
Bioinformation open access

www.bioinformation.net Hypothesis

ISSN 0973-2063 (online) 0973-8894 (print)
Bioinformation 4(8): 366-370 (2010) © 2010 Biomedical Informatics

366

A data-mining approach for multiple structural alignment of
proteins

Wing-Yan Siu, Nikos Mamoulis, Siu-Ming Yiu
*
, Ho-Leung Chan

Department of Computer Science, the University of Hong Kong, Pokfulam Road, Hong Kong, China; Siu-Ming Yiu* - E-mail:

smyiu@cs.hku.hk; Phone: 852-2219-8242; Fax: 852-2559-8447; *Corresponding author

Received May 25, 2009; Revised December 19, 2009; Accepted February 10, 2010; Published February 28, 2010

Abstract:
Comparing the 3D structures of proteins is an important but computationally hard problem in bioinformatics. In this paper, we propose studying
the problem when much less information or assumptions are available. We model the structural alignment of proteins as a combinatorial problem.
In the problem, each protein is simply a set of points in the 3D space, without sequence order information, and the objective is to discover all
large enough alignments for any subset of the input. We propose a data-mining approach for this problem. We first perform geometric hashing of
the structures such that points with similar locations in the 3D space are hashed into the same bin in the hash table. The novelty is that we
consider each bin as a coincidence group and mine for frequent patterns, which is a well-studied technique in data mining. We observe that these
frequent patterns are already potentially large alignments. Then a simple heuristic is used to extend the alignments if possible. We implemented
the algorithm and tested it using real protein structures. The results were compared with existing tools. They showed that the algorithm is capable
of finding conserved substructures that do not preserve sequence order, especially those existing in protein interfaces. The algorithm can also
identify conserved substructures of functionally similar structures within a mixture with dissimilar ones. The running time of the program was
smaller or comparable to that of the existing tools.

Keywords: structural comparisons; proteins; multiple alignment

Background:
Structural comparison of proteins is an important methodology
towards the understanding of protein functions. Sequencing proteins
and determining the three-dimensional structures (or structures for
short) of proteins have made rapid progress with the aid of advanced
technologies such as X-ray crystallography and NMR spectroscopy.
Meanwhile, testing the functions of proteins through experiments
remains a time consuming and resource demanding process. Proteins
which undergo mutations have been modified gradually during
evolution; nevertheless, they are conserved particularly at the
substructures responsible for their functioning. This suggests that
structural similarity of proteins may infer their functional similarity.
Automating the process of structural comparison hence assists our
understanding of protein structures with respect to their functions, as
well as our prediction of functions of newly discovered proteins. This
paper investigates the computational problem of multiple structural
alignment that helps discover important functional sites and motifs.

As the structure is more conserved than its sequence during evolution,
proteins exhibiting similar functions may have conserved substructures
but share no overall sequence similarity [5,20]. Yet aligning structures
in the three-dimensional (3D) space is a computationally hard problem
and is NP-hard in many variations [1]. Note that an alignment of
structures involves rotations and translations to superimpose the
structures and identify similar substructures. Many existing tools for
structural comparisons of proteins try to get around the difficulties
with different assumptions and simplifications. In this paper, we
investigate the problem when much less information or assumptions
are available. In particular, we study the problem with the following
properties.

Sequence order independence: We do not require the sequence order
information, i.e., the exact sequential arrangement of the amino acids
in the proteins. The only information required is the set of 3D
locations of the amino acids. This allows aligning structures without
sequence order, e.g., protein interfaces which consist of amino acids
from two chains which have no particular order. This is different from
some existing tools which require sequence order information and
assume the amino acids that form the conserved substructures are
consecutive segments in the corresponding protein sequences.

 Subset alignment: We design our tool to detect conserved
substructures that may exist only in a certain subset of the input. This
allows discovery of conserved substructures of functionally similar
structures within a mixture with dissimilar ones, without prior
knowledge of the structural similarity of the input. This is different
from some existing tools that align all input structures. Note that these
existing tools can perform subset alignment by trying all possible
subsets. As we will show later, our algorithm can perform it in a much
more efficient way.

Bottleneck metric: We use the bottleneck metric to measure the
quality of an alignment, which requires that in an alignment, every pair
of aligned amino acids must have a small distance. Using this metric
helps reduce the chance of aligning substructures that are not
structurally similar. Thus our approach is different from some existing
tools that measure the similarity with relaxed metrics, e.g., the root
mean square deviation (RMSD) of the aligned amino acids. We can
see that some aligned amino acids may be far away even if the RMSD
is small. To our knowledge, our work is the first to study the problem
with all these three properties.

Related work:
Due to the importance of the protein alignment problem, it has
attracted significant attention in the last three decades (see, e.g., [7] for
a survey). Early work mostly considers pairwise alignment, e.g., DALI
[12] and VAST [10]. In particular, [5, 8] offer pairwise sequence order
independent alignments. They apply the geometric hashing technique
[23] to allow an efficient database search for query structures.
Techniques like tree-progressive approaches [22] and center-star [2]
have been used to derive multiple alignments from results of pairwise
ones. Recent work includes [15]. They inherit the drawback that good
pairwise alignments may not result in good multiple alignment.

A series of multiple structural alignment tools have then been
developed. POSA [24], MASS [9] and Matt [25] are tools that require
sequence order. In particular, MASS aligns structures based on their
secondary structure elements (SSEs). This limits its application to
proteins whose SSEs information is available. MultiProt [19] is
partially sequence order dependent, as it first finds matches for short
contiguous segments of proteins and then finds multiple alignments

Bioinformation open access

www.bioinformation.net Hypothesis

ISSN 0973-2063 (online) 0973-8894 (print)
Bioinformation 4(8): 366-370 (2010) © 2010 Biomedical Informatics

367

based on these short matches. Tools that are sequence order
independent include MUSTA [14], MultiBind [20] and MAPPIS [21].
All of them use the geometric hashing technique. They lack the
support of subset alignment. [13] is also a sequence order independent
method, which uses a graph-based technique. However it is targeted
for motifs that are usually small in size, and it has been considered to
be inefficient [18].

Methodology:
We model the alignment problem as a combinatorial problem. We
define the structure of a protein to be a set of amino acids in the 3D
space. Each amino acid is represented by its Cα , N and C atoms, and
the 3D coordinates of these three atoms are given. Therefore, a
structure consisting of n amino acids is represented by 3n coordinates.
The size of a structure is the number of amino acids in it. A
substructure S' of S is a subset of amino acids S' ⊆ S. The sequence
order of the amino acids is unknown.

We want to find similar substructures among different structures with
suitable transformations. In particular, a transformation T is a
Euclidean transformation that can be applied on a structure S such that
for all amino acids s ⊆ S, the location after transformation is T(s) = Rs
+ t, where R is a 3×3 rotation matrix, t is a 3×1 translation matrix, and
the transformation is applied to all the three atoms in s.

To define similarity, let C = {c1, … , ck} be a set of substructures of
same size l , each from a distinct structure. Let ε ≤ 0 be a real number
and T = {T1, … , Tk} be a set of transformations. Then C is ε-congruent
with respect to T if: (1) we can transform each substructure ci by Ti
and then order the transformed amino acids of ci by 1, 2, … , l , and (2)
for j = 1, 2, … , l , consider the j-th amino acids of all transformed
substructures and let Pj be the set of these amino acids, then the Cα
atoms of any two amino acids in Pj have a distance at most ε. Note that
we only align the Cα atoms. For any set S' = {S1, … , Sk} of structures,
an ε-congruent alignment of S' is a tuple (C, T), where C
={c1, … , ck} is a set of substructures with ci ⊆ Si and T = {T1, … ,
Tk} is a set of transformations, such that C is ε-congruent with
respect to T. The cardinality of the alignment is the number of
structures involved, which is k in this alignment. The size of the
alignment is the size of each substructure in C.

Finally, let S = {S1, … , Sm} be a set of m structures. Our task is to
identify the largest ε-congruent alignment for each subset S' ⊆ S. We
allow a parameter min_cardinality ≤ 2, which is the minimum
cardinality of S' for which an alignment will be considered. Similarly,
the parameter min_size ≤ 3 is the minimum size of an alignment for S'.

Problem statement. Given a set S = {S1, S2, , Sm} of structures, a
distance threshold ε, a cardinality threshold min_cardinality and a size
threshold min_size, find, for each subset S’ ⊆ S with |S'| ≥
min_cardinality, the maximal size ε-congruent alignment whose size
is at least min_size.

Algorithm SOIL:
Our new algorithm SOIL (Sequence Order Independent aLignment)
finds the alignments in 3 steps.

Step 1 -- Geometric hashing:
We first apply the geometric hashing technique [23] to store the
structures redundantly in many different transform-ations. Specifically,
consider a structure Sk consisting of n amino acids. Let {Sk

1, Sk
2, … ,

Sk
n} be a set of coordinates such that Sk

i is the coordinates for the Cα
atom of the i-th amino acid. We reiterate that the order is arbitrary and
does not correspond to the sequence order of the protein. The Cα atom
Sk

i together with the N and C atoms in the same amino acid form a
basis for this amino acid. We define a local reference frame (LRF) as
in [8]. We overload Cα = Sk

i, N and C to mean the coordinates of the
corresponding atoms. Then, the LRF defined by this basis is centred at

Sk
i and specified by the vectors defined using equations 1 and 2 in

supplementary material (see [8] for more details)

Hence, using the Cα atom Sk

i , we form an LRF and transform all other
Cα atoms Sk

j , j ≠ i, using this LRF. We hash the transformed points
into a 3D grid-based hash table, where the 3D space is partitioned into
hash bins having length ε in each dimension. Precisely, when a point
Sk

j is transformed using the LRF of Sk
i, a 5-tuple (k, i, x, y, z) is inserted

to the hash table, where the tuple (k, i) correspond to the basis Sk
i and

(x, y, z) are the calculated coordinates for Sk
j after transformation. This

tuple is inserted to the bin containing (x, y, z). We repeat the procedure
by using each amino acid of Sk to form an LRF. We further repeat it
for each structure. Note that we only hash the Cα atoms.

Step 2 - Frequent pattern mining:
Given the hash table created previously, we consider each bin as a
coincidence group, which is simply a set containing all the bases in the
bin. Our main observation is the following.

Observation:
Assume that a pair of bases {(k1, i1), (k2, i2)} is a subset to x
coincidence groups. Then, if structures Sk1 and Sk2 are transformed
using the LRFs formed by Sk1

i1 and Sk2
i2 , respectively, there are at least

(x+1) pairs of points locating closely with each other (specifically with
distance at most ε, i.e., diagonal of the 3D box).

In other words, we can potentially form an alignment for Sk1 and Sk2
with (x+1) pairs of points aligned, where the extra one pair of points
corresponds to Sk1

i1 and Sk2
i2. Thus, finding a large alignment of points

can be facilitated by finding a subset of bases with a large number of
co-occurrences in the coincidence groups. This observation is the main
novelty of our work. It allows the tool to consider all subsets
simultaneously and identify the potentially good alignments directly.
We consider each basis as an item and each coincidence group as a set
of items. Then to find the set of bases that frequently appear in the
coincidence groups, it becomes the problem frequent itemset mining,
which is well-studied in data mining. For any set of items, the number
of coincidence groups that contain it is known as the support for this
set of items. We apply an efficient frequent itemset mining algorithm,
FP-growth [11], to identify set of items with large support. The
algorithm is exact, that is, it reports exactly all itemsets satisfying this
requirement. We set the required support to 5% of min_size, since
SOIL will extend the alignment and the final size obtained may be big
enough. The current implementation will also try 3% and then 1% if
FP-growth does not return results involving all structures using the
previous support threshold.

Step 3 -- Alignment generation:
This step generates alignments from the frequent itemsets. Consider
any set {Sk1 , Sk2 , … , Skw} of w structures. Let I = {b1 , b2 , … , bw} be
the itemset involving these w structures and having the largest support.
For i = 1, … , w, the item bi is some basis (ki , ji) and we transform all
amino acids of Ski using the LRF formed by Ski

ji . Then we construct a
graph G so that each vertex in G corresponds to a transformed point of
Ski for some i and two vertices are connected by an edge if and only if
they are from different structures and within ε distance from each
other. G is a w-partite graph and we aim at finding a large w-partite
matching. Note that finding the largest w-partite matching is NP-hard.
Instead, we use a greedy heuristic that if w vertices in G form a clique
and none of them has been included in the matching, we include them
into the w-partite matching for G. We continue until no more vertices
can be included.

For each subset of structures, we repeat the above for the K itemsets
with the largest supports, where K is empirically set to be 10 times the
number of input structures. The largest alignment found is then
reported as the alignment for this subset of structures. SOIL then
repeats the procedure for other subsets of structures which satisfy that
some itemset involving them has a large support.

Bioinformation open access

www.bioinformation.net Hypothesis

ISSN 0973-2063 (online) 0973-8894 (print)
Bioinformation 4(8): 366-370 (2010) © 2010 Biomedical Informatics

368

Results and discussion:
We implemented SOIL in C++. The FP-growth procedure was adopted
from the open-source package provided by Borgelt [6] and modified
for our particular purpose. Experiments were run on a PC with a dual
core 2.66GHz CPU and 4GB memory. In the experiments, we applied
the default settings as follows: the distance threshold ε is 3.0 Å, the
cardinality threshold min_cardinality is 2, and the size threshold
min_size is 3.
We compared SOIL with C-alpha match [5] (pairwise only), MultiProt
[19] and MultiBind [20]. C-alpha match has a web server and we ran
the tests on it. We downloaded the MultiProt software and ran the tests
on our machine. As MultiBind only aligns labeled pseudocenters and
small datasets, and does not support subset alignment, we adopted the
algorithm and re-implemented it so that it aligns the Cα atoms. For
subset alignment, we let MultiBind iterate through every subset of
structures, and let the first structure be a pivot, which is required by
MultiBind. We denote the re-implemented software as MultiBind*.

Note that C-alpha match and MultiProt use the RMSD metric.
MultiBind* uses the bottleneck metric. But it is only for the alignment
between the pivot and another structure, and has no guarantee for any
two non-pivot structures. When making comparison, we first show the
sizes of the alignments under the bottleneck metric, i.e., without
counting those aligned points that have distance greater than ε. Then
we also show the sizes of the alignments under the tool's own distance
metric.

Pairwise alignment:
We performed pairwise alignment on 15 pairs of protein structures.
The first 10 pairs have been used as testing data, e.g., in [19]. The 11-
th pair shares the same family in the SCOP classification [16].
Structures in the 12-th pair both have a 4-helix bundle structure but of
different topologies. The last three pairs are protein interfaces retrieved
from PRINT database [17].

We compared the sizes of the alignments generated by SOIL with that
by C-alpha match, MultiProt and MultiBind*. The results are shown in
Table 1 (see supplementary material). We can see that SOIL has the
largest alignment for all cases, even when the other tools are measured
with their own distance metrics. In particular, SOIL gave the largest
alignment for all pairs of protein interfaces. This suggests that
sequence order independence in alignment is important in aligning
structures with non-contiguous sequences. The average running times
of MultiProt, MultiBind* and SOIL were 0.211s, 1.968s and 0.235s
respectively. The web server of C-alpha match returned the results
within a few seconds.

Multiple alignment:
We perform multiple alignments on 10 sets of protein structures. It
includes various superfamilies of SCOP [16] (calcium-binding, 4-helix
bundle, superhelix, concanavalin, tRNA synthetase, G-proteins and
PTB domains), and clusters of protein interfaces from PRINT [17].

The results are shown in Table 2 (supplementary material). It shows
the largest alignment when the cardinality is 2 up to the total number
of input structures. In the comparison with MultiProt, there are cases
where SOIL performed better and also cases where MultiProt
performed better. The results show that sometimes sequence order may
be useful in protein structural comparison and at the other times it may
limit the alignment result. The running time of both tools were roughly
the same. SOIL usually generated a larger alignment than MultiBind*
and ran much faster. The experimental results suggest that SOIL is
more efficient than MultiBind* mainly due to the application of
frequent itemset mining for subset alignment.

Note that MultiBind* takes a pivot-based approach by selecting a pivot
and then aligning every structure with it so that every pair of aligned
points has distance at most ε. However, we observed from the results
that when multiple structures are aligned in this way, many aligned
points become more than ε distance apart. On the contrary, SOIL
compares structures simultaneously and produces a larger alignment,
ensuring that all common substructures discovered are similar to each
other.

Conclusion:
This paper studies the multiple structural alignment problem for
protein structures. We designed an algorithm SOIL that works well
with less information and assumptions. In particular, SOIL is sequence
order independent and can perform subset alignment with a more
restrictive similarity measurement. Our proposed algorithm SOIL
makes use of the geometric hashing technique from computer vision,
and the frequent itemset mining technique from data mining. Both
techniques have been used in a wide range of applications and
algorithms. We demonstrated the efficiency and effectiveness of the
SOIL algorithm through experiments. SOIL compares structures
simultaneously, discovers large common substructures, and ensures
that the common substructures detected are similar to each other.
Experiments have shown its applications to the alignment of various
protein structures including protein chains and protein interfaces.

Acknowledgements:
We thank Christian Borgelt for providing an open source
implementation of FP-Growth algorithm. This research was partially
supported by Hong Kong RGC GRF grant (HKU 775207M).

References:
[1] T. Akutsu and M. M. Halldorson, Theoretical Computer Science,

233: 33 (2000).
[2] T. Akutsu and K. Sim, Genome Informatics, 10: 23 (1999).
[3] C. Ambühl, et al., Proc. ESA, (2000).
[4] K.S. Arun, et al., IEEE Transactions on Pattern Analysis and

Machine Intelligence, 9(5): 698 (1987).
[5] O. Bachar, et al., Protein Engineering, 6(3): 279 (1993).
[6] C. Borgelt, Proc. OSDM, (2005).
[7] O. Carugo, Current protein and peptide science, 8: 219 (2007).
[8] S.C. Chen and T. Chen, Proc. Workshop on Genomic Signal

Processing and Statistics (2002).
[9] O. Dror, et al., Protein Science, 12: 2492 (2003).
[10] J.F. Gibrat, et al., Current Opinion in Structural Biology, 6(3):

377 (1996).
[11] J. Han, et al., Proc. SIGMOD (2000).
[12] L. Holm and C. Sander. J. Mol. Biol., 233: 123 (1993).
[13] J. Huan, et al., J. Comput. Biol., 12(6): 657 (2005).
[14] N. Leibowitz, et al., J. Comput. Biol. 8(2): 93 (2001).
[15] D. Lupyan, et al., Bioinformatics 21(15): 3255 (2005).
[16] A.G. Murzin, et al., J. Mol. Biol., 247: 536 (1995).
[17] http://prism.ccbb.ku.edu.tr/interface/
[18] A. Sacan, et al., Bioinformatics, 23(6): 709 (2007).
[19] M. Shatsky, et al., Proteins: Struture, Function, and

Bioinformatics, 56: 143 (2004).
[20] M. Shatsky, et al., J. Comput. Biol, 13(2): 407 (2006).
[21] A. Shulman-Peleg, et al., Proc. International Symp. on

Computational Life Science, 91 (2005).
[22] W. Taylor, et al., Protein Sci. 3(10): 1858 (1994).
[23] H.J. Wolfson and I. Rigoutsos. IEEE Computer Science and

Engineering, 4(4): 10 (1997).
[24] Y. Ye and A. Godzik. Bioinformatics, 21(10): 2362 (2005).
[25] M. Menke, et al., PLoS Comput. Biol., 4(1): e10 (2008).

Edited by Tan Tin Wee

Citation: Siu et al, Bioinformation 4(8): 366-370 (2010)
License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, for non-

commercial purposes, provided the original author and source are credited.

Bioinformation open access

www.bioinformation.net Hypothesis

ISSN 0973-2063 (online) 0973-8894 (print)
Bioinformation 4(8): 366-370 (2010) © 2010 Biomedical Informatics

369

Supplementary material:

Equation 1 & 2:

(1)

Note that the above vectors are normalized and hence are unit vectors. Any other point S, j ≠ i, in the same structure can be transformed by this
LRF to new coordinates (x, y, z), after solving the equation

(2)

Table 1. Comparison of pairwise alignment results. It shows the sizes of the alignments measured under the bottleneck
metric. Numbers in the brackets are the original sizes measured under the algorithms' own metrics.

S1 (size) S2 (size) C-alpha match MultiProt MultiBind SOIL
1fxiA (96) 1ubq (76) 51 (51) 50 (50) 56 58
1ten (89) 3hhrB (195) 75 (81) 82 (82) 81 82
3hlaB (99) 2rhe (114) 62 (62) 66 (66) 65 68
2azaA (129) 1paz (120) 51 (51) 76 (76) 73 81
1cewI (108) 1molA (94) 66 (66) 70 (72) 71 75
1cid (177) 2rhe (114) 70 (70) 81 (81) 78 82
1crl (534) 1ede (310) 177 (180) 190 (195) 187 205
2sim (381) 1nsbA (390) 194 (199) 219 (228) 206 233
1bgeB (159) 2gmfA (121) 72 (72) 82 (83) 80 87
1tie (166) 4fgf (124) 85 (87) 80 (81) 94 96
1dly (121) 1uvy (116) 112 (112) 112 (113) 113 114
2cblA (305) 1b3q (738) 130 (130) 140 (142) 149 160
1a04AB (43) 1hacAC (45) 20 (20) 18 (19) 22 23
1a3rLP (46) 1nakLP (40) 29 (30) 30 (31) 31 31
1ggiLP (39) 1a3rLP (46) 29 (29) 28 (28) 30 30

Table 2. Comparison of multiple alignment results. The table shows the running time in the first line followed by the
sizes of the alignments at different cardinalities. The numbers in brackets specify the sizes of the alignment under the
tools own metric. Entries marked with a '-' mean that the alignment of the corresponding test cases took over 3 hours
and still did not terminate.

Structures Average size MultiProt MultiBind* SOIL
Calcium binding (6)
4cpv, 2scpA, 2sas,
1top, 1scmB, 3icb

140 7s
2: 127 (129)
3: 53 (61)
4: 44 (56)
5: 40 (53)
6: 28 (45)

2h22m42s
2: 127 (127)
3: 54 (62)
4: 44 (52)
5: 28 (43)
6: 19 (38)

5s
2: 128
3: 57
4: 49
5: 40
6: 27

4-helix bundle (4)
1f4n, 2cblA, 1b3q
1rhgA

324 6s
2: 140 (142)
3: 58 (78)
4: 39 (73)

4m4s
2: 149 (149)
3: 58 (79)
4: 26 (62)

7s
2: 146
3: 71
4: 37

Superhelix (5)
1lxa, 1qq0, 1xat,
2tdt, 1fwyA:252-328

205 8s
2: 143 (144)
3: 106 (114)
4: 81 (87)
5: 64 (68)

1h32m21s
2: 157 (157)
3: 112 (124)
4: 73 (89)
5: 57 (71)

1m44s
2: 158
3: 116
4: 81
5: 63

Bioinformation open access

www.bioinformation.net Hypothesis

ISSN 0973-2063 (online) 0973-8894 (print)
Bioinformation 4(8): 366-370 (2010) © 2010 Biomedical Informatics

370

Supersandwich (3)
1bgmI:731-1023,
1cb8A:336-599,
1oacA:301-724

327 4s
2: 141 (150)
3: 63 (95)

3m52s
2: 153 (153)
3: 67 (98)

3s
2: 153
3: 71

Concanavalin (10)
2bqpA, 1gbg, 2galA,
1d2sA, 1sacA,
1a8d:1-247,
1kit:25-216,
2sli:81-276, 6cel,
1xnb

220 1m22s
2: 157 (160)
3: 87 (109)
4: 59 (76)
5: 34 (69)
6: 32 (60)
7: 23 (51)
8: 21 (42)
9: 15 (37)
10: 8 (32)

- 7m5s
2: 157
3: 102
4: 58
5: 46
6: 33
7: 21
8: 19
9: 16
10: 14

tRNA synthetase (4)
1adjA, 1hc7A, 1qf6A
1atiA-AntiCodon

490 19s
2: 321 (321)
3: 183 (240)
4: 117 (163)

1m23s
2: 305 (305)
3: 141 (200)
4: 55 (117)

55s
2: 303
3: 160
4: 66

G-proteins (6)
1agr, 1tad, 1gfi,
1tx4, 1grn, 1wql

596 1m36s
2: 365 (365)
3: 305 (310)
4: 134 (148)
5: 116 (139)
6: 42 (79)

- 17m19s
2: 366
3: 307
4: 129
5: 113
6: 33

PTB domain (6)
1x11, 1irs, 1shc,
1ddm, 2nmb, 1evh

168 9s
2: 127 (127)
3: 84 (97)
4: 62 (76)
5: 41 (61)
6: 20 (50)

3h13m30s
2: 123 (123)
3: 60 (82)
4: 35 (61)
5: 15 (51)
6: 13 (39)

7s
2: 121
3: 72
4: 40
5: 24
6: 14

PRINT cluster 45 (3)
1g4yBR, 1a2xAB, 1yv0IC

101 0.3s
2: 67 (67)
3: 49 (52)

0.8s
2: 66 (66)
3: 31 (42)

0.1s
2: 66
3: 34

PRINT cluster 8158 (3)
43caAC, 1b88AB, 1d9kAE

52 0.1s
2: 53 (53)
3: 42 (42)

0.1s
2: 53 (53)
3: 42 (42)

0.1s
2: 53
3: 42

