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The use of model experimental systems and mathematical models is important to

further understanding of infectious disease dynamics and strategize disease mitigation.

Gyrodactylids are helminth ectoparasites of teleost fish which have many dynamical

characteristics of microparasites but offer the advantage that they can be quantified and

tracked over time, allowing further insight into within-host and epidemic dynamics. In

this paper, we design a model to describe host-parasite dynamics of the well-studied

guppy-Gyrodactylus turnbulli system, using experimental data to estimate parameters

and validate it. We estimate the basic reproduction number (R0), for this system.

Sensitivity analysis reveals that parasite growth rate, and the rate at which the guppy

mounts an immune response have the greatest impact on outbreak peak and timing both

for initial outbreaks and on longer time scales. These findings highlight guppy population

average resistance and parasite growth rate as key factors in disease control, and future

work should focus on incorporating heterogeneity in host resistance into disease models

and extrapolating to other host-parasite systems.

Keywords: epidemic dynamics, mathematical model, guppy, Gyrodactylus, host-parasite interactions

INTRODUCTION

The guppy-Gyrodactylus system is a well-known model host-parasite system, used in numerous
experimental and field studies (Scott, 1985a,b; Richards and Chubb, 1998; Cable and van
Oosterhout, 2007). Guppies, Poecilia reticulata, are a common ovoviviparous tropical teleost fish
whose abundance and ability to survive a broad range of environmental variables and availability in
pet stores worldwide havemade them ideal subjects for research in various disciplines.Gyrodactylus
spp. (Monogenea) are ectoparasites which feed on the epithelial cells and mucus of many marine
and freshwater teleost fish species (Bakke et al., 2007). They attach to the epidermis of their host
via specialized hooks and are directly transmitted primarily by jumping to a new host during
contact (Scott and Anderson, 1984; Kearn, 1994). They also reproduce directly on the host, with
the developing embryo containing within itself a second developing embryo, which allows for rapid
population growth of the parasite directly on an infected host (Kearn, 1994; Bakke et al., 2007).
Upon infection, hosts mount an immune response, including mucus secretion (Lester, 1972), as
well as a non-specific complement which kills gyrodactylids (Sato et al., 1995; Woo, 2006; Bakke
et al., 2007; Robertson et al., 2017). Gyrodactylid infection can result in high rates of mortality
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(Van Oosterhout et al., 2003), and induce a temporary refractory
period in surviving hosts (Scott and Robinson, 1984; Scott,
1985a,b).

In general, parasites are typically divided into two categories:
microparasites (such as viruses and bacteria) which are
microscopic and tend to proliferate and transmit rapidly, often
leading to high morbidity and mortality and inducing acquired
resistance in surviving hosts and therefore causing periodic
epidemics, while macroparasites (such as worms and insects)
often have more complex life cycles and persist in populations,
often with overdispersed distributions among hosts and rarely
causing severe morbidity and mortality or acquired resistance
(Anderson and May, 1979; May and Anderson, 1979). Due to
their rapid growth rate and infection-induced refractory period,
gyrodactylids cause periodic epidemic outbreaks, making their
population dynamics typical of microparasites like viruses and
bacteria (Anderson and May, 1979) despite being helminths
which traditionally fall into themacroparasite category. However,
they have a key distinction from other typical microparasites
in that parasite population size or burden is a central factor
in determining host-parasite dynamics, as it directly influences
transmission, mortality and several other parameters. Intrinsic
population dynamics of Gyrodactylus sp. on isolated fish have
been identified under standardized environmental conditions
(Scott, 1982, 1985a,b). Both short- and long-term dynamics of
Gyrodactylus sp. within laboratory populations of guppies have
also been observed (Scott, 1985a,b; Richards and Chubb, 1998;
Tadiri et al., 2013, 2016). However, the need for a comprehensive
model that can describe andmake predictions for this system and
others like it still exists.

Traditional microparasite Susceptible, Infected, Recovered
(SIR) models can effectively describe epidemic dynamics of
infectious diseases for which the parasite population size is
unknown or less relevant than host category of infection
(Anderson and May, 1979; Grenfell and Harwood, 1997;
Hagenaars et al., 2004). Yet, SIR models are less applicable to
parasites such as Gyrodactylus spp., where parasite burden plays
a crucial role in host-parasite population dynamics. Although
macroparasite models directly consider parasite number, they
also often overlook dynamics in parasite numbers within
individual hosts (Anderson and May, 1979; Rosà et al., 2003;
Cornell et al., 2004). As gyrodactylids and many other parasites
do not fit neatly into the micro-/ macro-parasite dichotomy,
there is a clear need for a unifying framework which considers
both host and parasite populations (Gog et al., 2015). Previous
efforts to mathematically describe this system using various
types of models have captured basic initial epidemic dynamics,
but failed to effectively describe longer-term fluctuations due
to gradual loss of immunity over time (Scott and Anderson,
1984; van Oosterhout et al., 2008). Similarly, infection dynamics
on individual fish have been simulated, but the broader scale
transmission and population dynamics were not incorporated
(van Oosterhout et al., 2008). The objective for this paper
is to establish a mathematical model that effectively describes
experimental data on guppy-Gyrodactylus dynamics, particularly
with regards to host immunity waning and longer-term dynamics
and to estimate the sensitivity to various parameters that we
have not been able to effectively test in the laboratory. Ideally,

this model can be applied to other directly transmitted, directly
reproducing parasites for which parasite burden impacts host-
parasite relations, with a waning immunity post-infection.

METHODS

The guppy-Gyrodactylus system shares some key characteristics
with common directly transmitted infectious disease dynamics
(e.g., infection-induced host mortality, refractory period,
infection by host-to-host contact). Therefore, we design an
SIR-type model with distributed delay (which captures the
varying immunity period of the guppy) to describe the dynamics
of guppies and Gyrodactylus. Since the guppy immune response
plays a crucial role in eliminating Gyrodactylus, we explicitly
integrate the dynamics of the immune response into the
model. Thereafter, the distributed delay model is converted
to an equivalent system of ordinary differential equations
using the linear chain approach. Next, we ensure that non-
negative initial values do not give rise to a negative solution. To
determine the Gyrodactylus basic reproduction number (R0),
the stability analysis of the Gyrodactylus-free equilibrium point
was performed. This threshold is particularly of use because
it allows us to determine the maximum potential number of
Gyrodactylus that will be produced due to the introduction of one
Gyrodactylus in aGyrodactylus-free population of guppies, which
can help inform control measures. Model parameters unavailable
in the literature were estimated by data fitting using previously
published experimental data. Next, the model was validated by
comparison to measurements from independent but analogous
laboratory experiments. Finally, using the estimated parameters,
together with the parameters from the literature, the sensitivity
of the outbreak peak magnitude and the time to outbreak peak
to the parameters of the model was determined. This sensitivity
could be useful in determining the most influential parameters
for designing control measures.

Derivation of the Model
In this section we derive a guppy-Gyrodactylus interaction
model with distributed delay. Figure 1 provides a conceptual
flowchart for the system. The model consists of four coupled
equations tracing the rates of change of guppy population (G),
guppy immune response (Y) and Gyrodactylus population (X).
The guppy total population is divided into three sub-groups:
susceptible (S), infected (I), and recovered (R) guppies. The
change in number of susceptible guppies could be due to (1) birth
by any guppy (we assume all guppies are born susceptible), (2)
loss of immunity by a recovered guppy, (3) death of a susceptible
guppy or (4) becoming infected due to contact with an infected
guppy. We assume the guppy population to be homogenous and
the natural birth rate of the guppy is assumed to be constant, α.
The birth rate of infected individuals is diminished by a function
that is linearly proportional to the number of parasite it harbors,

which we assumed to be η
(

X
I

)

= e−ξ
X
I , where ξ is the steepness

of parasite-induced fecundity reduction. Although it is unclear
whether guppy fecundity is reduced by Gyrodactylus infection,
this is the case for many infectious diseases, including those of
fish (Heins et al., 2010) so we allow for it in our model, while
defaulting the parameters to 0 in our simulations because in
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FIGURE 1 | Conceptual model of the Guppy-Gyrodactylus system.

our experimental populations no birth was observed. Instead
of the exponential growth assumed in typical SIR-type models,
we consider a logistic growth for the guppy population because
uninfected guppies exhibit density-dependent population growth
up to a carrying capacity K (Rose, 1959). Thus, the growth rate of
the guppy is α

(

S+ η
(

X
I

)

I + R
) (

1− S+I+R
K

)

. The rate at which
susceptible fish become infected, is described by the function:

β

(

X

I

)

=

{

0, if X
I ≤ 1

bX
I , if

X
I > 1

where b is a constant. The natural death rate of guppies is
assumed to be a constant d. The parasite mean intensity is

represented as X
I . The population of infected guppies can increase

when an infected guppy contacts a susceptible guppy, resulting
in transmission, and decreases when any one of them dies or
recovers. In addition to the natural death rate of guppies, infected
guppies may also be killed by Gyrodactylus at a rate described

by the function δ
(

X
I

)

= E
X
I where E is a constant. The recovery

rate function is assumed to be directly proportional to the average
immune response Y (i.e., recovery function ∝ Y) and inversely

proportional to the parasite intensity X
I (i.e., recovery function

∝ 1
X/I ), implying that the recovery rate function is proportional

to Y
X/I (i.e., the recovery rate function is λ Y

X/I where λ is the

proportionality constant). Immunity is assumed to affect both the
rate of parasite population growth and the rate at which infected
fish become recovered and recovered fish regain susceptibility.
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Every recovered guppy is assumed to acquire an immunity that
wanes with time following initial infection. To model immunity
waning, we assume that the immunity period of every fish
varies from 0 to ∞ in order to capture the wide variability
in the period of acquired resistance observed among many
guppy populations (Scott and Robinson, 1984; Scott, 1985a,b;
Richards and Chubb, 1998; Cable and van Oosterhout, 2007).
We let g(ψ) denote the probability density function that a fish
takes exactly ψ time units to lose its immunity after recovering
from infection, which implies that the probability that a fish’s
immunity is lost τ time units after recovering from infection, is
∫ τ

0 g (ψ) dψ . Thus the probability that the fish’s immunity is not

lost τ time units after recovering from infection is
∫∞

τ
g (ψ) dψ .

We assume that at a time t − τ , λ
Y(t−τ)I(t−τ)

X(t−τ) I(t − τ ) fish left

the infected population compartment and joined the recovered
population. The probability that these fish are still alive τ time

units after leaving the infected compartment is e−d τ . Hence the
total number of recovered fish at time t, is:

R (t) =

∞
∫

0

λ
Y (t − τ) I (t − τ)

X (t − τ)
I(t − τ )e−d τ

∞
∫

τ

g (ψ) dψdτ .

R (t) =

∫ t

−∞

λ
Y (τ ) I (τ )

X (τ )
I (τ )e−d (t−τ)

∫ ∞

t−τ
g (ψ) dψdτ . (1)

⇒
dR

dt
= λ

Y

X
I2 −

∞
∫

0

λ
Y(t − τ )I(t − τ )

X(t − τ )
I(t − τ )e−d τ g(τ )dτ − dR

We consider g(τ ) to be the density function for a gamma

distribution g (τ ) := cnτn−1e−cτ

(n−1)! , n = 1, 2, 3, . . . , c > 0, and n
c to

be the average duration of the immune memory. As the number
of parasites increases, the guppy immune system gradually builds

a defense against the parasite at a rate f
(

X
I

)

=
θX
I

κ+ X
I

, proportional

to the density of non-specific immune complement responsible
for killing Gyrodactylus, where θ is the maximum rate of increase
of immunity. This defense gradually reduces the guppy parasite
carrying capacity. The per capita growth rate of the parasite

follows a logistic growth:
(

1− X
P(Y)I

)

, where p(Y) is the average

parasite carrying capacity of an infected guppy. p(Y) is assumed
to be an exponentially decreasing function of the average immune
response of the guppy p (Y) = re−γY , where r and γ are
constants. The natural parasite death rate is assumed to be a
constant, ω. We assume that when a guppy dies, all the parasites
on it die, since dead guppies are more likely to be predated
or washed downstream (Van Oosterhout et al., 2007). In our
experiments, dead fish were removed from tanks < 1 day after
death in order to minimize transmission from dead fish, but it’s
possible some could have occurred. Thus, the total per capita
parasite death rate is ω + d+ δ

(

X
I

)

. Thus, we have the following
systems of delay differential equations:

dS

dt
= α

(

S+ η

(

X

I

)

I + R

)(

1−
S+ I + R

K

)

−
β
(

X
I

)

SI

S+ I + R
− dS

+

∞
∫

0

λ
Y (t − τ) I (t − τ)

X (t − τ)
I (t − τ)e−d τ g (τ ) dτ

dI

dt
=

β
(

X
I

)

SI

S+ I + R
−

(

d + δ

(

X

I

))

I −
λYI

X
I

dR

dt
=

λYI

X
I −

∞
∫

0

λ
Y (t − τ) I (t − τ)

X (t − τ)
I (t − τ)e−d τ g (τ ) dτ − dR

dX

dt
= µX

(

1−
X

p (Y) I

)

−

(

d + δ

(

X

I

))

X − ωX (2)

dY

dt
= Y

(

θX
I

κ + X
I

I − ν

)

(S (s) , I (s) ,R (s) ,X (s) , Y (s))

= (φ1 (s) ,φ2 (s) , φ3 (s) ,φ4 (s) , φ5 (s)) , s ∈ (−∞, 0]

where φi, i = 1, 2, 3, 4 and 5 are bounded continuous
functions, µ is the maximum per capita parasite growth rate. We
assume that.

X(I < 1) = 0

Reduction to an Ordinary Differential
Equation Model
We assume that g(τ ) = ce−cτ (i.e. n = 1) and apply the chain
trick method (Kuang, 1993) to convert System (2) to a system of
ordinary differential equations: Let

S =

∞
∫

0

Y (t − τ) I (t − τ)

X (t − τ)
I (t − τ)e−d τ g (τ ) dτ

=

∞
∫

0

Y (t − τ) I (t − τ)

X (t − τ)
I (t − τ)e−d τ ce−cτdτ

=

0
∫

−∞

Y (u) I (u)

X (u)
I (u)e−d (t−u)ce−c(t−u)du

= ce−(c+d)t

0
∫

−∞

Y (u) I (u)

X (u)
I (u)e(d+c)u

⇒
dS

dt
= c

(

−
(

c+ d
))

e−(c+d)t

0
∫

−∞

Y (u) I (u)

X (u)
I (u)e−(d+c)udu

+ ce−(c+d)te(c+d)t Y (t) I (t)

X (t)
I (t)

= −
(

c+ d
)

S+ c
Y(t)I(t)

X(t)
I(t)

Substituting this in System (2) reduces it to the following system
of ODE:

dS

dt
= α

(

S+ η

(

X

I

)

I + R

)(

1−
S+ I + R

K

)

−
β
(

X
I

)

SI

S+ I + R
− dS+ λS

dI

dt
=

β
(

X
I

)

SI

S+ I + R
−

(

d + δ

(

X

I

))

I −
λYI

X
I

dR

dt
=

λYI

X
I − λS − dR

dX

dt
= µ X

(

1−
X

p(Y)I

)

−

(

d + δ

(

X

I

))

X − ωX (3)
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dY

dt
= Y

(

θX
I

κ + X
I

I − ν

)

dS

dt
= −

(

c+ d
)

S+ c
Y(t)I(t)

X(t)
I(t)

(S (0) , I (0) ,R (0) ,X (0) , Y (0))

= (φ1 (0) ,φ2 (0) , φ3 (0) ,φ4 (0) , φ5 (0))

S (0) =

∞
∫

0

φ4 (−τ) φ2 (−τ)

φ3 (−τ)
φ2 (−τ)ce

−(c+d)τdτ

Positivity and Basic Reproduction Number
In this section, we show that non-negative initial data give rise to
non-negative solutions, establish conditions for the existence and
stability of the Gyrodactylus-free equilibrium point of the system
and determine the basic reproduction number.

Positivity
Positivity and boundedness of a model guarantee that the model
is biologically well-behaved. For positivity of the System (3), we
have the following theorem:

Theorem 1. All solutions of System (3) are positive for all t in

(0, ∞ )

Proof. We need to show that S(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0,
Y (t) ≥ 0, X(t) ≥ 0, S (t) ≥ 0 for S (0) ≥ 0, I (0) ≥

0, R (0) ≥ 0, Y (0) ≥ 0, X (0) ≥ 0 and S (0) ≥ 0. Note
that X

I = 0, I
X = 0 and Y

X = 0 for X < 1 or I < 1. We start by
proving that if I (0) ≥ 0, ⇒ I (t) ≥ 0 for all t > 0. From the
second equation of Systems (3), we see that İ (I = 0) = 0. Thus
I (t) ≥ 0 for t ≥ 0. Also, from the third equation, we have that
Ẋ(X = 0) = 0 for X(0) ≥ 0. Hence X(t) ≥ 0 for t ≥ 0. From

the last equation, we have that ˙S
(

S = 0
)

= cY
X I2. Since I(t) ≥ 0

and X
Y ≥ 0 for t ≥ 0, I(0) ≥ 0 and X(0)

Y(0)
≥ 0, we have that

˙S
(

S = 0
)

≥ 0, t ≥ 0 and S(0) ≥ 0. The non-negativity of
R(t) for t ≥ 0 follows from the integral representation (1) and

non-negativity of Y(t)
X(t) . From the first equation, we have that

Ṡ (S = 0) = α

(

η

(

X

I

)

I + R

)(

1−
I + R

K

)

+ λS.

From the non-negativity of X
I , I,R, we have that if S(0) ≥ 0

implies that S(t) ≥ 0 for t ≥ 0.

Gyrodactylus-Free Equilibrium Point (GFE) and R0
For the GFE we have that X = 0, implying that I, R, Y and S are

null. Plugging this in System (3), we have that S =
k(α−d)
α

. Since
S > 0, we have that the GFE exist iff α > d and is given

by
(

k(α−d)
α

, 0, 0, 0, 0, 0
)

. The linearized system corresponding to

this equilibrium point is:

















Ṡ

İ

Ṙ

Ẋ

Ẏ
˙S

















=





















d − α 2d − α 2d − α dη − b 0 λ

0 −d 0 b− ε 0 0

0 0 −d 0 0 −λ

0 0 0 µ− d − ω 0 0

0 0 0 0 −ν 0

0 0 0 0 0 −
(

c+ d
)





































S

I

R

X

Y

S

















The corresponding eigenvalues are:

λ1 = d − α, λ2 = −d, λ3 = −d,λ4 = µ − d − ω,

λ5 = −(c + d).

λ1, λ2, λ3 and λ5 are all less than zero and λ4 is less than zero
iff µ < d + ω. This leads to the definition of the Gyrodactylus
basic reproduction number, R0 : =

µ
d+ω

. Observe that GFE is
locally asymptotically stable iff µ < d + ω, i.e., GFE is
locally asymptotically stable iff R0 < 1 and unstable if R0 > 1.
Therefore, if R0 < 1, the parasite dies out and if R0 > 1, the
parasite will invade the guppy population.R0 = 1, is a threshold

below which the Gyrodactylus dies out and above which there is
an outbreak.R0 has an intuitive biological interpretation: it is the
average number of Gyrodactylus resulting from the introduction
of a single Gyrodactylus into an otherwise Gyrodactylus-free
population over the course of its life span.

Parameter Estimation and Model Validation
Using Independent Measurements
We used data obtained from separate laboratory previously
published experiments to, respectively, estimate the model
parameters not available in the literature and to test the fit of the
model. To estimate the model parameters we used experimental
data averaged from four groups of eight male fish where one
fish per group was infected with two parasites and the infection
was allowed to spread naturally throughout the tank (Tadiri
et al., 2018). These fish were bred in the lab from pet-store
“feeder” guppies. To test the model, we used experimental data
averaged from four groups of eight fish (four males and four
females) where parasites were introduced to each group via
a donor juvenile fish infected with three parasites that was
removed once at least three parasites had naturally transferred
to the experimental fish (Tadiri et al., 2016). These fish were
third-generation lab reared fish bred from 33 originally family
lines originally obtained from wild population in Trinidad but
mixed haphazardly in experimental tanks. In both cases, 2-3
parasites were introduced in order to keep the introduction as
close to one as possible while minimizing the probability of
accidental parasite death or that an old or male parasite would
be introduced preventing reproduction. No difference in host-
parasite dynamics was found among all-male, all-female and
mixed sex groups of eight fish (Tadiri et al., 2016).

In both experiments, each fish was individually marked, and
the number of parasites on each fish was counted every other
day to obtain SIR numbers and total parasite population size. In
our all experimental groups, no birth was observed within the 42
days. Hence, we ignore vital dynamics for guppies in the model.

To estimate the parameter values of System (3), we use
the non-linear regression function nlinfit(.) in MATLAB. The
function nlinfit(.) uses the Levenberg-Marquardt algorithm
(Moré, 1978) to fit the solution of the biodegradation module to
the data. Some of parameters used in solving System (3) namely
ω, d, and K, were taken from the literature (Rose, 1959; Scott and
Anderson, 1984): the units, values and source of these parameters
are provided in Table 1.
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TABLE 1 | Estimated parameter values used to train and test the model and initial values from experiments.

Parameter Sym. Estimate Unit Source

Initial number of susceptible guppies S (0) 7 - This study

Initial number of infected guppies I (0) 1 - This study

Initial number of recovered guppies R (0) 0 - This study

Initial number of parasites X (0) 2 - This study

Initial number of immune cells Y (0) 5.1440 - This study

Transmission rate β 0.0468 /day/host/parasite This study

Recovery rate λ 0.0080 /day/host This study

Half-saturation constant of per-capita parasite killing

rate

r 176.7035 - This study

Maximum parasite killing rate γ 0.1084 /day/no

immune cells

This study

Parasite increase rate µ 0.6395 /day This study

Maximum rate of immunity increase θ 0.0562 /day This study

Half-saturation constant of immunity increase κ 7.1411 - This study

Rate of decay of immunity in the absence of parasites ν 0.0321 /day this study

Guppy carrying capacity K 9.600 /liter Rose, 1959

Steepness of distribution kernel c 0.0100 /day This study

Parasite-induced mortality rate ε 0.0012 /day This study

Guppy birth rate α 0.0 /fish/day This study

Natural guppy mortality rate d 0.0049 /day Scott and Anderson,

1984; Kearn, 1994

Natural parasite mortality rate w 0.24 /day Scott and Anderson,

1984

Volume of experimental tanks was 6L. As no guppy birth was observed in our experiments, we estimate α to be 0 and neglect the parasite induced fecundity reduction.

The validity of our model in predicting Gyrodactylus outbreak
was evaluated by using the estimated parameters in the model
to generate S, I, R Gyrodactylus and immune response data
then comparing the predicted data to measured data using the
goodnessOfFit(.) function in MATLAB.

Sensitivity Analysis
The objective of this subsection is to discuss the sensitivity of the
magnitude of the initial Gyrodactylus outbreak peak, and time to
the initial outbreak peak to the parameters of the system. For
this analysis, we use the normalized forward sensitivity index
(Chitnis et al., 2008):

sensitivity index (S.I.) =

(

∂F∗

∂
(

parameter
)

)

(

parameter

F∗

)

(4)

where F∗ is the quantity being considered.
Since we do not have the explicit formula for the initial

outbreak peak, or time to peak, we use central difference
approximation to estimate them:

∂F∗

∂parameter
=

F
∗ (

parameter + h
)

− F
∗ (

parameter − h
)

2h
+ O

(

h2
)

.

Letting h = 1% of the parameter value (P), Equation
(4) becomes:

S.I. =
F
∗

(1.01P)− F
∗

(0.99P)

0.02(F∗ (P))
(5)

Longer-Term Dynamics and Generic
Sensitivity Analysis
In this section, we simulate the longer-term parasite dynamics in
a system that allows for guppy vital dynamics. We use an average
birth rate estimated from literature of 0.4/fish/day (Rose, 1959)
with no infection-induced reduction in fecundity. We equally
assess the sensitivity of the generic outbreak peaks and period to
the parameters of the system from the long-term simulation.

RESULTS

System Basic Reproduction Number and
Gyrodactylus-Free Equilibrium Point
Using the parameters in Table 1 we have that R0 = 2.63.
Since R0 > 1 for the estimated parameters values, the GFE is
not asymptotically stable, meaning that an introduction of one
Gyrodactylus into a naïve guppy population would result in an
outbreak. Next, we illustrate the dynamics of the system forR0 <

1 and forR0 > 1 using values very close to one. Rearranging the
fourth equation of System (2), we have:

dX

dt
= µX

(

1−
X

p (Y) I

)

−

(

d + δ

(

X

I

))

X − ωX

=
(

d + ω
)

(R0 − 1)X − X

(

µX

p (Y) I
+ δ

(

X

I

))

(6)

Figure 2 shows the long-term behavior of the Gyrodactylus
population for R0 = 0.9(< 1) (A), R0 = 1.1(>
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1) (B) and R0 = 2.63(> 1) (C) respectively. When
R0 < 1, the system will stabilize to its Gyrodactylus free

equilibrium
(

k(α−d)
α

, 0, 0, 0, 0, 0
)

(Panel A). The number of

Gyrodactylus, the number of infected guppies, the number
of recovered guppies and the guppy immune compliment
density tend to zero as t increases. When R0 > 1, there

FIGURE 2 | Gyrodactylus dynamics with two different basic reproduction numbers (R0). (A) R0 = 0.90 and (B) R0 = 1.1, and (C) R0 = 2.59, demonstrating that

parasites will die out with an R0 of less than one, and persist if R0 is greater than one.

FIGURE 3 | Comparison of model predictions (solid line) of Guppy-Gyrodactylus dynamics using the parameters in Table 1 with measured values from averages of

laboratory results (diamonds). (A–D) we plot the time course dynamics of the number of susceptible guppies, infected guppies, recovered guppies and Gyrodactylus

per tank, respectively.
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will be a Gyrodactylus outbreak (Panels B and C). These
outcomes are robust for large sets of initial values and
parameter values.

Fitting the Model to Data
Table 1 contains the value of the parameters obtained from
fitting System (2) to the experimental data described above.
Figure 3 shows the simulated susceptible, infected, recovered
guppies and Gyrodactylus dynamics along with measured data.
We obtained a goodness-of-fit statistic (NMSE) value of 0.99.
This statistic indicates that the model is able to predict the
training data accurately.

Model Evaluation Using NMSE
Using the parameter values in Table 1, with the procedure
described above, we assess the validity of our model in
predicting guppy-Gyrodactylus dynamics data. Figure 4 shows
a comparison between our simulated and measured data. The
goodness-of-fit statistics suggests that System (2) with the given
parameter values is a good fit for guppy-Gyrodactylus dynamics
data (NMSE= 0.70).

Sensitivity of the Magnitude of the Initial
Outbreak Peak
The sensitivity indices of the magnitude of the peak of the initial
outbreak measure how the magnitude of the peak of the initial
outbreak depends on different parameters. Table 2 contains
the sensitivity indices of the amplitude of the first outbreak
peak obtained using Equation (5). The two parameters with
the greatest independent influence on the system were parasite
increase rate (µ), and maximum rate of increase of immunity (θ).

Sensitivity of the Time to Initial Outbreak
Peak
Sensitivity indices of the time to initial outbreak peak measure
how the first epidemic outbreak time depends on different
parameters as seen in the Table 3. Similar to the sensitivity of the
magnitude of the peak of the first outbreak, the parasite increase
rate (µ) and the maximum rate of the increase of immunity (θ)
were the most influential parameters.

Longer-Term Dynamics
By allowing for natural guppy birth in our systems, we are
able to simulate steady state oscillating dynamics such as those

FIGURE 4 | Comparison of model predictions of Guppy-Gyrodactylus dynamics (solid lines) with averages from laboratory data (diamonds) independent from the data

used to estimate the model parameters (Table 1). (A–D) we have the time course dynamics of the number of susceptible guppies, infected guppies, recovered

guppies and Gyrodactylus per tank, respectively.
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TABLE 2 | The sensitivity of the magnitude of the peak of the initial outbreak to

the parameters.

Parameter Definition Sensitivity index

β Transmission rate 0.0130

λ Recovery rate −0.0516

µ Parasite increase rate 1.5662

r Half-saturation constant of per-capita parasite

killing rate

0.4707

γ Maximum parasite killing rate −0.6369

θ Maximum rate of increase of immunity −0.8186

κ Half-saturation constant of increase of immunity 0.3367

v Rate of decay of immunity in the absence of

parasites

0.2253

α Birth rate 0.0216

d Natural guppy mortality −0.0178

K Half-saturation constant for guppy growth 0.2541

c 1/c is the average duration of immune memory −0.0016

ε Parasite-induced mortality rate −0.0568

ω Natural parasite mortality −0.6862

TABLE 3 | The sensitivity of the time to the initial outbreak to the parameters.

Parameter Definition Sensitivity index

β Transmission rate −0.7344

λ Recovery rate −0.1732

µ Parasite increase rate −1.0673

r Half-saturation constant of per-capita parasite

killing rate

−0.1847

γ Maximum parasite killing rate 0.1212

θ Maximum rate of increase of immunity −1.1184

κ Half-saturation constant of increase of immunity −0.0880

v Rate of decay of immunity in the absence of

parasites

−0.1329

α Birth rate 0.0593

d Natural guppy mortality 0.0088

K Half-saturation constant for guppy growth −0.8757

c 1/c is the average duration of immune memory −0.0055

ε Parasite-induced mortality rate 0.0057

ω Natural parasite mortality −0.2868

expected of epidemic infectious diseases with generic peaks and
periods (Figure 5).

Sensitivity of the Generic Outbreak Peak
Magnitude
Sensitivity indices of the generic outbreak peak measure how
the magnitude of subsequent outbreak peaks under steady
state oscillating dynamics depend on different parameters
(Table 4). The guppy immune related parameters, θ (maximum
rate of increase of immunity and v (rate of decay of
immunity) have the strongest relationship to the outbreak
peak. The negative value of the sensitivity of the outbreak
to θ , indicates that a low value of θ will lead to a more
severe parasite outbreak. The positive value of the sensitive

FIGURE 5 | Long-term Gyrodactylus dynamics when guppy birth is included

in the system. The Figure was generated using the parameter values in

Table 1 with α = 0.4/fish/day.

TABLE 4 | The sensitivity of the magnitude of the peak of a generic outbreak to

the parameters.

Parameter Definition Sensitivity index

β Transmission rate −0.8688

λ Recovery rate 0.1385

µ Parasite increase rate 0.5096

r Half-saturation constant of per-capita parasite

killing rate

0.1465

γ Maximum parasite killing rate −0.4790

θ Maximum rate of increase of immunity −1.5751

κ Half-saturation constant of increase of immunity 0.1726

v Rate of decay of immunity in the absence of

parasites

1.9784

α Birth rate −0.0344

d Natural guppy mortality −0.4309

K Half-saturation constant for guppy growth −0.5502

c 1/c is the average duration of immune memory −0.3137

ε Parasite-induced mortality rate −0.0754

ω Natural parasite mortality −0.4031

of the outbreak peak to v, on the other hand, tells us
that if the guppy immunity wanes faster, there will be a
severe outbreak.

Sensitivity of the Generic Outbreak Period
Sensitivity indices of the generic outbreak period measure how
the time to subsequent outbreak peaks under steady state
oscillating dynamics depend on different parameters (Table 5).
The parasite increase rate (µ) and the maximum rate of
increase of immunity (θ) have the strongest relationship to the
outbreak period.
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DISCUSSION

In this paper, we define a mathematical model that effectively
describes guppy-Gyrodactylus dynamics in small populations.
In estimating parameters based on both literature and our
own experimental data we determined our model to accurately
describe the dynamics of this system. Additionally, we validated
our model using a neutral data set from a separate experiment
and found that it fit reasonably well. We also find the model to
be mathematically and biologically sound through our analysis
of R0, which indicates that an outbreak will occur when the
R0 is greater than one and that the system will stabilize to a
Gyrodactylus-free equilibrium when R0 is less than one. With
our parameters, R0 was greater than one, indicating that an
outbreak will occur in our system with the introduction of
one parasite. This model builds of previous efforts to model
this system (Scott and Anderson, 1984), but incorporates a
more realistic representation of immunity. Firstly, and most
importantly, we describe fish immune response to infection in its
own equation, rather than assuming a linear constant to represent
immunity. We specifically also describe the waning of immunity
post-infection using a distributed delay function, which allows
for repeated, dampening cycles of outbreaks without constant
immigration of naive hosts. We also allow for host population
growth rather than fixed immigration and consider a parasite-
induced reduction in fecundity (Perez-Jvostov et al., 2012), which
had not been investigated at the time of previous models. Longer-
term simulations using population growth estimates from
literature with our other parameter estimates from experiments
demonstrate that our model is capable of describing oscillating
parasite dynamics typical of those observed in the wild (Van
Oosterhout et al., 2007). These developments are important to
more accurately explaining guppy-Gyrodactylus dynamics and
could have a broader applicability to other systems as well.

Gyrodactylus are a large genus of over 400 ectoparasites
infecting at least 20 orders of teleost fish (Bakke et al., 2002),
and our model can most directly be applied to other species of

TABLE 5 | The sensitivity of a generic outbreak period to the parameters.

Parameter Definition Sensitivity index

β Transmission rate −0.2360

λ Recovery rate −0.2712

µ Parasite increase rate −0.5972

r Half-saturation constant of per-capita parasite

killing rate

0.1035

γ Maximum parasite killing rate −0.1115

θ Maximum rate of increase of immunity 0.5502

κ Half-saturation constant of increase of immunity 0.1037

v Rate of decay of immunity in the absence of

parasites

−0.3536

α Birth rate −0.1824

d Natural guppy mortality 0.1708

K Half-saturation constant for guppy growth 0.2089

c 1/c is the average duration of immune memory 0.08776

ε Parasite-induced mortality rate −0.1128

ω Natural parasite mortality −0.0537

this genus. Gyrodactylids have had significant economic impact,
causing epizootics in many resources fish such as carp, trout
and African catfish (Woo, 2006) and, most notably Atlantic
salmon fisheries, particularly in Norway in the 1960’s and ‘70’s
which saw large declines due to G. salaris (Johnsen, 1978; Bakke
et al., 2007), and efforts to recover these populations and prevent
disease spread to other watersheds are still ongoing (Denholm
et al., 2016). Since the basic life cycle of gyrodactylids and their
relationships with their hosts are similar (Bakke et al., 2002, 2007)
this model would only need reparameterization to be applied to
a range of other aquaculture species. Beyond other gyrodactylids,
many infectious diseases also confer immunity that decays over
time. Our methods of applying a distributed delay to describe
waning guppy immunity toGyrodactylus are novel to this system,
and can also be used for other infectious diseases with declining
immunity, most notably being comparable to the waning of
vaccine-induced immunity which has observed in many human
diseases (Heffernan and Keeling, 2009) such as measles (Mossong
et al., 1999), pertussis (van Boven et al., 2000), malaria (Okosun
et al., 2011), and varicella (Chaves et al., 2007) and modeled
using different methods. Given the broader applicability of our
methods, our results have important implications for disease
management, as we identify the most impactful parameters on
disease outbreaks, and thus crucial intervention points.

Our sensitivity analysis found that the most influential
parameters on both initial outbreak amplitude and time to
initial outbreak in our system were parasite increase rate (µ)
and maximum increase rate of guppy immunity (θ). These
results indicate parasite growth rate and host resistance play the
strongest role in the severity and speed of an outbreak, which
makes logical sense. The higher parasite growth rate, or lower
the immune response, the greater the parasite abundance will be.
Given the small population sizes of our experiments, it is possible
that host density may have affected the relative importance of
these variables compared to the transmission rate or population
size. The density of fish in our experiments was higher than wild
populations (Croft et al., 2003), but lower than in commercial
guppy populations (Kaiser et al., 1998), therefore an average
approximation of the different conditions in which Gyrodactylus
outbreaks may occur. Given the relatively short timescale of our
experiments, we did not observe any impacts of longer-term
parameters such as guppy birthrate or natural guppy mortality.
However, sensitivity analysis of our generic outbreak magnitudes
and periods consistently demonstrate that parasite virulence and
parameters relating to guppy immunity have the strongest impact
on our system and therefore this result was not an artifact of
our experimental design. Both guppy resistance (Van Oosterhout
et al., 2003; Dargent et al., 2016), and parasite virulence (Cable
and van Oosterhout, 2007) are known to evolve rapidly and vary
widely among populations due to different selective pressures and
our findings indicate that understanding this heterogeneity is of
significance to predicting and controlling disease outbreaks.

One limitation of this model is that it was based on laboratory,
rather than field data and large differences in both host mortality
and parasite burdens have been observed between the lab and
field settings. Gyrodactylids persist in the wild and are observed
at typically low burdens are observed, however mark-recapture
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experiments have suggested that infection can cause severe
mortality (Van Oosterhout et al., 2007) typical of epidemics and
in aquaculture (Johnsen, 1978; Johnsen and Jenser, 1991), and
laboratory (Scott and Anderson, 1984; Van Oosterhout et al.,
2003) settings, outbreaks are known to cause severe disease and
mortality. Also, in the wild, guppies inhabit streams which are
punctuated by “pools” separated by waterfalls, thus creating a
network of populations among which unidirectional migration
of hosts (and potentially parasites) downstream is possible
(Van Oosterhout et al., 2007; Barson et al., 2009), however in
our current model we focus only on populations in isolation.
Furthermore, as previously mentioned, the population sizes were
much smaller than those in a natural setting, and as such, the
timescales used to estimate some of the longer-term parameters
of our model, such as host birth and immunity waning to full
susceptibility may not fully reflect dynamics in the wild (Van
Oosterhout et al., 2007). Nevertheless, our estimates obtained
from both literature and short-term data show a good fit for
our data and could potentially be directly applied to aquaculture
settings with only reparameterization specific to the species of
interest.Moreover, longer-term simulations with ourmodel show
its ability to predict longer-term fluctuating dynamics such as
those observed in the wild, indicating the predictive value of this
model to more natural settings.

Another limitation is our assumption of homogeneity of hosts,
which is not accurate in this system. Guppies are known to exhibit
a broad range in both life history traits (Reznick and Endler, 1982;
Gordon et al., 2009) and innate resistance to parasites (Fraser
et al., 2009; Fraser and Neff, 2010; Dargent et al., 2013), both
within and among populations. Additionally, individual guppies
may vary in their susceptibility to parasites due to individual
characteristics such as size (Cable and van Oosterhout, 2007;
Tadiri et al., 2013), carotenoid coloration (Grether et al., 2004;
Kolluru et al., 2006) and sex (Richards et al., 2010, 2012; Dargent
et al., 2016; Tadiri et al., 2016). Our parameters don’t capture the
wide variability that occurs in nature, or how this heterogeneity
may influence host-parasite dynamics in the population but were
instead based on average values obtained from literature and our
own laboratory observations. Moreover, significant variability
even in average population-level resistance has been observed
among wild populations and domestic fish to various strains
of gyrodactylids (Van Oosterhout et al., 2003; Cable and van
Oosterhout, 2007; Dargent et al., 2013, Pérez-Jvostov et al., 2015)
and it’s possible that our estimated parameters may not fit some
extreme cases of particularly low- or high-resistance population.
However, despite not accounting for such complexities, our
model fit data from two experiments, one which used fish from
various wild populations from Trinidad and one which used
domestic fish, therefore we find these average values to be a
decent approximation.

In conclusion, we were able to develop and validate
a mathematical model that more effectively describes the
guppy-Gyrodactylus system, thus contributing to a further
understanding of disease dynamics. Through sensitivity analysis,
we were able to identify key factors affecting outbreaks to

strategize control measures for parasites which increase in
numbers due to reproduction directly on the host (in the
absence of transmission) and are directly transmitted via host
contact, particularly those relating to parasite growth rate
and host resistance. Our findings have implications for a
broader range of systems, with our model being most directly
applicable to other gyrodactylids such as G. salaris, which is
known to cause severe mortality and morbidity in Atlantic
salmon fisheries (Johnsen, 1978; Bakke et al., 2007), but these
methods could be also applicable to many other infections for
which immunity decays over time, such as that observed for
some vaccines.
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