
A Data Outsourcing Architecture Combining
Cryptography and Access Control

Sabrina De Capitani di Vimercati
DTI - Università di Milano

26013 Crema - Italy
decapita@dti.unimi.it

Sara Foresti
DTI - Università di Milano

26013 Crema - Italy
foresti@dti.unimi.it

Sushil Jajodia
CSIS - George Mason

University
Fairfax, VA 22030-4444
jajodia@gmu.edu

Stefano Paraboschi
DIIMM - Università di Bergamo

24044 Dalmine - Italy
parabosc@unibg.it

Pierangela Samarati
DTI - Università di Milano

26013 Crema - Italy
samarati@dti.unimi.it

ABSTRACT
Data outsourcing is becoming today a successful solution
that allows users and organizations to exploit external
servers for the distribution of resources. Some of the most
challenging issues in such a scenario are the enforcement
of authorization policies and the support of policy updates.
Since a common approach for protecting the outsourced data
consists in encrypting the data themselves, a promising ap-
proach for solving these issues is based on the combination
of access control with cryptography. This idea is in itself
not new, but the problem of applying it in an outsourced
architecture introduces several challenges.

In this paper, we first illustrate the basic principles on
which an architecture for combining access control and cryp-
tography can be built. We then illustrate an approach for
enforcing authorization policies and supporting dynamic au-
thorizations, allowing policy changes and data updates at
a limited cost in terms of bandwidth and computational
power.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administra-
tion—Security, integrity, and protection; D.4.6 [Operating
Systems]: Security and Protection—Access control

General Terms
Design, Security

Keywords
Outsourced architecture, access control, cryptography

1. INTRODUCTION
With the recent adoption and diffusion of the data out-

sourcing paradigm, where data owners store their data on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSAW’07, November 2, 2007, Fairfax, Virginia, USA.
Copyright 2007 ACM 978-1-59593-890-9/07/0011 ...$5.00.

external servers, there have been increasing general demands
and concerns for data confidentiality. Besides well-known
risks of confidentiality and privacy breaks, threats to out-
sourced data include improper use of information: the server
could use substantial parts of a collection of data gathered
and organized by the data owner, potentially harming the
data owner’s market for any product or service that incor-
porates that collection of information. Traditional access
control architectures assign a crucial role to the reference
monitor [3] for ensuring data confidentiality. The reference
monitor is the system component responsible of the valida-
tion of access requests. The data outsourcing scenario how-
ever challenges one of the basic tenets of traditional access
control architectures, where a trusted server is in charge of
defining and enforcing access control policies. This assump-
tion no longer holds here, because the server does not even
have to know the access control policy that is defined (and
can, if necessary, be modified) by the data owner. We there-
fore need to rethink the notion of access control in open
environments, where external servers take full charge of the
management of the outsourced data and are not trusted with
respect to the data confidentiality.

An important opportunity for a revision for the access
control architecture can be based on the use of cryptogra-
phy [19]. Cryptography can be considered as a tool that
transforms information in a way that its protection (confi-
dentiality and integrity) depends only on the correct man-
agement of a compact secret (the key). Cryptography is
typically used when information is transmitted on a chan-
nel, with the assumption that the channel lies outside of the
trust boundary of the system. However, the improvements
in cryptographic algorithms, extremely reduces the cost for
the use of cryptography for stored data, producing a con-
tinuous increase in its adoption. A simple application of
cryptography to stored resources can then be based on the
well-known correspondence between a network and storage
service: both organize the information they have to trans-
fer/store in discrete pieces (packets in networks, blocks in
storage devices). A more advanced solution takes into ac-
count that the nature of the storage service is different. For
instance, in [18] the authors exploit cryptography to the aim
of protecting the sensitive information plaintext represented
in memory pages when a trusted process accesses it.

Indeed, the application of cryptography for the protec-

Sara
Line

tion of files is today available as an option in most modern
operating systems (e.g., in Microsoft Windows since Win-
dows 2000), to make it impossible to access the information
without access to the keys stored within the system. En-
cryption reduces the risk of loss of confidential information
deriving from low-level access to the devices. The crypto-
graphic protection can also be used to protect the swap area
on disk, to reduce the risk that processes could access infor-
mation they are not authorized to see by reading the content
of swap pages released by processes managing confidential
information. Nonetheless, the cryptography options offered
by current operating systems have been designed to protect
local resources and access control is still realized using the
services of a reference monitor.

In this paper, we propose a novel access control model
and architecture that eliminates the need for a reference
monitor and relies on cryptography to ensure confidentiality
of data stored on a server. Data are encrypted as the data
owner stores them on an external server. Authorizations and
encryption are merged thus allowing access control enforce-
ment to be outsourced together with the data. The great
advantage is that the data owner, while specifying the pol-
icy, needs not be involved in its enforcement. The remainder
of this paper is organized as follows. Section 2 discusses re-
lated work. Section 3 presents a novel cryptography-based
architecture. Section 4 describes a solution for representing
authorizations and dealing with dynamic policy updates. Fi-
nally, Section 5 presents our conclusions.

2. RELATED WORK
The idea of combining access control and cryptography

is in itself not new and has been proposed in different con-
texts. For instance, it was proposed in the context of: dis-
tributed file system [15], where a traditional client/server ar-
chitecture is used; access control in a hierarchy [2, 8], where
a centralized architecture is adopted; securing XML docu-
ments [17], where a “data publishing” architecture is consid-
ered and where the data owner totally loses the control on
her data. However, the combination of access control and
cryptography in an outsourced architecture introduces sev-
eral challenges that have not been investigated in previous
proposals, which are more focused on traditional architec-
tures where the data owner and the server storing the data
are in the same trusted domain.

Previous work most directly related to ours is in the
database outsourcing area [12, 14]. In such a context, most
proposals focused on query execution and propose to store
additional indexing information together with the encrypted
database. Such indexes can be used by the DBMS to select
the data to be returned in response to a query [1, 6, 13].
These proposals did not investigate the data encryption is-
sues, and assumed all users to have complete access to the
whole database [5]. Adding a traditional authorization layer
to the outsourcing scenario requires that when a client poses
a query, both the query and its result have to be filtered by
the data owner, who is in charge of enforcing the access
control policy. A first attempt to solve this issue has been
presented in [10], where different keys are used for encrypt-
ing different data. To our knowledge, however, there is not
a solution that both allows access control enforcement to be
outsourced with the data and that supports policy changes
without requiring the owner to have a low-latency channel
to the server, which is not realistic in many scenarios.

Figure 1: Reference monitor architecture

3. ACCESS CONTROL ARCHITECTURES
We first describe the traditional access control architec-

tures and then illustrate a novel cryptography-based archi-
tecture suitable for the data outsourcing scenario.

3.1 Classical access control architectures
The reference monitor typically represents the core com-

ponent of any access control system. To the aim of granting
security, the reference monitor must fulfil the following three
requirements [3], which are difficult to enforce, and impose
strong constraints on the way sensitive information can be
managed.

• The reference monitor must be tamper-proof. System
policies have to be carefully protected and the system
on which the reference monitor is executed has to be
robust.

• The reference monitor must be involved in no access
request. Resources have to lie (logically and physically)
near to the reference monitor. As a consequence, the
reference monitor has a crucial impact on the system
performances, since any access to a resource has to
be mediated by its services. Indirectly, this imposes
constraints on the flexibility and expressiveness of the
access policy. As a matter of fact, sophisticated policy
languages may delay the verification and produce an
unacceptable impact on system performances.

• The reference monitor must be small enough to be
tested. The experience in the construction of secure
systems shows a clear benefit in the minimization of
the size of the trusted components. In fact, this re-
duces the chances of errors in system design and im-
plementation, which could be exploited by malicious
users to subvert resource protection. The impact is
that, in typical systems, it becomes difficult to man-
age data in a distributed setting. Resources are then
centralized near the location where the reference mon-
itor can operate.

Figure 1 illustrates the typical architecture of a system
using a reference monitor. The system is characterized by
two kinds of users: the data owner , who takes advantage of
the system to store her resources; and the authorized reader

Figure 2: Data outsourcing access control architec-
ture

(user), who accesses the system to retrieve such resources.
Both users have to route their access requests through the
reference monitor, which is responsible for the correct en-
forcement of the access policy defined by the owner. Here,
the data owner and the system storing the data usually be-
long to the same trust domain. This architecture is therefore
not suitable to operate in a data outsourcing scenario, where
the data owner and the system storing the data are in two
different trust domains.

3.2 A novel cryptography-based architecture
To partially overcome the issues above, cryptography-

based access control architectures have been introduced (see
Section 2). These architectures for the realization of cryp-
tographic access protection are simply based on the use of
one distinct key for the encryption of every resource and the
definition of a protocol for the dialogue between the owner
and each of the users, such that authorized users can receive,
on a trusted channel, the required encryption key. This so-
lution presents the crucial shortcoming that it requires the
data owner to be always involved in the processing of every
access request.

However, the full realization of the cryptography-based ac-
cess control architecture for secure data dissemination has to
correctly manage different important requirements before it
could be deployed in large scale applications with large user
communities. First, different users may need to see differ-
ent portions of the data. To give clients different access
rights, the data owner cannot then use a single key for en-
crypting the whole data. Instead, the data owner should
be able to define access authorizations and to map them on
the data through a multi-key encryption approach [9]. Users
use then multiple keys to extract from the query results the
plaintext data they are entitled to see. Although the idea of
using different encryption keys for different data items is not
new [17], its application in an outsourced scenario poses sev-
eral challenges that need to be carefully considered. Second,
it is necessary to analyze the issue of realizing an efficient
management of policy updates, presenting a mechanism that
should be able to offer a robust and efficient solution.

Recent research has produced important results that
promise to give a significative contribution to the realiza-
tion of a more flexible and efficient cryptography-based ac-

cess control architecture [4, 11]. Figure 2 illustrates a novel
architecture that makes use of two distinct repositories: one
repository (the one on the bottom) has to store the en-
crypted representation of resources, the other repository is
instead dedicated to the storage and management of the ac-
cess policy, expressed in a way that can be managed by a
public server as an open resource, with adequate protections
that guarantee that a malicious user cannot gain unautho-
rized access to resources (i.e., to encryption keys) [4]. As we
will discuss in Section 4, the basic idea is that each user is as-
signed a key by the owner and then a set of tokens is used to
allow the derivation from one key to another key. The token
catalog is demonstrated to be usable only by users already
having access to the secret. As the figure shows, the owner
first sends to a user a secret key that characterizes her. The
data owner is then responsible for the creation of both the
resources and the token catalog. The token catalog has to
be a correct representation of the access policy the owner
wants to enforce on the resources. The authorized user has
to retrieve from the token catalog all the tokens that are
needed to compute the resource key from her personal key,
to correctly access the resource. Even if it would be possible
to directly communicate each user the set of keys used to
encrypt the resources she can access, such a solution would
be more expensive from the data owner’s point of view. As
a matter of fact, in such a case the owner wold be involved
in any policy update, for key distribution to users.

The advantages of the use of cryptography for stored re-
sources increases with resource size, distribution require-
ments, and read-access frequency.

• Large resources can be protected more efficiently us-
ing cryptography because the cost for the verification
of the access control request and the retrieval of the
key can be shared among a larger number of accesses.
The absence of a reference monitor removes a potential
bottleneck. We note that in older computer systems a
large resource would have been considered inadequate
for cryptographic protection, due to its high computa-
tional cost, but in modern and future computer plat-
forms it is reasonable to assume that clients have the
required computational power.

• Distributed resources benefit from the use of cryptog-
raphy for access protection because it permits to eas-
ily transfer resources to the network locations that are
near to the users, without the need of strong trust re-
quirements on the nodes that are used to store the
encrypted resource representation. In traditional dis-
tributed systems, the enlargement of the trust domain
to cover a large and often heterogeneous environment
has always required a considerable investment and in-
troduced many significant vulnerabilities.

• Read-mostly resources are resources created by the
owner once and then read by all the users who are not
the owner, with rare or null modifications by the owner
in the resource life. These resources are particularly
interesting for the use of cryptographic protection, be-
cause multiple copies of the resources can be easily gen-
erated and replicated within the system. This leads to
considerable benefits to read performances and scala-
bility to allow access by large user communities. In
general, this architecture provides an extremely inter-
esting solution for the dissemination of resources.

r1 r2 r3 r4 r5 r6
A 1 1 1 1 0 1
B 0 0 0 0 1 1
C 0 1 1 1 1 1
D 0 0 0 0 1 1

Figure 3: An example of access matrix

The observations above justify the claim that the data
outsourcing architecture is particularly interesting for the
realization of an application for large scale dissemination
of large resources (e.g., personally created multimedia re-
sources), which are becoming increasingly common. This is
an application that is becoming more and more important,
as testified by the success of services like YouTube, Flickr,
Box.net, Amazon Storage Services, and many others.

In terms of security, the advantage of this architecture
derives from the reduction in the size of the trust domain,
satisfying the classical principle for the construction of se-
cure systems that drives designers to minimize the size of
the trusted components. As it is evident from a comparison
of Figure 1 with Figure 2, the reduction in size of the trust
domain is extreme. This novel data outsourcing architecture
is then a significant improvement compared to current solu-
tions for the network storage and dissemination of resources,
and appears interesting for a large variety of applications.

The requirements that the data outsourcing architecture
asks from the servers that are responsible for the storage and
distribution of resources (and tokens) can be briefly summa-
rized as follows. The first requirement is that servers must
have a clear incentive in offering a reliable service, either be-
cause they are bound by a service contract with the owner
and users, or because they benefit when users access the re-
sources on the server (e.g., advertisements are presented to
users accessing a resource). Second, the servers are also in-
terested in providing guarantees that they will not be able
to violate the confidentiality of the resources they store and
help disseminate, because in this way they are able to offer
the service to a larger user community (privacy-conscious
users or organizations who would not otherwise use public
services, may now be able to use them for the storage and
dissemination of confidential resources). Service providers
also benefit because they are not liable for the content that
the users disseminate, obtaining the same legal immunity
that is provided to Internet Service Providers about the in-
formation traveling on the communication channels they of-
fer to their clients. If the server becomes malicious, either
because compromised or forced by external entities, the most
damage the server can do is to not distribute the resources,
but resource confidentiality is protected as long as users keep
strict custody on their keys.

In the next section, we illustrate a model, which is based
on the data outsourcing architecture in Figure 2, that has
been proposed for representing access control policies, for
managing their evolution, and that uses two layers of en-
cryption (over-encryption).

4. OVER-ENCRYPTION
To make the proposed approach generally applicable, no

assumption is made on the users and resources with respect
to which authorizations are defined. We simply assume sets
U and R, denoting the set of users and resources in the sys-
tem, respectively, are given. An authorization policy is a set

'&%$Ã!"#v1

½½5
55

5 '&%$Ã!"#v2

##HHHHHH '&%$Ã!"#v3

{{vvvvvv
²²

'&%$Ã!"#v4

¥¥ªª
ªª

'&%$Ã!"#v5

½½5
55

5 '&%$Ã!"#v6

¥¥ªª
ªª

'&%$Ã!"#v7

source dest value
v1.k v5.k v5.k ⊕ h(v1.k, l5)
v2.k v6.k v6.k ⊕ h(v2.k, l6)
v3.k v5.k v5.k ⊕ h(v3.k, l5)
v3.k v6.k v6.k ⊕ h(v3.k, l6)
v4.k v6.k v6.k ⊕ h(v4.k, l6)
v5.k v7.k v7.k ⊕ h(v5.k, l7)
v6.k v7.k v7.k ⊕ h(v6.k, l7)

(a) (b)

Figure 4: An example of key derivation

of pairs of the form 〈u,r〉, where u ∈ U and r ∈ R, mean-
ing that user u can access resource r (we consider access by
users to be read-only). A policy can then be modeled via a
traditional access matrix A, with a row for each user u ∈
U , a column for each resource r ∈ R, and A[u, r] is set to 1
if u can access r; 0 otherwise. In the following, we will use
acl(r) to denote the access control list of r, that is, the set
of users that can access r. Figure 3 illustrates an example of
access matrix with four users (A, B, C, D) and six resources
(r1, r2, . . . , r6).

The proposed solution is based on the key derivation
method presented by Atallah’s et al. [4]. This method ex-
ploits the definition and computation of public tokens that
allow the derivation of keys from other keys. Let ki and kj

be two keys. A token, denoted ti,j , that allows the deriva-
tion of kj from ki is defined as ti,j = kj ⊕ h(ki, lj), where
lj is a publicly available label associated with kj , ⊕ is the
bit-a-bit xor operator, and h is a secure hash function (e.g.,
HMAC [16]). Key derivation can be applied via a chain of
tokens ti,l, . . . , tn,j such that tc,d follows ta,b in the chain
only if b = c.

Graphically, a set of keys K and a set of tokens T can
be represented through a graph, having a vertex vi asso-
ciated with each key in the system, denoted vi.k, and an
edge (vi, vj) connecting vi and vj if token ti,j belongs to
T . Chains of tokens then correspond to paths in the graph.
For instance, Figure 4 represents an example of graph cor-
responding to a set of 7 keys, along with its public token
catalog T composed of 7 items. An example of token chain
in the graph is represented by t2,6 and t6,7, that allow to
derive v6.k from v2.k and v7.k from v6.k, respectively.

A key derivation graph can be exploited for enforcing an
access control policy by associating each user with one key
(a node in the graph), and encrypting then each resource
with a key that can be directly or indirectly derived only by
the set of users belonging to its acl .

We now ready describe the two-layers model.

4.1 Two-layers model
Our solution introduces two separate layers of encryp-

tion, both adopting the key derivation method previously
described (although some adaptations are necessary as ex-
plained in the following): a Base Encryption Layer (BEL),
performed by the data owner before transmitting data to the
server; and a Surface Encryption Layer (SEL), performed by
the server over the resources already encrypted by the data
owner. In the two-layer model, each user u receives two
keys: one to access BEL and the other to access SEL, to be
used for decryption one after the other.1 At each layer, each

1Note that, for simplicity, the key at SEL layer can be com-
puted from the key at BEL layer by applying on it a hash
function. In this case, at initialization time, the data owner

Data Owner

Server

keys
trusted channel

access
untrusted channel

encrypted resources
& public catalog

untrusted channel

policy changes

untrusted channel

SEL

k k k k

k k

k

BEL

k,ka k,ka k,ka k,ka

k,ka k,ka

k,ka

Users

…..

Figure 5: Over-encryption in the data outsourcing
access control architecture

/.-,()*+b1

¼¼3
33

3
/.-,()*+b2

""FFFFFF /.-,()*+b3

||xxxxxx

²²

/.-,()*+b4

¦¦®®
®®

/.-,()*+b5

¼¼3
33

3
/.-,()*+b6

¦¦®®
®®

/.-,()*+b7

u key
A b1.k
B b2.k
C b3.k
D b4.k

r key
r1 b1.ka

r2,r3,r4 b5.ka

r5 b6.ka

r6 b7.ka

(a) (b) (c)

Figure 6: BEL encryption policy enforcing the au-
thorization policy in Figure 3

resource is encrypted by using a single key. Figure 5 illus-
trates the two-layer model translated in the data outsourcing
architecture.

BEL. It enforces encryption on the resources according to
the policy existing at initialization time. We distinguish two
kinds of keys: access keys are used to encrypt resources, and
derivation keys are used to provide the derivation capabil-
ity via tokens. Each derivation key k is always associated
with an access key ka that is obtained through a secure hash
function from k (i.e., ka = h(k)). The rationale for this evo-
lution is to distinguish the two roles associated with keys:
enabling key derivation via the corresponding tokens, and
enabling resource access. It is then up to the data owner to
define a policy and to generate the corresponding encryp-
tion keys and tokens in such a way that each user can derive
the right set of decryption keys, meaning that each user can
decrypt all and only the resources for which she has the au-
thorization (see [10]). The resulting set of keys and tokens
is called BEL encryption policy .

The key derivation relationship is again represented
through a graph, where now there is a vertex b for each
pair of keys 〈k, ka〉 and an edge (bi, bj) connects bi and bj if
there is a token in the public catalog allowing the derivation
of either bj.k or bj .ka from bi.k.

Figure 6 illustrates the BEL encryption policy enforcing
the authorization policy in Figure 3. In particular, Fig-
ure 6(a) shows the graph representing the key derivation re-
lationship, Figure 6(b) shows the keys communicated to each
user, and Figure 6(c) shows the keys used for encrypting the
resources. It is easy to see that, for example, since user A
knows key b1.k and is able to derive keys b5.k and b7.k that
in turn allow the computation of keys b1.ka, b5.ka, and b7.ka,

has to communicate to each user a single BEL key and to
the server the SEL keys.

'&%$Ã!"#s1

¼¼4
44

4 '&%$Ã!"#s2

##FF
FF

FF
'&%$Ã!"#s3

{{xx
xx

xx
²²

'&%$Ã!"#s4

¦¦®®
®®

'&%$Ã!"#s5

¼¼4
44

4 '&%$Ã!"#s6

¦¦®®
®®

'&%$Ã!"#s7

u key
A s1.k
B s2.k
C s3.k
D s4.k

r key
r1 s1.k

r2,r3,r4 s5.k
r5 s6.k
r6 s7.k

(a) (b) (c)

Figure 7: SEL encryption policy enforcing the autho-
rization policy in Figure 3

she is allowed to access the set of resources {r1,r2,r3,r4,r6},
which are exactly the resources that user A is authorized to
access.

SEL. It enforces the dynamic changes over the policy and
it is initialized to repeat exactly the BEL policy: for each
pair of keys 〈k, ka〉 in BEL a corresponding key is defined in
SEL; for each token in BEL, a corresponding token is defined
in SEL. The key derivation relationship is then represented
through a graph that is isomorphic to the graph existing at
the BEL level. Each user is assigned the unique key corre-
sponding to her key at BEL layer. Each resource is encrypted
with the unique key corresponding to the unique access key
at BEL layer. Since according to this strategy, which we call
Full SEL, the SEL encryption policy models exactly the BEL
policy, by definition it is correct with respect to the original
authorization policy. Figure 7 illustrates the SEL encryption
policy enforcing the authorization policy in Figure 3.

Note that an alternative strategy that can be adopted at
the SEL layer consists in not carrying out any encryption
when the BEL layer correctly enforces the policy for a re-
source (i.e., no encryption is performed on resources) [11].
A double encryption will be enforced only when needed
to enforce a policy change. This strategy, which we call
Delta SEL, is however characterized by a greater informa-
tion exposure than the Full SEL (see Section 4.3). By con-
trast, the Full SEL always requires double encryption to be
enforced.

4.2 Policy changes enforcement
A policy change can require the insertion/deletion of

a user/resource or the grant/revoke of an authorization.
Without loss of generality, we focus on grant/revoke opera-
tions, since the insertion (resp. deletion) of a user/resource
can be modeled via a set of grant (resp. revoke) operations.

We assume also that SEL layer operates in the Full SEL
mode.

A grant operation on user u for resource r is performed
by analyzing the status of r compared with the current con-
figuration of BEL and SEL. First, A[u, r] is set to 1 (i.e.,
acl(r) = acl(r) ∪ {u}) and if user u cannot derive the BEL
key used for encrypting r, a BEL token from the BEL key
associated with u to the access key used for encrypting r
is added. Finally, the SEL level receives an over-encryption
request for resource r to synchronize the SEL layer with the
policy change, meaning that the graph corresponding to the
key derivation relationship needs to be properly updated to
reflect the new policy [9]. To this aim, it may be neces-
sary to create a new SEL key, along with the tokens for its
derivation. Analogously, whenever a SEL key is not used for
encrypting any resource, it can be removed from the layer,
along with the corresponding public tokens.

BEL SEL

revoke(r1,A)

/.-,()*+b1

¼¼3
33

3
/.-,()*+b2

""FFFFFF /.-,()*+b3

||xxxxxx

²²

/.-,()*+b4

¦¦®®
®®

/.-,()*+b5

¼¼3
33

3
/.-,()*+b6

¦¦®®
®®

/.-,()*+b7

/.-,()*+s>

'&%$Ã!"#s1

¼¼4
44

4 '&%$Ã!"#s2

##HHHHHH '&%$Ã!"#s3

{{vvvvvv
²²

'&%$Ã!"#s4

¦¦®®
®®

'&%$Ã!"#s5

½½5
55

5 '&%$Ã!"#s6

¥¥ªª
ªª

'&%$Ã!"#s7

r key
r1 s>.k

r2,r3,r4 s5.k
r5 s6.k
r6 s7.k

grant(r4,D)

/.-,()*+b1

¼¼3
33

3
/.-,()*+b2

""FFFFFF /.-,()*+b3

||xxxxxx

²²

/.-,()*+b4

¦¦®®
®®

ww/.-,()*+b5

¼¼3
33

3
/.-,()*+b6

¦¦®®
®®

/.-,()*+b7

/.-,()*+s>

'&%$Ã!"#s1

¼¼4
44

4 '&%$Ã!"#s2

##HHHHHH '&%$Ã!"#s3

{{vvvvvv
²²

'&%$Ã!"#s4

¦¦®®
®®

²²

'&%$Ã!"#s5

½½5
55

5

''OOOOOOOOO '&%$Ã!"#s6

¥¥ªª
ªª

'&%$Ã!"#s7 '&%$Ã!"#s8

r key
r1 s>.k

r2,r3 s5.k
r4 s8.k
r5 s6.k
r6 s7.k

revoke(r6,A)

/.-,()*+b1

¼¼3
33

3
/.-,()*+b2

""FFFFFF /.-,()*+b3

||xxxxxx

²²

/.-,()*+b4

¦¦®®
®®

ww/.-,()*+b5

¼¼3
33

3
/.-,()*+b6

¦¦®®
®®

/.-,()*+b7

/.-,()*+s>

'&%$Ã!"#s1

¼¼4
44

4 '&%$Ã!"#s2

##HHHHHH '&%$Ã!"#s3

{{vvvvvv
²²

'&%$Ã!"#s4

¦¦®®
®®

²²

'&%$Ã!"#s5

''OOOOOOOOO '&%$Ã!"#s6

'&%$Ã!"#s8

r key
r1 s>.k

r2,r3 s5.k
r4 s8.k
r5 s6.k
r6 s6.k

grant(r3,A)

/.-,()*+b1

¼¼3
33

3
/.-,()*+b2

""FFFFFF /.-,()*+b3

||xxxxxx

²²

/.-,()*+b4

¦¦®®
®®

ww/.-,()*+b5

¼¼3
33

3
/.-,()*+b6

¦¦®®
®®

/.-,()*+b7

/.-,()*+s>

'&%$Ã!"#s1

¼¼4
44

4 '&%$Ã!"#s2

##HHHHHH '&%$Ã!"#s3

{{vvvvvv
²²

'&%$Ã!"#s4

¦¦®®
®®

²²

'&%$Ã!"#s5

''OOOOOOOOO '&%$Ã!"#s6

'&%$Ã!"#s8

r key
r1 s>.k
r2 s5.k

r3,r4 s8.k
r5 s6.k
r6 s6.k

Figure 8: An example of grant and revoke opera-
tions

A revoke operation for user u on resource r is performed
by setting A[u, r] to 0 (i.e., acl(r) = acl(r) − {u}) and by
requesting the SEL layer to make r accessible only to the
new set of users that are authorized to access r.

As an example, consider the initial configuration of both
BEL and SEL encryption policies represented in Figure 6 and
Figure 7, respectively. Figure 8 illustrates the evolution of
both BEL and SEL encryption policies to accommodate a se-
ries of grant and revoke operations. Note that, in the graph-

ical representation, dashed edges represent tokens leading to
access keys.

• revoke(r1,A): user A is removed from acl(r1). Since
this acl becomes empty, resource r1 has to be over-
encrypted with a key that no user can compute. Con-
sequently, a new vertex s> is created and its key is
used to encrypt r1.

• grant(r4,D): key b5.ka used to encrypt r4 cannot be
derived from b4.k assigned to D. The data owner
therefore adds a BEL token t4,5. Also, s5.k used to
over-encrypt r4 cannot be derived from s4.k assigned
to D. Therefore, a new vertex s8 is added to the SEL,
along with two tokens, t5,8 and t4,8. Resource r4 is
then over-encrypted by using s8.k, which is accessible
to A, C, and D.

• revoke(r6,A): user A is removed from acl(r6). While
the encryption policy at BEL layer remains unchanged,
r6 needs to be over-encrypted with a key accessible
only to B, C, and D. Since s6.k can be accessed by
these three users only, r6 is over-encrypted by using
s6.k. After r6 over-encryption, no resource is over-
encrypted using s7.k. Consequently, s7 is removed
from SEL.

• grant(r3,D): key b5.ka used to encrypt r3 can be de-
rived from b4.k assigned to D. Consequently, BEL re-
mains unchanged. By contrast, key s5.k used to over-
encrypt r3 cannot be derived from s4.k, assigned to
D. Resource r3 needs to be over-encrypted with a key
derivable from A, C, and D. Since s8.k is accessible
by exactly these users, r3 is over-encrypted by using
s8.k.

4.3 Collusion risks
The two-layer approach guarantees the protection of con-

fidentiality with respect to both the server (for the encryp-
tion performed at BEL) and the users (for the encryption
performed at SEL). Collusion takes place anytime two enti-
ties, combining their knowledge (i.e., their keys) can acquire
knowledge that neither of them had access to. Before any
policy update is made, the system is collusion free. Dynamic
policy updates could instead expose to collusion, although
according to our analysis it is limited and identifiable. In
particular, from our analysis [11], we can conclude that there
is a risk of collusion when a grant is executed that assigns to
a user u access privilege to only a portion of the resources
encrypted with the same key at the BEL layer. All the other
resources to which access is not granted can be decrypted if
user u colludes with the server. As an example, resource r2 is
exposed to the risk of collusion between the server and user
D since, after policy updates depicted in Figure 8, D can
compute the value of b5.ka. Due to the separation between
secrets and keys for each vertex, the exposure is however
well defined.

5. CONCLUSIONS
The paper explored many important issues that arise

when enforcing access control in a scenario where data are
stored and offered to clients by an external server. We then
presented a novel data outsourcing access control architec-
ture for supporting flexible applications, preserving privacy

and empowering the user. We also described an approach for
policy evolution that takes into account the main features of
the scenario and is able to guarantee in most cases confiden-
tiality of the information in the presence of significant policy
updates, clearly identifying the exposure to collusion when
this risk may arise. Other issues to be investigated include
the integration with the Web paradigm, and the efficient
execution of queries.

6. ACKNOWLEDGEMENTS
This work was supported in part by the European Union

under contract IST-2002-507591, and by the Italian MIUR
under PRIN 2006 project ID:2006099978 “Basi di dati crit-
tografate”.

7. REFERENCES
[1] R. Agrawal, J. Kierman, R. Srikant, and Y. Xu. Order

preserving encryption for numeric data. In Proc. of
ACM SIGMOD 2004, Paris, France, June 2004.

[2] S. Akl and P. Taylor. Cryptographic solution to a
problem of access control in a hierarchy. ACM TOCS,
1(3):239–248, August 1983.

[3] J. Anderson. Computer security planning study.
Technical Report 73-51, Air Force Electronic System
Division, 1972.

[4] M. Atallah, K. Frikken, and M. Blanton. Dynamic and
efficient key management for access hierarchies. In
Proc. of the 12th ACM CCS05, Alexandria, VA, USA,
November 2005.

[5] L. Bouganim, F. D. Ngoc, P. Pucheral, and L. Wu.
Chip-secured data access: Reconciling access rights
with data encryption. In Proc. of the 29th VLDB
Conference, Berlin, Germany, September 2003.

[6] A. Ceselli, E. Damiani, S. De Capitani di Vimercati,
S. Jajodia, S. Paraboschi, and P. Samarati. Modeling
and assessing inference exposure in encrypted
databases. ACM TISSec, 8(1):119–152, February 2005.

[7] V. Ciriani, S. De Capitani di Vimercati, S. Foresti,
S. Jajodia, S. Paraboschi, and P. Samarati.
Fragmentation and encryption to enforce privacy in
data storage. In Proc. of the 12th ESORICS, Dresden,
Germany, September 2007.

[8] J. Crampton, K. Martin, and P. Wild. On key
assignment for hierarchical access control. In Proc. of
the 19th IEEE CSFW’06, Venice, Italy, July 2006.

[9] E. Damiani, S. De Capitani di Vimercati, S. Foresti,
S. Jajodia, S. Paraboschi, and P. Samarati. Key
management for multiuser encrypted databases. In
Proc. of the International Workshop on Storage
Security and Survivability, Fairfax, Virginia, USA,
November 2005.

[10] E. Damiani, S. De Capitani di Vimercati, S. Foresti,
S. Jajodia, S. Paraboschi, and P. Samarati. An
experimental evaluation of multi-key strategies for
data outsourcing. In Proc. of the 22nd IFIP TC-11
International Information Security Conference, South
Africa, May 2007.

[11] S. De Capitani di Vimercati, S. Foresti, S. Jajodia,
S. Paraboschi, and P. Samarati. Over-encryption:
Management of access control evolution on outsourced
data. In Proc. of the 33rd VLDB Conference, Vienna,
Austria, September 2007.

[12] H. Hacigümüs, B. Iyer, and S. Mehrotra. Providing
database as a service. In Proc. of 18th ICDE, San
Jose, CA, USA, February 2002.

[13] H. Hacigümüs, B. Iyer, and S. Mehrotra. Efficient
execution of aggregation queries over encrypted
relational databases. In Proc. of the 9th International
Conference on Database Systems for Advanced
Applications, Jeju Island, Korea, March 2004.

[14] H. Hacigümüs, B. Iyer, S. Mehrotra, and C. Li.
Executing SQL over encrypted data in the
database-service-provider model. In Proc. of the ACM
SIGMOD 2002, Madison, Wisconsin, USA, June 2002.

[15] A. Harrington and C. Jensen. Cryptographic access
control in a distributed file system. In Proc. of the 8th
SACMAT, Como, Italy, June 2003.

[16] H. Krawczyk, M. Bellare, and R. Canetti. HMAC:
Keyed-Hashing for Message Authentication. Internet
Request for Comments RFC-2104, February 1997.

[17] G. Miklau and D. Suciu. Controlling access to
published data using cryptography. In Proc. of the
29th VLDB Conference, Berlin, Germany, September
2003.

[18] N. Provos . Encrypting virtual memory. In Proc. of
the 9th USENIX Security Symposium, Denver,
Colorado, USA, August 2000.

[19] J. Saltzer and M. Schroeder. The protection of
information in computer systems. Communications of
the ACM, 17(7), July 1974.

