
A data mining toolset for distributed high-
performance platforms

M. Cannatarol, A. Congiusta2, D. Talia2 & P. Trunfio2
1ICAR-CNR, Rende (C$), Italy

2 DEIS, University of Calabria, Rende (C$), Italy

Abstract

Today a large number of scientific and commercial applications often require to
analyse large data sets maintained over geographically distributed sites by using
the computational power of distributed high-performance environments.
Advances in networking technology and computational infrastructure made it
possible to construct large-scale distributed computing platforms, called
computational grids, that provide dependable, consistent, and pervasive access to
high-end computational resources. Grids can play a significant role in providing
an effective computational support for distributed data mining applications.
Currently we are developing a software system for geographically distributed
knowledge discovery applications called KNOWLEDGEGRID,which is designed
on top of computational grid mechanisms, provided by grid environments such
as Glob us. In this paper we present an integrated toolset named VEGA (Visual
Environment for Grid Applications), which allows a Knowledge Grid user to
develop and execute distributed data mining computations in a simple and
effective way.

1 Introduction

In many industrial, scientific and commercial applications, it is often necessary
to mine large distributed data sets by using the computational power of
distributed high-performance computers. Advances in networking technology
and computational infrastructure made it possible to design computational grids
as large-scale distributed computing platforms that provide dependable,
consistent, and pervasive access to high-end computational resources. The term

© 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved.
Web: www.witpress.com Email witpress@witpress.com
Paper from: Data Mining III, A Zanasi, CA Brebbia, NFF Ebecken & P Melli (Editors).
ISBN 1-85312-925-9

42 Data Mining III

grid refers to an emerging infrastructure that enables the integrated use of remote
computers, databases, scientific instruments, and other resources [I]. Grid
applications often involve large amounts of computing and data. For these
reasons, the grids can play a significant role in providing an effective
computational support for distributed data mining applications.

We designed a software architecture for geographically distributed knowledge
discovery applications called KNOWLEDGEGRID[2], which is designed on top of
computational grid mechanisms, provided by grid environments such as Globus.
The KNOWLEDGEGRID uses the basic grid services such as communication,
authentication, information, and resource management to build more specific
distributed data mining tools and services. This paper presents a KNOWLEDGE
GRID toolset, named VEGA, for the composition and execution of distributed
data mining computations over a Globus-based grid. Such toolset allows a user
to build the computation starting from a set of usefid remote resources (e.g.,
computational nodes, sources of data, data mining suites, etc.). Such resources,
which are located and selected by means of grid information services, are
presented to the user as a set of objects. The user can compose those objects
using common visual facilities, to form a graphic representation of her/his data
mining computations. The toolset validates and translates this graphic
representation into an execution plan, which is then processed and effectively
executed on the grid by means of Globus resource management tools.

2. The KNOWLEDGEGRID architecture

The KNOWLEDGEGRID architecture [2] (see Figure 1) is designed on top of
computational grid mechanisms, provided by grid environments such as Globus
[1]. The KNOWLEDGEGRIDuses the basic grid services such as communication,
authentication, information, and resource management to build more specific
parallel and distributed knowledge discovery (PDKD) tools and services.

The KNOWLEDGEGRID services are organized into two layers: core K-grid
layer, which is built on top of generic grid services, and high level K-grid layer,
which is implemented over the core layer.

The core K-grid layer comprises two basic services: the Knowledge Directoq
Service (KDS) and the Resources Allocation and Execution Management Service
(&tEMS). The KDS manages the metadata describing the characteristics of
relevant objects for PDKD applications, such as data sources, data mining
software, results of computations, data and results manipulation tools, execution
plans, etc. The information managed by the KDS is stored into three ad hoc
repositories: the metadata describing features of data, software and tools, coded
in XML documents, are stored in a Knowledge Metadata Repositoy (KMR), the
information about the knowledge discovered after a PDKD computation is stored
in a Knowledge Base Repository (KBR), whereas the Knowledge Execution Plan
Reposito~ (KEPR) stores the execution plans describing PDKD applications
over the grid. The goal of RAEMS is to fmd a mapping between an execution
plan and available resources on the grid, satisfying user, data and algorithms
requirements and constraints.

© 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved.
Web: www.witpress.com Email witpress@witpress.com
Paper from: Data Mining III, A Zanasi, CA Brebbia, NFF Ebecken & P Melli (Editors).
ISBN 1-85312-925-9

Data Mining III 43

I
.=

I
I
I
,1

Figure 1: The KNOWLEDGEGRIDarchitecture.

The high level K-grid layer comprises the services used to build and execute
PDKD computations over the grid. The Data Access Service (DAS) is used for
the search, selection, extraction, transformation and delivery of data to be mined.
The Tools and Algorithms Access Service (TflS) is responsible for search,
selection, and download of data mining tools and algorithms. The Execution
Plan Management Service (EPMQ is used to generate a set of different possible
execution plans, starting from the data and the programs selected by the user.
Execution plans are stored in the KEPR to allow the implementation of iterative
knowledge discovery processes, e.g., periodical analysis of the same data sources
varying in time. The Results Presentation Service (RPS) specifies how to
generate, present and visualise the PDKD results (rules, associations, models,
classification, etc.), and offers methods to store in different formats these results
in the KBR.

3. Task building and execution process

The design and the execution of computations on the KNOWLEDGEGRID is
performed as showed in Figure 2. The operations start searching data and
programs to be used in the data mining process.

The search of resources is accomplished by means of the DAS and TAAS
tools, analyzing the XML metadata documents stored into the KMR of the
participant grid nodes. Such analysis attempts to find specific information about
useful resources (e.g., a desired software, datasets regarding a specific argument,
etc.), and is conducted on the basis of the search parameters and selection filters
chosen by the user. The useful metadata (i.e., those satisfying the searching and
filtering criteria) are then stored into the Task Metadata Repository (TMR), a

© 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved.
Web: www.witpress.com Email witpress@witpress.com
Paper from: Data Mining III, A Zanasi, CA Brebbia, NFF Ebecken & P Melli (Editors).
ISBN 1-85312-925-9

44 Data Mining III

local storage space that contains information about resources (nodes, data
sources and algorithms) selected to perform a computation. The TMR is
organized as a set of directories: each one is named with the fully qualified
hostname of a grid node, and contains metadata files about resources of that
node.

Figure 2: Design and execution steps of an application on the KNOWLEDGEGRID.

The design of the computation is performed by means of the EPMS tools,
which permits to generate an execution plan for the planned computation. The
execution plan (an XML document) can be stored into the KEP~ and processed
for its execution by the RAEMS tools. The RAEMS uses in turn the services
provided by the resource allocation manager of the underlying grid. After the
execution the results are stored in the KBR. A user can visualise and analyse
such results using the RPS tools. In the next section we describe in detail an
environment integrating fimctionalities of both EPMS and RAEMS services.

4. Visual Environment for Grid Applications

In order to allow a KNOWLEDGEGRIDuser to develop and execute applications
in a simple and useful manner, we developed an integrated environment named
VEGA (Visual Environment for Grid Applications), which software architecture
is depicted in Figure 3. VEGA includes a set of tools, allowing to perform the
following operations:

● task composing, i.e., definition of the entities involved in the computation
and specification of the relations among them;

● checking of the consistency of the planned task;

● generation of the execution plan for the task;

● execution of the generated execution plan through the resource allocation
manager of the underlying grid.

© 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved.
Web: www.witpress.com Email witpress@witpress.com
Paper from: Data Mining III, A Zanasi, CA Brebbia, NFF Ebecken & P Melli (Editors).
ISBN 1-85312-925-9

Data Mining III 45

Graphic
Composer

(lvW] [MS;

~.
I .’
I /’

------ ---- ----- ----- -.
,/”I

1
1

[

Model post-processor ,0”
I /’----- ----- -~

Model ~
Analyzer

Execution Manager

Figure 3: The VEGA software modules,

4.1 Task composing

Thetask composing phase isperformed bymeans ofagraphical interface (see
Figure 4), which provides the user with a set ofgraphical objects representing
the resources (datasets, data mining tools, grid nodes). This objects can be
composed using visual facilities which consent to insert links among them,
formiug agraphical representation of the computation. In particular, such phase
is realized by the following software components:

● Worh3pace Manager,

● Resource Manager, and

● Object Manager.

A complex computation is composed of several jobs. The design environment
is organized in workspaces. Jobs present in a given workspace are intended to be
executed concurrently, whereas workspaces are executed sequentially. To this
end is maintained a priority relationship between the workspaces which reflects
the order of their creation. In addition, the Workspace Manager manages an
internal model of the graphical representation showed to the user. Since the set
of workspaces represents a unique logical computation, the Workspace Manager
must handle with the case in which a task in a given workspace needs to operate

© 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved.
Web: www.witpress.com Email witpress@witpress.com
Paper from: Data Mining III, A Zanasi, CA Brebbia, NFF Ebecken & P Melli (Editors).
ISBN 1-85312-925-9

46 Data Mining III

on resources generated by tasks in previous workspaces. Such resources are not
physically generated by a given workspace in the moment in which the user start
to compose the next workspace of the same computation, because all the
workspaces are processed for the execution only at the end of the design session.
Thus, the Workspace Manager recognizes such a situation during the
composition of a workspace, generates the needed virtual resources and make
them available through the Resource Manager to all the following workspaces.
For instance, if in the workspace 1 a software component S is transferred to a
node N, a new metadata document is created for S and stored in the directory N
of the TMR. That document that specifies the new location of S is marked as
temporary until the data transfer is performed. However, if a workspace 2 is
opened in the same session (i.e. it is scheduled after workspace 1), the software S
is displayed as already available under the resources of N. The Workspace
Manager allows also to store a graphical composition in a binary file, which can
be next retrieved for modifications by the user.

la
...

icarus.isi.cs.cnr.t

+

Q$?:

Execute /’;nidb.res

L@!5’
,/’=

of;-.‘,..*

unidb.db2“n’”’ ‘ !k!Fk-_a

7%

+:*

unidb.hd2
Input Input

o

:p ;,

Q

,>..?,
+?g.:

v
unidb.s-params unidbmodel

Figure 4: The VEGA user interface

The Resource Manager permits to browse the TMR in order to search and
choose the resources to be used in the computation. Selected hosts are displayed
into the Hosts panel, and the user can explore resources of each one by clicking
on its label. That resources are displayed by categories into the Resources panel.

© 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved.
Web: www.witpress.com Email witpress@witpress.com
Paper from: Data Mining III, A Zanasi, CA Brebbia, NFF Ebecken & P Melli (Editors).
ISBN 1-85312-925-9

Data Mining III 4’7

The Object Manager deals with the graphical objects during the realization of
the visual composition. Each graphical object is associated with information
about the related resources; such information is used for the creation of the
internal model and for the execution plan generation. The Object Manager
handles three kind of objects: data, software and hosts. It allows the user to drag
the objects presented in the Hosts and Resources panels into the active
workspace (on the right of Figure 4). After this, the user can link that objects in
order to indicate the interaction between them. During the composition phase the
objects can be involved in several operations, such insertion and movement in a
workspace, selection, linking with other objects, etc. Links can represent
different actions, such as data transfer, programs execution and input and output
relations. The Object Manager performs the labeling of the links and the
attribution of the others properties characterizing them. The data transfer link is
used to move resources among different locations of the grid. The execute link is
used to run an application on a grid host, the input and output links are used to
respectively indicate input and output of a program. For each link type is
possible to set related parameters (e.g., protocol and destination path of the data
transfer, job-manager of the execution, etc.).

4.2 Task consistency checking

The goal of this phase is to obtain a correct and consistent model of the
computation. The validation process is performed by means of two components:

● Model pre-processor and

. Model post-processor.

The pre-processing of the computation model takes place during the
graphical composition. The Model pre-processor verities the composition
consistency, allowing, with a context-sensitive control, to create links only if
they represent actions that can be effectively executed. For instance, it allows to
insert only an input or output link between a software object and a data object,
but it does not allow to insert an execution link between a host object and a data
object.

The checking is completed by the Model post-processor, which is responsible
to catch error occurrences that cannot be recognized during the pre-processing
phase. For example, it indicates if the graphical composition in a workspace does
not contain at least one host.

4.3 Execution plan generation

In this phase the computation model is translated into a generic execution plan
(represented by an XML document), and/or into an RSL script. There are two
software modules that accomplish these tasks:

● XML Generator and

● RSL Generator

© 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved.
Web: www.witpress.com Email witpress@witpress.com
Paper from: Data Mining III, A Zanasi, CA Brebbia, NFF Ebecken & P Melli (Editors).
ISBN 1-85312-925-9

48 Data Mining III

Basically, the XML Generator is a parser that analyses the computation model
produced during the graphical composition, and is able to generate its equivalent
XML representation. When invoked, the XML Generator performs its goal
taking into account the properties of the involved resources and the parameters of
the links. The XML execution plan describes a data mining computation at a
high level, neither containing physical information about resources (which are
identified by metadata references), nor about status and current availability of
such resources. In fact, specific information about the involved resources will be
included in the RSL generation phase, when the computation model is translated
in this language. Fig{re 5 shows-an excerpt of a sample execution plan.

:ExecutionPlan>

...
<Task ep: label= ’’wsl dt4”>—
<DataTransfer>

<Source ep :href=’’minos ../unidb db2 .xml”
ep:title=’’unidb .db2 on–mines.isi.cs.cnr.it”/>

<Destination ep:href=’ricarus. ./unidb db2.xml’r

ep:title=’’unidb.db2 on ~carus.isi .cs.cnr.it”l>
...

</DataTransfer>
</Task>
...
<Task ep:label=’’ws2 cl”>

<Computation> –

<Program ep:href=’’icarus../autoclas33-3-3 .xml”
ep:title=’’autoclass on icarus.isi.cs.cnr.it”/>

<Input ep:href=’’icarus../unidb db2.xml”
ep:title=’’unidb.db2 on ~carus.isi.cs.cnr.it”/>

...

<Output ep:href=’’icarus../classes .xml”
ep:title=’’Classes on icarus.isi.cs.cnr.it”/>

</Computation>
</Task>
...
<TaskLink ep:from=’’wsl_dt4° ep:to=’’ws2_cl”/>

...
</ExecutionPlan>

Figure 5: Theextract ofasample execution plan.

The execution plan gives alist oftasks and task links, which are specified using
respectively the XML tags Task and TaskLink. The label attribute for Task

element identifies each basic task in the execution plan, and is used in linking
various basic tasksto form the overall task flow. Each Task element contains a
task-specific sub-element, which indicates the parameters of the particular
represented task. Forinstance, thetask identified bythe Wsl citq label containsa
DataTransfer element, indicating that it is a data ‘&ansfer task. The
DataTransfer element specifies Source and Destination of the data transfer.
The href attributes of such elements specify the location ofmetadata about
source and destination objects. In this example, metadata about source of data

© 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved.
Web: www.witpress.com Email witpress@witpress.com
Paper from: Data Mining III, A Zanasi, CA Brebbia, NFF Ebecken & P Melli (Editors).
ISBN 1-85312-925-9

Data Mining III 49

transfer in the wsl_dt4 task are provided by the unidb_db2. xml file stored in the
directory named min... isi. c.. cnr. it of the TMR, whereas metadata about
destination are provided by the unidb_db2. xml file stored in the directory named
icarus. isi. c.. cnr. it of the same TMR. The first of such XML documents
provides metadata about the unidb. db2 data set when stored on
mines. isi. c.. cnr. it, whereas the second one provides metadata about
unidb. db2 when, after the data transfer, is stored on icarus. isi. cs. cnr. it.

The Tas kLink elements represent the relations among tasks of the execution
plan. For instance, the showed TaskLink indicates that the task flow proceeds
from the task ws l_dt4 to the task WS2_CI, as specified by its from and to

attributes.
The RSL Generator produces an RSL script that can be directly submitted to

the GRAM (Globus Resource Allocation Manager) of a grid node running
Globus. The RSL (Resource Specification Language) is a structured language by
which resource requirements and parameters can be outlined by a user [3]. In
opposition with the XML execution plan, the RSL script describes entirely an
instance of the designed computation, i.e., it specifies all the physical

information needed for the execution (e.g., name and location of resources.
software parameter, etc.). Figure 6 shows’m- extract of a sample RSL script.

. . .
(& (resourceManagerContact=minos. isi. cs .cnr. it)

(subjobStartType= strict-barrier)
(label= wsl_dt4)

(executable=$ (GLOBUS_LOCATION) /bin/globus-url-copy)
(arguments=-vb -notpt gsiftp: //mines .isi. cs. cnr. it/. ../udb2b. db2

gsiftp://icarus .isi.cs.cnr.it/. ../unidb.db2

)

. . .
(& (resourceManagerContact=icarus .isi.cs.cnr.it)

(subjobStartType=strict-barrier)
(label=ws2_cl)

(executable=. ../autoclass)
(arguments=-search .../unidb.db2 .../unidb.hd2 .../unidb.model

. . .

. . .

Figure6: Theextract ofasampleRSL script.

4.4 Executionof thecomputation

The execution of the computation is performed by means of the Execution
Manager module. The Execution Manager allows the systemto authenticate a
user to the grid, by using the Globus GSI (Grid Security Intiastructure) services,
and submit theRSL script to the Globus GRAMforits execution. The Execution

© 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved.
Web: www.witpress.com Email witpress@witpress.com
Paper from: Data Mining III, A Zanasi, CA Brebbia, NFF Ebecken & P Melli (Editors).
ISBN 1-85312-925-9

50 Data Mining III

Manager is also responsible of the monitoring of the jobs that compose the
overall data mining computation during their life cycle.

5. Conclusions

The deluge of data available today in several formats requires intelligent and
efficient tools to analyze them and extract models that are usefid and
understandable. In the latest years several efforts have been devoted to the design
and implementation of parallel and distributed data mining systems that can
speed up the knowledge discovery process on large and/or distributed data sets
[4]. Among different parallel and distributed computing paradigms, the grid is
emerging as a high-performance and bigly decentralized infrastructure.
Traditional and novel applications can benefit from the use of computational
grids as a distributed platform for supporting complex applications.

In this paper we presented the VEGA toolset for the composition of data
mining applications on the KNOWLEDGEGRIDenvironment. We discussed how
such toolset allows a user to build the computation starting fl-om a set of useful
remote resources such as computational nodes, sources of data, and data mining
algorithms. Such resources, which are located and selected by means of grid
information services, are presented to the user as a set of objects. The user can
compose those objects using common visual facilities, to form a graphic
representation of her/his data mining computations. The toolset validates and
translates this graphic representation into an execution plan, which is then
processed and effectively executed on the grid by means of Globus resource
management tools.

References

[1] Foster, I. & Kesselman, C. Globus: a metacomputing infrastructure toolkit.
International Journal of Supercomputing Applications, 11, pp. 115-128,
1997.

[2] Cannataro, M., Talia, D., & Trurdio, P. KNOWLEDGEGRID: High
Performance Knowledge Discovery Services on the Grid. Proc. GRID 2001,
LNCS, pp. 38-50, Springer-Verlag, 2001.

[3] The Globus Project, The Globus Resource Specification Language RSL
v 1.0, available at http://www.globus. org/gramh-sl_spec 1.html

[4] Kargupta, H. & Chan P. (eds). Advances in Distributed and Parallel
Knowledge Discovety, AAAI/MIT Press, 2000.

© 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved.
Web: www.witpress.com Email witpress@witpress.com
Paper from: Data Mining III, A Zanasi, CA Brebbia, NFF Ebecken & P Melli (Editors).
ISBN 1-85312-925-9

