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ABSTRACT

In recent years the computing power of graphics cards has
increased significantly. Indeed, the growth in the computing
power of these graphics cards is now several orders of magni-
tude greater than the growth in the power of computer pro-
cessor units. Thus these graphics cards are now beginning to
be used by the scientific community as low cost, high perfor-
mance computing platforms. Traditional genetic program-
ming is a highly computer intensive algorithm but due to its
parallel nature it can be distributed over multiple processors
to increase the speed of the algorithm considerably. This is
not applicable for single processor architectures but graph-
ics cards provide a mechanism for developing a data parallel
implementation of genetic programming. In this paper we
will describe the technique of general purpose computing
using graphics cards and how to extend this technique to
genetic programming. We will demonstrate the improve-
ment in the performance of genetic programming on single
processor architectures which can be achieved by harness-
ing the computing power of these next generation graphics
cards.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Automatic Programming

General Terms

Algorithms

Keywords

Genetic Programming, Graphics Cards, Data Parallelism

1. INTRODUCTION
For many years in the computer industry there has been

a law which can be applied to predict the power of proces-
sors in computers. This law is known as Moore’s Law [8]
which specifies that the number of transistors on a micro-
processor will double every eighteen months. It is generally
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accepted that the number of transistors on micro-processors
directly relates to the computing power of these processors.
Therefore, Moore’s Law effectively predicts that computing
power itself will double every eighteen months. However, it
has been postulated that this law no longer holds true for
Computer Processor Units (CPUs) as over the last few years
the increase in CPU power has been limited. This is in part
due to the physical limits of processing capability using sil-
icon wafers being reached (there is a physical limit to how
many transistors can placed on silicon wafers). A second
aspect, which has had an effect, is that the main consumers
of computer products are office workers. The main use of
computer resources of the office environment is in spread-
sheet and word processing applications, for which the power
of current Pentium processors is sufficient. Thus, if there is
no longer a consumer need for a product, then it is unlikely
to be heavily invested in in order to be further developed.

However, there is one aspect of consumer computing that
is still driven by a requirement for high processing power:
the computer games industry. The computer games indus-
try requires large amounts of computer processing power in
order to be able to render realistic in-game graphics. There
are two aspects to the computer games industry, console
based gaming, which has dedicated hardware and Personal
Computer (PC) based gaming. PC gaming requires special-
ist graphics cards to provide the cutting edge 3D graphics
that are required by modern computer games. The contin-
ual consumer need for more realistic graphics in computer
games has driven the development of graphics cards gener-
ating successively higher levels of computing power.

Thus, this continual increase in raw graphics card pro-
cessing power does still adhere to Moore’s law. Owens et al
[9] have done a thorough review of graphics cards and their
computing capabilities and Figure 1 shows how the power of
graphics cards from NVidia and ATI compare to Intel Pen-
tium processors over the last few years. It can clearly be seen
from the graph that whilst the graphics cards are meeting or
exceeding Moore’s Law, Pentium processor power has only
improved by small increments each year. We can also com-
pare the power of two most powerful graphics cards available
and the latest Intel Pentium processor. The latest NVidia
graphics card to be released is the GeForce 8800GTX which
has 620 million transistors and the latest ATI graphics card
is the 1950XTX which has 384 million transistors. Compare
this to the Pentium 3.7GHz Dual Core Processor which only
has 320 million transistors. We can also compare the prod-
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ucts from another aspect by using the number of floating
point operations per second (GFLOPS) which can be carried
out. The Pentium processor can achieve 25.6 GFLOPS com-
pared to the ATI hardware which can achieve 240 GFLOPS.
However, the NVidia graphics card can demonstrate a much
greater performance with 520 GFLOPS.

Figure 1: The performance of graphics cards vs
CPUs over the last four years (taken from [9])

Therefore, much better results from genetic programming
could be obtained by harnessing the graphics card comput-
ing power previously reserved for 3D graphics. Indeed the
use of graphics cards to perform various computer intensive
algorithms has grown considerably over the last few years.
For instance, Li et al [6] have successfully implemented the
Lattice Boltzman computation on a graphics card. Also
Bernhard et al [1] have simulated spiking neurons on graph-
ics hardware and Sumanaweera et al [10] have performed
FFTs for medical image reconstruction on a graphics card.
Also within the field of evolutionary computation, Yu et al
[12] have implemented genetic algorithms on a graphics card,
with both the crossover and mutation operators and the fit-
ness evaluation function being performed on the graphics
card. The authors were able to demonstrate up to a twenty
fold increase in the performance of the genetic algorithm
when using large population sizes. Therefore, we can expect
a significant increase in the speed of genetic programming
by using these graphics cards. This paper will discuss the
architecture of these graphics cards describing how this per-
formance gain in GFLOPs is achieved. We will then go on
to describe the methodology of performing general purpose
computing on these graphics cards and the extension of this
technique to genetic programming. We will apply the tech-
nique to some classical genetic programming problems to
demonstrate the increase in performance that can be gained
from utilising these graphics cards.

2. GRAPHICAL PROCESSING UNITS
Graphics cards have a main processing area on them known

as a Graphical Processing Unit (GPU). There are many va-
rieties of graphics cards although at this time there are only
two manufacturers of graphics cards that can perform the
computations we require, namely NVidia and ATI. These
graphics cards are high performance graphics cards aimed
at computer gamers and as such are capable of fast, com-
plex 3D graphics operations. In order for graphics cards to
draw 3D images, many thousands of triangles are sent to
the GPU which then converts them to pixels in a 2D image
using specialist programs. These output pixels are then sent

to screen to produce the 3D image. Kilgariff et al [4] have
conducted a detailed study of the architecture of the series
6 graphics cards from NVidia. The architecture of GPUs
is based on carrying out operations on textures using a set
of internal processors known as vertex and fragment proces-
sors. Textures are small parts of an image (usually small
triangles) which need to be drawn to the screen. The par-
allelism of GPUs comes from there being multiples of these
processors and graphics pipelines which are capable of car-
rying out operations simultaneously on different parts of the
input textures. The GPU on the latest graphics card from
NVidia has a total of twenty four of these pipelines.

There are two types of processor on a GPU, vertex proces-
sors and fragment processors. A vertex processor is capable
of Multiple Instruction Multiple Data (MIMD) operations
and can perform scatter operations but not gather opera-
tions. A scatter operation is a process whereby data can be
written in a non-sequential manner. A gather operation is a
process whereby data can be collated. Fragment processors
are capable of Single Instruction Multiple Data (SIMD) op-
erations, are also capable of random access memory reads
and can perform gather but not scatter operations. Frag-
ment processors are more useful for non-graphics operations
than vertex processors as they can produce a direct output
and there are also more fragment processor pipelines on a
GPU than vertex processor pipelines. There are two types of
programs which can be run on a GPU specific to each pro-
cessor known as vertex programs and fragment programs.
Fragment programs take a set of inputs and will output a
single four channel RGBA (Red Green Blue Alpha) value.
Each element of the inputs will be independently processed
by the fragment processors hence for a ten by ten input
texture a fragment processor will be run a hundred times.
With up to 24 fragment processors on the latest GPUs, this
can lead to a large amount of parallelism resulting in the
GFLOP performance gain of GPUs over CPUs. Figure 2
shows a high level representation of how textures from an
application are processed by a GPU, flowing through the
vertex and fragment processors and output to the screen.

Figure 2: A simplified view of the interface between
the GPU and applications

There is a second aspect of GPUs which can boost their
performance level over CPUs other than parallel processing.
The native memory structure of a GPU is two dimensional
compared to that of a CPU which is one dimensional. Us-
ing a CPU it is possible to use multi-dimensional arrays
although in the actual memory core they are reduced to
a single dimension. On both CPUs and GPUs there is a
cache which allows faster memory accesses to elements which
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are in the neighbourhood of the previous element accessed.
In a single dimension memory structure there are only two
neighbourhood paths. However in two dimensional memory
structures there are four neighbourhood directions. There-
fore there is a greater statistical likelihood that the next
element to be accessed will be on this cache. Thus the two
dimensional memory structure of a GPU will provide an ad-
ditional performance gain over a CPU. It is worth noting
that the memory structure of GPUs currently restrict the
dimension size of a texture to a maximum of 4096 elements.

3. GENERAL PURPOSE PROGRAMMING

ON GPUS
Due to the capability of GPUs to perform parallel oper-

ations for 3D graphics it soon became apparent that these
processors could also be used to perform high performance
computing tasks. As such a new field of research has devel-
oped which has developed techniques for exploiting graphics
cards for the purposes of scientific computing. Thus a gen-
eral methodology has been developed for performing gen-
eral purpose programming on GPUs which involves three
key steps:

• Conversion of data to graphics textures
• Construction of a fragment program
• Execution of the fragment program on the texture

3.1 Terminology
There are a number of differences in the terms that are

used to describe general purpose programming and 3D graph-
ics programming. In order to understand how to perform
general purpose computing on GPUs we need to be able to
relate these GPU concepts to general computing concepts.

The first concept we need to understand is how images on
a graphics card relate to the data we wish to process. We
have already discussed in section 2 how the memory layout
on a GPU is in a two dimensional form compared to the
one dimensional form of a CPU. Image data held in GPU
memory is referred to as a texture which is in effect a 2D
array. It is possible to have 3D textures on GPUs although
there is a performance deficit from using them thus in this
paper we will concentrate on 2D textures. Therefore, arrays
of general data need to be transferred to a texture on the
GPU which has two dimensions. It should also be noted
that in order to access arrays on the CPU we simply use an
index value. However to access elements of a texture a GPU
needs what are known as texture coordinates which allows
the elements that are being processed on each fragment or
vertex processor to be calculated. This will ensure that each
processor will only work on a single part of the input and
only output a specific part of the result.

The second concept that needs to be considered is how
programs are executed on GPUs, and how they compare to
typical scientific or general purpose applications. Programs
on GPUs are known as either fragment or vertex programs.
These correspond to fragment or vertex processors of which
there are many on a GPU and which can operate in parallel
on an input texture. Let us consider the following equation:

xi = x
2

i + 3.14yi + c for i = 1, . . . , n (1)

To implement this in C we would simply write a piece
of code which consists of a for loop with the equation ex-
ecuted for n data elements. Thus there are two elements

of computation, the equation and the increment of the for

loop. However, if we had n processors then we would only
require the equation aspect as each processor could perform
the equation for each data element. This type of operation
is known as a SIMD operation or a data parallel approach.
The calculation inside the for loop can thus be considered
to be a kernel program, a scalar template that converts sev-
eral inputs into a single output. Also, because the equation
is performed on each data point in succession, there are no
dependencies between data points. GPU programs work in
the same manner, generating a new texture of pixels from
a number of input textures. Because the data is indepen-
dent and there are many processors, the program can be run
on different input elements simultaneously. Hence it can be
seen that kernel programs are similar to the programs exe-
cuted on a GPU.

A third concept we need to consider is the relationship
between running normal programs and running 3D graphics
programs. In order to run an equation on some data we
would simply call the desired function, passing the data to
it. However, in order to cause the GPU program to execute
on the textures which contain our data, we need to render
or draw the target with the target being the output texture
from the fragment program.

In conclusion, we have introduced the three key concepts
that are needed to understand how to implement general
programming on GPUs. These can be summarised as fol-
lows:

• Textures = Arrays
• GPU programs = Kernel programs
• Rendering = Program execution

3.2 Tools For Using Graphics Cards
Generally, directly interfacing with GPUs is a very com-

plex operation. However, there are two software toolkits
available which can provide an interface to graphics pro-
gramming. These are known as DirectX, which is a Mi-
crosoft architecture, and the Open Graphics Library (OpenGL)
[3] (Open Graphics Library) which is an open source imple-
mentation of a specification for a low level API for writ-
ing 3D graphics applications. The OpenGL format is man-
aged by a consortium of companies known as the ARB, the
OpenGL Architecture Review Board. Companies on the
board include NVidia, ATI, and Intel. The OpenGL for-
mat is hardware independent and also operating system in-
dependent as opposed to DirectX which is targeted at the
Windows platform. Additionally, the OpenGL format is a
much more popular format than the DirectX format due to
the capability for it to be extended much more rapidly to
deal with GPU developments. The frame buffer object in
OpenGL is an example of this as it provides a mechanism
for allowing the GPU programs to write directly to a tex-
ture rather than a frame buffer. This is useful as whatever
is written to the frame buffer is modified into a value in the
interval [0,1] which is not suitable for our purpose. There-
fore we have decided to concentrate on the OpenGL format
in this paper.

The operations that a GPU performs using fragment or
vertex processors can be stored on the GPU in the form
of complete programs. The programs that a GPU can un-
derstand are written in a form of machine code which is
difficult to write or understand. Therefore, NVidia has pro-
vided a free toolkit [7] known as C for Graphics (Cg) which
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is downloadable from their website and allows users to con-
struct programs in a C like language which can then be
compiled by the toolkit into GPU programs. Many of the
functions that are available in C are also available in Cg.
The toolkit also provides most of the boolean and mathe-
matical operators that are available in C but also provides
additional vector types and vector operators. For example,
a type exists in Cg known as a float4 which is a vector of
four floating point numbers. These vectors have operators
available which enable them to be added and multiplied to-
gether. In order to transfer the Cg program to a GPU the
toolkit provides a set of functions which compile and load
these programs on to the GPU in real time. In figure 3
we show an example of a program written in the Cg for-
mat which can be compiled by the toolkit and subsequently
executed on a GPU.

Figure 3: An example fragment program

Some aspects of using the Cg programming language should
be noted. The first of these is that all branches of if state-
ments are executed by the GPU. However, the result of all
the branches that are not of interest are masked. Thus there
can be less of a performance gain if the Cg program con-
tains a large number of if statements. Secondly, programs
executed on GPUs are not capable of generating random
numbers. Therefore, if a set of random numbers is required,
they must be supplied as an input texture to the program.

3.3 Initialising A GPU
We have discussed that in order to use a GPU for general

purpose programming, we need to copy data over to the
GPU, provide a GPU program to do the processing, and
run this program by rendering the target. To be able to
perform these operations we will use the OpenGL toolkit
described in section 3.2. To render an output texture we
firstly need to set up what is known as a frame buffer. This
is part of the GPU memory whereby the image that would
normally be displayed on screen can be read. However, the
frame buffer has a problem in that the values stored use the
RGBA encoding with values set to between 0 and 255 for
each channel. Thus, the frame buffer is unable to represent
32 bit floating point values. However, OpenGL provides an
off-screen buffer which removes this restriction allowing full
32 bit floating point precision. This buffer is known as the
Frame Buffer Object (FBO) and in order to start performing
general purpose computing on a GPU we need to initialise
one of these objects.

Also, in order to render a target texture which will con-
tain the output data, we need to convert the graphics view
from three dimensions to two dimensions. In addition, we
need a one-to-one mapping between the data contained in
the textures and the output pixels. The method required
to obtain this is to use a view which can provide a one-
to-one mapping from geometry coordinates (rendering) to
texture coordinates (input) and pixel coordinates (output).
To achieve this, OpenGL allows us to specify a view port

using an orthogonal projection. An example of the steps
needed to initialise the GPU is provided in figure 4.

Figure 4: Initialisation steps needed to use GPU

3.4 Copying Data To A GPU
Once we have set up the structures to use the GPU we

then need to transfer to the GPU the data we wish to use as
input in the form of textures. The textures we will consider
here are 2D in nature and have equal dimension sizes. It
is possible to use 3D textures and also different dimension
sizes although this causes inefficiencies in the data process-
ing which can slow the operation of the GPU. These textures
are of an IEEE 32 bit floating point form. To copy the data
into a texture OpenGL provides the functions we require to
create a texture of the right size. Hence, a 1D data array
of size n will convert to a

√
n by

√
n size texture that can

hold the data. Obviously, there will need to be some spare
capacity in the texture if n is not a square number. The
next step is to then bind the input texture to the output
target texture. We can then simply transfer the input data
to the texture using OpenGL functions. Some example lines
of code which demonstrate this are shown in figure 5.

Figure 5: How to copy data arrays into textures and
on to the GPU

3.5 Creating a Fragment Program
When the data has been transferred onto the GPU, we

then need to provide a program to manipulate the data in
order that we obtain our desired output. There are two types
of programs which can be run on a GPU relating to vertex
and fragment processors. Due to the number of fragment
processors being greater in number on a GPU, we will use
fragment programs to achieve the greatest degree of paral-
lelism. A fragment program must be in a machine code for-
mat which the GPU can recognise. However, the Cg toolkit
as described in section 3.2 provides a C like language which
can be compiled into the correct format that the GPU recog-
nises. Fragment programs are typically compact and consist

1569



of only a few instructions which implement kernel programs.
An example of a fragment program for general purpose pro-
gramming on a GPU is shown in figure 3. It can be seen
that the fragment program has inputs just like a C function.
These consist of the input textures, and the texture coordi-
nates which are required parameters. A fragment program
can also contain an optional number of constant inputs such
as c in our earlier example. The texture coordinates are
computed by the GPU in the graphics pipeline before the
fragment program is executed on one of the processors. This
ensures that the fragment processor operates on the correct
elements of the textures. To convert the texture information
to the correct type we simply use the tex2D function and
the texture coordinates. We can then calculate the equation
as we would normally for a single data point and return the
result into the target texture.

There are several steps we need to go through in order
to generate a fragment program which can be used by the
GPU. First we need a CGcontext object in order to be able
to use the Cg toolkit. We also need to specify which type
of program we will require, a vertex type program or a frag-
ment type program. We can then compile a Cg program
(such as that in figure 3) using the Cg toolkit functions pro-
vided. If it compiles successfully we can then load it onto
the GPU. An example of the steps required to achieve this
are shown in figure 6. We also need to ensure that we cor-
rectly bind the correct texture inputs to the relevant input
arguments of the fragment program.

Figure 6: Example of compiling and loading frag-
ment programs

3.6 Executing The Fragment Program
Once we have loaded the data and the fragment program

on to the GPU we then need to execute the program on the
data. This is achieved by rendering or drawing the target.
We can load many fragment programs on to the GPU, how-
ever only one can be ready to be executed at any one time.
Thus we need to enable the program we wish to use and also
we need to ensure that the output from the program is writ-
ten to a texture attached to the FBO. Once this has been
achieved the target output texture is ready to be rendered.
Hence, given that we are using a one-to-one mapping, we
simply need what is known as a quad which fills the view-

port. This quad is generated using OpenGL whereby the
four corners of the quad are specified. Therefore, the size
of the quad is of dimensions

√
n by

√
n. The rasteriser will

subsequently interpolate each pixel (or array element) in the
quad and generate a fragment for each pixel. These are then
passed to the fragment processors which operate in parallel
in a data stream operation. Exemplar code to achieve this
is shown in figure 7. All that remains is then to transfer the
results from the FBO into a data array. To do this we use
the OpenGL functions glReadBuffer and glReadPixels.

Figure 7: How to render a target to execute a frag-
ment program

4. A PARALLEL IMPLEMENTATION OF

GENETIC PROGRAMMING FOR GPUS
Genetic Programming (GP) [5] is the process of using evo-

lutionary processes to create a program which can generate
the desired output from a set of inputs. Therefore, it can be
seen that in GP the data remains static whilst the programs
change. GP can be a slow process as evaluating large num-
bers of programs is computationally intensive. However GP
is inherently parallel in that each candidate program can be
evaluated independently from the others. This means that
the technique can be implemented on multi-processor ma-
chines or distributed over a network. Thus the parallelism
is derived from many candidate solutions being evaluated
at the same time. This is different from how the paral-
lelism in GPUs is obtained, whereby different data points
can be processed simultaneously for a single candidate pro-
gram. Therefore, the parallel implementation of GP on a
GPU will only evaluate a single candidate program at a
time. This technique is known as a data parallel approach
and has been previously applied to GP by Tufts [11] however
this was implemented on a distributed system.

In order to implement GP on a graphical processing unit
we need to implement a system whereby the data remains
constant and the fragment programs change. This is the
reverse of traditional general purpose applications on GPUs
which we described in section 3, whereby the fragment pro-
grams remain constant and the data changes for new prob-
lem instances. These applications (such as image process-
ing) usually require large amounts of data with multiple
passes of the fragment program over the input data. How-
ever, GP uses the same data throughout with multiple can-
didate programs being run on the same data with the overall
aim of determining the best program. Therefore, we need to
maintain the data as textures on the GPU such that we do
not need to repeatedly transfer data from the CPU memory
to the GPU memory, which is a slow process. We instead
modify the program each time before we render an image in
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order to execute the candidate program. To modify the frag-
ment program being run, we need to construct the program
in a Cg format from the genetic string using a Cg format;
and then compile and load it on to the GPU. This is signif-
icantly different to a standard GP approach which involves
iterating through recursive functions which can evaluate ex-
pressions as specified by the chromosome. Thus standard
GP is in effect an interpreted system whereby the GP expres-
sion is formulated and executed at run time. A significant
performance gain from the GPU approach is immediately
evident due to the capability to be able to compile and load
fragment programs in real time using the Cg toolkit.

The high level steps that are needed to implement a data
parallel version of GP on a graphics card are specified below:

1. Initialise OpenGL and setup graphics window

2. Copy data inputs into separate textures

3. Create a cgContext object

4. Generate the initial population

5. For each individual:
– Convert chromosome to Cg source code using re-

cursive functions

– Compile and load program using Cg Toolkit

– Bind program and textures to the cgContext ob-
ject

– Render the Cg program on the data

– Get output from the GPU

– Compare result with desired output and assign a
fitness to the individual

6. For each generation:
– Generate a new population using crossover and

mutation

– Evaluate population by performing step 5

7. Cleanup and output best result

Hence we see that the major difference between standard
GP and a version implemented on a GPU is in the evaluation
of the chromosomes. In standard GP we recursively evaluate
each subtree in the chromosome which form a closed expres-
sion. We perform this recursion for each set of data points or
fitness cases. The recursive aspect interprets each element
of the chromosome and converts it to the corresponding ter-
minal or operator.

With the GPU implementation of GP, the recursive func-
tion which interprets the chromosome remains. However,
instead of the expressions being evaluated, each is written
to a string which forms a complete fragment program. Each
separate subtree expression is stored in a temporary variable
which is then used as an input to other expressions further
up the tree. If we consider the following equation:

f(x) = x
3
− y + z

2 (2)

then the GP-Tree is shown in Figure 8 and the corresponding
fragment program is shown in Figure 9.

However, there are some aspects which need to be ob-
served, such that changing the GPU program whilst retain-
ing the input data on the graphics card is relatively fast. A
cgContext object is used to attach the data and fragment
programs together on the GPU in order to perform the ren-
dering. Typically, in general purpose GPU programming it

Figure 8: A GP-Tree example

Figure 9: A Cg fragment program (generated from
Figure 8)

is customary to create and destroy this context each time we
render a program. However, whilst conducting the research
in this paper, it was found that it was not necessary to de-
stroy the context for each run of a program. This results in
a considerable reduction in the runtime of the GPU Genetic
Programming algorithm.

In addition, whilst we have shown how to implement GP
on GPU hardware it should be mentioned that the technique
is not applicable to all problem domains. The main area for
which this GP technique can be used is the area of classi-
fication problems whereby GP attempts to generate a set
of outputs from a set of inputs which will match a desired
outcome. Examples of this include data mining tasks and
symbolic regression problems. However, it is envisaged that
applications that would not be applicable to this technique
are simulation based problems. For example, robot control
tasks to achieve a given behaviour require simulated runs
which is in essence a single data instance with a large num-
ber of inputs which produces multiple outputs. Therefore,
the fragment processors will be unable to operate in paral-
lel. What is necessary for this technique to be useful is large
volumes of data. We will discuss in the results section the
level of speedup that can be obtained for successively larger
volumes of data.

5. PROBLEM DOMAINS
To evaluate the performance of using a GPU to perform

genetic programming, we will apply the technique to three
example problem types. These problems are symbolic re-
gression, a classification task using the Fisher Iris data set
[2], and a multiplexer problem. These problems have been
chosen as they are relatively distinct from each other. In the
symbolic regression problem a single line equation is evolved
whilst the iris classification task is a multi-classification task
and the multiplexer problem is a two class classification
problem. A description of each of the problems follows:
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Objective Find a symbolic function which will
map a single input to a single out-
put whereby the target function is
f(X) = x4 + x3 + x2 + x

Terminal operands x, 1.0
Terminal operators +, *, /, and -
Fitness Sum of the error over all fitness

cases

Table 1: Symbolic regression example 1 problem pa-
rameters
Objective Find a symbolic function which will

map a single input to a single out-
put whereby the target function is
f(x) = 2.76x2 + 3.14x

Terminal operands x, [0.0..10.0]
Terminal operators +, *, /, and -
Fitness Sum of the error over all fitness

cases

Table 2: Symbolic regression example 2 problem pa-
rameters

5.1 Symbolic Regression
Symbolic regression problems involve finding a symbolic

mathematical expression which matches a given set of input
and output values. Thus the objective is to find a mathe-
matical function which will map the inputs to the outputs.
The function which we shall investigate is described as fol-
lows:

f(x) = x
4 + x

3 + x
2 + x (3)

with x in the range [-1,1].
For this example we will use 100 fitness cases and the

parameters we will use are described in table 1. In addition,
we also use a second symbolic regression problem described
by equation (4) for which it is harder to find a solution:

f(x) = 2.76x
2 + 3.14x (4)

with x in the range [-1,1].
We will use 400 fitness cases for this problem to demon-

strate the relationship between execution times and the num-
ber of fitness cases. The parameters we will use for this
problem are described in table 2.

5.2 Fisher Iris Data Set Classification
The Fisher Iris dataset is a well known multi-class classifi-

cation problem that uses Iris flowers. There are three types
of Iris in the dataset, Iris Setosa, Iris Veriscolor and Iris
Virginica. There are four input parameters for this prob-
lem consisting of the width and length of the petals and the
width and length of the sepals. We labeled the Iris flowers
using numerical constants [1,2,3] which we added as termi-
nal constant values. We will use the full data set of 150
examples to use as our fitness case. The fitness measure will
be the number of correct classifications found. The problem
parameters are shown in table 3.

5.3 11-Way Multiplexer
Multiplexers are examples of addressing problems whereby

instances have k address bits and 2k data bits. The value in
the address section specifies a data element. Thus for cor-
rect instances the data element specified by the address bits

Objective Find a symbolic classification rule
which correctly labels the three
types of iris data set

Terminal operands Petal Length, Petal Width, Sepal
Length, Sepal Width, constant in
the interval [0.0..10.0] and three
constants [1,2,3]

Terminal operators +, *, /, -, =, >, <, AND and OR
Fitness The number of correct classifica-

tions made over 150 fitness cases

Table 3: Fisher Iris data classification problem pa-
rameters

Objective Find a symbolic classification rule
which correctly labels the output of
an 11-way multiplexer

Terminal operands Each address and data element of
the 11-way multiplexer

Terminal operators =, !=, AND and OR
Fitness The number of correct classifica-

tions made over 2048 fitness cases

Table 4: 11-way Multiplexer classification problem
parameters

will be set to one and for incorrect instances this data bit
will be set to zero. In this problem we will use three address
bits and thus eight data bits. This means that there are
2048 individual instances which will form the fitness cases
we will use. The parameters we will use for this problem are
shown in table 4.

6. RESULTS
We generated the results presented in this paper using

a 1.7GHz Pentium 4 processor with 1GB of memory. The
graphics card used was an NVidia GeForce 6400 GO which
has sixteen fragment processors. We compared the data
parallel implementation of GP on GPU with a standard in-
terpreted GP approach. All results were generated using a
population size of 500 individuals evolved over 50 genera-
tions with crossover of 1.0 and mutation of 0.001. All the
results were averaged over 50 trial runs.

In table 5 we compare the execution times of the standard
GP approach and the data parallel implementation using a
GPU. It can be seen that for instances of problems with
only a few fitness cases that the GPU approach to GP has
longer execution times. However, for problem instances with
a larger number of fitness cases we can see a significant per-
formance gain from the GPU technique over the standard
GP algorithm. To further illustrate this point we compare
in figure 10 the execution times of both algorithms using the
harder symbolic regression problem and steadily increasing
the number of fitness cases. It can be clearly seen from the
graph that the increase in execution time compared to the
increase in the number of fitness cases is strictly linear for a
standard genetic algorithm approach. Compare this to the
GPU implementation and it can be seen that increasing the
number of fitness cases has no effect on the execution time
of the algorithm. We can also see that at the lowest level
of fitness cases that the standard technique outperforms the
GPU technique However, we can see that once the num-
ber of fitness cases exceeds approximately 200 then the data
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parallel GPU approach becomes the faster technique. In
figure 11 we show the increase in the execution time of the
GP GPU technique for considerable larger volumes of fitness
cases using the same symbolic regression problem. We can
see that a significant number of fitness cases are required
to affect the execution time of the GPU approach to GP,
approximately 10000 to 15000 cases.

Problem Standard GP GPU GP
Symbolic Regression 1 122 300
Symbolic Regression 2 2531 277
Iris Classification 226 252
11-way Multiplexer 9115 304

Table 5: Average execution time in seconds for each
problem instance

Figure 10: Execution timings using a symbolic re-
gression problem

Figure 11: Execution timings for GPU GP and sig-
nificantly larger numbers of fitness cases

7. CONCLUSIONS
In this paper we have presented the technique of perform-

ing general purpose computing on graphics cards and more-
over, we have extended this technique to genetic program-
ming. Thus we implemented a much faster version of ge-
netic programming by using a data parallel approach which
can use the graphics card. Therefore it is now possible for
parallel genetic programming to be run on single processor
systems which have a graphics card.

Our results have shown that although there is little im-
provement for small numbers of fitness cases, when this
number becomes much larger then considerable gains can

be made using the GPU implementation of GP. It should
also be noted that there is significant room for improve-
ment. The results generated here were generated using a
mobile NVidia GeForce GO 6400 graphics card which has
only 16 fragment processors whilst the latest NVidia graph-
ics card has 24, a significant improvement. Also, whilst the
GPU was evaluating a candidate program, the CPU was
idle waiting for the GPU to return. Thus it may be possi-
ble to implement a system whereby the CPU is also utilised
perhaps by having a standard GP approach evaluating can-
didate programs at the same time as the GPU is operating.
Furthermore, it should also be possible to combine the data
parallel approach using GPUs and a standard parallel im-
plementation of GP to increase increase the speed of GP. It
should be possible to distribute genetic programming over
a network of computers each one of which has an NVidia
graphics card. Thus we should see a similar performance
gain over a standard parallel implementation of genetic pro-
gramming.
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