor-
mances in target environments require considering the possible
weather conditions that may occur within a region and how
individual genotypes are expected to react to those conditions.
Extensive field testing, including evaluating genotypes over many
years and across multiple locations, is required to make such
predictions. However, efficient trial networks can only test gen-
otypes over a limited number of years and testing sites. Thus, in
the early stages of their breeding cycle, genotypes are often
advanced without being tested under weather conditions that may
critically affect their performance (e.g., cold, heat, or drought
stress).

We propose that computer simulations that integrate field trial
data, DNA sequences, and historical weather records can be used
to address the difficult task of predicting genotype performance
and stability using limited years of field testing per genotype.
Figure 1 summarizes the proposed simulation framework. Our
approach builds on modern genomic models that integrate DNA
sequences (e.g., single nucleotide polymorphisms—SNPs) and
environmental covariates (ECs4,5). The use of ECs as a means to
characterize the environmental conditions that occurred during a
growing season enables us to link past field trial data with his-
torical (or simulated) weather records that describe environ-
mental conditions that are likely to occur in a location or region.

Our approach is largely data-driven; we use a G×E model
incorporating SNPs and ECs to learn how each cultivar reacted to
the environmental conditions. We then use these patterns, toge-
ther with DNA polymorphisms and historical weather records, to

simulate the expected performance of specific genotypes at spe-
cific locations. The Monte Carlo (MC) method used to simulate
phenotypes integrates uncertainty about future weather condi-
tions and model parameters (e.g., SNP or EC effects and their
interactions).

We apply the proposed simulation platform to wheat data from
an extensive trial network generated by Arvalis-Institut-du-
végétal (Arvalis). The data set comprises (n= 25,841) wheat
grain yield records from French-registered cultivars, linked to
DNA sequences (167,440 SNPs) and (106) ECs describing tem-
perature, radiation, and water availability in different phases of
the crop cycle. We use this extensive data set to fit the models
proposed by Jarquín et al.4 with various genetic and environ-
mental specifications. We validate the predictive performance of
the models using a “leave-trial-out” cross-validation. Subse-
quently, we use samples from the posterior distribution of the
model parameters and ECs derived from historical weather
records to simulate the performance of 28 wheat lines across
possible occurrences of environmental conditions at 16 target
locations representative of major French wheat-producing
regions. Finally, we use the simulated data for two downstream
analyses: prediction of expected grain yield (and its distribution)
at target cultivar–location combinations, and mean and stability
analyses, based on Finlay–Wilkinson (FW) regression6. Our
results show that wheat yield forecasts of individual varieties at
target locations derived from simulations integrating many years
of historical weather data are more precise than forecasts that can
be derived from trial data alone.

Results
An extensive, highly-connected trial network. Field trial data
were generated by Arvalis (https://www.arvalisinstitutduvegetal.
fr) and included 25,841 grain yield records collected from 1998 to
2014 at 242 locations (Fig. 2). There were 752 year–location
combinations with one (un-replicated) trial per year–location. In
total, 481 French-registered cultivars were tested. All trials were
connected through a common tester and by many other cultivars
that generated partial connections between trials. On average,
each trial was connected with at least 340 other experiments
through at least five genotypes (see “Methods” and Supplemen-
tary Fig. 1 for further details). All testing locations had a
meteorological station within 10 km from where environmental
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Fig. 1 Computer-simulated performance of candidate genotypes in target locations. The proposed computer-simulation platform uses phenotype,

genotype (e.g., SNPs), and environmental covariate data collected in an existing network of trials and historical weather records at target locations (“virtual

network of trials”) to simulate the performances of selected genotypes in target locations, under possible weather conditions.
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data were retrieved. All trials received fungicide and seed
treatments.

The average grain yield (standardized at 15% moisture) was
9.49 (±1.50) tons per hectare. The distribution of grain yield was
reasonably symmetric (Supplementary Fig. 2).

Each variety was genotyped with an Axiom high-density
genotypic platform (Affymetrix Inc., Santa Clara, CA) contain-
ing 420K SNPs7; these genotypes were generated within
the Breedwheat project (ANR-10-BTR-03). After standard
quality control, we had a total of 167,440 SNPs available for
analyses. Principal components derived from SNP genotypes
revealed a weak substructure among genotypes (Supplementary
Fig. 3).

Environmental data consisted of 106 environmental covariates
(EC) generated using a crop model developed by Arvalis8. The
crop model computes EC values based on predicted growth stages
and weather records (temperature, radiation, rainfall). The output
of the model consists of ECs describing critical temperatures,
radiation, and water availability for eight distinct phases of
crop phenology. A complete list of the ECs used is presented in
Supplementary Table 1. Further details about how the ECs
were derived are provided in the “Methods” section and in
Soenen et al.8.

The ECs used in this study were used before to characterize
French wheat-growing environments9 and to predict regional
wheat yield in France10. A principal component analysis of the
106 ECs revealed almost no structure (Supplementary Fig. 3). To
validate the ECs, we regressed the trial means on the 106 ECs and
quantified the ability of the ECs to predict trial means in cross-
validation (see “Methods” for more details). Over 100 training-
testing partitions, the average testing correlation between the EC-
predicted means and the (BLUE of the) trial means was 0.600
(+/−0.04).

EC captured 50% the environmental variance. We used a
sequence of models to evaluate the proportion of grain yield
variance explained by genetic and environmental factors
(Table 1), and to reveal the fraction of those variance components
that could be captured using SNPs and ECs.

The baseline model (TL) included an intercept plus the
random effects of year (Yi), location (Lj), year–location (YLij), and
cultivar (Vk); thus

TL: yijk ¼ μþ Yi þ Lj þ YLij þ Vk þ εijk; ð1Þ
where Yi � NIIDð0; σ2YÞ, Lj � NIIDð0; σ2LÞ, YLij � NIIDð0; σ2YLÞ,
Vk � NIIDð0; σ2VÞ, and εijk � NIID 0; σ2ε

� �

; this model does not

incorporate any SNP or EC data.
Estimates indicate that environmental differences between

trials (i.e., those due to year, location and year-by-location effects)
explained 83% of the grain yield variance [(0.289+ 0.780+
0.944)/(0.289+ 0.780+ 0.944+ 0.191+ 0.215), Table 1].
Approximately one-half of the between-trial variance corresponds
to year-by-location interactions [0.944/(0.289+ 0.780+ 0.944)],
thus highlighting the importance of accounting for year-to-year
variations in environmental conditions. In the baseline model, the
amount of variance explained by the main effect of the genotypes
was ~8% of the total variance and about 50% of the within-trial
variance.

We expanded the baseline model by adding the cultivar-by-
year (V × Y) and cultivar-by-location interactions (V×L) (we did
not include cultivar-by-year location because in the trials, there
was only one plot per genotype–year–location). The interactions
captured a very small amount of variance (0.0323+/− 0.0019 and
0.0415+/− 0.0023, for V×L and V×Y, respectively). Of the two
terms, only the cultivar-by-location term could be learned from
past data. However, the amount of variance captured by this term
is small, and accurate prediction of V×L would require evaluating
cultivars over many years at the same location, which is both
costly and inefficient. Therefore, instead of leveraging V×L and
V×Y for prediction, we focused on modeling those effects using
SNPs, ECs, and their interactions.

To assess the proportion of genetic variance that can be
captured by SNPs, we modeled the cultivar effect (Vk)
using assumptions of the GBLUP model11. Thus,
V ¼ Vkf g � N 0;Gσ2V

� �

, where G is an (SNP-derived) additive
relationship matrix, and σ2V is a genomic variance. Likewise, we
used an “EBLUP” model to introduce the effects of the ECs; thus
w ¼ fwijkg � N 0;Ωσ2EC

� �

where w is a vector of year-location-
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Fig. 2 Network of trials. Each dot represents a trial location; the color scale is used to denote the number of years with records for each location (left) and

the number of genotypes tested at each location (right). (Clustering based on minimum temperature, maximum temperature, rain, and total wheat area is

shown in Supplementary Fig. 4).
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cultivar effects and Ω is an environmental similarity matrix
derived from the ECs (see “Methods” for more details). Therefore,
the GW model specifies

GW: yijk ¼ μþ Vk þ wijk þ εijk ð2Þ

In the GWmodel, the genomic term (Vk) captured ~83% of the
variance of the genotypes (0.158/0.191); however, the ECs
captured ~44% of the between-trial variance [0.892/(0.289+
0.780+ 0.944)]. We conclude that there was almost no “missing
heritability”12 and that there was a sizable (~56%) “missing
environmentability”. The latest could be attributed to deficiencies
in the ECs (e.g., lack of data on soil fertility) and to limitations in
the model used to link ECs with grain yield (e.g., absence of non-
linear effects or interactions between ECs).

Next, we added interactions between SNPs and ECs to the GW
model (GW-G×W). With the number of SNPs and ECs involved
in this study, modeling all possible pairwise SNP-by-EC
interactions is computationally very challenging. However,
SNP-by-EC interactions can be modeled (implicitly) using a
Gaussian random effect with a covariance structure which is the
Hadamard product (i.e., cell by cell) of the genomic (G) and
environmental (Ω) covariance structures4. Thus, to introduce
SNP-by-EC interactions we used the following model

GW� G ´W: yijk ¼ μþ Vk þ wijk þ VWijk þ εijk; ð3Þ

where μ, Vk, and wijk are as in Eq. (2), and VWijk is a Gaussian
random effect representing SNP-by-EC interactions that has a
zero mean and (co)variance function proportional to the product
of the genomic (Gii′) and environmental ðΩijk;i0j0k0Þ similarity

between entries, Cov VWijk;VWi0j0k0

� �

/ Gii0Ωijk;i0j0k0 (see “Meth-

ods” for further details).
In the GW-G×W model, the regression on SNPs captured

~83% of the variance associated with genotypes (0.16/0.191),
while the ECs captured ~42% of trial variance [0.863/(0.289 +
0.780 + 0.944)]. Relative to the additive effects of model GW,
adding the interactions between SNPs and ECs led to a reduction
in the error variance of about ~5% (0.074/1.300). However, the
error variance of the GW-G×W model was substantially larger
than the error variance of our baseline model, reflecting that even
after including SNP-by-EC interactions, the model did not fully
capture environmental effects.

Therefore, we then combined the trial information (year,
location, and year-by-location) with SNPs and ECs. We did this
without including SNP-by-EC interactions (model TGW= trials,
genotypes and ECs, Eq. (4) in “Methods”) and including those
interactions (TGW-G×W, see Eq. (5) in “Methods”). The full
model (TGW-G×W) captured the same amount of variance as
the baseline model, with (almost) all of the genetic variance being

captured by SNPs and a sizable fraction of the environmental
variance captured by ECs.

Models achieved moderately high prediction accuracy. We used
10-fold cross-validation (CV), with trials (i.e., entire year-location
combinations) assigned to folds, to assess each of the models’
ability to predict grain yield in year-locations not used to train the
model. For each fold, we fitted models using data from the
remaining ninefold and used the fitted model to predict yield in
the trials assigned to the left-out fold. This was repeated 10 times,
and each time onefold was left aside for testing. The assignment
of year-locations to folds poses a prediction problem similar to
the one faced when one uses data from some year-locations to
predict the performance of genotypes in other year-locations. We
chose this approach because it represents the prediction problem
that one faces when simulating genotypes’ performance in future
years at locations present in the network of trials.

Figure 3 shows the average within-trial correlation between
realized yield and CV predictions (letters indicate groups that are
significantly different according to a paired t-test). The full model
(TGW-G×W) achieved the highest within-trial correlation

Table 1 Estimated variance components [95% credible interval] for wheat grain yield.

Model Year Location Y×L Cultivar Env. Cov. SNP×EC Error

TL (baseline) 0.289 0.780 0.944 0.191 – – 0.215
[0.210,0.373] [0.640,0.927] [0.878,1.018] [0.184,0.199] – – [0.214,0.215]

GW – – – 0.158 0.892 – 1.300
– – – [0.146,0.172] [0.863,0.922] – [1.296,1.304]

GW-G×W – – – 0.160 0.863 0.074 1.2417
– – – [0.145,0.177] [0.830,0.897] [0.062,0.086] [1.234,1.250]

TGW 0.196 0.495 0.935 0.190 0.154 – 0.212
[0.126,0.280] [0.360,0.627] [0.867,1.012] [0.181,0.198] [0.105,0.213] – [0.211,0.213]

TGW-G×W (full model) 0.175 0.525 0.916 0.184 0.140 0.054 0.170
[0.110,0.248] [0.382,0.629] [0.848,0.992] [0.173,0.195] [0.090,0.198] [0.050,0.058] [0.168,0.172]

T trial, Y year, L location, Y×L year-by-location, G SNP genotypes, W environmental covariates, G×W SNPs-by-Env. Cov.
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Fig. 3 Average within-trial correlation between predicted and observed

yield. Results were obtained with a ‘leave-trial-out’ cross-validation. Letters

indicate differences at the 0.01 significance level. TL: year-location+

cultivar ID (baseline model), GW incorporates the main effects of SNPs and

of EC. GW-G×W adds to GW interactions between SNPs and EC. TGW

includes year-location, SNP, and EC effects. TGW-G×W expands TGW by

adding SNP-EC interactions.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18480-y

4 NATURE COMMUNICATIONS |         (2020) 11:4876 | https://doi.org/10.1038/s41467-020-18480-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


between predicted and realized yield (0.58, Fig. 3). The CV-
correlations we obtained with our full model were slightly higher
than the ones previously reported for wheat using a similar CV
scheme4,13,14.

We also conducted a validation with cultivars assigned to folds;
this mimics the problem of predicting the performances of a
cultivars that were tested in any past trial13. In this new CV, the
prediction performance was worse than when year-locations were
assigned to folds. The baseline model yielded a slightly negative
(−0.12, Supplementary Fig. 5) within year-location correlation.
This happens because, within-trial, only genotype, genotype-by-
location, and genotype-by-year-location can contribute to pre-
diction accuracy. But these effects cannot be learned by the
baseline model in a CV1 scheme. On the other hand, the models
that included SNPs and ECs achieved a positive (albeit moderate)
prediction correlation, and the relative ranking of the models was
the same as the one observed in the leave-trial-out CV. Models
GW-G×W and TGW-G×W achieved an average correlation of

0.25 (Supplementary Fig. 5). Previous studies13 have also reported
low prediction accuracy when predicting phenotypes of untested
cultivars. However, the reduction in prediction correlation was
particularly marked in this data set because the cultivars included
in it are not ‘close relatives’, and genomic prediction relies heavily
on genetic relatedness15. Considering the low accuracy achieved
in CV1 by the best performing model, we conclude that accurate
prediction of within-year location performance requires, for the
type of data that we considered, at least 1 year of testing per
cultivar included in the simulation.

Computer-simulated performances. The results presented thus
far used only past trial data. In this section, we describe a
computer-simulation platform that integrates those data with
historical weather records.

A conceptual description of the simulation process is presented
in Fig. 4. We used the full model (TGW-G×W) to predict yield
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for 16 locations representative of French wheat-producing regions
(Supplementary Fig. 4) and 28 wheat lines (xi; i= 1,…,28) for
which we have extensive records from Arvalis’ network of trials.
For each of the selected locations, we collected 16 years
(2000–2015) of historical weather data. We used a crop model
to derive environmental covariates (wijk) for each year-location
for which we had weather data. Using the BGLR software
package16, we fitted model TGW-G×W to all the data from past
field trials. The software was used to collect 100,000 samples from
the posterior distribution of the parameters of model TGW-
G×W. These samples were thinned at an interval of 5, producing
20,000 samples (θs; s= 1,…, 20K). We then evaluated the
prediction function (f(·) in Fig. 4; see “Methods” for details) for
every genotype, location, year, and sample of the model
parameters. The combination of 16 sites, 16 years, 28 genotypes,
and 20,000 samples led to a total of 144.3 million simulated data
points.

Predictive analytics. We used the simulated phenotypes to study
the fitness of varieties to specific locations. Figure 5 shows a
heatmap (left) and a biplot of the predicted average yields for the
selected varieties at the target locations. Importantly, simulations
are not restricted to the years in which each genotype was tested
at each site. The heatmap in the margins of Fig. 5a shows den-
drograms describing the clustering of locations and varieties.
Celllule, Rubisko, Barok, and Pakito appeared as a cluster of high-
yielding cultivars. On the other hand, historical varieties such as
Soissons had relatively low-predicted yield across locations. The
first two PCs of the matrix containing the predicted means by
variety and location explained ~95% of the total variance of the
cultivar means in the locations. Both the heatmap and the biplot
can be used to identify varieties with high expected yield at each
location.

The results in Fig. 5 are based on the average predicted yield at
each of the 448 (16 × 28) cultivar–location combinations. The

simulation also predicts the distribution of expected yield across
possible weather conditions. This is displayed in Fig. 6 for four
contrasting locations, including low (Crenay), intermediate
(Thizay and Montans), and medium-high (Estrées-Mons) yield.
In addition to differences in means (which can also be assessed in
the heatmap of Fig. 5), the boxplots describe the variability in
expected yields that can be attributed to differences in weather
conditions, genotype-by-year-location, and uncertainty about
model parameters. The results in Fig. 6 suggest that, compared
to Crenay and Estrees-Mons, there is more uncertainty about
average grain yield in Thizay and Montans. Likewise, the
simulated performance can be used to quantify uncertainty about
the yield performance of different varieties within each of the
locations.

The red circles and blue diamonds in Fig. 6 represent the
BLUEs (derived from the baseline model) and the raw means of
grain yield of each cultivar–location combination, respectively.
Since not all varieties were tested at all the locations, some
location–cultivar combinations do not have BLUEs and raw
means. There are important differences between the raw means,
the BLUEs, and the median yield estimated from the simulation
(represented by the central horizontal line in each of the boxes).
The medians (and means) from the simulation are smoother than
the raw means and the BLUEs because the simulation means are
computed by averaging over 16 years of weather conditions and
multiple configurations of model parameters. This is not the case
of the raw means and the BLUEs, which are point-predictions
derived using data from the years in which each cultivar was
tested. The raw means, the BLUEs, and the simulated means
produced distinct rankings of cultivars within each of the
locations, which in turn can lead to different breeding decisions
and variety recommendations.

Finally, we conducted a mean-stability analysis using
a FW regression6 where the mean of the kth genotype on the
jth location (Mjk) was modeled as the sum of an environmental
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Fig. 6 Distribution of simulated grain yield in selected cultivar–location combinations. The boxes summarize the predicted distribution of yields for each

cultivar–location combination across 16 years of likely weather conditions (the line in the middle of the box represent the median, and the edges represent

the 1st and 3rd quartiles). The red circles (blue diamond) represent the raw (BLUEs) genotype-by-location mean for the locations where each cultivar was

tested.
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mean (Ej), plus a cultivar-specific intercept (b0k), plus a
regression on the environmental means, that is,
Mjk ¼ b0k þ Ej þ Ejb1k þ δjk; here, b1k is a genotype-specific

slope. We conducted these analyses using as data: (A) the raw
genotype-by-trial means, (B) best linear unbiased estimates
(BLUEs) of the same means derived from the baseline model,
and (C) the variety-by-location means obtained by averaging
the simulated results over 16 years of historical weather data.

FW analyses based on the raw means (Fig. 7a) suggest
substantial G × E, with estimated slopes ranging from 0.8 to 1.4.
However, the same FW analyses based on BLUEs of the expected
performance of a line in a location (Fig. 7b) showed much less
variability in the slopes of the FW regressions. Results based on
the simulated means (Fig. 7c) exhibited even smaller variability in
slopes and much more precise estimates. Thus, the FW analyses
based on the simulated means (which averaged predicted
performances over 16 years of weather data for each of the
locations) suggest small genotype-by-location variance at the level
of the genotype’s mean in a location. This is consistent with the
fact that, within this trial network, a sizable proportion of the
environmental variance corresponds to year and year-location
variance. The FW analysis in Fig. 7c identifies high-yielding
varieties that are expected to perform well across many locations
in French wheat-growing regions, including Cellule (intercept=
10.40, slope= 1.03) and Rubisco (intercept= 10.40, slope=
1.02).

To assess the stability of the FW results, we conducted 100
twofold cross-validations. Briefly, we split the observed and the
simulated data of each cultivar into two folds. We then performed
the FW regression analyses presented above within each of the
folds. The averages (SEs) of the CV correlation between the
predicted slopes of folds 1 and 2 were 0.342 (+/−0.015), 0.447
(+/−0.012), and 0.502 (+/−0.016), for the raw means, BLUEs,
and the simulated means, respectively. In a paired t-test, the three
correlations were significantly different (all the Holm’s adjusted
p-values were smaller than 0.001).

Discussion
Genetic-by-environment interactions (G×E) are a significant
source of variance in crop phenotypes. The importance of G×E
was recognized almost a century ago17. Since then, several sta-
tistical methods for the study of G×E were developed, including
fixed-effects18–21 and mixed-effects22,23 models, reaction
norms24, factor analytic methods25, and other reduced-rank
methods26. More recently, G×E models that integrate DNA
sequences, alone13,14 or in combination with ECs4,27,28 were

developed and tested in multiple crops. However, a sizable frac-
tion of the environmental and G×E variance is often due to year
and year-location effects. This has limited the use of G×E models
in breeding and research because predictions from such models
require knowledge about future weather conditions which are
mainly uncertain.

The concept of “target breeding environments” has been pro-
posed as a way to incorporate G×E in breeding decisions3.
However, predicting the performance of a cultivar in a target
environment is challenging because, as noted, a sizable fraction of
the environmental variance (50% in the data set analyzed in this
study) corresponds to within-location year-to-year variation in
weather conditions. Therefore, accurate prediction of the per-
formance of genotypes at target environments would require
testing genotypes over many years. This is both costly and inef-
ficient because it delays breeding decisions, ultimately reducing
genetic progress. On the other hand, when breeding decisions are
based on the predicted performance derived from 1 or 2 years of
testing, many genotypes are advanced without evaluating them
under weather conditions that may greatly impact their perfor-
mance (e.g., drought, heat, and cold stress).

We propose that computer simulations that integrate field trial
data with DNA sequences and historical weather records can be
used to tackle the longstanding problem of predicting genotypes’
future performance under largely uncertain weather conditions—
a similar idea was used before by Chenu et al.27. However, the
study by Chenu et al. simulated phenotypes assuming a crop
model with known parameter values, simulated genotypes and
selected environmental scenarios. Our approach builds upon
Chenu’s work by proposing a simulation strategy that is heavily
data-driven. We use real genotypes, historical weather data, and
G×E patterns learned from field trial data without assuming an
underlying crop model. Furthermore, rather than fixing para-
meter values (e.g., QTL effects) to point estimates and weather
conditions to scenarios, our simulation strategy fully accounts for
uncertainty about model parameters and uses historical weather
data to account for likely weather conditions.

The continuous development of computing power and algo-
rithms has led to increased interest in using computer simulations
to assist breeding decisions and agronomic recommendations.
However, the adoption of computer simulations in plant breeding
remains limited because it is difficult to develop realistic simu-
lations that can fully account for the complexity of how genomes
respond to environmental conditions. There are often too many
options as to how to simulate genotypes and phenotypes (e.g.,
how to model additive and non-additive effects, and how to
simulate G×E) that make fully in-silico simulators mostly
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unrealistic. The approach used in this study overcomes these
limitations by developing a computer-simulation platform that
learns G×E patterns from past trial data and uses DNA sequences
and historical weather records to simulate performances over
possible environmental conditions. The simulation platform
predicts not only the expected performance of a cultivar in a
location but also the expected distribution of a trait over likely
weather conditions. Importantly, the predictive distribution also
accounts for uncertainty about model parameters.

Implementing the simulation approach proposed in this study
requires (i) a model that integrates genetic and EC data, (ii)
extensive multi-environment field testing data linked to genotypes
and environmental covariates, and (iii) historical weather data.

For the model, we used a reaction norm for SNPs and ECs4;
however, we highlight that the platform can be implemented with
any (Bayesian) model that integrates DNA sequences and ECs,
including crop models5.

The implementation of the proposed simulation platform
requires extensive field trial data covering a diverse set of geno-
types, many years, and locations. Access to such data is essential
because those data are the source from where G×E patterns are
learned. Ideally, the data should be dense enough to guarantee
that simulations “interpolate” and do not “extrapolate”. Many
public and private breeding organizations have generated large
volumes of genetic and phenotypic data from field trials. The
proposed simulation platform offers these organizations the
opportunity to leverage their data with historical weather records
to produce predictions of cultivars’ performances that are more
robust than those that can be derived when varieties are tested for
1 or 2 years. However, we emphasize that the simulation platform
presented here should not be conceived as a tool to predict per-
formances outside of the genotype/environment space repre-
sented in the training data. Moreover, we do not recommend
simulating phenotypes for untested cultivars, unless such varieties
are closely related to the ones used to train the models.

Historical weather data, the third input in the simulation
platform, should be readily accessible for locations with (or with
nearby) weather stations. In this study, we applied the framework
using historical weather data from individual locations. However,
there are multiple potentially useful variants of this approach that
are worth mentioning. First, if the goal is to breed or to produce
agronomic recommendations for large growing regions, one
could simulate at various locations and aggregate the simulated
data at the regional level. Second, in this study, we used a long
series of historical weather data. However, the same framework
could be used as a tool for sensitivity analyses. For example, one
could evaluate the effects of climate change by over-sampling
years with adverse events (e.g., drought, heat stress) that may
increase in frequency under a climate change model.

We used the proposed simulation platform to generate ~143M
grain yield values resulting from the combination of 28 genotypes
at 16 locations, 16 years of historical weather data for each of
those locations, and 20,000 possible configurations of model
parameters. The simulated data were used to approximate the
expected distribution of yield for 448 (28 × 16) genotype–location
combinations. The mean-stability analysis conducted using the
simulated phenotypes averages over likely weather conditions and
suggests lower G×E levels in the cultivar–location means, than
analyses based on raw-trial means or trial BLUEs. Therefore, the
simulation platform can aid in identifying cultivars with con-
sistently high yield across locations.

In conclusion, we presented a data-driven simulation platform
that uses experimental data and historical weather records to
predict cultivars’ future performances, accounting for uncertainty
about future weather and model parameters. The resulting fore-
casts smooth-out variability attributable to year-location and

genotype-by-year-location; therefore, they are more precise than
the ones derived using a few years of testing.

Methods
Experimental data. Genotypes for each of 481 French-registered varieties were
obtained using the Axiom high-density genotyping platform (Affymetrix Inc.,
Santa Clara, CA) containing 420K (K= 1,000) SNPs7 and generated within the
Breedwheat project (ANR-10-BTR-03). Only SNPs with minor allele frequency
>0.05, with a calling rate >0.8, and with <10% of heterozygous loci, were used in the
analyses. A total of 167,440 SNPs fulfilled this criterion. The remaining missing
genotypes were imputed to the mean (i.e., two times the allele frequency at
the SNP).

Phenotype data originated in post-registration evaluation trials carried out each
year by Arvalis for newly registered varieties. The trial network included 242
locations and a total of 752 year-locations. Each year-location had one (un-
replicated) yield trial in which cultivars were arranged in a randomized complete
block design with a plot size of 12 m². Sowing dates and densities were adjusted at
each location to represent the usual practices at each location. Trials were managed
to reduce any biotic or abiotic factor that may reduce grain yield potential (optimal
nitrogen fertilization, weed, insect, and disease control). Plots were harvested at
maturity using a combine harvester, and the grain yield of each plot was adjusted to
15% moisture.

A single check was used across all trials; however, since cultivars were tested at
multiple year-locations, many genotypes provided strong connections between
trials. To quantify this, we created a connectivity index (Tij(r)) that counted the
number of trials connected to trial ij through at least r genotypes (r= 1,…,5). The
average values of these indices in the data set were �T 2ð Þ ¼ 573:3, �T 3ð Þ ¼ 473:3,
�T 4ð Þ ¼ 402:3, and �T 5ð Þ ¼ 339:8. Histograms of the distribution of these indices are

presented in Supplementary Fig. 1.
Environmental covariates were chosen based on physiological knowledge of

bread wheat response to environmental factors (water, radiation, temperature) at
different periods of the crop cycle (see Supplementary Table 1 for a list of ECs).

Weather data were gathered from weather stations located within 10 km of the
trial. The crop cycle was divided into phases between sowing, emergence, the
beginning of stem elongation, meiosis, heading, anthesis, milky, and maturity
corresponding to growth stages (GS) 00, 10, 30, 39, 55, 65, 75, 9229. The GS dates
were simulated using an ecophysiological model based on the daily accumulation of
thermal time, possibly modified by vernalization and photoperiod factors30–32.

Temperature accumulation was calculated daily using a piece-wise linear
function with three knots or cardinal temperatures (0, 24, and 35 °C).
Accumulation of temperature was nil below 0 °C or above 35 °C; it increased
linearly between 0 and 24 °C, and decreased linearly between 24 and 35 °C.
Emergence reached after 150 °C—days from sowing with no effect of photoperiod
or vernalization.

From emergence to GS30, temperature accumulation was reduced by
vernalization and photoperiod factors both varying between 0 and 1. The

photoperiod factor was calculated as PF ¼ PH � Pbaseð Þ= Popt � Pbase

� �

where PH is

the daily photoperiod (in hours) and Pbase and Popt are parameters equal to 6.3 and
20 h, respectively. The vernalization factor was calculated as
VF ¼ VDD� Vbaseð Þ= Vsat � Vbaseð Þ, where VDD is the number of accumulated
“vernalizing days” and Vbase and Vsat are parameters equal to 0 and 45, respectively.
VDD was calculated daily using a piece-wise linear function of daily mean
temperature defined by three cardinal temperatures of −1, 6, and 17 °C.
Accumulation of vernalizing days was nil when daily mean temperature was
≤−1 °C or ≥17 °C; it increased linearly between −1 and 6 °C, was equal to 1 at 6 °C,
and decreased linearly between 6 and 17 °C. From GS30 to GS55, the base
temperature was set at 3.5 °C, Pbase was set at 7.7 h, and the accumulation of
thermal time was limited by the photoperiod factor only. Two cultivar-dependent
parameters (GDDpv= growing degree days reduced by photoperiod and
vernalization factors, and GDDp= growing degree days reduced by the
photoperiod factor) determined the accumulation of modified thermal time
required from emergence to GS30 and from GS30 to GS55, respectively. GS39 was
determined using backward calculation from GS55 as GS39=GS55–1.2 × Phyll,
with GS55 representing the heading date in degree days since sowing, and Phyll
representing the phyllotherm parameter, which was calculated as follows:

Phyll ¼ 100=
2:54 ´ ðPGS10 � PGS00Þ

GDDGS00�GS10 þ 14:396
RgGS00�GS10

� �

þ 1:0104

2

4

3

5 ´ 0:9393þ 0:000379 ´ dGS10

Above, PGS10 and PGS00 are the photoperiods at GS10 and GS00, respectively;
GDDGS00–GS10 represent growing degree days between GS00 and GS10; RgGS00–GS10
is the average global radiation (joules.cm−2) between GS00 and GS10. Finally,
dGS10 represents the plant density at GS10. The phyllotherm parameter was bound
to the 66–120 range.

Following GS55, only temperature affected plant development. GS65 was
calculated as as GS65=GS55+ 0.05899 × (1.596 × GS55–93.61), where GS65 and
GS55 correspond to anthesis and heading dates in degree days since sowing,
respectively. Then, GS75 reached after 430 days from GS55, and GS92 reached after
770 days from GS55.
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Statistical models. The baseline model (TL) included an intercept, plus the
normal, independent and identically distributed (NIID) random effects of the year,
Yi � NIIDð0; σ2Y Þ, location, Lj � NIIDð0; σ2LÞ, year-location, YLij � NIIDð0; σ2YLÞ,
and cultivar, Vk � NIIDð0; σ2V Þ; therefore,

TL: yijk ¼ μþ Yi þ Lj þ YLij þ Vk þ εijk; ð4Þ

where εijk � NIID 0; σ2ε
� �

:

The GW model was obtained by substituting the cultivar, year, location, and
year-location effects with genetic and environmental random effects linked to SNPs
and ECs, respectively. Specifically, we replaced the cultivar effect with a
multivariate normal random effect, V ¼ V1; ¼ ;V482ð Þ0, which had a covariance
matrix proportional to G ¼ XX0=p, that is, V � MVNð0;Gσ2V Þ. Here X is a matrix
of (centered and scaled) SNP genotypes (p is the number of SNPs). Likewise, we
replaced the year, location, and year-location effects in Eq. (1) with a multivariate
normal random effect that had a covariance structure derived from the ECs:

w ¼ wijk

n o

� MVNð0;Ωσ2ECÞ, where Ω ¼ WW0=q. Here, Wn×q is a matrix of

(centered and scaled) environmental covariates, and q is the number of
environmental covariates. Therefore, the equation for the GW model was

GW:yijk ¼ μþ Vk þ wijk þ εijk: ð5Þ
Subsequently, we expanded the GW model by adding interactions between

SNPs and ECs. Specifically, we introduced a random effect

VW ¼ fVWijkg � MVN 0; ðZgGZ
0
gÞ#Ωσ2V ´ EC

� �

4. Here, Zg is a design matrix

connecting phenotypes with cultivars, and G and Ω are genomic and
environmental relationship matrices, respectively. Above, “#” represents the
Hadamard (or cell-by-cell) product between two matrices, and σ2V ´EC is a variance
parameter associated with the interaction term. Thus,

GW� G ´W:yijk ¼ μþ Vk þ wijk þ VWijk þ εijk: ð6Þ
Variance component estimates revealed that the GW and GW-G×W models

did not fully capture the environmental variance captured by the TL model.
Therefore, to fully capture between-trial differences, we added back year and
location effects, without (TWG) and with (TGW-G×W) interactions between SNPs
and ECs, that is:

TWG: yijk ¼ μþ Yi þ Lj þ Vk þ YLij þ wijk þ εijk; ð7Þ

and

TGW� G ´W: yijk ¼ μþ Yi þ Lj þ YLij þ Vk þ wijk þ VWijk þ εijk: ð8Þ
The distributional assumptions for each of the terms in Eqs. (4) and (5) were as

described before (see models TL, GW, and GW-G×W).

Assessment of prediction accuracy. We used a 10-fold CV with trials (i.e., year-
location IDs) assigned to folds to assess prediction accuracy. We chose the within-
year-location correlation between predictions and observed yield as a metric to
assess prediction accuracy. Thus, from a 10-fold CV we had as many correlations
(r) per model as year-locations were represented in the data (767). To assess
statistical differences between models, we employed a paired t-test applied to

Fisher’s z-transform, that is, z ¼
ffiffiffiffiffiffiffiffi

nij�3
p

2 logðð1þ rÞ=ð1� rÞÞ; with nij being the
number of records in the particular year-location. P-values were derived using the
t-test function of R. These p-values were used to group the models according to
their predictive power using the orderPValue function in the agricolae R-package33

with α= 0.05.

Simulation. A conceptual description of the simulation algorithm is presented in
Fig. 4. Using the TGW-G×W Eq. (4), we simulated performances for 28 genotypes
that are well-represented in Arvalis’ trial network and 16 locations representative of
French wheat-producing regions (Supplementary Fig. 4). For each location, we
retrieved 16 years of historical weather data (from 2000 to 2015) and used those
data to derive ECs for each for the 6720 (16 × 16 × 28) year–location–cultivar
combinations represented in the simulation. Subsequently, we used 20,000 samples
from the posterior distribution of the parameters of the TGW-G×W model to
evaluate, for each of the sample–genotype–year–location combinations, the pre-
diction function:

f i; j; k; θsð Þ ¼ μðsÞ þ LjðsÞ þ VkðsÞ þ wijkðsÞ þ VWijkðsÞ ð9Þ
Above, i indicates years (2000–2015), j location, k cultivar, and s sample from

the posterior distribution of the model parameters (θs). Note that the prediction Eq.
(6) uses (from the regression model TGW-G×W) only the terms that can be
learned from past data (μ(s)+ Lj(s)) or predicted from knowledge of model
parameters, SNPs, and ECs (Vk(s)+ wijk(s)+ VWijk(s)). Thus, predictions from
the simulation did not include year and year-location effects that cannot be
predicted from knowledge of ECs. Equation (6) was evaluated for each
genotype–location–year–sample combination, thus producing ~143.4 million
simulated data points.

Biplots. We analyzed the simulated data using the site regression (SREG)
model2,23. As the response variable, we used the mean of simulated grain yield for
variety i, location j34,35.

Finlay–Wilkinson (FW) regressions. We conducted means-stability
analyses using an FW regression6 of the form Mjk ¼ b0k þ Ej þ Ejb1k þ δjk ,

where Mjk are the means of genotype k in location j, Ej � NIID 0; σ2E
� �

,

b0 ¼ b0kf g � MVN 0;Gσ2b0

� �

, and b1 ¼ b1kf g � MVN 0;Gσ2b1

� �

are the location

means and cultivar-specific intercepts and slopes, respectively. We implemented
the FW regressions in two steps: (i) in the first one we estimated environmental

means using a random-effects additive model of the formMjk ¼ ~Vk þ ~Ej þ ~δjk , and

(ii) subsequently, we inferred intercepts and slopes using the FW model with Ej
replaced by ~Ej. Both steps were implemented using the BGLR R-package

(see Supplementary Software).
The results in Fig. 7 are based on an analysis of the entire data set. The dots are

the estimated means for the intercepts and slopes, and the vertical and horizontal
lines are the estimated posterior standard deviations. We also conducted 100 two-
fold cross-validations in which we divided the observed (in the case of the raw
means and BLUP method) or the simulated data of each cultivar into two halves.
Subsequently we applied FW regressions to each of the halves and with this we
estimated the correlation between the slopes inferred in each of the halves. This was
repeated 100 times, and statistical differences were assessed using paired t-tests.

Software. Data analyses were performed using the R Statistical package36. Models
were fitted using the BGLR package16. All the models were fitted with the default
hyper-parameter values chosen by BGLR. The SREG model and the biplots were
generated using custom R-scripts. The scripts used to fit the models and perform
the biplot analyses and FW regressions are provided in the Supplementary
Software.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data are not publicly available due to them containing proprietary information.
However, the data that support the findings of this study are available upon request.
Specific data transfer agreements may be required for each individual request.

Code availability
The scripts used to fit the models and perform the biplot analyses are provided, together
with a sample data set, in the Supplementary Software.
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