
Proceedings of Machine Learning Research vol 75:1–17, 2018 31st Annual Conference on Learning Theory

A Data Prism:

Semi-Verified Learning in the Small-α Regime

Michela Meister MMEISTER@STANFORD.EDU and Gregory Valiant VALIANT@STANFORD.EDU

Stanford University

Editors: Sebastien Bubeck, Vianney Perchet and Philippe Rigollet

Abstract

We consider a simple model of unreliable or crowdsourced data where there is an underlying set of n
binary variables, each “evaluator” contributes a (possibly unreliable or adversarial) estimate of the values of

some subset of r of the variables, and the learner is given the true value of a constant number of variables.

We show that, provided an α-fraction of the evaluators are “good” (either correct, or with independent

noise rate p<1/2), then the true values of a (1−ǫ) fraction of the n underlying variables can be deduced

as long as r> log2−2p(1/α). For example, if the fraction of “good” evaluators is larger than 1/16 and

there is no noise in their responses, then accurate recovery is possible provided each worker evaluates

a random set of 4 items. This result is optimal in that if r≤ log2−2p(1/α) the large dataset can contain

no information. This setting can be viewed as an instance of the semi-verified learning model introduced

in (Charikar et al., 2017), which explores the tradeoff between the number of items evaluated by each

worker and the fraction of “good” evaluators. In the standard adversarial setting, our algorithm requires

Õ
(

nlog
2−2p

(1/α)
)

evaluators. However, the algorithm runs in near linear time, Õr,ǫ(n), and hence would

require only a near-linear number of evaluations in the weaker model in which the adversary’s responses

to each r-tuple of items are independent of the set of evaluations collected. These settings and results can

also be viewed as examining a general class of semi-adversarial CSPs with a planted assignment.

This extreme parameter regime, where the fraction of reliable data is small (inverse exponential in the

amount of data provided by each source), is relevant to a number of practical settings. For example, the

setting where you collect a dataset on customer preferences, with each customer specifying preferences for

a small (constant) number of items, and the goal is to ascertain the preferences of a specific demographic of

interest. Our results show that this large dataset (which lacks demographic information) can be leveraged

together with the preferences of the demographic of interest for a constant (polynomial in 1/α but

independent of n), number of randomly selected items, to recover an accurate estimate of the entire set of

preferences, even if the fraction of the original dataset contributed by the demographic of interest is inverse

exponential in the number of preferences supplied by each customer. In this sense, our results can be viewed

as a “data prism” allowing one to extract the behavior of specific cohorts from a large, mixed, dataset.

Keywords: Semi-Verified Learning, Robust Statistics, Cohort Analysis, Crowdsourcing

1. Introduction

Imagine that you collect a large dataset of market research. Specifically, the dataset consists of customer

evaluations of products. While the total set of products is large, of size n, each customer is only asked

to evaluate a small (perhaps randomly selected) subset of r=2,3, etc. of those products. Now suppose

you wish to identify the preferences of some special demographic of customers—perhaps the customers

who are full-time students. Let α denote a lower bound on the fraction of the surveyed customers that

were full-time students, but assume that we do not have this demographic information in our dataset–all

c© 2018 M. Meister & G. Valiant.

A DATA PRISM

we have is the set of evaluations of each customer. How can we leverage this dataset to learn anything

about the student-demographic?

If α≪ 1/2, this problem seems hopeless because the amount of data contributed by non-students

might swamp the portion of the dataset contributed by students (the demographic of interest). Nevertheless,

the main result of this paper shows that one could hire some students to evaluate a constant, k, number

of (random) products in the set of size n, and then leverage that constant amount of information together

with the large dataset to return accurate evaluations of the student-demographic preferences on all n items.

This claim will hold provided the number of items evaluated by each of the customers in the dataset,

r> log2(1/α). The guarantees of the algorithm will ensure that, with high probability, at most an ǫ-fraction

of the returned evaluations are incorrect (where k—the number of products evaluated by the hired students,

is polynomial in 1/ǫ and 1/α, but is independent of the total number of items, n). In particular, this

strong success guarantee holds irrespective of the behavior of the non-student demographics in the original

dataset–in particular, they could even be adversarial, provided by a single malicious entity who is trying

to disguise the feedback provided by the student-demographic.

The above setting, where one has a large dataset reflecting a number of demographics, and wishes

to leverage the large dataset in conjunction with a very small set of “verified” datapoints from one demo-

graphic of interest, seems relevant beyond the market research domain. Indeed, there are many biological

or health-related datasets where the “demographic of interest” might be a trait that is expensive to evaluate

such as genetic factors.

While the parameter regime explored in this work are inspired by these real-world settings, there are

also close connections to several classes of constraint-satisfaction-problems (CSPs). The connections we

present between our crowdsourcing setting and CSPs may offer a new perspective on problems in these

areas. Indeed, the purely combinatorial approach of our algorithm is in contrast to the geometric or spectral

methods employed by previous approaches to robust statistics and crowdsourcing, and seems essential to

obtaining a super-polynomial tradeoff between the fraction of “good” data and the number of evaluations

requested per evaluator.

1.1. Formal Model

We formally model this problem as an instance of the semi-verified learning model proposed by Charikar,

Steinhardt, and Valiant (Charikar et al., 2017). Suppose there is a set ofnBoolean variables,V ={v1,...,vn},

and m “workers” who each provide an evaluation of the values of a randomly selected subset of r of

the variables. Suppose that an α-fraction of the workers are “reliable” and submit evaluations with the

property that each of their r reported values is incorrect independently with probability ≤p. We make

no assumptions on the evaluations submitted by the (1−α)m unreliable workers—these evaluations could

be biased, arbitrary, or even adversarially chosen with the goal of confounding the learning algorithm. In

addition to this large dataset, we also receive k≪n,m “verified” data points that consist of the values of k
randomly selected variables. The goal of the learner will be to return assignments to the n variables, such

that with probability at least 1−δ, at most ǫn of these returned assignments differ from their true values.

In the first model we consider, we have a dataset containing evaluations for each of the
(

n
1+⌊log2−2p(1/α)⌋

)

sets of 1 + ⌊log2−2p(1/α)⌋ items/variables. This corresponds to soliciting responses from at least

m= Õ
(

n1+⌊log2−2p(1/α)⌋
)

workers. We assume that an adversary selects the responses given by the

(1−α)-fraction of “bad” workers, and that we have query access to the dataset, so that, for any set t of ≤r
products, we can query the evaluations from all workers who reviewed the set of products, t, in constant

time. In this setting, we show that, provided r≥1+⌊log2−2p(1/α)⌋, given the k=Oα,ǫ,δ(1) “verified”

2

A DATA PRISM

evaluations [e.g. from the hired students], we can recover the correct labels [the true preferences of the

student demographic] on a (1−ǫ)n fraction of the items/variables after making Õα,ǫ,δ(n) queries to the

dataset and in linear time, Õα,ǫ,δ(n), with probability at least 1−δ over the randomness in the algorithm

and in the noise in the “good” workers’ responses.

The requirement that we have evaluations for all subsets of 1+⌊log2−2p(1/α)⌋ variables may be

unrealistic in practice. However, as our algorithm only queries a linear number of such subsets (and does

so non-adaptively), the results continue to hold in the setting where only Õr,ǫ,δ(n) workers are required,

provided that the responses of the adversaries do not adaptively depend on the choice of tuples evaluated.

This is equivalent to the adversary first determining the responses to all
(

n
r

)

possible sets of r items, before

we select which Õr,ǫ,δ(n) tuples to have evaluated by the workers. This model, while weaker than the fully

adversarial setting, corresponds to the “data prism” setting where the “adversarial” data may be arbitrarily

biased, but does not correspond to an adaptive adversary.

1.2. Summary of Results and Connections to Random CSPs

Our main result is the following:

Theorem 1 Fix a failure probability δ > 0 and accuracy parameter ǫ> 0. Consider a set of n items

that each have a Boolean value, and m reviewers who each evaluate a uniformly random subset of r out

of the n items. Suppose that αm of the reviewers are “good” in that each of their r reviews is correct

(independently) with probability at least 1−p≥1/2. Given sufficiently many reviewers, accurate reviews

of at least (1−ǫ)n items can be inferred given the true values of a constant (independent of n) sized

random subset of the variables, provided the fraction of good reviewers satisfies α> 1
(2−2p)r .

Specifically, given the values of a random, constant-sized subset of the items of size

k = Õ
(

1
ǫ ·(1/α)

log2−2p4log(1/δ)
)

, with probability at least 1− δ one can recover accurate evalua-

tions of at least (1 − ǫ)n of the items, provided α > 1
(2−2p)r and the number of reviewers m =

Θ̃α,δ,ǫ

(

n1+⌊log2−2p(1/α)⌋
)

.

Additionally, the algorithm runs in time linear in the number of items, n, given the ability to query

the dataset for reviewers who have evaluated a given set of items in constant time. Specifically, the runtime

of the algorithm is Oδ,ǫ,r(n), where the hidden constant hides a polynomial dependence on 1/α,1/ǫ and

log(1/δ).

As a consequence of the structure of the algorithm to which the above theorem applies, the following

theorem captures the sense in which a linear number of reviewers are necessary if 1) reviewers can be

assigned items to review (rather than reviewing uniformly random subsets) and 2) the strategy of the

adversary is independent of the set of reviews requested.

Theorem 2 Given the ability to request evaluations of sets of r≥1+⌊log2−2p(1/α)⌋ items from each

worker, and assuming that the responses of the “bad” fraction of workers on a given set of items is

independent of the set of other queries asked, accurate estimates of a (1−ǫ)n fraction of items can be

obtained with m=Õα,ǫ,δ(n) workers and k=poly(1/α,1/ǫ,log(1/δ)) verified evaluations.

In the case where the m workers can be queried after receiving the k verified evaluations, the hidden

dependence of m on α,ǫ,δ is polynomial. If the m workers are queried before receiving the k verified

evaluations, then this dependence is exponential but still independent of n, the number of items. This

3

A DATA PRISM

exponential dependency corresponds to collecting queries that would correspond to each of the 2k possible

outcomes of the k verified evaluations.

The following straightforward observation demonstrates that the above theorems are optimal in the re-

lationship between the fraction of good reviewers, α, and the number of items reviewed by each individual,

r, and the error rate of each good reviewer, p:

Observation 1 If each good reviewer incorrectly reviews each item independently with probability p, and

the fraction of good reviewers satisfies α= 1
(2−2p)r where r denotes the number of items evaluated by each

reviewer, then the remaining (1−α) fraction of reviewers can behave such that for every set of r items,

for a randomly selected reviewer, the distribution of reviews for those items will be uniform over the 2r

possible review vectors. Hence the dataset contains no useful information.

One reason why Theorem 1 is surprising is that this inverse exponential dependence between the

number of reviews per reviewers, r, and the fraction of “good” reviewers, can not be attained via the

usual approach of low-rank matrix approximation that is often applied to this problem of recommendation

systems (e.g. (Candes and Plan, 2010; Keshavan et al., 2010)). To see why these approaches cannot be

applied, note that for any matrix in which all rows have at most r entries, there is a rank r matrix that

exactly agrees with all entries. Intuitively, each of these r factors is capable of representing a different

subset of the reviewers. Still, at best this would result in an algorithm that is capable of capturing r different

groups of reviewers; in other words, it seems extremely unlikely that such approaches could yield positive

results in the setting where the fraction of “good” reviewers was less than 1/r, in contrast to our results

that allow this fraction to be 1/exp(r).

The setting of Theorem 1 can be easily mapped into the language of a constraint satisfaction problem.

Given the evaluations of the reviewers, we build a constraint satisfaction problem by associating a Boolean

variable to each of the n items, and for every set of r variables, we define the set of allowable assignments

to those variables to include any of the 2r review vectors that constitutes more than a 1/2r fraction of the

review vectors for the associated items. (In other words, if at most a 1/2r fraction of the reviewers who

evaluated a given set of r items submitted a vector of reviews σ=(σ1,...,σr), then σ is not an allowable

assignment for those variables.) The requirement that α> 1
(2−2p)r guarantees that, for every set of r items,

irrespective of the behaviors of the (1−α) fraction of bad reviewers, for a randomly selected reviewer, the

probability that the r reviews are all correct is strictly larger than 1/2r. Additionally, our requirement on

the number of reviewers, m, ensures that with probability >1−δ, (by elementary concentration bounds)

for every set of r items, there are sufficiently many reviewers assigned to that set of r items, so as to ensure

that the number of accurate ratings (provided by the good reviewers) exceeds a 1/2r fraction of the overall

reviews for that set of r items. Hence, with high probability, we obtain a constraint satisfaction problem

such that for every set of r variables 1) the correct assignment is in the set of allowable assignments, and

2) at least one of the 2r possible assignments is disallowed.

Given this mapping from the review/evaluation setting to constraint satisfaction problems, Theorem 1

will follow immediately from the following result concerning a class of adversarial constraint satisfaction

problems:

Theorem 3 Consider a set of n Boolean variables, and a planted assignment σ∈{0,1}n. Suppose that

for each subset of r variables, t= {v1,...,vr}, there is a subset Ct ⊂{0,1}r of assignments such that

|Ct|≤2r−1 and the planted assignment σ (restricted to the variables in t) is in set Ct. Given the ability

to query the planted assignment values for a constant number of variables chosen uniformly at random,

the planted assignment can be recovered with up to ǫn errors, for any constant ǫ>0.

4

A DATA PRISM

Specifically, for any ǫ,δ>0, after querying the values of

k=Õ

(

1

ǫ
·22rlog(1/δ)

)

variables, with probability at least 1−δ we can output an assignment σ′∈{0,1}n that differs from the

planted assignment, σ, in at most ǫn values. Additionally, the algorithm will run in time Or,ǫ,δ(n).

There is a simple V C-dimension argument together with a sphere-packing result of Haussler (Haus-

sler, 1995) that yields a tighter information theoretic recovery result, yielding an analog of the above

theorem with polynomial dependence on r.1 Specifically, the number of verified assignments must be

k=O(1ǫ (rlog(1/ǫ)+log(1/δ)). This V C-dimension approach, however, seems to yield an algorithm with

runtime at leastnr, as opposed to the linear time algorithms of Theorems 1 and 3. For practical settings, hav-

ing a linear-time algorithm seems quite important; that said, exploring this problem from an information the-

oretic perspective is also worthwhile. One natural question is whether one can achieve a best-of-both-worlds:

a near-linear time algorithm with a polynomial dependence on r. We discuss this problem more in Section 3.

Proposition 4 As in Theorem 3, consider a set of n Boolean variables, and a planted assignment

σ∈{0,1}n. Suppose that for each subset of r variables, t={v1,...,vr}, there is a subset Ct⊂{0,1}r of

assignments such that |Ct|≤2r−1 and the planted assignment σ (restricted to the variables in t) is consis-

tent with Ct. Given the ability to query the planted assignment values for k=O
(

1
ǫ (rlog(1/ǫ)+log(1/δ))

)

random entries, with probability at least 1−ǫ one can recover an assignment that disagrees with σ on

at most ǫn values.

Proof Let S⊂{0,1}n be the set of assignments that are consistent with all of the sets of partial assignments

to the r-tuples specified by the sets Ct. The Vapnik-Chervonenkis (VC) dimension of the set S is at most r,

since, by assumption, for every r-tuple of variables, t={v1,...,vr}, there are at most |Ct|≤2r−1 possible

assignments to those variables. As was shown by Haussler (Theorem 1 in (Haussler, 1995)), for any subset

S of the Boolean hypercube with VC dimension at most r, for every ǫ>0 there exists a set T⊂{0,1}n

of size at most e(r+1)
(

2e
ǫ

)r
such that for every point x∈S, there exists a point tx∈T that agrees with

x on at least (1−ǫ)n coordinates.

Let Tǫ/2 denote such a covering set corresponding to the set S, such that every x∈S is distance at

most nǫ/2 from an element of Tǫ/2. We can use our k=O
(

1
ǫ (rlog(1/ǫ)+log(1/δ))

)

random coordinates

of the vector σ∈S to find, with probability at least 1−δ, a point in Tǫ/2 of distance at most nǫ from σ
by simply choosing the element of Tǫ/2 that agrees with the largest fraction of the k random samples. This

follows from 1) leveraging a Chernoff bound to show that out of the k samples, at most a (2/3)ǫ fraction

will disagree with the element of Tǫ/2 that has distance ǫn/2, and 2) a union bound over |Tǫ/2| Chernoff

bounds to argue that none of the elements of Tǫ/2 that have distance at least ǫn will disagree in fewer than

a (2/3)ǫ fraction of indices. Together, this yields that the probability that the element of Tǫ/2 that agrees

with the largest fraction of the k random samples has distance greater than ǫn from the true assignment,

is at most |Tǫ/2|exp(O(−kǫ))= |Tǫ/2|(1/ǫ)
O(r)δ, which is at most δ for a suitable choice of the constant

in the “O” term of k=O
(

1
ǫ (rlog(1/ǫ)+log(1/δ))

)

.

One implication of the above result is that for any Boolean constraint satisfaction problem for which 1)

there exists a satisfying assignment, and 2) for every subset of r variables the constraints forbid at least one of

1. We thank an anonymous reviewer of an early version of this paper for drawing our attention to this.

5

A DATA PRISM

the 2r possible assignments, it must be the case that there are only a constant number of “ǫ-similar solution

clusters,” where an ǫ-similar solution cluster is a set of assignments that differ from each other in at most ǫn
locations. Indeed, the number of such clusters will be at most 2k, where k=Õ(r/ǫ) is as specified in The-

orem 3 and Proposition 4, is a bound on the number of variables whose assigned value must be queried to

achieve a constant probability of failure δ<1. Note that this number of solution clusters is independent of n.

This structure of the satisfying assignments is slightly surprising given the following two simple exam-

ples: the first example illustrates that it is possible for such CSPs to have at least two extremely different sat-

isfying assignments, and the second illustrates that it is possible for such CSPs to have super-constant sized

solution clusters—clusters of size Ω(n)—although all the assignments in such a cluster are quite similar.

Example 1 Consider the setting where the underlying assignment to all n variables is T , and for every

pair of variables, the set of allowable assignments is {(F,F),(T,T)}. Based on these constraints, there

are two possible satisfying assignments—either all T or all F . A single “verified” data point is sufficient

to distinguish between these two sets of assignments.

The following example illustrates that, in general, it is impossible to guarantee that the learner will

correctly output the exact assignment, unless the number of verified datapoints k=Θ(n).

Example 2 Consider the setting where each set of r values has the constraint that precludes the (F,F,...,F)
r-tuple. In this case, there is a single solution cluster consisting of all assignments to the n variables such

that at most r−1 of the variables are F and the remaining n−r+1 are T . In this case, it is impossible

to distinguish between these assignments with any significant probability using fewer than Θ(n) verified

evaluations.

Despite the above examples, it is still unclear whether the information theoretic bound of Proposition 4

is tight; particularly for small constant ǫ, it is not clear the extent to which the number of ǫ-separated

solution clusters can grow as ǫ decreases. This seems like an intriguing and fundamental question related

to the “semi-adversarial” setting of Proposition 4 where the choice of forbidden assignments is chosen

adversarially subject to being consistent with a planted assignment.

1.3. Related Work

The general challenge of developing algorithms and estimators that are robust to corruptions in the input

data dates back to the early work of Tukey (Tukey, 1960), and has led to a significant body of work on

“Robust Statistics”, which explores a number of different models for the data corruptions, and largely

focuses on the regime in which a majority of the data is “good.” We refer the reader to the surveys

of (Huber, 2011) and (Hampel et al., 2011) for overviews of this literature.

Motivated by the increasing practical importance of robust estimation—and more generally, robust

learning and optimization—there has been recent interest in these problems from both an information

theoretic and computational perspective. Recent works from the TCS community tackled this general

problem in several basic settings, including robustly estimating the mean and covariance of natural classes

of distribution, including multivariate Gaussians (Diakonikolas et al., 2016; Lai et al., 2016). The focus of

these works was largely on establishing computationally efficiency algorithms for these tasks that approach

the information theoretic (minimax) guarantees achieved by more naive or brute-force algorithms. There has

been a flurry of very recent works both tightening these results and extending them to more general classes

of distribution and other optimization or learning problems (Steinhardt et al., 2018; Kothari and Steinhardt,

2017; Kothari and Steurer, 2017; Diakonikolas et al., 2017a). This work differs significantly from the long

6

A DATA PRISM

line of work on agnostic learning, in that here the adversary is allowed to corrupt both the data distribution,

and the labels, in contrast to the more limited agnostic learning setting where only the labels are corrupted.

The above works focus on the setting where a significant majority of data is “good”. The works (Stein-

hardt et al., 2016) and (Charikar et al., 2017) and the very recent work (Diakonikolas et al., 2017b) consider

the setting where a minority of the data is “good” (i.e. α< 1/2), with (Charikar et al., 2017) formally

proposing the “semi-verified” learning model where one may obtain a small amount of “verified” data

that has been drawn from the distribution/cohort in question. The work (Steinhardt et al., 2016) considers

a similar item evaluation setting to the setting we consider, but focuses on the regime where the number

of evaluators is on the same order as the number of items being evaluated and the r-tuples of items being

evaluated are selected uniformly at random. In this regime, they show that ǫ-accurate recovery is possible

provided that the number of items reviewed by each evaluator is O(1
ǫ4α3) .

In contrast, we consider the regime in which the number of evaluators might be significantly larger than

the number of items, or the items to evaluate are not chosen at random, but establish an optimal tradeoff

between the fraction of good reviewers and the number of items evaluated by each reviewer, demonstrating

the surprising ability to tolerate a fraction of good reviewers that is inverse exponential in the number of

items evaluated by each reviewer. For the context of leveraging these techniques as a “prism” to extract

information about specific demographics from a large, mixed dataset, this small-α regime seems especially

significant. The techniques of this paper, via local algorithms and the constraint-satisfaction perspective,

also differ significantly from the previous approaches to robust estimation which rely on more geometric

or spectral structure.

2. The Algorithm Intuition

In this section we describe the intuition and high-level structure for the algorithm to which Theorems 1, 2

and 3 applies. Throughout, it will be convenient to assume that we have constraints on sets of r =
1+⌊log2−2p(1/α)⌋ variables. This is without loss of generality, since provided r≥1+⌊log2−2p(1/α)⌋,
we could consider only the implied constraints on subsets of exactly 1+⌊log2−2p(1/α)⌋ variables.

The overall structure of the algorithm is to iteratively reduce an instance of the problem with non-trivial

constraints on sets of r variables, to an instance of the problem that has non-trivial constraints on sets of r−1
variables. In general, the true assignment might not satisfy the constraints that we derive on the sets of r−1
variables, though we will be able to leverage any such derived constraints that are discovered to be false.

We describe the intuition for the algorithm in two parts. First, in Section 2.1 we describe an algorithm

with runtime O(n2) for the case that r=2. We then sketch how to convert this algorithm into a linear-time

algorithm in Section 2.2. In Section 2.3 we sketch the intuition for the reduction from constraints on sets

of r variables to constraints on r−1-tuples. We formally describe the general linear-time algorithm and

provide its proof of correctness in Appendix A; this algorithm combines both the constraint reduction idea

of Section 2.3 with the machinery for making the algorithm run in linear time described in Section 2.2.

2.1. Intuition: Restricting to Pessimistic Constraints

Our algorithm will proceed iteratively, with the goal of each iteration being to inspect at most a constant

number of randomly sampled “verified” variable values, and return accurate guesses for at least a constant

fraction of the variables. The algorithm will then recursively iterate this procedure on the remaining

variables until all but ǫ
2n variables have been assigned guesses; assignments to these last ≤ǫn/2 variables

can be chosen arbitrarily.

7

A DATA PRISM

To begin, consider the setting where r=2, and for every pair of variables (x,y) we have a set of

allowable assignments, C(x,y)⊂{T,F}2, with |C(x,y)|≤3. Each such set provides at least two implica-

tions, one of the form x=X =⇒ y = Y and one of the form y = Y ′ → x=X′ for some choice of

X,X′,Y,Y ′ ∈ {T,F}. For example, if the assignment (T,F) 6∈C(x,y), then we have the implications

x=T =⇒ Y =T and y=F =⇒ x=F . In other words, there is at least one value of variable x that

would imply the value of variable y, and similarly for y.

Hence, if we fix variable x, and consider the implications derived from the sets C(x,y) as y ranges

over all n−1 other variables, there must be an assignment to variable x that would imply the values of

at least n/2 variables. We will refer to this assignment as the “optimistic” value of x, as this assignment

to x would immediately yield the values of at least half the remaining variables, and we would be done

with the current iteration of the algorithm, and would then recurse on the remaining <n/2 variables that

have not been assigned values.

The first key idea of our algorithm is that we will assume that all variables take their “pessimistic” values.

We will then “check” this assumption by revealing the true values of a random sample of O(log(1/δ)/ǫ)
of these variables. If all of these values are consistent with the “pessimistic” values, we can conclude that

with probability at least 1−δ, at least (1−ǫ)n of the variables actually take their “pessimistic” values, and

hence we can simply output this assignment. If, however, any of our O(log(1/δ)/ǫ) random checks fails,

that means that we have found a variable that takes its “optimistic” value, and hence that one variable, x,

together with the n−1 constraint sets C(x,·) that involve it, imply the values of at least n/2 variables. In

either case, our constant (dependent on ǫ,δ) number of checks has yielded an accurate assignment to at least

half the variables. This simple algorithm in the r=2 case is summarized in the following pseudo-code:

FindAssigments, r=2:

Input: Set of n variables, and for every pair (x,y), a set of allowable assignments to those variables

C(x,y)⊂{T,F}2, with |Ct|≤3. Error parameter ǫ>0 and failure parameter δ>0.

Output: Assignments to each of the n variables.

• While there exists ≥ǫn/2 variables without assignments

– Let n′ denote the number of remaining variables, and for each of these, determine an

“optimistic” assignment that would imply the values of at least n′/2 other variables, and

define a variable’s “pessimistic” value to be the opposite assignment.

– Consider a set of 10 log(1/δ)
ǫ2

randomly chosen variables and their “verified” assignments. (If

fewer than
log(1/δ)

ǫ of these variables lie in the set of n′ >ǫn/2 variables in consideration,

output FAIL)

– If all the verified assignments for variables in the set of n′ agree with their pessimistic

assignments, then assign these n′ variables their pessimistic assignments.

– Otherwise, we must have found a variable whose verified assignment is its optimistic

assignment, and we can assign the values of at least n′/2 variables accordingly.

2.2. Sketch of Linear Runtime

The above algorithm, as presented, would require a quadratic runtime, as determining the “optimistic”

assignment to each variable, x, (the assignment that would imply the values for at least half the variables)

8

A DATA PRISM

requires inspecting a linear number of constraints—namely the constraints C(x,x′) as x′ ranges over the

O(n) variables. This, however, can easily be avoided via a sampling based approach: for each variable, x, it

is sufficient to examine a constant, dependent on ǫ and δ, number of constraints, to determine an assignment

that, with good probability, would imply the values of at least a 0.49 fraction of the remaining variables.

Given (mostly) accurate assignments of “optimistic” values to the variables, the algorithm of the

previous section proceeds by getting verified values for a constant-sized set of k of these variables. If

none of them agree with the optimistic assignments, then we conclude that most variables take their

pessimistic values, and we are done in linear time, via the constant-query sampling to determine the

optimistic/pessimistic values of each of the O(n) variables.

If, however, one of the k verified variables takes its optimistic value, at an additional O(n) cost, we

explore the O(n) implications implied by this optimistic assignment; this additional step also clearly takes

linear time.

Finally, note that we do not need to know the verified values for the k variables before querying the

implications that would be implied if each of them were to take their optimistic values. Hence, given

only the identities of the k verified variables (but not their values), at a cost of O(kn)=O(n) we could

probe a linear number of constraints, such that after the values of the k variables are revealed, we can

compute the assignment to all >0.49n variables using only the linear amount of information and linear

computation. In the crowd-sourcing setting, this corresponds to collecting Õ(kn) evaluations of pairs

of items, (x1,·),...,(xk,·) where x1,...,xk represent the k variables for which we will receive verified

evaluations; based on this linear amount of information, at a later time, one could collect the verified

evaluations of the prescribed k items, and then output accurate assignments to the items.

2.3. From r-tuples to r−1-tuples: Pessimism All The Way Down

Given the algorithm for the r=2 case, which is successful provided every pair of variables has at least one

forbidden assignment, the question is how to reduce the setting with constraints on sets of r≥3 variables,

to the setting of constraints on sets of r−1 variables. The following observation is the key to this reduction:

Lemma 5 Given an r-tuple and set of at most 2r−1 allowable assignments to those r variables, then

for any subset of r−1 of those variables, there exists an assignment to those r−1 variables that would

imply the value of the rth variable.

Proof Consider an r−1 tuple, t, and an additional variable v, and the set of≤2r−1 allowable assignments

to the r-tuple (t∪v). If the restriction of these assignments to the r−1 variables in t contains all 2r−1

possible assignments, it must be the case that for at least one of these assignments, there is a unique value

that v must assume, otherwise this r-tuple would have all 2r possible assignments. If the restriction of

the 2r−1 assignments to the r−1 tuple does not contain all 2r−1 assignments, then any assignment

σ∈{T,F}r−1 that cannot be obtained as a restriction of one of the assignments to the r−1 variables,

vacuously implies the value of the rth variable.

The utility of this lemma is that if we have an r−1-tuple of variables, t, then by considering all possible

additional variables v 6∈ t, there exists an assignment to t that determines the value of at least a 1/2r−1

fraction of the variables not in t. Hence we can designate an “optimistic” assignment with the property

that if that assignment holds, then it will imply assignments to at least a 1/2r−1 fraction of the remaining

variables. We will then assume that this “optimistic” assignment is not allowed, thereby reducing the set

of allowable assignments of variables in t to size 2r−1−1, and proceed inductively. In this sense, at some

9

A DATA PRISM

intermediate step of this algorithm where we are considering sets of r′<r variables, the allowable sets

of assignments that we are considering may not be completely accurate, as we are not verifying whether

the sets actually do take their “optimistic” assignments or not. However, if a r′-tuple of variables actually

takes the values of a forbidden/optimistic assignment, then either it will immediately imply the values

of a constant (i.e. at least 1/2r) fraction of variables, or it must be a subset of a larger tuple that takes its

“optimistic” assignment. Which of these two cases holds can be easily decided via querying the values

of a (constant) number of random variables. We describe the full algorithm in the following section.

2.4. The Inefficient Algorithm

The high-level structure of the algorithm described in the previous part takes the form of a “descending”

pass followed by an “ascending” pass. In the descending pass, we iteratively turn constraints on r0 tuples

into constraints on r0−1 tuples, then r0−2 tuples, etc; all the while, we forbid “optimistic” assignments

to ensure that in the rth level, each r tuple has at most 2r−1 allowable assignments. This descending

phase terminates with r=1, where we have our “pessimistic” conjectured assignments to all variables. We

then randomly check a few of these values; if we do not discover any inconsistencies with the conjectured

values, then we can safely conclude that most of the conjectured values are correct.

If we have discovered any inconsistencies, then we begin the ascending phase that investigates and

checks any discovered “optimistic” assignments. One minor wrinkle is that we should not trust the >1/2r

fraction of values that appear to be implied by an optimistic assignment to a set of r<r0−1 variables. These

implications might be the result of forbidding an optimistic assignment for some larger tuple. Nevertheless,

if we randomly check some of the implications, then we will either verify the accuracy of these implications,

or have found an optimistic assignment to a r+1 tuple. In this sense, the ascending phase will either

terminate upon satisfactorily verifying a significant (constant sized) subset of the set of output assignments,

or we will have found an “optimistic” assignment to a r0−1 tuple, and the implications of r0−1 tuples

are based directly on the given set of constraints to r0-tuples, which are valid by assumption. Hence each

phase of the algorithm will return assignments to a constant (at least 1/2r0) fraction of the variables.

We formally describe this algorithm now. As described, the runtime of is not linear in the number of

items, n, and this algorithm will require a number of “verified” samples that is inverse polynomial in the

error parameter ǫ, as opposed to the nearly inverse linear dependence specified in the Theorem 3. The

algorithm to which Theorem 3 applies is an extension of this algorithm, and results from combining the ideas

of Section 2.2 with this algorithm. The full linear-time variant of this algorithm is provided in Appendix A.

FindAssigments:

Input: Set of n variables, integer r0, and for every tuple t⊂ [n]r0 of r0 distinct variables, a set of allowable

assignments to those variables Ct ⊂ {T,F}r0, with |Ct| ≤ 2r0 −1. Error parameter ǫ > 0 and failure

parameter δ>0.

Output: Assignments to at least (1− ǫ
2)n variables.

• While there exists ≥ǫn/2 variables without assignments, run DESCEND on the set of unassigned

variables and their corresponding sets of allowable assignments.

10

A DATA PRISM

DESCEND:

Input: For each r-tuple, a set C of assignments to those variables, with |C|≤2r−1.

1. If r=1, AscendAndVerify(set of assigned values to each variable, r=1).

2. Else, for every r−1 tuple, t, we will create a set Ct of ≤2r−1−1 assignments:

• Find an “optimistic” assignment σt that would determine at least a 1/2r fraction of variables

not in t. (The existence of such an assignment is guaranteed by Lemma 5.)

• Set Ct={T,F}r−1\σt.

3. Run DESCEND on the set of r−1-tuples and their corresponding sets of assignments, each of

size 2r−1−1.

ASCEND AND VERIFY:

Input: Proposed assignments σv for each variable v∈V for some set V of variables. Integer r indicating

the size of the tuples whose constraints generated the proposed assignments, and assignment σt to a

r−1-tuple t, such that Ct∪v provided the implication σt→σv. Access to sets of allowable assignments

corresponding to all tuples of size r′∈{r,...,r0}. Constant A=2r0log(1/δ)log(1/ǫ))/ǫ2.

1. Randomly sample A verified variable assignments.

2. If all verified variable assignments agree with the proposed assignments, σv, then permanently

assign v∈V with their proposed assignments, σv.

3. Otherwise, let v denote a variable whose true/verified assignment av 6= σv, disagrees with the

proposed assignment to v. Hence (σt,av) 6∈Ct∪v so assignment (σt,av) together with the constraints

on the r+1 tuples must imply at least a 1/2r fraction of variable assignments. Denote these

assignments by σnew.

• Run AscendAndVerify(σnew,r+1,{t∪v},(σt,av))

3. Future Work

This work shows that it is possible to tolerate a fraction of “good” data, α, that is inverse exponential in r0,

the sparsity of each datapoint (i.e. the number of evaluations submitted per reviewer), provided the number

of datapoints/reviewers is sufficiently large to ensure that each set of r items queried has been evaluated

by a significant number of good reviewers. Our algorithm runs in time linear in the number of items to

review (provided the ability to query summary statistics of the set of reviewers who have evaluated a given

sets of items), and uses a constant number of “verified” reviews, which is independent of the total number

of items to review, and depends inverse linearly on the desired error (to logarithmic factors).

One natural question is prompted by the results of (Steinhardt et al., 2016), which provide efficient

algorithms for the regime where r=poly(1/α), but where it suffices to have a linear number of reviewers

that independently choose sets of r items to evaluate. (In our setting, we would require >nr reviewers

if each chooses their set uniformly at random—the setting where we have positive results using Õ(n)
reviewers requires that we can choose the sets of r items to assign to each reviewer.) Is it possible to achieve

the best-of-both-worlds: r=polylog(1/α), and a number of reviewers that is linear, or grows significantly

more slowly than the nr that we require, while leveraging a constant number of verified reviews?

11

A DATA PRISM

To this end, our algorithm only ever considers “single-hop” implications of proposed assignments: an

assignment to a set of r variables is considered “optimistic” if it directly implies values for a significant

fraction of the other variables. It is easy to imagine extending this definition to also consider longer chains

of implication. Perhaps a specific assignment to r variables would imply values to c1 additional variables,

which in turn would imply values to c2 variables, etc. Indeed, in the basic setting of r=2, this approach

can be realized to yield an algorithm that only requires constraints on a random subset of size O(n3/2),
as opposed to O(n2) constraints.

From a computational perspective, it seems unlikely that such an approach could be pushed to yield an

efficient algorithm for the regime in which fewer than nr/2 sets of r variables have nontrivial constraints.

Indeed, even for random instances of r−SAT with a planted solution, efficient algorithms below this

threshold have been elusive (see, for example, the recent related work on random CSPs with planted

assignments (Feldman et al., 2015; Raghavendra et al., 2016)).

From a purely information theoretic perspective—the picture is not entirely clear either. In contrast

to random CSPs with planted assignments, for which constraints are placed on random r-tuples and the

constraints are chosen randomly subject to respecting the planted assignment, our setting is complicated by

the adversarial nature of the constraints that are placed on the r-tuples. In a fully adversarial CSP model,

for which both the choices of the r-tuples as well as the constraints themselves are chosen adversarially—to

the best of our knowledge—very little is known. Of course, in this setting, the goal is to find a satisfying

assignment (that might not necessarily correspond to the planted assignment). In the semi-adversarial

CSP model, where the identities of the r-tuple sets are picked at random, and the adversary chooses the

constraints, our results show that we can recover an assignment, provided we can selectively query O(n)
of the

(

n
r

)

possible constraints. In these settings it is not immediately clear how to analyze the extent to

which implications “propagate”. A second difficulty is that the goal of our setting is not just to find a

satisfying assignment, but to find something close to a specific planted assignment. Our results imply, for

the settings we consider, that there are at most a constant number of solution clusters. It seems interesting

to investigate the extent to which this holds for semi-adversarial CSPs with fewer constraints, perhaps with

constraints chosen adversarially corresponding to only N≪
(

n
r

)

random r-tuples; in this setting it seems

plausible that N=nr/2 is the threshold between a constant and super-constant number of such solution

clusters, though this might be difficult to prove.

References

Emmanuel J Candes and Yaniv Plan. Matrix completion with noise. Proceedings of the IEEE, 98(6):

925–936, 2010.

M. Charikar, J. Steinhardt, and G. Valiant. Learning from untrusted data. In Symposium on Theory of

Computing (to appear), 2017.

Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Ankur Moitra, and Alistair Stewart. Robust

estimators in high dimensions without the computational intractability. In Foundations of Computer

Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages 655–664. IEEE, 2016.

Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Learning geometric concepts with nasty noise.

arXiv preprint arXiv:1707.01242, 2017a.

Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. List-decodable robust mean estimation and

learning mixtures of spherical gaussians. arXiv preprint arXiv:1711.07211, 2017b.

12

A DATA PRISM

Vitaly Feldman, Will Perkins, and Santosh Vempala. On the complexity of random satisfiability problems

with planted solutions. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory

of Computing, pages 77–86. ACM, 2015.

Frank R Hampel, Elvezio M Ronchetti, Peter J Rousseeuw, and Werner A Stahel. Robust statistics: the

approach based on influence functions, volume 114. John Wiley & Sons, 2011.

David Haussler. Sphere packing numbers for subsets of the boolean n-cube with bounded vapnik-

chervonenkis dimension. Journal of Combinatorial Theory, Series A, 69(2):217–232, 1995.

Peter J Huber. Robust statistics. Springer, 2011.

Raghunandan H Keshavan, Andrea Montanari, and Sewoong Oh. Matrix completion from a few entries.

IEEE Transactions on Information Theory, 56(6):2980–2998, 2010.

Pravesh K Kothari and Jacob Steinhardt. Better agnostic clustering via relaxed tensor norms. arXiv

preprint arXiv:1711.07465, 2017.

Pravesh K Kothari and David Steurer. Outlier-robust moment-estimation via sum-of-squares. arXiv

preprint arXiv:1711.11581, 2017.

Kevin A Lai, Anup B Rao, and Santosh Vempala. Agnostic estimation of mean and covariance. In Founda-

tions of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages 665–674. IEEE, 2016.

Prasad Raghavendra, Satish Rao, and Tselil Schramm. Strongly refuting random csps below the spectral

threshold. arXiv preprint arXiv:1605.00058, 2016.

Jacob Steinhardt, Gregory Valiant, and Moses Charikar. Avoiding imposters and delinquents: Adversarial

crowdsourcing and peer prediction. In Advances in Neural Information Processing Systems, pages

4439–4447, 2016.

Jacob Steinhardt, Moses Charikar, and Gregory Valiant. Resilience: A criterion for learning in the presence

of arbitrary outliers. In Innovations in Theoretical Computer Science (ITCS), 2018.

John W Tukey. A survey of sampling from contaminated distributions. Contributions to probability and

statistics, 2:448–485, 1960.

Appendix A. An Efficient Algorithm

The linear-time variant of the basic algorithm described in Section 2.4 leverages the two ideas sketched

in Section 2.2 for the r=2 setting. We now formalize them in this general r setting. For a given r-tuple

t, rather than consulting all Θ(n) constraints Ct∪xi for all xi 6∈t to determine the “optimistic” assignment

to t, one can determine an assignment that implies at least a 1
2

1
2r fraction of the variable values, with high

probability, via sampling a constant (independent of n but dependent on r,ǫ,δ) number of such constraints.

Note that this sampling does not look at any of the “verified” variable assignments—it just samples which

of the constraints to consider. We formalize this ability to efficiently determine an “optimistic” assignment

via the following subroutine, and the following lemma characterizing its performance.

13

A DATA PRISM

FIND OPTIMISTIC ASSIGNMENT:

Input: Set of n variables X, r-tuple t, the ability to query constraints Ct′ for |t′|=r0≥r (i.e. the ability

to find optimistic assignments to tuples t′ with |t′|=r0) and probability of failure γ>0.

Output: An optimistic assignment σt to t that would, with probability at least 1−γ, imply the assignments

to at least a 1/2r+1 fraction of other variables via the constraints Ct∪x. We define Ct :={T,F}r\{σt}.

1. If r=r0 then return constraint Ct.

2. Else

• Select s=3·2|t|log(1/γ) variables x1,...,xs uniformly at random from X\t.

• For each of these s variables, xi, compute Ct∪xi via a (recursive) call to

FindOptimisticAssignment(X,t∪xi,ProbFailure=γ/(2s)).

• Define assignment σt ∈ {T,F}r to be the lexicographically first assignment that, via the

constraints {Ct∪xi}, implies at least a 1/2r fraction of variables {x1,...,xs}. [Note that such

an assignment exists, since for each xi, |Ct∪xi| ≤ 2r+1−1 has at least one out of the 2r

possible assignment to t that would imply that value of xi.]

• Call σt the “optimistic” assignment to tuple t, and store Ct={T,F}r\σt.

The following two lemmas quantify the performance of the above algorithm. The first lemma char-

acterizes the probability of failure, and the proof follows immediately from standard Chernoff tail bounds.

Lemma 6 With probability at least 1−γ the optimistic assignment σt returned by algorithm FindOpti-

misticAssignment on input X and t has the property that for at least a 1/2|t|+1 fraction of variables x∈X,

the assignment σt together with the constraint set Ct∪x that would be computed by the algorithm on input

tuple t∪x, implies the value of variable x.

Proof Letting p denote the true fraction of variables, x, whose assignments are implied by σt and Ct∪x.

Recall that σt was chosen based on s independent samples, yielding an empirical estimate p̂≥1/2|t|, and

standard tail bounds yield that Pr[p̂>2p]≤e
− s

3·2|t| , yielding the lemma, since s=3·2|t|log(1/γ).

Lemma 7 Given constant-time query access to the constraint sets Ct′ for tuples satisfying |t′|=r0, for

any tuple t, algorithm FindOptimisticAssignment on input t and probability of failure γ>0 returns Ct

and runs in time/queries (2log(1/γ))O(r20), which is independent of the size of the variable set, |X|.

Proof Note that computing Ct calls O(2|t|log(1/γ)) computations of Ct′ for |t′|= |t|+1, each called with

error parameter 2|t| smaller. When |t|=r0, Ct is obtained via a single constant-time query. Expanding

this recursion yields the above lemma.

The second observation that underpins the efficient algorithm is that we do not need to determine the

optimistic assignments and form constraints Ct for all
(

n
r

)

r-tuples t. For each phase of the algorithm,

which returns assignments to a constant fraction of the unassigned variables—at least 1/2r0—it suffices to

find a single tuple t that takes its “optimistic” assignment. Indeed, such a tuple, by definition, takes values

that imply assignments to a constant fraction of the remaining variables. And for each of these variables,

14

A DATA PRISM

x, whose assignment is implied by the assignment to the tuple t, the value of variable x can be determined

in constant time by consulting the constraint Ct∪x. This observation is clarified in the following algorithm,

which is an adaptation of the Descend/AscendAndVerify algorithm described in the previous section.

Finally, we highlight the fact that the algorithm proceeds iteratively. Given an initial set of variables,

Y , at some intermediate step in the algorithm, we let X denote the set of variables for which we have

not yet output an assignment. The algorithm will terminate when |X|≤ǫ|Y |/2. The goal of the current

step of the algorithm will be to output assignments to at least a 1/2r0 fraction of variables in X, such

that the fraction of such assignments that are incorrect is bounded by ǫ
2log(2/ǫ)

|Y |
|X| . Given this bound on

the fraction of incorrect assignments returned at this phase of the algorithm, the total fraction of errors

is bounded by ǫ/2+
∫ 1
t=ǫ/2

ǫ
2log(2/ǫ) ·

1
tdt=ǫ where the first ǫ/2 is a bound on the error due to the arbitrary

assignments to the last ≤ ǫ|Y |/2 variables. The benefit of having the target accuracy increase as |X|
decreases is because we are given verified samples, drawn uniformly at random from Y . To “check” a

proposed assignment to set X to a target accuracy of γ, we need at least 1/γ verified samples from the

set X (ignoring the logarithmic dependence on the probability of failure). To guarantee that this number

of verified samples is obtained from set X, we will need to draw ≈ |Y |
γ|X| verified samples from Y . Using

the above trick of having the desired accuracy degrade as |X| decreases, for each phase of the algorithm,

a set of
|Y |/|X|
ǫ

2log(2/ǫ)
|Y |
|X|

=Õ(1/ǫ) verified samples is required—as opposed to the Θ(1/ǫ2) samples that would

have been required if we had fixed the target error rate to be ǫ for all rounds of the algorithm.

EFFICIENT FIND ASSIGNMENTS:

Input: Set of n variables Y , integer r0 and for every r0-tuple t⊂Y , a set of allowable assignments Ct

with |Ct|≤2r0−1. Error parameter ǫ>0 and probability of failure δ.

Output: Set of T/F assignments to each x∈Y .

• Set T=r0·2
r0+1log(2/ǫ).

• While there are at least ǫn/2 unassigned variables:

1. Let X⊂Y denote the set of unassigned variables.

2. Let ǫX= ǫ
2log(2/ǫ)

|Y |
|X| denote the target accuracy of this round, and set s=10 |Y |

ǫX |X| log(10T/δ).

3. Take s verified samples, revealing the planted assignment values for each of these variables.

Let X1⊂X denote the subset of these variables that are in set X, and for each x∈X1 let

ax denote the verified assignment to variable x. If |X1|<s |X|
2|Y | output FAIL.

4. For each x ∈ X1, determine Cx via FindOptimisticAssignments with failure parameter

γ=δ/T .

5. If, for all x∈X1, ax=Cx, then for every variable x∈X, compute and output assignment Cx.

6. Otherwise, let x1 ∈ X1 denote a variable for which ax 6= Cx, and run

EfficientAscend(X,i,x1,ax1,s).

15

A DATA PRISM

EFFICIENT ASCEND:

Input: Set of variables X, integer i∈{1,...,r0−1}, tuple t with |t|=i, verified assignments at∈{T,F}|t|

to tuple t, and parameter s.

Output: Output to a subset of variables in set X.

1. If i≥r0 output FAIL.

2. Take si=s·2i verified samples, and let Xi+1 denote the intersection of X with this set of variables

with verified assignments, with ax denoting the verified assignment to variable x∈Xi+1.

3. For each x ∈ Xi+1, determine Ct∪x via a call to FindOptimisticAssignment(X, t ∪
x,FailureProb=δ/(10T ·si)), and let X′

i+1⊂Xi+1 denote the subset of variables x∈Xi+1 for

which the constraint Ct∪x together with at implies a value σx for x. If |X′
i+1|≤si

|X|
4·2i|Y |

output

FAIL.

4. If, for all x∈X′
i+1, it holds that σx=ax, then for every variable x∈X, compute Ct∪x and output

assignment σx if σx is implied by Ct∪x and at.

5. Otherwise, let xi+1 ∈ X′
i+1 denote a variable for which Ct∪xi+1 and at implies assignment

σxi+1 6=axi+1. Run EfficientAscend(X,i+1,t∪xi+1,(at,axi+1),s).

Proposition 8 Algorithm EfficientFindAssignments, when run with error parameter ǫ and probability of

failure δ, has the following properties:

• The algorithm will require at most Õ
(

1
ǫ ·2

2r0log(1/δ)
)

verified samples drawn uniformly at random

from the set of variables, Y .

• With probability at least 1−δ, the algorithm will output assignments to each variable x∈Y , such

that at most an ǫ fraction of the assignments disagree with the planted assignment.

• The algorithm runs in time Or0,ǫ,δ(n), and only consults this number of constraints, C(·).

Proof The high level outline of the execution of algorithm EfficientFindAssignments is that in each

step of the outer WHILE loop, an assignment to at least a 1/2r0+1 fraction of the remaining unassigned

variables, X, will be output. This continues until |X|≤ǫn/2, at which point these remaining variables

can be assigned arbitrary labels and the algorithm terminates. Hence there will be at most O(2r0log(1/ǫ))
iterations of the while loop. In the iteration conducted on unassigned variable set X⊂Y , the goal will be to

return assignments such that the fraction of returned assignments that are incorrect is at most ǫ
2log(2/ǫ)

n
|X| ,

where |Y |=n is the total number of initial variables. Provided these accuracy goals are met at each step

of the algorithm, the overall fraction of errors will be bounded by ǫ/2+
∫ 1
f=ǫ/2

1
f ·

ǫ
2log(2/eps)df=ǫ, where

the first term is the errors due to the arbitrary assignment to the remaining ≤ǫn/2 variables. Additionally,

the number of verified samples required in each iteration is at most O(r0s ·s2
r0)= Õ

(

2r0 1ǫ log(1/δ)
)

,
hence the total number of verified samples across the O(2r0log(1/ǫ)) iterations will be bounded by

Õ(22r0log(1/δ)/ǫ), as claimed.

We now analyze each run of the WHILE loop in EfficientFindAssignments, and the recursive calls to

EfficientAscend. At a high level, in each recursive call to EfficientAscend, either an assignment to at least a

16

A DATA PRISM

1/2r0+1 fraction of the remaining unassigned variables is returned via the implications from some (verified)

optimistic assignment to a tuple, t; or, we have found a tuple t∪xi+1 for which we have verified assignments

to all |t|+1 variables, and for which that assignment, (at,axi+1) 6∈Ct∪xi+1 is the optimistic assignment,

in which case the subsequent call to EfficientAscend considers this strictly larger tuple t′=t∪xi+1.

To bound the runtime of the algorithm, note that each run of the algorithm requires constant time (de-

pendent on r0,ǫ,δ but independent of the number of variables, |X|, up until the point in the algorithm when

an assignment will be output (Step 4 in EfficientAscend). At this point in the algorithm, at a computational

expense of Or0,ǫ,δ(|X|), an assignment to a constant fraction, at least 1/2r0+1 of the remaining variables

will be output, and the algorithm will then be repeated on the remaining unassigned variables. Hence, the

overall runtime of the algorithm will be linear in the number of variables.

To bound the probability that a given run of the WHILE loop fails to successfully output an as-

signment to at least |X|/2r0+1 variables that meets the target accuracy of ǫ
2log(2/ǫ)

|Y |
|X| , we will leverage

a union bound over a number of standard Chernoff tail bounds. First, note that the probability that

EfficientFindAssignments outputs ’FAIL’ in Step 3 in a given round of the algorithm is bounded by the

probability that |X1|≤E[|X1|/2], where X1 is a sum of i.i.d 0/1 random variables, hence this probability

is bounded by exp(−E[|X1|]/8)≤
δ

10T , where T, as specified in EfficientFindAssignments is a bound

on the number of calls to EfficientAscend which bounds the number of runs of the WHILE loop. Given

that |X1|≥E[|X1|/2], the probability that the assignment output in Step 5 of EfficientFindAssignments

does not meet the target accuracy, ǫX= ǫ
2log(2/ǫ)

|Y |
|X| , is bounded by (1−ǫX)|X1|≤ δ

10T .
The remaining probability of failure stems from the execution of EfficientAscend. In this algorithm,

failure can stem from three different issues: 1) the constant number of constraints C· computed via Find-

OptimisticAssignment prior to Step 4 of EfficientAscend can be erroneous and fail to imply the desired

fraction of assignments. The probability of this is bounded by δ/(10Tsi), which is sufficient to guarantee

that every optimistic assignment/constraint set C· that is computed during the execution of the algorithm

is accurate and implies the desired fraction of assignments, aside from the O(|Y |) constraints computed

during the assignment output steps—Step 4 of EfficientAscend and Step 5 of EfficientFindAssignments.

2) EfficientAscend outputs FAIL during Step 1, though this cannot occur as the constraints corresponding

to i=r0 are the constraints on r0-tuples, which are satisfied by assumption. 3) The final potential failure

mode of the algorithm is Step 3 of EfficientAscend, if the random set of verified assignments is insuffi-

ciently large to verify (to the target accuracy) a given potential set of assignments implied by an optimistic

assignment via Ct∪x. Given that the assignment at to tuple t is optimistic, as guaranteed by the validity

of FindOptimisticAssignments described above, this probability of failure is also a trivial application of

standard Chernoff bounds, guaranteeing that the random variable |X′
i+1| in Step 3 of EfficientAscend

deviates from a lower bound on its expectation by at most a factor of 1/2.

A union bound over these probabilities of failure for each of the ≤T runs of the EfficientAscend

algorithm yields the desired proposition.

17

	Introduction
	Formal Model
	Summary of Results and Connections to Random CSPs
	Related Work

	The Algorithm Intuition
	Intuition: Restricting to Pessimistic Constraints
	Sketch of Linear Runtime
	From r-tuples to r-1-tuples: Pessimism All The Way Down
	The Inefficient Algorithm

	Future Work
	An Efficient Algorithm

