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Movement is the driving force behind the form and func-

tion of many ecological and human systems. Identification

and analysis of movement patterns that may relate to be-

havior of individuals and their interactions is a fundamental

first step in understanding these systems. With advances

in IoT and the ubiquity of smart connected sensors to col-

lect movement and contextual data, we now have access

to a wealth of geo-enriched high-resolution tracking data.

These data promise new forms of knowledge and insight

into movement of humans, animals, and goods, and hence

can increase our understanding of complex spatiotemporal

processes such as disease outbreak, urban mobility, migra-

tion, or effects of human activity on behavior of compet-

ing species. To take advantage of the evolution in our data,

we need a revolution in how we visualize, model, and ana-

lyze movement as a multidimensional process that involves

space, time, and context. This paper introduces a data sci-

ence paradigmwith the aim of advancing research onmove-

ment.
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1 | INTRODUCTION

Motion is an integral characteristic of almost all organisms and spatiotemporal phenomena (Nathan et al., 2008). As

such, it is an important driving mechanism behind the operation of many ecological and human systems, shaping in-

dividuals trajectories and their interactions across multiple spatial and temporal scales. Today, with the ubiquity of

location-aware technologies (LATs) and the Internet of Things (IoT), we now have an unprecedented ability to track

almost any mobile entity anywhere on the planet. High frequency tracking of individuals and things is becoming

cheaper and more accurate through the increasing usage of smart sensors, social media, and activity loggers. With

the major breakthrough in location-aware and multimodal sensors, ecologists have gained access to new forms of

information about organisms. Although continuous and long-term tracking of wildlife still remains challenging, espe-

cially in remote areas and for endangered species, we are able to follow migratory species remotely along their annual

migrations and monitor locomotion of animals (Kays et al., 2015).

Like many other fields (e.g. business, behavioral sciences, intelligence), the study of movement has significantly

benefited from the ubiquitous collection of tracking data at large volumes and fine spatial and temporal granularities.

Before the advent of satellite positioning and radio telemetry technologies in the twentieth century, our ability to

track and study movement was limited to direct observations of moving individuals, travel surveys, sporadic presence-

absence logs, cellphone usage signals, and close range video-tracking. Since then, movement data has evolved from

coarse sporadic observations (i.e. presence-absence information in space and time) to fine resolution geo-enriched

trajectories (i.e. multidimensional time series of locations representing footprints of individuals and their ambient con-

text). Today using tracking, we know where things and individuals are exactly and how they move in space and time

(Miller et al., 2019a). More importantly, we have the ability to record new forms of information about the condition

of the environment, geographic context, and even the type of activity and the behavioral mode of individuals using

multimodal sensors, thermometers, accelerometers, gyroscopes, heart rate sensors and so on. Contextual information

and other ancillary data can be linked and analyzed with raw movement observations to increase our understanding

of why individuals move the way they do and what do they do along their movement paths (Lee and Kwan, 2018;

Wu et al., 2014; Dodge et al., 2013; Wilson et al., 2012). While widespread tracking, especially in the case of human

movement, raises serious privacy concerns and security issues (Valentino-DeVries et al., 2018), it provides a tremen-

dous opportunity to generate new insights into the behavior of moving individuals (Miller et al., 2019a). The question

is how these new forms and large arrays of data can be exploited for a deeper understanding of complex dynamic

processes such as immigration, migration of animals, spread of diseases, natural disasters, autonomous navigation,

smart and sustainable mobility.

With the rise of ‘Big Data’ (Cukier and Mayer-Schoenberger, 2013), the Geographic Information Science (GI-

Science) community has played a key role in advancing methodologies and computational techniques for the collec-

tion, processing, analysis, visualization, and sense-making of large sets of geographic data. As a result, GIScience has

intersected with data science to a great extent, specifically where the data has a spatiotemporal nature. On one hand,

GIScience leverages data science approaches such as parallel computing, machine learning, artificial intelligence, and

data mining techniques to analyze and handle large volumes of data sets for geographic knowledge discovery and pre-

dictions (Bowlick andWright, 2018). On the other hand, GIScience continues to make significant contributions to data

science by introducing more meaningful and spatially aware analytics (involving spatial indexing, spatial autocorrela-

tion, spatial heterogeneity, geographic visualization, geovisual analytics and spatialization) (Singleton and Arribas-Bel,

2019). Spatial thinking has been infused in data-driven computing and cyberinfrastructures to analyze and map large

arrays of geospatial data sets which are streamed in a variety of formats, granularity, and dimensions (UCGIS, 2018).

Geographic visualization has become an integral part of data science as it aids human understanding of spatial patterns
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and analytical reasoning of geographic processes (Andrienko et al., 2017). In particular, visualization, processing, and

analysis of multivariate and high frequency movement data have gained significant attention in GIScience, because of

its ubiquity and importance for knowledge discovery in a broad application domain (Long et al., 2018; Holloway and

Miller, 2018; Dodge, 2016).

Movement is a complex multidimensional process, and its study requires an interdisciplinary approach. While

GIScience has significantly advanced computational movement analytics (Long et al., 2018), with the emergence of

new forms of movement data, new interdisciplinary approaches are needed to revolutionize the way we analyze and

model movement. Examples of these new forms of movement data include trajectory data streams (Coelho et al.,

2016), or data obtained from wearable motion sensors equipped with magnetometers and accelerometers (Akhavian

and Behzadan, 2015; Shoaib et al., 2014; Nathan et al., 2012), social network activities (Mckenzie et al., 2013; Azman-

dian et al., 2013), contextual data from remote sensing (Dodge et al., 2013), camera-traps (Karanth and Nichols, 1998)

and surveillance cameras (Choi et al., 2013), checkpoint data (Tao et al., 2018), observations through IoT and Informa-

tion Communications Technology (ICT) (Batty et al., 2012) and geosensor networks (Laube et al., 2011; Both et al.,

2013). As movement data become increasingly available at large volumes, high dimensions, and multiple granulari-

ties, development of new computational data analytics and modeling approaches have gained momentum to advance

movement research (Thums et al., 2018; Kays et al., 2015; Demšar et al., 2015; Dodge et al., 2013). There is a growing

need to understand how these unique forms of linked and multidimensional data can best be exploited to make new

discoveries about the behavior of moving individuals and their interactions in dynamic systems. This necessitates

a new research paradigm to better study and understand movement as a multidimensional process involving space,

time, and context.

This paper intends to promote leveraging the data science paradigm in advancing research on movement. Data

science builds on a combination of expertise from computer science, applied sciences (for domain knowledge), math

and statistics (Figure 1). It takes an interdisciplinary approach to convert large amounts of data into insights and useful

predictions often using statistical research, data analytics, and machine learning (Blei and Smyth, 2017). In this paper,

I introduce a data science framework for movement by integrating the main components of the data science paradigm

(Figure 1) into the continuum of movement research introduced previously in Dodge (2016). The framework brings

together data-driven analytics and theory-driven modeling of movement, through an interdisciplinary approach sup-

ported by data, domain knowledge and visualization. The aim is to blend data and knowledge on both movement

and its embedding context for discovery of new insights about the behavior of moving individuals, interaction of mo-

bile agents, and prediction of changes in dynamic systems. The premise is that the study of movement in various

applications (e.g. human mobility, public health, movement ecology) can benefit from high-performance computing,

intelligent algorithms and machine learning approaches, especially when movement data are multidimensional and

represent the collective behavior of a large number of moving individuals.

2 | A DATA SCIENCE FRAMEWORK FOR MOVEMENT

This section introduces a framework as a marriage of the data science paradigm (Figure 1) and the continuum of

movement research developed in (Dodge, 2016). The framework enables the study of movement through an iterative

process (as shown in Figure 2), in which rawmovement observations are transformed tomeaningful information about

the behavior of movement processes through data-driven analysis and knowledge discovery approaches. This knowl-

edge is then used to enhance modeling and prediction of movement with the aid of theories, and mathematical and

physical principles. These models can increase our knowledge of movement, which can lead to a better understanding



pr
ep
rin
t

4 Dodge S.

F IGURE 1 Data science paradigm, modified from Conway (2010).

of how movement patterns are formed and how mobile individuals interact with their environment. This process is

heavily reliant on movement observations (i.e. tracking data sets), computing, math, statistics, spatial knowledge, and

domain knowledge.

F IGURE 2 Process model for the study of movement

Figure 3 visualizes a the proposed framework. This is a multi-layered system, in which all components are tightly

intertwined and contribute to one another through an iterative research process. The main components of this frame-

work consist of data, visualization, data-driven analytics, theory-driven modeling, and domain knowledge. As in any

spatial data science system, analytics and modeling of movement is facilitated by computing approaches and the-

ories from Computer Science, GIScience, Mathematics, and Statistics. The right side of the framework supports a

bottom-up approach in which raw observations are analyzed for finding patterns and associations in the data through

data-driven methods. The aim is to infer the process from observed patterns in order to advance our understanding

of dynamic processes in social and ecological systems. While the left side of the framework is assisted by a top-down
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approach to enable a deductive science of movement. The aim is to combine insights obtained from raw data, domain

knowledge, and theories to enhance theory-driven modeling and prediction of movement and behavioral changes

given a set of conditions.

F IGURE 3 The data science framework for movement

At the heart of this framework are movement and contextual data, which are raw observations collected in a

great volume, velocity, and veracity every day. Using sensor fusion or modern tracking sensors, location data can be

recorded at high accuracies (i.e. centimeter and millimeter) for example for mobile robots, drones, and automated

guided vehicles to help them navigate more autonomously (Sukkarieh et al., 1999; Yudanto and Petre, 2015; Whit-

ton, 2019). High-resolution and long-term movement observations enable data-driven analytics to generate insights

on the behavior of individuals and increase our knowledge of movement processes through geo-computing, pattern

mining, machine learning, and knowledge discovery techniques. The generated knowledge from the analytics can be

used in conjunction with theory-driven modeling approaches to facilitate predictions and reconstruction of move-

ment paths of individuals. In this framework, the incorporation of domain knowledge and collaboration with domain

scientists is vital to assure meaningful outcomes, reliable interpretations, and verification of observed patterns and

predictions. Visualization plays a key role to streamline such interdisciplinary work and communication of the results

and patterns (Dodge, 2018). It also facilitates the validation of analytical algorithms and monitoring the work progress

of methodologies. Validation of results, parametrization of models and calibration of computational techniques are

also enhanced through the use of actual observations andmeaningful visualization techniques. The following sections

describe different layers of the framework and their connections in more details.

2.1 | Data

Movement observations convey important information about the behavior and interactions of individuals along their

space-time lifeline. These observations are collected in different forms and granularity. Depending on the tracking
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approach, rawobservations can describemovement of individuals in two different perspectives, Lagrangian or Eulerian

as shown in Figure 4. In the Lagrangian approach, individuals are observed and followed along their movement path

over time mainly using LAT sensors such as GPS or RFID tags. This approach directly constructs a discrete trajectory

(i.e. a time-ordered sequence of locations) of the entity. In the Eulerian approach, movement of individuals is observed

at fixed locations using local sensors such as cameras (e.g. camera traps, security cameras), wifi stations, cell towers,

transit gates, or through social media check-ins. The Eulerian approach specifies the presence or absence of a moving

entity in various locations at certain times. Focusing on specific locations in the space throughwhich the entities move

as time passes, the Eulerian perspective can describe the patterns of space use by moving entities (e.g. home range

of animals, activity space of humans). A time-ordered sequence of observations (i.e. presence) of an entity obtained

from the Eulerian approach can be used to construct the Lagrangian specification of the entity’s movement (or the

so-called the trajectory). Trajectory data can be collected at regular or irregular time intervals depending on the type

of sensors used for tracking or the tracking aims. Laube (2017, 2014) describes these two movement perspectives

and different forms of movement data collection in a greater detail.

Regardless of the data collection approach, movement observations can be geo-enriched with environmental and

behavioral information. That is, tracking data can be annotated with additional context variables at each location and

timestamp (Mandel et al., 2011). Context variables can be related to behavioral parameters that are internal to the

state of the mobile individual (e.g. age, gender, behavior, movement purpose), or they may represent external factors

which influence the individual’s movement (e.g. transport mode, weather condition, presence of other individuals,

etc.). Nowadays, geo-enrichment can be done automatically at the same time of tracking, using new generation

of LAT sensors capable of recording motion, direction, orientation, sound, video, weather condition simultaneously.

Geo-enrichment of movement data can also be done after tracking, by applying trajectory annotation algorithms using

remote sensing data of the environment or travel logs and surveys (Dodge et al., 2013). Long-term and high-frequency

tracking of individuals and geo-enrichment of trajectory data can result in large volumes of multidimensional data of

movement, and hence can provide promising opportunities for data science in this domain. These data sets capture

movement of individuals either in a Euclidean space (represented as a continuous 2Dor 3D space, regular grid, irregular

tessellation) or a network space (represented as a graph, vector network). For more information on movement spaces,

the readers are referred to Laube (2014). Miller et al. (2019a) compare two different types of movement data in the

domains of animal movement in the Euclidean space and human mobility in the network space. They conclude that

although there are significant differences in the collection and structure of tracking data in human and animal contexts,

there is a great synergy in the types of research questions and analytical methods applied to animal movement and

human mobility domains. Hence, a universal data science framework to study movement can potentially facilitate

cross-collaboration between the two domains by promoting data-driven methods that can apply across the board —

e.g. for measuring activity patterns, measuring interaction amongmoving entities, analyzing and visualizingmovement

in relation to its geographic and environmental context.

2.2 | Visualization

Visualization empowers data science. Visualization and visual analytics enable direct interaction with the data and

hence can guide analysis. In data science, data visualization is used for effective understanding of data, revealing

unknowns, reasoning and interpreting the results to support decisionmaking (VanDer Aalst, 2016). Figure 5 highlights

how visualization facilitates various processes involved in movement data science. The first common step in most

data science research is to visualize raw observations, and speculate about what they represent and how to strategize

data processing and analytics. In Geographic Information Science, information visualization enables researchers for
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F IGURE 4 Movement observations in (a) Lagrangian and (b) Eulerian perspectives.

visual inspection of data records, summarizing data, and capturing geographic patterns. For example, Andrienko and

Andrienko (2013) applied a set of visual exploration tools to superimpose temporal diagrams, mosaic diagrams, and

bar diagrams over geographic maps to aggregate and summarize movement patterns of taxis inMilan and white storks

in Africa. Using large tracking data sets, these visual data summaries can help to depict the patterns of movement

at an aggregate level by hiding complex details of the underlying trajectories. Interaction with the data using visual

displays can also help researchers to discover unknowns in theirmovement data sets, explore hidden relationships, and

formulate hypotheses about the behavioral patterns represented in the data (Andrienko et al., 2008). This is especially

important in interdisciplinary data science efforts. Andrienko and Andrienko (2012) review existing exploratory data

analysis techniques for visualizing trajectories (e.g. using 2D static maps or space-time cubes), summarizingmovement

parameters along the trajectories (e.g. using trajectory segmentation and time bars), aggregating movement patterns

in space and time (e.g. using clustering and treemaps), and exploring the relationship between movement and context

(e.g. using multivariate representations).

F IGURE 5 Visualization facilitates movement data science. Figure is modified from Dodge (2018).

.
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In comparison to traditional static maps, dynamic and interactive representations are better suited to support

the study of movement from the Lagrangian perspective as they can depict how entities move in space and time

(Dodge, 2018; Miller et al., 2019a). In addition, multivariate and hybrid representations can help us explore complex

relationships betweenmovement and its environmental and geographic context (Andrienko and Andrienko, 2012). For

example, Figure 6 uses a multivariate representation to map how a Galapagos albatross uses wind during its regular

foraging flights between the Galapagos Island to the coastal areas of Peru. The visualization (Figure 6) illustrates

albatross’s strain into the crosswind (the wind blowing across the direction of movement) on the way to Peru. This

forces the bird to fly slower (shown as thin red line in Figure 6b) along its outbound flight to the coast. In contrast, the

albatross flight back to the Galapagos is assisted by a more favorable tailwind resulting in a higher movement speed

(shown as thick blue line).

F IGURE 6 Map of an albatross movement track and its association with the wind: (a-left) using directional

vectors for wind and color for tailwind speed, and (b-right) using thickness for movement speed and color for

tailwind speed, created using DYNAMOvis (Dodge et al., 2018)

.

In modeling movement, visualization can be used to monitor the work process of the algorithms and simulations,

and hence aids the validation process of methods and results. Finally, visualization can be used as a platform to

communicate and interpret analytical results, and to promote visual reasoning to understand the observed patterns,

extract meaningful information, and derive relevant knowledge.

2.3 | From data analytics to prediction

The study of movement in GIScience has had tremendous progress with the rapid progress in tracking technologies

(Holloway and Miller, 2018). Early work in late 1990s and early 2000s involved quantification of trajectories, for-

malization of movement metrics, and analysis of movement patterns (Imfeld, 2000; Laube, 2005; Dodge et al., 2008;

Nathan et al., 2008; Holyoak et al., 2008). The focus of these studies was more on animal movement. More recent

work embarked on developing computational techniques for semantic knowledge discovery from geo-enriched move-

ment data sets (Dodge et al., 2013; Parent et al., 2013; Long et al., 2018; Brum-Bastos et al., 2018; Miller et al., 2019b).

These studies aimed to connect movement to its embedding environment and geographic context to investigate the

underlying mechanisms of movement.
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2.3.1 | Data-driven analytics

Highlighted with a green circle in Figure 3, data-driven analytics involve a set of computational techniques to ana-

lyze and mine trajectory data. Laube (2014, p.6) categorizes these techniques as ‘Computational Movement Analysis

(CMA)’, defined as the use of “computational techniques for capturing, processing, managing, structuring, and ulti-

mately analyzing data describing movement phenomena, both in geographic and abstract spaces, aiming for a better

understanding of the processes governing that movement”. Assisted by geocomputing and visualization, the aim of

data-driven analytics is to extract patterns from observation and relate them to processes by connecting movement

to its context. The ultimate goal is to learn about the behavior of mobile entities and the mechanisms behind move-

ment processes at multiple scales. Guided by data science approaches such as deep learning and knowledge discovery

techniques and often through interdisciplinary studies, a common workflow is as follows:

Exploratory data analysis The CMA process may start with an explanatory data visualization to inspect data, and

formulate hypotheses and research questions. It then proceeds with outlier detection and elimination of erro-

neous data. Here visualization can also help to summarize patterns in data and facilitate communication between

developers of computational methods and domain scientists (Andrienko and Andrienko, 2012).

Trajectory processing encompasses quantitative techniques for computing movement metrics and if needed decom-

posing trajectories using segmentation. Movement metrics are measurable quantities and derivatives of trajecto-

ries. They describe geometric, spatial and temporal characteristics of trajectories such as basic movement param-

eters (e.g. speed, turn angle, path tortuosity, etc.), trajectory’s fractal dimension, movement rates, home range,

first-passage time, return rate, etc. (Seidel et al., 2018). In this phase, often a data base management system and

a spatial indexing technique (e.g. quad-tree, KD-tree, R-tree) are established for fast data access and efficient

retrieval and query of trajectory data (Pfoser, 2002). Trajectory segmentation is the process of decomposing a

long and convoluted trajectory into parts of similar characteristics (Ahearn and Dodge, 2018). It is used to simplify

trajectory data for further analyses and pattern detection. It can also be used to distinguish various behavioral

modes and different activities represented in the data.

Contextualizing movement involves using geo-enriched or annotated trajectory data and other contextual data sets

(e.g. remote sensing data of the environment, demographic data, road networks, etc.) to explore relationships

between movement and its embedding context. This step is usually done prior or parallel to movement pattern

analysis and knowledge discovery phases. For data which lack contextual variables, first a trajectory annota-

tion process is employed to attribute tracking data with environmental and behavioral variables and generate

geo-enriched trajectories (Dodge et al., 2013). For heterogeneous data sets obtained frommultiple sensors in dif-

ferent structures and granularities, data fusion techniques can help to blend the data together to facilitate linking

movement to its context. Once geo-enriched trajectories are generated, dependencies between movement and

environmental parameters can be explored through hypothesis-driven statistical analysis or machine learning ap-

proaches. This area has recently attracted a number of studies to explore movement-context dependencies using

data integration in a variety of applications such as movement ecology (Dodge et al., 2013; Nathan et al., 2012),

human mobility (Lee and Kwan, 2018; Brum-Bastos et al., 2018), and engineering (Akhavian and Behzadan, 2015).

Pattern analysis entails computational approaches to formalize and analyze movement patterns (Dodge et al., 2008;

Laube, 2009). Movement patterns are regularities, arrangements, and structures that are existed in tracking data.

Examples of movement patterns include convergence, divergence, single files, moving clusters, trend-setting,

avoidance, attraction, flocking, etc. (Dodge et al., 2008). These movement patterns can be seen as footprints of

processes or behavioral signatures in dynamic systems (O’Sullivan and Perry, 2013). For instance, the similarity in
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the daily trajectory of people can inform us about their regular commuting behavior, or the similarity of albatross

movement patterns can be indicative of commonalities in their foraging behaviors. In order to quantify how

similar movement of individuals are in space and time, various similarity analysis methods have been proposed

using distancemeasures such as Euclidian distance, edit distance, Fréchet distance, longest common subsequence,

dynamic time warping, to name a few (Dodge et al., 2012; Miller et al., 2019b). Next, computed similarities can

be used together with a clustering technique in mining similarity patterns and clusters in the data.

Knowledge discovery & data mining (KDD) involve applying data mining and machine learning algorithms to detect

and classify patterns and extract rules and associations in the data, often using large and multidimensional track-

ing data sets (Miller and Han, 2001; Mennis and Guo, 2009). Data science approaches are used to detect sim-

ilarities, clusters, anomalies, interactions, and collective patterns in the movement of multiple individuals (Lee

and Kwan, 2018; Soleymani et al., 2014; Zhong et al., 2015; Li et al., 2007). The aim is to transfer raw obser-

vations to new knowledge about forms and functions of dynamic processes and to develop useful insight into

the behavior of individuals and their interactions. Movement research can benefit from high-performance geo-

computing approaches to train and apply machine learning algorithms in extracting patterns and dependencies

in large geo-enriched trajectory data sets. For instance, Miller and Han (2001); Cao and Philip (2012); Giannotti

and Pedreschi (2008); Holzinger and Jurisica (2014); Jiang and Shekhar (2017); Evans et al. (2019) document

recent advancements and challenges of KDD using large data sets in different domains such as public health,

transportation, climate change, and disaster management. Provost and Fawcett (2013) argue that a data science

perspective to knowledge discovery goes beyond merely data mining using geo-computing, and incorporation of

domain knowledge of the processes is necessary. Therefore in this framework, ‘knowledge discovery’ is situated

at the intersection of ‘domain knowledge’ and ‘data-driven analytics’.

2.3.2 | Modeling and prediction of movement

As highlighted in a blue circle in Figure 3, the study of movement relies on theories and domain knowledge for com-

putational modeling and simulation of movement with the aim of gaining a deeper understanding and more realistic

predictions of movement and behavioral changes in dynamic systems. Models capture a simple representation of

movement and its patterns (O’Sullivan and Perry, 2013) and hence can enable exploratory simulations of complex

systems (Manson and O’Sullivan, 2006). This is especially important in cases for which observational data is limited,

the system is not accessible or unsafe for empirical experiments, or ethical concerns over privacy or security is evident

(e.g. modeling virus spread, migration of endangered species, human exposure to risk).

Generally speaking, given a set of conditions or for a given behavior, the aim of modeling is to: (1) predict the path

or activity range of moving individuals, (2) better understand behaviors and dynamic processes, (3) predict missing

points and gap filling in tracking data, (4) reconstruct movement patterns, (5) estimate population distribution and

diffusion of mobile agents, and (6) predict behavioral responses to a changing environment and vice versa. Depending

on the purpose of the study, motion can be modeled at a range of scales (local to global) and at the individual or

collective levels (Kokko, 2006). At local scales, the goal is to predict movement choices of individuals and their step-

by-step locomotions. While at global scales, the activity space and general flows of individuals are modeled. In animal

movement ecology, most studies focus on modeling animals’ local choices and resource selection, for instance for

modeling foraging strategies (Schick et al., 2008). While global models of movement are mainly used to estimate

the home ranges of animals. In human mobility, the main emphasis is more on global patterns of movement such

as origin-destination flows and activity spaces, rather than the exact route of individuals and their local movement

decisions (Miller et al., 2019a). Modeling locomotions and local choices of movement become important for studying
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navigation strategies in human mobility and designing algorithms for robot navigation (Metz, 2019) and autonomous

vehicles (Whitton, 2019). This section provides a more general overview and a brief summary of relevant modeling

approaches. The readers are encouraged to see Schick et al. (2008) for a review of models in movement ecology, and

Barbosa et al. (2018) for modeling human mobility.

Existing movement models can broadly be classified into two groups: (a) theory-driven techniques based on de-

terministic mathematical functions or likelihood-based stochastic models, (b) data-driven and machine learning-based

approaches using statistical inferential models. Computational data analytics (described in Section 2.3.1) provides the

foundation of data-driven models. In addition, they can contribute useful knowledge (i.e. more realistic movement

metrics computed from actual observations) for better validation, calibration and parametrization of theory-driven

models (Holloway, 2018; Downs et al., 2018). The most common theory-driven approaches to model locomotions

of individuals include: random walks and their variations (including correlated random walks and biased correlated

random walks) (Codling et al., 2008), Lévy flights (Rhee et al., 2011), and step-selection functions (Thurfjell et al.,

2014). These models are often referred to as ‘process models’ which can predict movement at space and time for

a given state based on the Lagrangian perspective (Schick et al., 2008). These process models can be integrated in

more advanced models such as state-space models, hidden morkov models, or agent-based simulations to capture

multiple behavioral states or the heterogenous context of trajectories. Furthermore, they can be enriched with incor-

poration of physiological and environmental parameters and domain knowledge to encapsulate movement-context

dependencies for more realistic modeling (Patterson et al., 2008; Schick et al., 2008; Ahearn et al., 2017; Holloway,

2018). At global scales, models such as deterministic and probabilistic time-geography (Miller, 2005; Winter and Yin,

2010) and Brownian bridge models (Horne et al., 2007; Kranstauber et al., 2012) can be used to estimate the activity

space or home ranges of mobile individuals. These models compute the probability of a mobile entity being present

at a given location and time between a specific origin and a destination. With these models the Eulerian perspective

of movement can be captured in terms of the presence-absence probability of individuals in space and time.

Movement models are usually incorporated in agent-based simulation systems and Monte Carlo approaches in

order to study and understand complex dynamic systems, test hypotheses and scenarios, make inferences, and predict

patterns. Data science approaches can streamline high-performance simulation and computation of complex models

which often involve a large number of interacting agents. For instance, simulation models can be strengthened by in-

tegrating enhanced data models through pattern recognition from large data sets using machine learning, data mining,

and artificial intelligence approaches tomakemore reliable and accurate predictions and for actionable knowledge cre-

ation (Dhar, 2013; Kim et al., 2017). Simulation modeling is based on our knowledge of causal relationships between

elements in a given system, while data-driven modeling is based on correlations observed in the data. Data science

advances simulation modeling through high-performance data modeling and computing. The key is to incorporate

knowledge and new insights obtained from actual observations in the calibration and parametrization of simulations

(Ahearn et al., 2017). For example, Akhavian and Behzadan (2015) applied process-level knowledge obtained from

construction labor activity recognition using machine learning on activity data (captured with GPS, accelerometer

and gyroscope using smartphone sensors) to verify and update the input parameters of simulation models for con-

struction engineering and management. Besides providing means to enhance input parameters, data science has also

helped to optimize simulations and prediction models through cloud computing and high-performance computing by

enabling “multiple runs of large-scale simulation models to search for optimal or near-optimal solutions” (Xu et al.,

2015, p.1550019-2).
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2.4 | Domain Knowledge and Validation

An important success factor in data science is the incorporation of domain knowledge in computational algorithms

and analytical reasoning (Provost and Fawcett, 2013). Even themost efficient and powerful computational models and

analytical techniques might result in misleading or useless information, without having a full understanding of what

the actual data represent or what types of information and patterns can be extracted from the data. In early compu-

tational geometry approaches analyze movement patterns, movement trajectories were treated as a set of isolated

points over time, often as moving point objects. While purely geometric algorithms advanced our ability to find struc-

tures and patterns in movement data sets, the extracted patterns were lacking semantics and a clear connection to

the processes creating these patterns (Laube, 2017; Dodge, 2016). Incorporation of context information and domain

knowledge is essential to the validation and interpretation of patterns. Having meaningful research questions and hy-

potheses about the underlying processes captured in the data can increase the validity and applicability of developed

computational methods. This becomes even more important when our data increasingly grow in size and dimension.

Therefore, it is essential to include data owners and domain experts in computational research to ensure meaningful

and useful products. Because of the ubiquity of movement and its broad applications, the science of movement is

interdisciplinary by nature. Developers of computational techniques and quantitative experts (e.g. GIScientists, com-

puter scientists) can significantly benefit from working closely with domain scientists (e.g. ecologists, social scientists,

transportation planers, health scientists) for (a) formulation of sound hypotheses and research questions, (b) incorpo-

ration of valid parameters and domain knowledge, especially in rule-based machine learning algorithms, and (c) more

accurate reasoning, verification, and interpretation of observed patterns and associations in the data. As mentioned

earlier in Section 2.2, these collaborations can be facilitated with visualization as a common visual language.

While domain knowledge is essential in data science, it should not be treated as the main source for verification

of the results and parametrization of computational models. Nowadays with our increasing access to actual tracking

data, parametrization and calibration of algorithms are enhanced through deep learning and using knowledge derived

from actual observations (Ahearn et al., 2017). Furthermore, data science relies on validation processes to ensure

stable analytics and models. That is, machine learning algorithms and models developed based on a specific data set

should be generalizable to other independent data. This can be achieved through rigorous cross-validation processes

and sensitivity analyses of input parameters. Proper null models, which are often used as a base for validation in

movement ecology, can enable the evaluation of the outcomes and observed patterns (O’Sullivan and Perry, 2013;

Miller, 2015). “A null model approach involves generating a pattern based on randomization that lacks some process or

mechanism of interest in order to test its influence” (Miller, 2015, p.349). As an example, Ahearn et al. (2017) applied

a correlated random walk as a null model to evaluate a context-sensitive random walk for modeling movement of

tigers through a Monte Carlo simulation. High-performance computing can facilitate applications of the null model

approach for large-scale systems.

3 | CONCLUSION: WHAT IS NEXT?

This paper introduced a general data science framework to advance the study of movement. The framework lever-

ages domain knowledge, data-driven analytics, theory-driven computational models, and visualization to transfer raw

movement observations to meaningful knowledge discovery and predictions of movement. What has changed from

the previous generations of movement analytics is that movement data sets are becoming available in larger volumes

and in more heterogeneous and multifaceted forms. For example, using multimodal GPS sensors or smart phones

equipped with magnetometer and accelerometer we can collect activity information of movement entities along with
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their trajectories. Using Internet of Things, geosensor networks, or data fusion, these trajectories can be linked to

weather information, traffic information, images of the surrounding environment of movement, etc. The premise

is that high-performance computing, powerful machine learning and visual analytics approaches are well suited to

support recognition of patterns and discovery of dependencies in such large and linked movement observations to

support the study and modeling of complex dynamic systems such as human dynamics (González et al., 2008; Candia

et al., 2008; Shoaib et al., 2014; Thums et al., 2018), social networks (Azmandian et al., 2013; Wu et al., 2014; Jurdak

et al., 2015), animal behaviors and ecosystems (Boettiger et al., 2011; Polansky et al., 2010; Soleymani et al., 2014),

to name but a few.

Recently, a number of papers reviewed the state of computational movement research in Geographic Information

Sciences and related disciplines (Miller et al., 2019a; Holloway and Miller, 2018; Long et al., 2018; Yuan, 2018; Thums

et al., 2018). These articles provide a list of recommendations for future studies and call for development of novel and

more efficient methodologies to address potential research challenges stemming from the emergences of new forms

of geo-enriched movement data sets. To conclude this paper, below I highlight some of these challenges and open

opportunities for future data science research in advancing the science of movement.

Having access to fine-resolution tracking data, we now have the means to develop new approaches for modeling

movement across spatial and temporal scales. This will open up new opportunities for multi-scale modeling of move-

ment by integrating a range of patterns from locomotions to more global scale movement patterns. Similarly, there

is a need for further research into movement interaction and modeling the contribution of individuals to the larger

population level patterns or the collective behavior of dynamic systems. New developments in movement studies

highlight the promising potential of deep-learning, artificial intelligence and machine learning techniques for leverag-

ing massive and multidimensional movement data sets in understanding human dynamics and ecological systems (Wu

et al., 2014; Jurdak et al., 2015; Thums et al., 2018; Lee and Kwan, 2018; Yuan, 2018). Therefore, there is a growing

need in leveraging data science and our unprecedented access to large volumes of high-resolution data of movement

and context, for more realistic modeling of patterns and reliable predictions of behavioral changes in dynamic systems.

The need for effective data fusion techniques is growing for integrating a variety of data obtained from different

types of sensors and collected in multiple forms and granularity. These data may include GPS observations, ancillary

biological, behavioral and activity information, environmental data, social media posts and check-ins, and transaction

traces. Geo-enriched tracking of individuals and goods through the Internet of Things (IoTs) and sensor networks are on

the rise. Data fusion and sensor integration can advance the capacities of future movement analytics and deepen our

understanding of social and natural systems. In the era of ‘Big Data’, we increasingly record Eulerian-type observations

at fixed locations over time (e.g. time series of sales, transactions, weather information, pollution, traffic counts,

disease cases, etc.). Accordingly, we have a higher access to Eulerian observations of moving individuals through

ICT, Closed-circuit television (CCTV) and surveillance cameras, check points, transit nodes, traffic count sensors, and

social media posts. While our ability to observe movement with the Lagrangian perspective have improved through

modern trackers, the access to these types of trajectories remains limited due to the higher cost of data collection

and concerns over the privacy of observed individuals. Data science and big data analytics provide promising tools

for understanding and prediction of dynamic processes in human and natural systems using large arrays of Eulerian-

type data sets (Tao et al., 2018; Sowmya and Suneetha, 2017; Miller, 2010). Computational movement studies have

yet to fully embrace and extend the potential of data science approaches for movement data analytics based on the

Lagrangian approach. New movement models and fusion techniques are required to integrate the Lagrangians and

Eulerian specifications of observations to gain a better understanding of these processes from different perspectives.

For example, data science approaches on indexing large heterogeneous data structures and flow simulations can be

applied in the integration of Lagrangians and Eulerian perspectives in the study of movement (Sauer et al., 2017; Xia
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et al., 2017).

While context-aware methodologies are on the rise, as Laube (2017) suggests the semantic gap between patterns

and processes still exits. Data science approaches for movement should consider the fact that movement is influenced

by its embedding context and the observed patterns may be indicative of a behavior or other external processes (i.e.

environmental and social processes). Early geo-computation algorithms for moving point pattern analysis were mainly

based on the geometric representation of movement. Trajectories were treated as lines or a set of isolated points

in space and time, ignoring the context of movement and the spatial and temporal dependencies of trajectory data.

However, movement is a continuous dynamic process, and as such it requires careful consideration of autocorrelations

and interdependencies in spatial, temporal, and context dimensions. In addition, data science can provide a great

opportunity for incorporation of deep knowledge obtained from data-driven analytics into more effective predictive

models. Inclusion of more contextual information on abiotic and biotic factors influencing movement is important for

enriching movement models to fulfill their potential in analysis and prediction of movement. For this, collaboration

with domain scientists who have a better understanding of the subject social and ecological systems is vital to the

success of movement research.

It is important to emphasize the role of domain scientists and experts in movement analytics in developing any

new method or computing approaches for movement. While developers of computational methods have good under-

standing of data fusion and analytics, their knowledge of the phenomena might be limited and this can compromise

the accuracy of the outcomes (Roos, 2001). For example, it is common in data science to use parallel computing and

data indexing approaches to optimize large data analytics by partitioning the data into smaller pieces, with often little

attention to the semantic of artificially created data segments (Farmer and Keßler, 2016; Papadias et al., 2002). Fur-

ther research should explore the potential of these methods on trajectory data sets, for which the data continuity in

space and time is key to the integrity of the information.

Visualization provides a common language for communication in interdisciplinary research and facilitates the col-

laboration between domain experts, data owners, and developers of methods. An unresolved technical challenge here

is how to create effective visualizations capable of representing multiple dimensions of movement (space, time, con-

text) from a large number of entities in a single display (Andrienko et al., 2008). New forms of data require new data

visualization techniques for proper display of movement and its patterns. Currently, we are lacking cartographic theo-

ries and principles for mapping movement and its patterns in cognitively plausible ways. Future research should eval-

uate how humans perceive movement patterns using dynamic, interactive, and multidimensional displays. A broader

question is how to best capture movement and interaction of dynamic entities in space and time in a more effective

and meaningful way.

Finally, there are other data-related methodological questions that require careful consideration in future move-

ment research. As mobile data collection has become prevalent, the question is how data science can help meaningful

knowledge discovery while protecting the privacy and security of tracked individuals in the context of both humans or

endangered species? Analytical and visualization approaches formovement should be enhancedwith proper geomask-

ing, generalization and aggregation techniques to avoid inferential disclosure of private information of individuals and

ensure safe delivery of information (Andrienko and Andrienko, 2011; Kounadi and Resch, 2018). Another challenge is

to account for uncertainty, bias, and error in observations, especially when using volunteered or participatory sensing

of moving entities. Movement research may benefit from advanced statistical and data science approaches applied

in other disciplines to alleviate this problem through data linkage and cross-validation using multiple sources of data

(Ruiz-Gutierrez et al., 2016; Chen et al., 2017; Lavigne et al., 2018). Finally, data fusion and knowledge discovery

should be informed and guided by the scale of observations, especially when integrating heterogeneous movement

and context data sets from multiple sources. This is essential in movement data science in order to make relevant
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inferences from observed patterns at proper granularity and frequency levels in space and time (Ahearn and Dodge,

2018).

This paper intended to provoke thoughts on leveraging data science to advance knowledge of movement. Move-

ment research is rapidly progressing owing to the tremendous advances in data collection and computing technologies.

Therefore, future studies can thrive on the fusion of data science and movement science. The framework presented

here encourages using actual movement observations and domain knowledge, to bring together bottom-up data-

driven analytics and top-down theory-driven predictive models for a more holistic study of movement processes in

natural and human systems. As such, the knowledge derived from analytics is used to advance theoretical models for

a deeper understanding and reliable predictions of movement.
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