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1. Introduction 

When surface mount technology (SMT) evolves as driven by the continuing miniaturization 
of electronic components and ever-growing board complexity, in-line defect inspection has 
become common for ensuring reliable production. For example, as an in-line measurement 
technique, visual defect metrology is now widely utilized in assessing process capability 
(Cunninggham & MacKinnon 1998; Rao et al. 1996; Barajas et al. 2003). In discrete printed 
circuit board (PCB) assembly, the boards within each shift are visually inspected to monitor 
the variation on operational conditions. Often the visual inspections are performed by 
automated machines, which utilize sophisticated optical and image processing techniques to 
detect the defects that lead to the process yield loss.  
Literature study on semiconductor industry shows that over 60% of end-of-the-line defects 
can be traced back to solder paste printing process (Breed 1998; Venkateswaran et al. 1997). 
Improving the printing process performance is expected to produce reduced rework and 
lower cost in the downstream stages of PCB assembly by preventing small shifts and twists 
of components from being defects. Moreover, when components have a large number of 
pins such as ball grid array (BGA), it is crucial to reduce the variation between the deposits 
of electronic components after printing so that all joints will be soldered properly (Dempster 
et al. 1977). 
Therefore, inspection systems built in paste printing process should not only detect the 
defects, but also help the operators identify the underlying root causes of poor yield 
resulting from inappropriate printing operations, and then develop corrective measures to 
avoid defective boards (Barajas et al. 2001; Litman 2004). A proper understanding of the 
patterns of variability among the measured solder paste profile is thus required to facilitate 
operators adjust the influential stencil printing parameters before a significant damage has 
occurred. To accommodate such quality control and yield improvement motivations, this 
paper proposes an effective identification method on root causes of solder paste defects by 
integrating statistical analysis of solder paste measurements and engineering knowledge of 
stencil printing process.  
Very often, in semiconductor fabrication, the outputs of visual defect inspection constitute a 
list of binary values. That is, when hundreds of integrated circuits are assembled on a 
printed circuit board, the inspection machine will indicate each solder joint either good or 
defective. Classical statistical process control (SPC) techniques have been applied to monitor 
the process disturbances by charting the percentage of defects per PCB. If the total number O
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of visual defects exceeds a predefined control limit, the identified offending equipment 
should be tuned up and returned to in-control operational conditions. In PCB assembly, the 
optimal operational parameters for running the process in control are usually designated by 
operator’s experience, or based on a small sample of measurements in that the cost of 
replicating massive quantities of PCB for inspection prevents the application of 
experimental design approaches (Bartholomew & Knott 1999; Gopladrishnan & Srihari 
1999). A new diagnosing scheme for identifying the fault pattern present in binary 
inspection data is addressed in this paper, which is shown to serve as a tool to extract 
clustered patterns from inspected pastes on PCB and thereby identify corresponding root 
causes for each cluster of defects. Note that this method does not assume any prior 
knowledge about the nature of stencil printing faults, or any particular distribution on the 
size, shape or location of solder joint patterns.  In short, this chapter  introduces a method 
for routinely monitoring binary visual inspection data to detect the presence of clustered 
defects caused by certain assignable causes in stencil printing. As a key aspect of quality 
control and diagnosing, this root cause identification involves searching for systematic faults 
that explain the observed variability behavior by incorporating process knowledge. 

2. The solder past printing process 

A substantial proportion of the defects in PCB assembly occur in solder paste printing. For 
instance, insufficient solder paste volume may result in solder opens while excess solder 
paste volume increases the chances of bridging (O’Hara & Lee 1996). Maximizing the 
uniformity of solder paste profile to reduce subsequent assembly defects is then expected to 
improve the overall quality of PCB fabrication. On the other hand, the detection and 
reduction of defects in the earlier stage of SMT manufacturing such as stencil printing also 
diminishes the cost for other downstream stages (Pan et al. 1999). Therefore, a proper 
control of stencil printing has become significantly important over the years in yield 
management. As a major step in SMT manufacturing, stencil printing involves the allocation 
of adequate amount of solder paste on each component pad. In practice, various potential 
process factors (e.g., printer alignment, squeegee pressure, printing speed, and separation 
speed) may impact solder paste printing in achieving high quality. Fig. 1 schematically 
illustrates the stencil printing operation, where metallic stencil is first placed over a PCB and 
solder paste is kneaded on one side of the stencil. As shown in Fig. 1(a) and 1(b), the 
squeegee is pushed over the stencil under predefined pressure and moved to the other side 
of stencil with specific speed. This procedure makes the solder paste roll to fill the apertures 
in the stencil and the squeegee blade removes the excess of material, followed by the 
separation of the stencil from PCB at a slow snap-off speed. 
In stencil printing, operation parameters should be adjusted as controllable variables by 

process engineers. However, such parameter adjustment relies heavily on ad-hoc algorithms 

or expert knowledge, because the direct printing performance evaluation given visual 

inspection data is not readily achievable. The lack of an analytical process monitoring 

mechanism comes from the difficulties in deriving a direct mathematical function between 

the paste defects and process parameters. Thus, a challenging problem arises on how to 

utilize the binary inspection information to identify the influential process factors (or 

systematic causes) that affect solder paste quality. When the sample of inspection data 

becomes available, as discussed below, a logistic regression model will characterize the 

www.intechopen.com



A Data Mining Algorithm for Monitoring PCB Assembly Quality 

 

409 

correlation of binary solder paste defects and measured physical profile (e.g., solder paste 

volume, height, area, etc.), the results of which are then incorporated into a latent variable 

framework for clustering the systematic causes to explain the variation on solder paste and 

consequent binary defects. 
 

 
Fig. 1. The schematic illustration of stencil printing process. 

3. Logistic regression model 

As a common statistical approach for analyzing binary data, logistic regression model has 

been applied to various data mining and machine learning disciplines such as data 

classification and predicting the certainty of binary outcome (Bartholomew & Knott 1999; 

Jaakkola & Jordan 1997; McCulloch 1997). Under the present problem setting, for each 

solder paste in PCB assembly, let y denote the binary inspection such that 1 for good paste 

and −1 for failure, and x be a d-dimensional vector representing a set of physical 

characteristics (called solder paste profile). The logistic regression analysis usually assumes 

the following quantitative relationship between y and x: 

 T

T
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,  (1) 

where β = [β1 β2 … βd]T is regression coefficient.  

For a set of m measurement couples {(x1, y1), (x2, y2), …, (xm, ym)}, the log-likelihood of vector 

β in Equation (1) is: 
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It is straightforward to obtain the gradient of log-likelihood function L(β) 
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For notation simplicity, the Hessian matrix H in Equation (2) is often written in matrix form, 

i.e., H = −XAXT, where the non-zero element of diagonal matrix A is 

))()(1( TT

jjjj σσa xβxβ −=
,  j = 1, 2, …, m, 

and xj is the jth column of d×m sample matrix X = [x1 x2 … xm]. 

Newton optimization algorithm works as an efficient way to estimate the d×1 regression 
coefficient vector by maximizing L(β) through the second derivatives (2), which provides the 
following iterative calculation (3) to estimate β: 
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The maximum-likelihood (ML) estimation of β is also called iterative re-weighted least squares 
(IRLS) algorithm, where the computation complexity within each iteration is O(md2). 
As discussed in previous research work, the logistic regression model (1) has been used 
mostly to understand the role of input variables x in predicting the binary response variable 
y. In manufacturing practice, however, many of the measurement variables in x are 
correlated due to some common physical phenomena, which encourage us to seek a 
parsimonious form of the input variables to summarize their effects on binary outcomes. In 
other words, the effects on the measured physical profile can be explained by a reduced set 
of latent variables without loss of statistical information, as described in the next section. 
Thus, we would refit the regression model (1) with fewer latent variables to provide an 
interpretation of their influence on binary outputs as observed in defect inspection. This 
statistical interpretation, equipped with proper pattern clustering and visualization, is 
shown to enhance the diagnosing of solder paste quality. 

4. MLPCA based pattern clustering algorithm 

4.1 Latent variable model and MLPCA 

When correlations are present among the measured variables x for a product, this implies 
the existence of common systematic causes that govern such interrelated manners. 
Therefore, multivariate statistical techniques such as PCA have been proposed to investigate 
the correlations when multiple variables are involved (Crida et al. 1997). A latent variable 
model is introduced to relate d characteristics of solder pastes to p unknown systematic 
causes v, by assuming that v affects the solder paste profile x through a linear model, i.e., 
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 wx += vC ,  (4) 

where C = [c1, c2, . . ., cp] is a d×p constant matrix with full rank, and v = [v1, v2, . . ., vp]T is a 

p×1 zero-mean random vector with independent components, each scaled without loss of 
generality to have unit variance.  
As assumed in PCA, the latent variables are of smaller dimension (i.e., p < d) so that the 
dependencies among observed data x can be described by a reduced set of variables v. Noise 
w denotes the aggregated effects that are not due to any systematic causes, which is 
assumed to be white noise, i.e., w ~ N(0, σw2I), and independent of v. It is reasonable to 
assume that each root cause is associated with distinct physical dynamics so that the latent 
variables v can be represented by normalized independent Gaussians, that is, v ~ N (0, I). As 
such, the impacts on measured solder joint profile x from v are quantified by the magnitude 
of corresponding rows in matrix C. Equipped with prior distributions over v and w, model 
(4) now provides a parsimonious probabilistic description for multivariate measurement 
data x (Hamada & Nelder 1997; Tipping & Bishop 1999). Moreover, the probabilistic 
assumptions enable an ML estimate for C (denoted by CML) that is shown to span the 
principal subspaces of x (Tipping & Bishop 1999).  
For isotropic Gaussian noise w, model (4) yields the conditional probability of x as: 
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The Gaussian assumption on v implies that the marginal density of data x can be readily 

obtained by integrating out v so that x ~ N(0, Σ), and covariance Σ= σw2I + CCT. 
For a sample of {xj: j = 1, 2, …, m} from model (4) and (5), the log-likelihood is 

 { }1

1

log( ( )) log(2 ) ln Σ tr Σ S}
2

m

j
j

m
L p d π −

=

= = − + +∑ x { ,  (6) 

where S is the sample covariance matrix. The estimate of C that maximizes the log-
likelihood (6) is shown to satisfy (Tipping and Bishop 1999): 

 2 1/2C U (Λ I) R
ML p p w

σ= − .  (7) 

The interpretation of Equation (7) is that the maximum of log-likelihood is achieved when 
the column vectors of d×p matrix Up are eigenvectors of S corresponding to the p largest 
eigenvalues. The eigenvalues λi are stored in descending order within matrix Λp = Diag{λk} 
(k = 1, 2, …, p). The column vectors in Up are also called principal eigenvectors due to their 
relationship with respect to the eigenvectors, and R is a p×p orthogonal matrix. 
Furthermore, the ML estimate of σw2 is given by 

2

1

1 d

ML k
k p

σ
d p

λ
= +

=
−

∑ , 

in which noise variance is viewed as the average of the d−p smallest eigenvalues.  
The maximum-likelihood estimate of C in Equation (7) can be calculated by an iterative 
expectation-maximization (EM) algorithm between the following equations (Booth & Hobert 
1999; Dempster et al. 1977):   
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where M = (σw2I + CTC). Thus, the optimal C and noise variance σw2I are obtained when 
Equations (8) and (9) converge. Note that the rotation matrix R brings somewhat ambiguity 
in the ML estimation for matrix C. In the proposed method, this ambiguity can be resolved 
by determining the rotation matrix from RIΛRCC )( 2TT

wpMLML σ−= , i.e., R is the eigenmatrix  of 

MLMLCC
T . As implied in Equation (7), latent variable model (4) effects a mapping from the 

latent space into the principal subspace of multivariate data x. In this sense the ML estimate 
CML for model (4) is indeed a form of principal component analysis. Therefore, we choose to 
term the proposed method as maximum-likelihood PCA.  
One major advantage of latent variable model and corresponding MLPCA estimate is to 
offer an effective way to link the variability analysis on solder paste profile and subsequent 
binary inspections to a candidate set of process faults. Suppose that multivariate 
measurements x on solder pastes are correlated due to common unobservable process 
factors v, this paper tries to provide an analytical tool for diagnosing product quality by 
relating variation pattern on physical characteristics to these hypothesized systematic 
causes. As demonstrated in later case study, this method is developed on a process-oriented 
basis, which applies MLPCA to determine the latent space of systematic root causes and 
then project logistic regression coefficients onto this reduced space for pattern clustering 
and interpretation. The visualization of clustered variation pattern, combined with 
appropriate engineering knowledge, will help identify the underlying process faults. On the 
other hand, classical PCA is a data-oriented approach that tries to explain the variance of x by 
seeking the principal eigenvectors. PCA works well for situations when a single process fault 
occurs (i.e., p = 1), but can not produce interpretable results for process diagnosing when p > 1 
(Apley & Shi 2001). The limitations of PCA on root cause recognition or fault interpretation 
thus hamper its diagnostic capabilities in complicated multivariate process control. 
The latent variable model (4) also considers the effects from measurement noise on solder 
paste, which has been a non-neglectable factor when accurate process modeling and 
diagnosing are required. The probabilistic formulation enables the introduction of 
likelihood measure for obtaining ML estimate CML. It is worth noting that CML is built on 
the assumption that p is known. However, the probabilistic model itself does not provide a 
mechanism to determine p. For practical implementation, we need to address how to define 
the dimension of latent variable v prior to parameter estimation. For p = d–1, the model is 
equivalent to a full covariant Gaussian distribution, while in case of p < d–1 it implies that 
the remaining d–p directions is caused by noise variance σw2. As a possible approach, cross-
validation may compare all potential values of p, however, it becomes expensive in 
computation when d increases. Simulation results over numerous examples with varying p 
and d, suggest the following practical rule to determine p and substitute it into the iterative 
EM algorithm: 
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4.2 The regression coefficient clustering algorithm 

The dramatic advances in in-process sensor and data collection technologies enable vast 
quantities of physical features to be measured about the manufacturing system. For 
instance, in PCB assembly, laser-optical measurement machines are commonly installed to 
record detailed dimensional characteristics of wet solder paste after it is deposited onto the 
board in stencil printing. When electronic components are positioned and the solder is cured 
in the re-flow oven, dimensional characteristics are obtained via X-ray laminography (Crida 
et al. 1997; Litman 2004; Neubauer 1997). As in any quality control applications, one 
fundamental objective considered in this paper is to explain as precisely as possible the 
nature of variation on solder paste and identify the root causes of binary defects by utilizing 
the earlier measured physical information.  
Although the aforementioned logistic regression method can estimate coefficients for each 
measurement variable, the high dimensionality of solder profile makes it not efficient for 
engineers to explore the nature of how the underlying process factors cause the defective 
outputs. On the other hand, as shown in Fig. 2, the latent variable model helps recognize the 
patterns of solder paste variation and thereby identify the corresponding systematic causes 
during stencil printing operation. By integrating the logistic regression method with latent 
variable model (4), the proposed methodology will quantify the effects on solder profile x 
and defects y from process faults v, which is performed entirely on the collected sample 
data with no a priori knowledge about the patterns of variation. Therefore, a core 
component of this approach includes the proper clustering over regression coefficients with 
respect to variables v, which provides more intuitive insight into the interdependencies 
among multiple measurement variables.  
   

 

Fig. 2. Illustration of latent variable model that explains the relationship between systematic 
cause v, solder paste profile x, and final defect inspection output y. 

Following the assumptions on model (4), let x = [x1, x2 . . . xd]T represent the measurable 

characteristics of a solder paste, and {xi; i = 1, 2, …, n} be a set of n solder pastes in the board. 

Fig. 2 implies that p independent causes vj apply their joint effects on the variation of 

physical profile xi through a constant matrix Ci, and produce the consequent binary outputs 
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yi through logistic regression coefficient βi. In particular, the effect from cause vj is 

represented by the jth column vector ci,j in Ci. Since each vj is scaled to have unit variance, ci,j 

indicates the magnitude or severity of variation caused by vj. After clustering a sample of 

solder pastes based on the distribution of their regression coefficients in terms of vj, quality 

diagnosing of stencil printing becomes possible by assigning a process fault to the solder 

pastes within the same group.  

Prior to the clustering analysis over regression coefficients, Equation (4) is substituted into 

the logistic regression model, yielding new coefficients 
iiiv ββ T

, C=  = [βv,i,1 βv,i,2 … βv,i,p]T for 

latent variable v. Now binary data yi can be explained by systematic causes vj, which takes 
the form of a logit function, that is,  

logit{yi = 1|v,βv,i} =  wβ i

T

1 ,, +∑ =

p

j jjiv vβ  ≡ vTβv,i + εw, 

where εw denotes the transformed noise effect. The new coefficients βv,i,j correspond to the 

change in the log odds per unit change in vj when vj does not interact with other sources 

(this is reasonable given the latent variable model assumptions). Or, the effect of increasing 

vj by 1 is to increase the odds that yi = 1 by a factor exp(βv,i,j).  

Since βv,i depends on the systematic causes v, the regression coefficients can be classified so 

that each cluster describes the similar pattern of solder paste variation. In other words, the 

proposed clustering method is used to separate the impacts from cause v. Once all inspected 

solder pastes on a PCB are clustered in terms of βv,i, process diagnosis for variation 

reduction can be performed since each cluster is mapped to a specific process fault or 

assignable cause.  

4.3 MLPCA based clustering algorithm for quality diagnosing 

As a statistical tool for diagnosing the quality of solder pastes, the proposed MLPCA based 
regression coefficients clustering algorithm is now summarized as follows: 
Step 1. Apply logistic regression model (1) to binary inspection data collected from m PCBs, 

yielding the estimates of coefficients βi for the ith solder paste through sample { i

jy : i = 1, 2, 

…, n; j =1, 2, …, m ). 

Step 2. Given the set of measured solder paste profile i

jx , determine the dimension p via 

rule (10) and estimate the matrix Ci in model (4) by MLPCA method. 

Step 3. Calculate new regression coefficients 
iiiv ββ T

, C= , followed by a k-means clustering 

algorithm (Hastie et al. 2001) over βv,i to recognize the coefficient clusters. 

Step 4. Present the geometrical clustering results on the board to process operators to 

identify the process faults by utilizing their engineering knowledge. The diagnosing results 

of solder paste quality will then lead to appropriate stencil printing operation adjustments. 

By taking advantage of the diagnostic information from latent variable model and logistic 

regression coefficients, the MLPCA based clustering algorithm provides a visual way to 

relate stencil printing process problems to the variation on solder paste profile and 

consequent binary defects. Case study in the following section shows that the proposed 

method is favorable in improving process quality by developing a more interpretable 

relationship between variation pattern and physical faults.  
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5. Application in PCB assembly 

In stencil printing process, each solder paste is deposited on the board automatically by 
printing machines, then registered with the screen and printed. Stencil printing is known to 
be an established technology, however, there are some uncontrolled factors that influence 
the quality of solder pastes (Lathrop 1997; Liu et al. 2001), and hence cause component 
failures in PCB assembly. In order to produce pastes with minimal variation on physical 
profile, the controllable parameters for printing operation should be monitored and adjusted 
by appropriate diagnosing of solder paste quality. In the present study, solder paste 
printability was denoted by a physical profile collected from laser triangulation and X-ray 
based measurement machine. The purpose of the present experimental research is to 
identify the systematic factors in solder deposition process by quantifying their impacts on 
paste quality. The set of process factors include printer steel squeegee angle, printing 
direction, and squeegee speed, etc.  
The variation on measured solder paste profile that leads to binary inspection results stems 
from improper parameter settings of stencil printing, called systematic factors. Their effects 
on solder paste (such as solder paste volume, area, and height, etc.) are present in 
multivariate profile x. Due to the common factors v, variables in x are always highly 
correlated, as shown in the scatter plots in Fig. 3. For a specific solder paste, the plots were 
drawn over pairs of distinct physical solder paste features from a sample of m = 30 inspected 
boards. In semiconductor fabrication, the solder paste profile often includes paste thickness, 
paste volume, shape of heel fillet, shape of toe or center fillet, alignment between pad and 
lead, pad average width, pad average height, and pad volume, etc. For purpose of 
illustration, we chose ten physical features as element variables of vector x, that is, d = 10.  
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Fig. 3. Scatter plot of selected pairs of measured variables in solder paste profile (e.g., paste 
volume, area, and average height). 

Next, the coefficients clustering algorithm proposed in Section 4 was applied to map the 
pattern of solder paste defects on PCB to the latent systematic causes, given the assumption 
that variation of solder paste profile was not completely random due to the measurement 
noise. To accommodate pattern clustering and visualization, the present experimental study 
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was undertaken over a region of PCB that consists of more than 3000 solder joints (e.g., n = 
3012), as shown in Fig. 4. Given the sample of binary inspection yi and corresponding 
physical profile xi (i = 1, 2, …, n), we first calculated the estimation of coefficients βi by 
logistic regression model (1). MLPCA was then applied to estimate variation pattern matrix 
Ci, in which the dimension of systematic cause vi was always determined as two by the rule 
(7) (i.e., p = 2 for all i). As indicated in the algorithm summary, after projecting original βi 
onto the latent space spanned by Ci, the new coefficients βv,i became available for k-
clustering algorithm (Hastie et al. 2001), which classify them into two clusters.  
The graphical illustration of clustered βv,i in Fig. 4 also validate the presence of two clusters 
as identified by the standard k-means algorithm. Since each solder paste is positioned on 
PCB by the unique X-Y coordinates, we can visualize the clustered coefficients on a printed 
circuit board such that the pastes in each cluster are denoted by the same symbol (e.g., “+” 

for cluster 1 and “×” for cluster 2).  
 

 

Fig. 4. Scatter plot of their logistic regression coefficients βv = [βv1 βv2]T. 

MLPCA implied that there were 2 systematic causes that governed the variation over the 

measured solder paste profile. The pastes denoted by ‘+’ in Fig. 4, for example, were 

dominantly affected by the first systematic cause v1, which almost lie on the horizontal 

direction of the board, while the pastes denoted by ‘×’ were distributed along the vertical 

direction and influenced mainly by the second cause v2. The graphical demonstration of 

clustered coefficient results in Fig. 4 thus helped process engineers to adopt their expert 

knowledge and experiences in diagnosing the solder paste defects. For instance, the solder 

pastes denoted by “+” in cluster 1 had relatively large coefficients βv,i,1 and were mostly 

distributed along the length of PCB. That is, the systematic cause corresponding to this 

cluster should influence the solder pastes along the horizontal direction to a greater extent 

during stencil printing. Intensive discussions with process engineers have provided a 

reasonable explanation for the causes to be inappropriate parameter settings in controlling 

the stencil printing speed and printing pressure. These process factors are expected to 

generate large variation of solder paste profile along the horizontal and vertical direction, 

respectively, and correspondingly more inspected defects.  

βv1

βv2
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Further investigation on other potential process faults implied that the above identified 
systematic causes are most likely to produce the consistent results. The diagnostic results 
also agreed with the natural speculation on stencil printing diagram in Fig. 1, where 
printing speed usually influences the solder pasts along the length of PCB, while printing 
pressure has greater impacts on solder paste quality than other process factors (e.g., 
separation distance, printer alignment) along the width of PCB. In addition, detailed 
inspections revealed that a substantial portion of the quality deficiencies (such as slumping, 
bridging and bleeding of paste underneath the stencil) along the width of PCB was caused 
by abnormal high printing pressure during stencil printing.  
The case study shows that the systematic pattern on PCB assembly defects is often owing to 
specific process faults such as inappropriate process operations, rather than completely 
random due to the environmental or measurement noise. The proposed coefficients 
clustering algorithm provides an effective process-oriented diagnosis tool for identifying 
such production irregularities. By assuming the potential systematic causes are mapped to 
the clusters of solder pastes with similar coefficients, the variation on solder paste profile 
and corresponding binary defects can be mapped to improper parametric control that 
deviates from optimal conditions, which will suggest informative corrections to adjust the 
stencil printing to improve process quality. 

6. Conclusion 

The distillation of massive quantities of solder paste inspection data into relevant quality 
information allows rapid understanding of the low production yield in PCB assembly. The 
statistical diagnosis method proposed in this paper provides more meaningful insights into 
the defect mechanisms than traditional yield analysis methods, which can identify the 
assignable causes of defects and their effects on yield by integrating MLPCA and logistic 
regression model. This offers a systematic representation on the impacts of process 
condition changes to the variation of solder paste profile. The probabilistic latent variable 
model allows ML estimation to determine the latent space by iteratively maximizing the 
likelihood function. In contrast to standard PCA, this approach is also efficient for 
multivariate process analysis when some sample data are missing. The clustering algorithm 
over the projected regression coefficients onto the latent space is relatively easy to 
implement with affordable computational effort. Experimental study demonstrates that the 
statistical interpretation of solder defect distributions can be enhanced by intuitive pattern 
visualization for process fault identification and variation reduction. 
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