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Abstract The quantitative evaluation of optical flow algo-

rithms by Barron et al. (1994) led to significant advances

in performance. The challenges for optical flow algorithms

today go beyond the datasets and evaluation methods pro-

posed in that paper. Instead, they center on problems as-

sociated with complex natural scenes, including nonrigid

motion, real sensor noise, and motion discontinuities. We

propose a new set of benchmarks and evaluation methods

for the next generation of optical flow algorithms. To that

end, we contribute four types of data to test different as-

pects of optical flow algorithms: (1) sequences with non-

rigid motion where the ground-truth flow is determined by
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tracking hidden fluorescent texture, (2) realistic synthetic

sequences, (3) high frame-rate video used to study inter-

polation error, and (4) modified stereo sequences of static

scenes. In addition to the average angular error used by Bar-

ron et al., we compute the absolute flow endpoint error, mea-

sures for frame interpolation error, improved statistics, and

results at motion discontinuities and in textureless regions.

In October 2007, we published the performance of several

well-known methods on a preliminary version of our data

to establish the current state of the art. We also made the

data freely available on the web at http://vision.middlebury.

edu/flow/. Subsequently a number of researchers have up-

loaded their results to our website and published papers us-

ing the data. A significant improvement in performance has

already been achieved. In this paper we analyze the results

obtained to date and draw a large number of conclusions

from them.

Keywords Optical flow · Survey · Algorithms · Database ·
Benchmarks · Evaluation · Metrics

1 Introduction

As a subfield of computer vision matures, datasets for

quantitatively evaluating algorithms are essential to ensure

continued progress. Many areas of computer vision, such

as stereo (Scharstein and Szeliski 2002), face recognition

(Philips et al. 2005; Sim et al. 2003; Gross et al. 2008;

Georghiades et al. 2001), and object recognition (Fei-Fei

et al. 2006; Everingham et al. 2009), have challenging

datasets to track the progress made by leading algorithms

and to stimulate new ideas. Optical flow was actually one

of the first areas to have such a benchmark, introduced by

Barron et al. (1994). The field benefited greatly from this
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study, which led to rapid and measurable progress. To con-

tinue the rapid progress, new and more challenging datasets

are needed to push the limits of current technology, reveal

where current algorithms fail, and evaluate the next gener-

ation of optical flow algorithms. Such an evaluation dataset

for optical flow should ideally consist of complex real scenes

with all the artifacts of real sensors (noise, motion blur, etc.).

It should also contain substantial motion discontinuities and

nonrigid motion. Of course, the image data should be paired

with dense, subpixel-accurate, ground-truth flow fields.

The presence of nonrigid or independent motion makes

collecting a ground-truth dataset for optical flow far harder

than for stereo, say, where structured light (Scharstein and

Szeliski 2002) or range scanning (Seitz et al. 2006) can

be used to obtain ground truth. Our solution is to collect

four different datasets, each satisfying a different subset of

the desirable properties above. The combination of these

datasets provides a basis for a thorough evaluation of current

optical flow algorithms. Moreover, the relative performance

of algorithms on the different datatypes may stimulate fur-

ther research. In particular, we collected the following four

types of data:

• Real Imagery of Nonrigidly Moving Scenes: Dense

ground-truth flow is obtained using hidden fluorescent

texture painted on the scene. We slowly move the scene,

at each point capturing separate test images (in visible

light) and ground-truth images with trackable texture (in

UV light). Note that a related technique is being used

commercially for motion capture (Mova LLC 2004) and

Tappen et al. (2006) recently used certain wavelengths

to hide ground truth in intrinsic images. Another form of

hidden markers was also used in Ramnath et al. (2008) to

provide a sparse ground-truth alignment (or flow) of face

images. Finally, Liu et al. recently proposed a method to

obtain ground-truth using human annotation (Liu et al.

2008).

• Realistic Synthetic Imagery: We address the limitations of

simple synthetic sequences such as Yosemite (Barron et al.

1994) by rendering more complex scenes with larger mo-

tion ranges, more realistic texture, independent motion,

and with more complex occlusions.

• Imagery for Frame Interpolation: Intermediate frames are

withheld and used as ground truth. In a wide class of ap-

plications such as video re-timing, novel-view generation,

and motion-compensated compression, what is important

is not how well the flow matches the ground-truth motion,

but how well intermediate frames can be predicted using

the flow (Szeliski 1999).

• Real Stereo Imagery of Rigid Scenes: Dense ground truth

is captured using structured light (Scharstein and Szeliski

2003). The data is then adapted to be more appropriate

for optical flow by cropping to make the disparity range

roughly symmetric.

We collected enough data to be able to split our collec-

tion into a training set (12 datasets) and a final evalua-

tion set (12 datasets). The training set includes the ground

truth and is meant to be used for debugging, parameter

estimation, and possibly even learning (Sun et al. 2008;

Li and Huttenlocher 2008). The ground truth for the final

evaluation set is not publicly available (with the exception

of the Yosemite sequence, which is included in the test set to

allow some comparison with algorithms published prior to

the release of our data).

We also extend the set of performance measures and the

evaluation methodology of Barron et al. (1994) to focus at-

tention on current algorithmic problems:

• Error Metrics: We report both average angular error (Bar-

ron et al. 1994) and flow endpoint error (pixel distance)

(Otte and Nagel 1994). For image interpolation, we com-

pute the residual RMS error between the interpolated im-

age and the ground-truth image. We also report a gradient-

normalized RMS error (Szeliski 1999).

• Statistics: In addition to computing averages and standard

deviations as in Barron et al. (1994), we also compute

robustness measures (Scharstein and Szeliski 2002) and

percentile-based accuracy measures (Seitz et al. 2006).

• Region Masks: Following Scharstein and Szeliski (2002),

we compute the error measures and their statistics over

certain masked regions of research interest. In particular,

we compute the statistics near motion discontinuities and

in textureless regions.

Note that we require flow algorithms to estimate a dense

flow field. An alternate approach might be to allow algo-

rithms to provide a confidence map, or even to return a

sparse or incomplete flow field. Scoring such outputs is

problematic, however. Instead, we expect algorithms to gen-

erate a flow estimate everywhere (for instance, using inter-

nal confidence measures to fill in areas with uncertain flow

estimates due to lack of texture).

In October 2007 we published the performance of sev-

eral well-known algorithms on a preliminary version of our

data to establish the current state of the art (Baker et al.

2007). We also made the data freely available on the web

at http://vision.middlebury.edu/flow/. Subsequently a large

number of researchers have uploaded their results to our

website and published papers using the data. A significant

improvement in performance has already been achieved. In

this paper we present both results obtained by classic al-

gorithms, as well as results obtained since publication of

our preliminary data. In addition to summarizing the over-

all conclusions of the currently uploaded results, we also

examine how the results vary: (1) across the metrics, sta-

tistics, and region masks, (2) across the various datatypes

and datasets, (3) from flow estimation to interpolation, and

(4) depending on the components of the algorithms.

http://vision.middlebury.edu/flow/
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The remainder of this paper is organized as follows. We

begin in Sect. 2 with a survey of existing optical flow al-

gorithms, benchmark databases, and evaluations. In Sect. 3

we describe the design and collection of our database, and

briefly discuss the pros and cons of each dataset. In Sect. 4

we describe the evaluation metrics. In Sect. 5 we present the

experimental results and discuss the major conclusions that

can be drawn from them.

2 Related Work and Taxonomy of Optical Flow

Algorithms

Optical flow estimation is an extensive field. A fully com-

prehensive survey is beyond the scope of this paper. In this

related work section, our goals are: (1) to present a taxon-

omy of the main components in the majority of existing

optical flow algorithms, and (2) to focus primarily on re-

cent work and place the contributions of this work in the

context of our taxonomy. Note that our taxonomy is similar

to those of Stiller and Konrad (1999) for optical flow and

Scharstein and Szeliski (2002) for stereo. For more exten-

sive coverage of older work, the reader is referred to previ-

ous surveys such as those by Aggarwal and Nandhakumar

(1988), Barron et al. (1994), Otte and Nagel (1994), Mitiche

and Bouthemy (1996), and Stiller and Konrad (1999).

We first define what we mean by optical flow. Following

Horn’s (1986) taxonomy, the motion field is the 2D projec-

tion of the 3D motion of surfaces in the world, whereas the

optical flow is the apparent motion of the brightness pat-

terns in the image. These two motions are not always the

same and, in practice, the goal of 2D motion estimation is

application dependent. In frame interpolation, it is prefer-

able to estimate apparent motion so that, for example, spec-

ular highlights move in a realistic way. On the other hand, in

applications where the motion is used to interpret or recon-

struct the 3D world, the motion field is what is desired.

In this paper, we consider both motion field estimation

and apparent motion estimation, referring to them collec-

tively as optical flow. The ground truth for most of our

datasets is the true motion field, and hence this is how we

define and evaluate optical flow accuracy. For our interpola-

tion datasets, the ground truth consists of images captured at

an intermediate time instant. For this data, our definition of

optical flow is really the apparent motion.

We do, however, restrict attention to optical flow algo-

rithms that estimate a separate 2D motion vector for each

pixel in one frame of a sequence or video containing two or

more frames. We exclude transparency which requires mul-

tiple motions per pixel. We also exclude more global rep-

resentations of the motion such as parametric motion esti-

mates (Bergen et al. 1992).

Most existing optical flow algorithms pose the problem

as the optimization of a global energy function that is the

weighted sum of two terms:

EGlobal = EData + λEPrior. (1)

The first term EData is the Data Term, which measures how

consistent the optical flow is with the input images. We con-

sider the choice of the data term in Sect. 2.1. The second

term EPrior is the Prior Term, which favors certain flow

fields over others (for example EPrior often favors smoothly

varying flow fields). We consider the choice of the prior term

in Sect. 2.2. The optical flow is then computed by optimiz-

ing the global energy EGlobal. We consider the choice of the

optimization algorithm in Sects. 2.3 and 2.4. In Sect. 2.5

we consider a number of miscellaneous issues. Finally, in

Sect. 2.6 we survey previous databases and evaluations.

2.1 Data Term

2.1.1 Brightness Constancy

The basis of the data term used by most algorithms is Bright-

ness Constancy, the assumption that when a pixel flows

from one image to another, its intensity or color does not

change. This assumption combines a number of assumptions

about the reflectance properties of the scene (e.g., that it is

Lambertian), the illumination in the scene (e.g., that it is

uniform—Vedula et al. 2005) and about the image forma-

tion process in the camera (e.g., that there is no vignetting).

If I (x, y, t) is the intensity of a pixel (x, y) at time t and the

flow is (u(x, y, t), v(x, y, t)), Brightness Constancy can be

written as:

I (x, y, t) = I (x + u,y + v, t + 1). (2)

Linearizing (2) by applying a first-order Taylor expansion to

the right-hand side yields the approximation:

I (x, y, t) = I (x, y, t) + u
∂I

∂x
+ v

∂I

∂y
+ 1

∂I

∂t
, (3)

which simplifies to the Optical Flow Constraint equation:

u
∂I

∂x
+ v

∂I

∂y
+

∂I

∂t
= 0. (4)

Both Brightness Constancy and the Optical Flow Constraint

equation provide just one constraint on the two unknowns at

each pixel. This is the origin of the Aperture Problem and the

reason that optical flow is ill-posed and must be regularized

with a prior term (see Sect. 2.2).

The data term EData can be based on either Brightness

Constancy in (2) or on the Optical Flow Constraint in (4).

In either case, the equation is turned into an error per pixel,
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the set of which is then aggregated over the image in some

manner (see Sect. 2.1.2). If Brightness Constancy is used, it

is generally converted to the Optical Flow Constraint dur-

ing the derivation of most continuous optimization algo-

rithms (see Sect. 2.3), which often involves the use of a Tay-

lor expansion to linearize the energies. The two constraints

are therefore essentially equivalent in practical algorithms

(Brox et al. 2004).

An alternative to the assumption of “constancy” is that

the signals (images) at times t and t +1 are highly correlated

(Pratt 1974; Burt et al. 1982). Various correlation constraints

can be used for computing dense flow including normalized

cross correlation and Laplacian correlation (Burt et al. 1983;

Glazer et al. 1983; Sun 1999).

2.1.2 Choice of the Penalty Function

Equations (2) and (4) both provide one error per pixel, which

leads to the question of how these errors are aggregated over

the image. A baseline approach is to use an L2 norm as in

the Horn and Schunck algorithm (Horn and Schunck 1981):

EData =
∑

x,y

[

u
∂I

∂x
+ v

∂I

∂y
+

∂I

∂t

]2

. (5)

If (5) is interpreted probabilistically, the use of the L2 norm

means that the errors in the Optical Flow Constraint are as-

sumed to be Gaussian and IID. This assumption is rarely true

in practice, particularly near occlusion boundaries where

pixels at time t may not be visible at time t + 1. Black and

Anandan (1996) present an algorithm that can use an arbi-

trary robust penalty function, illustrating their approach with

the specific choice of a Lorentzian penalty function. A com-

mon choice by a number of recent algorithms (Brox et al.

2004; Wedel et al. 2008) is the L1 norm, which is sometimes

approximated with a differentiable version:

‖E‖1 =
∑

x,y

|Ex,y | ≈
∑

x,y

√

‖Ex,y‖2 + ǫ2, (6)

where E is a vector of errors Ex,y , ‖ · ‖1 denotes the L1

norm, and ǫ is a small positive constant. A variety of other

penalty functions have been used.

2.1.3 Photometrically Invariant Features

Instead of using the raw intensity or color values in the im-

ages, it is also possible to use features computed from those

images. In fact, some of the earliest optical flow algorithms

used filtered images to reduce the effects of shadows (Burt

et al. 1983; Anandan 1989). One recently popular choice

(for example used in Brox et al. 2004 among others) is to

augment or replace (2) with a similar term based on the gra-

dient of the image:

∇I (x, y, t) = ∇I (x + u,y + v, t + 1). (7)

Empirically the gradient is often more robust to (approxi-

mately additive) illumination changes than the raw intensi-

ties. Note, however, that (7) makes the additional assump-

tion that the flow is locally translational; e.g., local scale

changes, rotations, etc., can violate (7) even when (2) holds.

It is also possible to use more complicated features than the

gradient. For example a Field-of-Experts formulation is used

in Sun et al. (2008) and SIFT features are used in Liu et al.

(2008).

2.1.4 Modeling Illumination, Blur, and Other Appearance

Changes

The motivation for using features is to increase robustness

to illumination and other appearance changes. Another ap-

proach is to estimate the change explicitly. For example,

suppose g(x, y) denotes a multiplicative scale factor and

b(x, y) an additive term that together model the illumina-

tion change between I (x, y, t) and I (x, y, t +1). Brightness

Constancy in (2) can be generalized to:

g(x, y)I (x, y, t) = I (x + u,y + v, t + 1) + b(x, y). (8)

Note that putting g(x, y) on the left-hand side is preferable

to putting it on the right-hand side as it can make optimiza-

tion easier (Seitz and Baker 2009). Equation (8) is even more

under-constrained than (2), with four unknowns per pixel

rather than two. It can, however, be solved by putting an ap-

propriate prior on the two components of the illumination

change model g(x, y) and b(x, y) (Negahdaripour 1998;

Seitz and Baker 2009). Explicit illumination modeling can

be generalized in several ways, for example to model the

changes physically over a longer time interval (Haussecker

and Fleet 2000) or to model blur (Seitz and Baker 2009).

2.1.5 Color and Multi-Band Images

Another issue, addressed by a number of authors (Ohta

1989; Markandey and Flinchbaugh 1990; Golland and

Bruckstein 1997), is how to modify the data term for color

or multi-band images. The simplest approach is to add a data

term for each band, for example performing the summation

in (5) over the color bands, as well as the pixel coordinates

x, y. More sophisticated approaches include using the HSV

color space and treating the bands differently (e.g., by using

different weights or norms) (Zimmer et al. 2009).

2.2 Prior Term

The data term alone is ill-posed with fewer constraints than

unknowns. It is therefore necessary to add a prior to fa-

vor one possible solution over another. Generally speaking,

while most priors are smoothness priors, a wide variety of

choices are possible.
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2.2.1 First Order

Arguably the simplest prior is to favor small first-order

derivatives (gradients) of the flow field. If we use an L2

norm, then we might, for example, define:

EPrior =
∑

x,y

[(

∂u

∂x

)2

+
(

∂u

∂y

)2

+
(

∂v

∂x

)2

+
(

∂v

∂y

)2]

. (9)

The combination of (5) and (9) defines the energy used by

Horn and Schunck (1981). Given more than two frames

in the video, it is also possible to add temporal smooth-

ness terms ∂u
∂t

and ∂v
∂t

to (9) (Murray and Buxton 1987;

Black and Anandan 1991; Brox et al. 2004). Note, however,

that the temporal terms need to be weighted differently from

the spatial ones.

2.2.2 Choice of the Penalty Function

As for the data term in Sect. 2.1.2, under a probabilis-

tic interpretation, the use of an L2 norm assumes that the

gradients of the flow field are Gaussian and IID. Again,

this assumption is violated in practice and so a wide va-

riety of other penalty functions have been used. The al-

gorithm by Black and Anandan (1996) also uses a first-

order prior, but can use an arbitrary robust penalty func-

tion on the prior term rather than the L2 norm in (9).

While Black and Anandan (1996) use the same Lorentzian

penalty function for both the data and spatial term, there

is no need for them to be the same. The L1 norm is also

a popular choice of penalty function (Brox et al. 2004;

Wedel et al. 2008). When the L1 norm is used to penalize

the gradients of the flow field, the formulation falls in the

class of Total Variation (TV) methods.

There are two common ways such robust penalty func-

tions are used. One approach is to apply the penalty func-

tion separately to each derivative and then to sum up the

results. The other approach is to first sum up the squares

(or absolute values) of the gradients and then apply a sin-

gle robust penalty function. Some algorithms use the first

approach (Black and Anandan 1996), while others use the

second (Bruhn et al. 2005; Brox et al. 2004; Wedel et al.

2008).

Note that some penalty (log probability) functions have

probabilistic interpretations related to the distribution of

flow derivatives (Roth and Black 2007).

2.2.3 Spatial Weighting

One popular refinement for the prior term is one that weights

the penalty function with a spatially varying function. One

particular example is to vary the weight depending on the

gradient of the image:

EPrior =
∑

x,y

w(∇I )

[(

∂u

∂x

)2

+
(

∂u

∂y

)2

+
(

∂v

∂x

)2

+
(

∂v

∂y

)2]

. (10)

Equation (10) could be used to reduce the weight of the prior

at edges (high |∇I |) because there is a greater likelihood

of a flow discontinuity at an intensity edge than inside a

smooth region. The weight can also be a function of an over-

segmentation of the image, rather than the gradient, for ex-

ample down-weighting the prior between different segments

(Seitz and Baker 2009).

2.2.4 Anisotropic Smoothness

In (10) the weighting function is isotropic, treating all direc-

tions equally. A variety of approaches weight the smooth-

ness prior anisotropically. For example, Nagel and Enkel-

mann (1986) and Werlberger et al. (2009) weight the direc-

tion along the image gradient less than the direction orthog-

onal to it, and Sun et al. (2008) learn a Steerable Random

Field to define the weighting. Zimmer et al. (2009) perform

a similar anisotropic weighting, but the directions are de-

fined by the data constraint rather than the image gradient.

2.2.5 Higher-Order Priors

The first-order priors in Sect. 2.2.1 can be replaced with pri-

ors that encourage the second-order derivatives ( ∂2u

∂x2 , ∂2u

∂y2 ,

∂2u
∂x∂y

, ∂2v

∂x2 , ∂2v

∂y2 , ∂2v
∂x∂y

) to be small (Anandan and Weiss 1985;

Trobin et al. 2008).

A related approach is to use an affine prior (Ju et al. 1996;

Ju 1998; Nir et al. 2008; Seitz and Baker 2009). One ap-

proach is to over-parameterize the flow (Nir et al. 2008). In-

stead of solving for two flow vectors (u(x, y, t), v(x, y, t))

at each pixel, the algorithm in Nir et al. (2008) solves for 6

affine parameters ai(x, y, t), i = 1, . . . ,6 where the flow is

given by:

u(x, y, t) = a1(x, y, t) +
x − x0

x0
a3(x, y, t)

+
y − y0

y0
a5(x, y, t), (11)

v(x, y, t) = a2(x, y, t) +
x − x0

x0
a4(x, y, t)

+
y − y0

y0
a6(x, y, t), (12)

where (x0, y0) is the middle of the image. Equations (11)

and (12) are then substituted into any of the data terms
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above. Ju et al. formulate the prior so that neighboring affine

parameters should be similar (Ju et al. 1996). As above, a ro-

bust penalty may be used and, further, may vary depending

on the affine parameter (for example weighting a1 and a2

differently from a3 · · ·a6).

2.2.6 Rigidity Priors

A number of authors have explored rigidity or fundamental

matrix priors which, in the absence of other evidence, favor

flows that are aligned with epipolar lines. These constraints

have both been strictly enforced (Adiv 1985; Hanna 1991;

Nir et al. 2008) and added as a soft prior (Wedel et al. 2008;

Wedel et al. 2009; Valgaerts et al. 2008).

2.3 Continuous Optimization Algorithms

The two most commonly used continuous optimization tech-

niques in optical flow are: (1) gradient descent algorithms

(Sect. 2.3.1) and (2) extremal or variational approaches

(Sect. 2.3.2). In Sect. 2.3.3 we describe a small number of

other approaches.

2.3.1 Gradient Descent Algorithms

Let f be a vector resulting from concatenating the horizon-

tal and vertical components of the flow at every pixel. The

goal is then to optimize EGlobal with respect to f. The sim-

plest gradient descent algorithm is steepest descent (Baker

and Matthews 2004), which takes steps in the direction of

the negative gradient − ∂EGlobal

∂f
. An important question with

steepest descent is how big the step size should be. One ap-

proach is to adjust the step size iteratively, increasing it if the

algorithm makes a step that reduces the energy and decreas-

ing it if the algorithm tries to makes a step that increases the

error. Another approach used in Black and Anandan (1996)

is to set the step size to be:

−w
1

T

∂EGlobal

∂f
. (13)

In this expression, T is an upper bound on the second deriv-

atives of the energy; T ≥ ∂2EGlobal

∂f 2
i

for all components fi in

the vector f. The parameter 0 < w < 2 is an over-relaxation

parameter. Without it, (13) tends to take too small steps be-

cause: (1) T is an upper bound, and (2) the equation does

not model the off-diagonal elements in the Hessian. It can

be shown that if EGlobal is a quadratic energy function (i.e.,

the problem is equivalent to solving a large linear system),

convergence to the global minimum can be guaranteed (al-

beit possibly slowly) for any 0 < w < 2. In general EGlobal

is nonlinear and so there is no such guarantee. However,

based on the theoretical result in the linear case, a value

around w ≈ 1.95 is generally used. Also note that many non-

quadratic (e.g., robust) formulations can be solved with iter-

atively reweighted least squares (IRLS); i.e., they are posed

as a sequence of quadratic optimization problems with a

data-dependent weighting function that varies from iteration

to iteration. The weighted quadratic is iteratively solved and

the weights re-estimated.

In general, steepest descent algorithms are relatively

weak optimizers requiring a large number of iterations be-

cause they fail to model the coupling between the unknowns.

A second-order model of this coupling is contained in the

Hessian matrix
∂2EGlobal

∂fi∂fj
. Algorithms that use the Hessian

matrix or approximations to it such as the Newton method,

Quasi-Newton methods, the Gauss-Newton method, and

the Levenberg-Marquardt algorithm (Baker and Matthews

2004) all converge far faster. These algorithms are how-

ever inapplicable to the general optical flow problem be-

cause they require estimating and inverting the Hessian,

a 2n × 2n matrix where there are n pixels in the image.

These algorithms are applicable to problems with fewer pa-

rameters such as the Lucas-Kanade algorithm (Lucas and

Kanade 1981) and variants (Le Besnerais and Champagnat

2005), which solve for a single flow vector (2 unknowns) in-

dependently for each block of pixels. Another set of exam-

ples are parametric motion algorithms (Bergen et al. 1992),

which also just solve for a small number of unknowns.

2.3.2 Variational and Other Extremal Approaches

The second class of algorithms assume that the global en-

ergy function can be written in the form:

EGlobal =
∫ ∫

E(u(x, y), v(x, y), x, y,ux, uy, vx, vy)dx dy,

(14)

where ux = ∂u
∂x

, uy = ∂u
∂y

, vx = ∂v
∂x

, and vy = ∂v
∂y

. At this

stage, u = u(x, y) and v = v(x, y) are treated as unknown

2D functions rather than the set of unknown parameters (the

flows at each pixel). The parameterization of these func-

tions occurs later. Note that (14) imposes limitations on the

functional form of the energy, i.e., that it is just a function

of the flow u,v, the spatial coordinates x, y and the gradi-

ents of the flow ux, uy, vx and vy . A wide variety of en-

ergy functions do satisfy this requirement including (Horn

and Schunck 1981; Bruhn et al. 2005; Brox et al. 2004;

Nir et al. 2008; Zimmer et al. 2009).

Equation (14) is then treated as a “calculus of variations”

problem leading to the Euler-Lagrange equations:

∂EGlobal

∂u
−

∂

∂x

∂EGlobal

∂ux

−
∂

∂y

∂EGlobal

∂uy

= 0, (15)

∂EGlobal

∂v
−

∂

∂x

∂EGlobal

∂vx

−
∂

∂y

∂EGlobal

∂vy

= 0. (16)
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Because they use the calculus of variations, such algorithms

are generally referred to as variational. In the special case

of the Horn-Schunck algorithm (Horn 1986), the Euler-

Lagrange equations are linear in the unknown functions u

and v. These equations are then parameterized with two un-

known parameters per pixel and can be solved as a sparse

linear system. A variety of options are possible, including

the Jacobi method, the Gauss-Seidel method, Successive

Over-Relaxation, and the Conjugate Gradient algorithm.

For more general energy functions, the Euler-Lagrange

equations are nonlinear and are typically solved using an

iterative method (analogous to gradient descent). For exam-

ple, the flows can be parameterized by u + du and v + dv

where u,v are treated as known (from the previous itera-

tion or the initialization) and du, dv as unknowns. These

expressions are substituted into the Euler-Lagrange equa-

tions, which are then linearized through the use of Taylor

expansions. The resulting equations are linear in du and dv

and solved using a sparse linear solver. The estimates of u

and v are then updated appropriately and the next iteration

applied.

One disadvantage of variational algorithms is that the dis-

cretization of the Euler-Lagrange equations is not always

exact with respect to the original energy (Pock et al. 2007).

Another extremal approach (Sun et al. 2008), closely related

to the variational algorithms is to use:

∂EGlobal

∂f
= 0 (17)

rather than the Euler-Lagrange equations. Otherwise, the ap-

proach is similar. Equation (17) can be linearized and solved

using a sparse linear system. The key difference between

this approach and the variational one is just whether the pa-

rameterization of the flow functions into a set of flows per

pixel occurs before or after the derivation of the extremal

constraint equation ((17) or the Euler-Lagrange equations).

One advantage of the early parameterization and the subse-

quent use of (17) is that it reduces the restrictions on the

functional form of EGlobal, important in learning-based ap-

proaches (Sun et al. 2008).

2.3.3 Other Continuous Algorithms

Another approach (Trobin et al. 2008; Wedel et al. 2008) is

to decouple the data and prior terms through the introduction

of two sets of flow parameters, say (udata, vdata) for the data

term and (uprior, vprior) for the prior:

EGlobal = EData(udata, vdata) + λEPrior(uprior, vprior)

+ γ
(

‖udata − uprior‖2 + ‖vdata − vprior‖2
)

. (18)

The final term in (18) encourages the two sets of flow para-

meters to be roughly the same. For a sufficiently large value

of γ the theoretical optimal solution will be unchanged and

(udata, vdata) will exactly equal (uprior, vprior). Practical op-

timization with too large a value of γ is problematic, how-

ever. In practice either a lower value is used or γ is steadily

increased. The two sets of parameters allow the optimiza-

tion to be broken into two steps. In the first step, the sum

of the data term and the third term in (18) is optimized

over the data flows (udata, vdata) assuming the prior flows

(uprior, vprior) are constant. In the second step, the sum of the

prior term and the third term in (18) is optimized over prior

flows (uprior, vprior) assuming the data flows (udata, vdata) are

constant. The result is two much simpler optimizations. The

first optimization can be performed independently at each

pixel. The second optimization is often simpler because it

does not depend directly on the nonlinear data term (Trobin

et al. 2008; Wedel et al. 2008).

Finally, in recent work, continuous convex optimization

algorithms such as Linear Programming have also been used

to compute optical flow (Seitz and Baker 2009).

2.3.4 Coarse-to-Fine and Other Heuristics

All of the above algorithms solve the problem as huge

nonlinear optimizations. Even the Horn-Schunck algorithm,

which results in linear Euler-Lagrange equations, is nonlin-

ear through the linearization of the Brightness Constancy

constraint to give the Optical Flow constraint. A variety of

approaches have been used to improve the convergence rate

and reduce the likelihood of falling into a local minimum.

One component in many algorithms is a coarse-to-fine

strategy. The most common approach is to build image

pyramids by repeated blurring and downsampling (Lucas

and Kanade 1981; Glazer et al. 1983; Burt et al. 1983;

Enkelman 1986; Anandan 1989; Black and Anandan 1996;

Battiti et al. 1991; Bruhn et al. 2005). Optical flow is first

computed on the top level (fewest pixels) and then upsam-

pled and used to initialize the estimate at the next level.

Computation at the higher levels in the pyramid involves

far fewer unknowns and so is far faster. The initialization at

each level from the previous level also means that far fewer

iterations are required at each level. For this reason, pyra-

mid algorithms tend to be significantly faster than a single

solution at the bottom level. The images at the higher lev-

els also contain fewer higher frequency components reduc-

ing the number of local minima in the data term. A related

approach is to use a multigrid algorithm (Bruhn et al. 2006)

where estimates of the flow are passed both up and down the

hierarchy of approximations. A limitation of many coarse-

to-fine algorithms, however, is the tendency to over-smooth

fine structure and to fail to capture small fast-moving ob-

jects.

The main purpose of coarse-to-fine strategies is to deal

with nonlinearities caused by the data term (and the subse-

quent difficulty in dealing with long-range motion). At the
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coarsest pyramid level, the flow magnitude is likely to be

small making the linearization of the brightness constancy

assumption reasonable. Incremental warping of the flow be-

tween pyramid levels (Bergen et al. 1992) helps keep the

flow update at any given level small (i.e., under one pixel).

When combined with incremental warping and updating

within a level, this method is effective for optimization with

a linearized brightness constancy assumption.

Another common cause of nonlinearity is the use of a

robust penalty function (see Sects. 2.1.2 and 2.2.2). A com-

mon approach to improve robustness in this case is Grad-

uated Non-Convexity (GNC) (Blake and Zisserman 1987;

Black and Anandan 1996). During GNC, the problem is

first converted into a convex approximation that is more eas-

ily solved. The energy function is then made incrementally

more non-convex and the solution is refined, until the origi-

nal desired energy function is reached.

2.4 Discrete Optimization Algorithms

A number of recent approaches use discrete optimization

algorithms, similar to those employed in stereo matching,

such as graph cuts (Boykov et al. 2001) and belief propa-

gation (Sun et al. 2003). Discrete optimization methods ap-

proximate the continuous space of solutions with a simpli-

fied problem. The hope is that this will enable a more thor-

ough and complete search of the state space. The trade-off

in moving from continuous to discrete optimization is one

of search efficiency for fidelity. Note that, in contrast to dis-

crete stereo optimization methods, the 2D flow field makes

discrete optimization of optical flow significantly more chal-

lenging. Approximations are usually made, which can limit

the power of the discrete algorithms to avoid local minima.

The few methods proposed to date can be divided into two

main approaches described below.

2.4.1 Fusion Approaches

Algorithms such as Jung et al. (2008), Lempitsky et al.

(2008) and Trobin et al. (2008) assume that a number of

candidate flow fields have been generated by running stan-

dard algorithms such as Lucas and Kanade (1981), and Horn

and Schunck (1981), possibly multiple times with a number

of different parameters. Computing the flow is then posed as

choosing which of the set of possible candidates is best at

each pixel. Fusion Flow (Lempitsky et al. 2008) uses a se-

quence of binary graph-cut optimizations to refine the cur-

rent flow estimate by selectively replacing portions with one

of the candidate solutions. Trobin et al. (2008) perform a

similar sequence of fusion steps, at each step solving a con-

tinuous [0,1] optimization problem and then thresholding

the results.

2.4.2 Dynamically Reparameterizing Sparse State-Spaces

Any fixed 2D discretization of the continuous space of 2D

flow fields is likely to be a crude approximation to the con-

tinuous field. A number of algorithms take the approach of

first approximating this state space sparsely (both spatially,

and in terms of the possible flows at each pixel) and then re-

fining the state space based on the result. An early use of this

idea for flow estimation employed simulated annealing with

a state space that adapted based on the local shape of the ob-

jective function (Black and Anandan 1991). More recently,

Glocker et al. (2008) initially use a sparse sampling of possi-

ble motions on a coarse version of the problem. As the algo-

rithm runs from coarse to fine, the spatial density of motion

states (which are interpolated with a spline) and the density

of possible flows at any given control point are chosen based

on the uncertainty in the solution from the previous iteration.

The algorithm of Lei and Yang (2009) also sparsely allocates

states across space and for the possible flows at each spatial

location. The spatial allocation uses a hierarchy of segmen-

tations, with a single possible flow for each segment at each

level. Within any level of the segmentation hierarchy, first a

sparse sampling of the possible flows is used, followed by

a denser sampling with a reduced range around the solution

from the previous iteration. The algorithm in Cooke (2008)

iteratively alternates between two steps. In the first step, all

the states are allocated to the horizontal motion, which is es-

timated similarly to stereo, assuming the vertical motion is

zero. In the second step, all the states are allocated to the ver-

tical motion, treating the estimate of the horizontal motion

from the previous iteration as constant.

2.4.3 Continuous Refinement

An optional step after a discrete algorithm is to use a con-

tinuous optimization to refine the results. Any of the ap-

proaches in Sect. 2.3 are possible.

2.5 Miscellaneous Issues

2.5.1 Learning

The design of a global energy function EGlobal involves a

variety of choices, each with a number of free parameters.

Rather than manually making these decision and tuning pa-

rameters, learning algorithms have been used to choose the

data and prior terms and optimize their parameters by max-

imizing performance on a set of training data (Roth and

Black 2007; Sun et al. 2008; Li and Huttenlocher 2008).

2.5.2 Region-Based Techniques

If the image can be segmented into coherently moving re-

gions, many of the methods above can be used to accu-
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rately estimate the flow within the regions. Further, if the

flow were accurately known, segmenting it into coherent re-

gions would be feasible. One of the reasons optical flow has

proven challenging to compute is that the flow and its seg-

mentation must be computed together.

Several methods first segment the scene using non-

motion cues and then estimate the flow in these regions

(Black and Jepson 1996; Xu et al. 2008; Fuh and Mara-

gos 1989). Within each image segment, Black and Jepson

(1996) use a parametric model (e.g., affine) (Bergen et al.

1992), which simplifies the problem by reducing the num-

ber of parameters to be estimated. The flow is then refined

as suggested above.

2.5.3 Layers

Motion transparency has been extensively studied and is not

considered in detail here. Most methods have focused on

the use of parametric models that estimate motion in layers

(Jepson and Black 1993; Wang and Adelson 1993). The reg-

ularization of transparent motion in the framework of global

energy minimization, however, has received little attention

with the exception of Ju et al. (1996), Weiss (1997), and

Shizawa and Mase (1991).

2.5.4 Sparse-to-Dense Approaches

The coarse-to-fine methods described above have difficulty

dealing with long-range motion of small objects. In con-

trast, there exist many methods to accurately estimate sparse

feature correspondences even when the motion is large.

Such sparse matching method can be combined with the

continuous energy minimization approaches in a variety

of ways (Brox et al. 2009; Liu et al. 2008; Ren 2008;

Xu et al. 2008).

2.5.5 Visibility and Occlusion

Occlusions and visibility changes can cause major prob-

lems for optical flow algorithms. The most common so-

lution is to model such effects implicitly using a robust

penalty function on both the data term and the prior term.

Explicit occlusion estimation, for example through cross-

checking flows computed forwards and backwards in time,

is another approach that can be used to improve robust-

ness to occlusions and visibility changes (Xu et al. 2008;

Lei and Yang 2009).

2.6 Databases and Evaluations

Prior to our evaluation (Baker et al. 2007), there were three

major attempts to quantitatively evaluate optical flow algo-

rithms, each proposing sequences with ground truth. The

work of Barron et al. (1994) has been so influential that

until recently, essentially all published methods compared

with it. The synthetic sequences used there, however, are too

simple to make meaningful comparisons between modern

algorithms. Otte and Nagel (1994) introduced ground truth

for a real scene consisting of polyhedral objects. While this

provided real imagery, the images were extremely simple.

More recently, McCane et al. (2001) provided ground truth

for real polyhedral scenes as well as simple synthetic scenes.

Most recently Liu et al. (2008) proposed a dataset of real

imagery that uses hand segmentation and computed flow es-

timates within the segmented regions to generate the ground

truth. While this has the advantage of using real imagery,

the reliance on human judgement for segmentation, and on a

particular optical flow algorithm for ground truth, may limit

its applicability.

In this paper we go beyond these studies in several impor-

tant ways. First, we provide ground-truth motion for much

more complex real and synthetic scenes. Specifically, we in-

clude ground truth for scenes with nonrigid motion. Second,

we also provide ground-truth motion boundaries and extend

the evaluation methods to these areas where many flow algo-

rithms fail. Finally, we provide a web-based interface, which

facilitates the ongoing comparison of methods.

Our goal is to push the limits of current methods and,

by exposing where and how they fail, focus attention on the

hard problems. As described above, almost all flow algo-

rithms have a specific data term, prior term, and optimiza-

tion algorithm to compute the flow field. Regardless of the

choices made, algorithms must somehow deal with all of

the phenomena that make optical flow intrinsically ambigu-

ous and difficult. These include: (1) the aperture problem

and textureless regions, which highlight the fact that opti-

cal flow is inherently ill-posed, (2) camera noise, nonrigid

motion, motion discontinuities, and occlusions, which make

choosing appropriate penalty functions for both the data and

prior terms important, (3) large motions and small objects

which, often cause practical optimization algorithms to fall

into local minima, and (4) mixed pixels, changes in illumi-

nation, non-Lambertian reflectance, and motion blur, which

highlight overly simplified assumptions made by Brightness

Constancy (or simple filter constancy). Our goal is to pro-

vide ground-truth data containing all of these components

and to provide information about the location of motion

boundaries and textureless regions. In this way, we hope

to be able to evaluate which phenomena pose problems for

which algorithms.

3 Database Design

Creating a ground-truth (GT) database for optical flow is

difficult. For stereo, structured light (Scharstein and Szeliski
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Fig. 1 (a) The setup for obtaining ground-truth flow using hidden

fluorescent texture includes computer-controlled lighting to switch be-

tween the UV and visible lights. It also contains motion stages for both

the camera and the scene. (b–d) The setup under the visible illumi-

nation. (e–g) The setup under the UV illumination. (c and f) Show the

high-resolution images taken by the digital camera. (d and g) Show a

zoomed portion of (c) and (f). The high-frequency fluorescent texture

in the images taken under UV light (g) allows accurate tracking, but is

largely invisible in the low-resolution test images

2002) or range scanning (Seitz et al. 2006) can be used to ob-

tain dense, pixel-accurate ground truth. For optical flow, the

scene may be moving nonrigidly making such techniques

inapplicable in general. Ideally we would like imagery col-

lected in real-world scenarios with real cameras and substan-

tial nonrigid motion. We would also like dense, subpixel-

accurate ground truth. We are not aware of any technique

that can simultaneously satisfy all of these goals.

Rather than collecting a single type of data (with its

inherent limitations) we instead collected four different

types of data, each satisfying a different subset of desir-

able properties. Having several different types of data has

the benefit that the overall evaluation is less likely to be

affected by any biases or inaccuracies in any of the data

types. It is important to keep in mind that no ground-

truth data is perfect. The term itself just means “measured

on the ground” and any measurement process may introduce

noise or bias. We believe that the combination of our four

datasets is sufficient to allow a thorough evaluation of cur-

rent optical flow algorithms. Moreover, the relative perfor-

mance of algorithms on the different types of data is itself

interesting and can provide insights for future algorithms

(see Sect. 5.2.4).

Wherever possible, we collected eight frames with the

ground-truth flow being defined between the middle pair. We

collected color imagery, but also make grayscale imagery

available for comparison with legacy implementations and

existing approaches that only process grayscale. The dataset

is divided into 12 training sequences with ground truth,

which can be used for parameter estimation or learning, and

12 test sequences, where the ground truth is withheld. In

this paper we only describe the test sequences. The datasets,

instructions for evaluating results on the test set, and the per-

formance of current algorithms are all available at http://

vision.middlebury.edu/flow/. We describe each of the four

types of data below.

3.1 Dense GT Using Hidden Fluorescent Texture

We have developed a technique for capturing imagery of

nonrigid scenes with ground-truth optical flow. We build a

scene that can be moved in very small steps by a computer-

controlled motion stage. We apply a fine spatter pattern of

fluorescent paint to all surfaces in the scene. The computer

repeatedly takes a pair of high-resolution images both under

ambient lighting and under UV lighting, and then moves the

scene (and possibly the camera) by a small amount.

In our current setup, shown in Fig. 1(a), we use a Canon

EOS 20D camera to take images of size 3504×2336, and

make sure that no scene point moves by more than 2 pixels

from one captured frame to the next. We obtain our test se-

quence by downsampling every 40th image taken under visi-

ble light by a factor of six, yielding images of size 584×388.

Because we sample every 40th frame, the motion can be

quite large (up to 12 pixels between frames in our evaluation

data) even though the motion between each pair of captured

frames is small and the frames are subsequently downsam-

pled, i.e., after the downsampling, the motion between any

pair of captured frames is at most 1/3 of a pixel.

Since fluorescent paint is available in a variety of col-

ors, the color of the objects in the scene can be closely

matched. In addition, it is possible to apply a fine spatter

pattern, where individual droplets are about the size of 1–

2 pixels in the high-resolution images. This high-frequency

texture is therefore far less perceptible in the low-resolution

images, while the fluorescent paint is very visible in the

high-resolution UV images in Fig. 1(g). Note that fluores-

cent paint absorbs UV light but emits light in the visible

spectrum. Thus, the camera optics affect the hidden texture

and the scene colors in exactly the same way, and the hidden

texture remains perfectly aligned with the scene.

The ground-truth flow is computed by tracking small

windows in the original sequence of high-resolution UV

images. We use a sum-of-squared-difference (SSD) tracker

http://vision.middlebury.edu/flow/
http://vision.middlebury.edu/flow/
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Fig. 2 Hidden Texture Data. Army contains several independently

moving objects. Mequon contains nonrigid motion and texture-

less regions. Schefflera contains thin structures, shadows, and fore-

ground/background transitions with little contrast. Wooden contains

rigidly moving objects with little texture in the presence of shadows.

In the right-most column, we include a visualization of the color-

coding of the optical flow. The “ticks” on the axes denote a flow unit

of one pixel; note that the flow magnitudes are fairly low in Army

(<4 pixels), but higher in the other three scenes (up to 10 pixels)

with a window size of 15×15, corresponding to a window

radius of less than 1.5 pixels in the downsampled images.

We perform a local brute-force search, using each frame to

initialize the next. We also crosscheck the results by track-

ing each pixel both forwards and backwards through the

sequence and require perfect correspondence. The chances

that this check would yield false positives after tracking for

40 frames are very low. Crosschecking identifies the oc-

cluded regions, whose motion we mark as “unknown.” Af-

ter the initial integer-based motion tracking and crosscheck-

ing, we estimate the subpixel motion of each window using

Lucas-Kanade (1981) with a precision of about 1/10 pixels

(i.e., 1/60 pixels in the downsampled images). In order to

downsample the motion field by a factor of 6, we find the

modes among the 36 different motion vectors in each 6 × 6

window using sequential clustering. We assign the average

motion of the dominant cluster as the motion estimate for

the resulting pixel in the low-resolution motion field. The

test images taken under visible light are downsampled using

a binomial filter.

Using the combination of fluorescent paint, downsam-

pling high-resolution images, and sequential tracking of

small motions, we are able to obtain dense, subpixel accu-

rate ground truth for a nonrigid scene.

We include four sequences in the evaluation set (Fig. 2).

Army contains several independently moving objects.

Mequon contains nonrigid motion and large areas with lit-

tle texture. Schefflera contains thin structures, shadows,

and foreground/background transitions with little contrast.

Wooden contains rigidly moving objects with little texture
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Fig. 3 Synthetic Data. Grove contains a close up of a tree with thin

structures, very complex motion discontinuities, and a large motion

range (up to 20 pixels). Urban contains large motion discontinuities

and an even larger motion range (up to 35 pixels). Yosemite is included

in our evaluation to allow comparison with algorithms published prior

to our study

in the presence of shadows. The maximum motion in Army

is approximately 4 pixels. The maximum motion in the other

three sequences is about 10 pixels. All sequences are signif-

icantly more difficult than the Yosemite sequence due to the

larger motion ranges, the non-rigid motion, various photo-

metric effects such as shadows and specularities, and the

detailed geometric structure.

The main benefit of this dataset is that it contains ground

truth on imagery captured with a real camera. Hence, it

contains real photometric effects, natural textural properties,

etc. The main limitations of this dataset are that the scenes

are laboratory scenes, not real-world scenes. There is also

no motion blur due to the stop motion method of capture.

One drawback of this data is that the ground truth it is not

available in areas where cross-checking failed, in particular,

in regions occluded in one image. Even though the ground

truth is reasonably accurate (on the order of 1/60th of a

pixel), the process is not perfect; significant errors however,

are limited to a small fraction of the pixels. The same can be

said for any real data where the ground truth is measured,

including, for example, in the Middlebury stereo dataset

(Scharstein and Szeliski 2002). The ground-truth measuring

technique may always be prone to errors and biases. Con-

sequently, the following section describes realistic synthetic

data where the ground truth is guaranteed to be perfect.

3.2 Realistic Synthetic Imagery

Synthetic scenes generated using computer graphics are of-

ten indistinguishable from real ones. For the study of optical

flow, synthetic data offers a number of benefits. In particu-

lar, it gives full control over the rendering process including

material properties of the objects, while providing precise

ground-truth motion and object boundaries.

To go beyond previous synthetic ground truth (e.g., the

Yosemite sequence), we generated two types of fairly com-

plex synthetic outdoor scenes. The first is a set of “natural”

scenes (Fig. 3 top) containing significant complex occlusion.

These scenes consist of a random number of procedurally

generated rocks and trees with randomly chosen ground tex-

ture and surface displacement. Additionally, the tree bark

has significant 3D texture. The trees have a small amount

of independent movement to mimic motion due to wind.

The camera motions include camera rotation and 3D trans-

lation. A second set of “urban” scenes (Fig. 3 middle) con-
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tain buildings generated with a random shape grammar. The

buildings have randomly selected scanned textures; there are

also a few independently moving “cars.”

These scenes were generated using the 3Delight Render-

man-compliant renderer (DNA Research 2008) at a resolu-

tion of 640×480 pixels using linear gamma. The images are

antialiased, mimicking the effect of sensors with finite area.

Frames in these synthetic sequences were generated with-

out motion blur. There are cast shadows, some of which are

non-stationary due to the independent motion of the trees

and cars. The surfaces are mostly diffuse, but the leaves on

the trees have a slight specular component, and the cars are

strongly specular. A minority of the surfaces in the urban

scenes have a small (5%) reflective component, meaning

that the reflection of other objects is faintly visible in these

surfaces.

The rendered scenes use the ambient occlusion approxi-

mation to global illumination (Landis 2002). This approx-

imation separates illumination into the sum of direct and

multiple-bounce components, and then assumes that the

multiple-bounce illumination is sufficiently omnidirectional

that it can be approximated at each point by a product of the

incoming ambient light and a precomputed factor measuring

the proportion of rays that are not blocked by other nearby

surfaces.

The ground truth was computed using a custom shader

that projects the 3D motion of the scene corresponding to a

particular image onto the 2D image plane. Since individual

pixels can potentially represent more than one object, sim-

ply point-sampling the flow at the center of each pixel could

result in a flow vector that does not reflect the dominant mo-

tion under the pixel. On the other hand, applying antialiasing

to the flow would result in an averaged flow vector at each

pixel that does reflect the true motion of any object within

that pixel. Instead, we clustered the flow vectors within each

pixel and selected a flow vector from the dominant cluster:

The flow fields are initially generated at 3× resolution, re-

sulting in nine candidate flow vectors for each pixel. These

motion vectors are grouped into two clusters using k-means.

The k-means procedure is initialized with the vectors clos-

est and furthest from the pixel’s average flow as measured

using the flow vector end points. The flow vector closest to

the mean of the dominant cluster is then chosen to represent

the flow for that pixel. The images were also generated at

3× resolution and downsampled using a bicubic filter.

We selected three synthetic sequences to include in the

evaluation set (Fig. 3). Grove contains a close-up view of a

tree, with a substantial parallax and motion discontinuities.

Urban contains images of a city, with substantial motion

discontinuities, a large motion range, and an independently

moving object. We also include the Yosemite sequence to al-

low some comparison with algorithms published prior to the

release of our data.

3.3 Imagery for Frame Interpolation

In a wide class of applications such as video re-timing,

novel view generation, and motion-compensated compres-

sion, what is important is not how well the flow field

matches the ground-truth motion, but how well intermediate

frames can be predicted using the flow. To allow for mea-

sures that predict performance on such tasks, we collected a

variety of data suitable for frame interpolation. The relative

performance of algorithms with respect to frame interpola-

tion and ground-truth motion estimation is interesting in its

own right.

3.3.1 Frame Interpolation Datasets

We used a PointGrey Dragonfly Express camera to capture

the data, acquiring 60 frames per second. We provide every

other frame to the optical flow algorithms and retain the in-

termediate images as frame-interpolation ground truth. This

temporal subsampling means that the input to the flow algo-

rithms is captured at 30 Hz while enabling generation of a

2× slow-motion sequence.

We include four such sequences in the evaluation set

(Fig. 4). The first two (Backyard and Basketball) include

people, a common focus of many applications, but a subject

matter absent from previous evaluations. Backyard is cap-

tured outdoors with a short shutter (6 ms) and has little mo-

tion blur. Basketball is captured indoors with a longer shutter

(16 ms) and so has more motion blur. The third sequence,

Dumptruck, is an urban scene containing several indepen-

dently moving vehicles, and has substantial specularities and

saturation (2 ms shutter). The final sequence, Evergreen, in-

cludes highly textured vegetation with complex motion dis-

continuities (6 ms shutter).

The main benefit of the interpolation dataset is that the

scenes are real world scenes, captured with a real camera

and containing real sources of noise. The ground truth is

not a flow field, however, but an intermediate image frame.

Hence, the definition of flow being used is the apparent mo-

tion, not the 2D projection of the motion field.

3.3.2 Frame Interpolation Algorithm

Note that the evaluation of accuracy depends on the inter-

polation algorithm used to construct the intermediate frame.

By default, we generate the intermediate frames from the

flow fields uploaded to the website using our baseline inter-

polation algorithm. Researchers can also upload their own

interpolation results in case they want to use a more sophis-

ticated algorithm.

Our algorithm takes a single flow field u0 from image

I0 to I1 and constructs an interpolated frame It at time

t ∈ (0,1). We do, however, use both frames to generate the
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Fig. 4 High-Speed Data for Interpolation. We collected four se-

quences using a PointGrey Dragonfly Express running at 60 Hz. We

provide every other image to the algorithms and retain the intermediate

frame as interpolation ground truth. The first two sequences (Backyard

and Basketball) include people, a common focus of many applications.

Dumptruck contains several independently moving vehicles, and has

substantial specularities and saturation. Evergreen includes highly tex-

tured vegetation with complex discontinuities

actual intensity values. In all the experiments in this pa-

per t = 0.5. Our algorithm is closely related to previous al-

gorithms for depth-based frame interpolation (Shade et al.

1998; Zitnick et al. 2004):

(1) Forward-warp the flow u0 to time t to give ut where:

ut (round(x + tu0(x))) = u0(x). (19)

In order to avoid sampling gaps, we splat the flow vec-

tors with a splatting radius of ±0.5 pixels (Levoy 1988)

(i.e., each flow vector is followed to a real-valued lo-

cation in the destination image, and the flow is written

into all pixels within a distance of 0.5 of that location).

In cases where multiple flow vectors map to the same

location, we attempt to resolve the ordering indepen-
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Fig. 5 Stereo Data. We cropped the stereo dataset Teddy (Scharstein

and Szeliski 2003) to convert the asymmetric stereo disparity range

into a roughly symmetric flow field. This dataset includes complex

geometry as well as significant occlusions and motion discontinuities.

One reason for including this dataset is to allow comparison with state-

of-the-art stereo algorithms

dently for each pixel by checking photoconsistency; i.e.,

we retain the flow u0(x) with the lowest color difference

|I0(x) − I1(x + u0(x))|.
(2) Fill any holes in ut using a simple outside-in strategy.

(3) Estimate occlusions masks O0(x) and O1(x), where

Oi(x) = 1 means pixel x in image Ii is not visible in the

respective other image. To compute O0(x) and O1(x),

we first forward-warp the flow u0(x) to time t = 1 using

the same approach as in Step 1 to give u1(x). Any pixel

x in u1(x) that is not targeted by this splatting has no

corresponding pixel in I0 and thus we set O1(x) = 1 for

all such pixels. (See Herbst et al. 2009 for a bidirectional

algorithm that performs this reasoning at time t .) In or-

der to compute O0(x), we cross-check the flow vectors,

setting O0(x) = 1 if

|u0(x) − u1(x + u0(x))| > 0.5. (20)

(4) Compute the colors of the interpolated pixels, taking

occlusions into consideration. Let x0 = x − tut (x) and

x1 = x + (1 − t)ut (x) denote the locations of the two

“source” pixels in the two images. If both pixels are vis-

ible, i.e., O0(x0) = 0 and O1(x1) = 0, blend the two im-

ages (Beier and Neely 1992):

It (x) = (1 − t)I0(x0) + tI1(x1). (21)

Otherwise, only sample the non-occluded image, i.e.,

set It (x) = I0(x0) if O1(x1) = 1 and vice versa. In order

to avoid artifacts near object boundaries, we dilate the

occlusion masks O0, O1 by a small radius before this

operation. We use bilinear interpolation to sample the

images.

This algorithm, while reasonable, is only meant to serve as

starting point. One area for future research is to develop bet-

ter frame interpolation algorithms. We hope that our data-

base will be used both by researchers working on opti-

cal flow and on frame interpolation (Mahajan et al. 2009;

Herbst et al. 2009).

3.4 Modified Stereo Data for Rigid Scenes

Our final type of data consists of modified stereo data.

Specifically we include the Teddy dataset in the evalua-

tion set, the ground truth for which was obtained using

structured lighting (Scharstein and Szeliski 2003) (Fig. 5).

Stereo datasets typically have an asymmetric disparity range

[0, dmax], which is appropriate for stereo, but not for optical

flow. We crop different subregions of the images, thereby

introducing a spatial shift, to convert this disparity range to

[−dmax/2, dmax/2].
A key benefit of the modified stereo dataset, like the hid-

den fluorescent texture dataset, is that it contains ground-

truth flow fields on imagery captured with a real camera.

An additional benefit is that it allows a comparison be-

tween state-of-the-art stereo algorithms and optical flow al-

gorithms (see Sect. 5.6). Shifting the disparity range does

not affect the performance of stereo algorithms as long as

they are given the new search range. Although optical flow is

a more under-constrained problem, the relative performance

of algorithms may lead to algorithmic insights.

One concern with the modified stereo dataset is that al-

gorithms may take advantage of the knowledge that the mo-

tions are all horizontal. Indeed a number recent algorithms

have considered rigidity priors (Wedel et al. 2008, 2009).

However, these algorithms must also perform well on the

other types of data and any over-fitting to the rigid data

should be visible by comparing results across the 12 im-

ages in the evaluation set. Another concern would be that

the ground truth is only accurate to 0.25 pixels. (The origi-

nal stereo data comes with pixel-accurate ground truth but

is four times higher resolution—Scharstein and Szeliski

2003.) The most appropriate performance statistics for this

data, therefore, are the robustness statistics used in the

Middlebury stereo dataset (Scharstein and Szeliski 2002)

(Sect. 4.2).
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4 Evaluation Methodology

We refine and extend the evaluation methodology of Barron

et al. (1994) in terms of: (1) the performance measures used,

(2) the statistics computed, and (3) the sub-regions of the

images considered.

4.1 Performance Measures

The most commonly used measure of performance for opti-

cal flow is the angular error (AE). The AE between a flow

vector (u, v) and the ground-truth flow (uGT, vGT) is the an-

gle in 3D space between (u, v,1.0) and (uGT, vGT,1.0). The

AE can be computed by taking the dot product of the vec-

tors, dividing by the product of their lengths, and then taking

the inverse cosine:

AE = cos−1

(

1.0 + u × uGT + v × vGT
√

1.0 + u2 + v2

√

1.0 + u2
GT + v2

GT

)

. (22)

The popularity of this measure is based on the seminal sur-

vey by Barron et al. (1994), although the measure itself dates

to prior work by Fleet and Jepson (1990). The goal of the

AE is to provide a relative measure of performance that

avoids the “divide by zero” problem for zero flows. Errors

in large flows are penalized less in AE than errors in small

flows.

Although the AE is prevalent, it is unclear why errors in a

region of smooth non-zero motion should be penalized less

than errors in regions of zero motion. The AE also contains

an arbitrary scaling constant (1.0) to convert the units from

pixels to degrees. Hence, we also compute an absolute er-

ror, the error in flow endpoint (EE) used in Otte and Nagel

(1994) defined by:

EE =
√

(u − uGT)2 + (v − vGT)2. (23)

Although the use of AE is common, the EE measure

is probably more appropriate for most applications (see

Sect. 5.2.1). We report both.

For image interpolation, we define the interpolation error

(IE) to be the root-mean-square (RMS) difference between

the ground-truth image and the estimated interpolated image

IE =
[

1

N

∑

(x,y)

(

I (x, y) − IGT(x, y)
)2

]
1
2

, (24)

where N is the number of pixels. For color images, we take

the L2 norm of the vector of RGB color differences.

We also compute a second measure of interpolation per-

formance, a gradient-normalized RMS error inspired by

Szeliski (1999). The normalized interpolation error (NE) be-

tween an interpolated image I (x, y) and a ground-truth im-

age IGT(x, y) is given by:

NE =
[

1

N

∑

(x,y)

(I (x, y) − IGT(x, y))2

‖∇IGT(x, y)‖2 + ǫ

]
1
2

. (25)

In our experiments the arbitrary scaling constant is set to be

ǫ = 1.0 (graylevels per pixel squared). Again, for color im-

ages, we take the L2 norm of the vector of RGB color dif-

ferences and compute the gradient of each color band sepa-

rately.

Naturally, an interpolation algorithm is required to gener-

ate the interpolated image from the optical flow field. In this

paper, we use the baseline algorithm outlined in Sect. 3.3.2.

4.2 Statistics

Although the full histograms are available in a technical re-

port, Barron et al. (1994) only reports averages (AV) and

standard deviations (SD). This has led most subsequent re-

searchers to only report these statistics. We also compute the

robustness statistics used in the Middlebury stereo dataset

(Scharstein and Szeliski 2002). In particular RX denotes the

percentage of pixels that have an error measure above X. For

the angle error (AE) we compute R2.5, R5.0, and R10.0 (de-

grees); for the endpoint error (EE) we compute R0.5, R1.0,

and R2.0 (pixels); for the interpolation error (IE) we com-

pute R2.5, R5.0, and R10.0 (graylevels); and for the normal-

ized interpolation error (NE) we compute R0.5, R1.0, and

R2.0 (no units). We also compute robust accuracy measures

similar to those in Seitz et al. (2006): AX denotes the accu-

racy of the error measure at the Xth percentile, after sorting

the errors from low to high. For the flow errors (AE and EE),

we compute A50, A75, and A95. For the interpolation errors

(IE and NE), we compute A90, A95, and A99.

4.3 Region Masks

It is easier to compute flow in some parts of an image than in

others. For example, computing flow around motion discon-

tinuities is hard. Computing motion in textureless regions

is also hard, although interpolating in those regions should

be easier. Computing statistics over such regions may high-

light areas where existing algorithms are failing and spur

further research in these cases. We follow the procedure in

Scharstein and Szeliski (2002) and compute the error mea-

sure statistics over three types of region masks: everywhere

(All), around motion discontinuities (Disc), and in texture-

less regions (Untext). We illustrate the masks for the Schef-

flera dataset in Fig. 6.



Int J Comput Vis (2011) 92: 1–31 17

Fig. 6 Region masks for Schefflera. Statistics are computed over the

white pixels. All includes all the pixels where the ground-truth flow

can be reliably determined. The Disc mask is computed by taking the

gradient of the ground-truth flow (or pixel differencing if the ground-

truth flow is unavailable), thresholding and dilating. The Untext regions

are computed by taking the gradient of the image, thresholding and di-

lating

The All masks for flow estimation include all the pixels

where the ground-truth flow could be reliably determined.

For the new synthetic sequences, this means all of the pix-

els. For Yosemite, the sky is excluded. For the hidden fluores-

cent texture data, pixels where cross-checking failed are ex-

cluded. Most of these pixels are around the boundary of ob-

jects, and around the boundary of the image where the pixel

flows outside the second image. Similarly, for the stereo se-

quences, pixels where cross-checking failed are excluded

(Scharstein and Szeliski 2003). Most of these pixels are pix-

els that are occluded in one of the images. The All masks for

the interpolation metrics include all of the pixels. Note that

in some cases (particularly the synthetic data), the All masks

include pixels that are visible in first image but are occluded

or outside the second image. We did not remove these pixels

because we believe algorithms should be able to extrapolate

into these regions.

The Disc mask is computed by taking the gradient of

the ground-truth flow field, thresholding the magnitude, and

then dilating the resulting mask with a 9×9 box. If the

ground-truth flow is not available, we use frame differenc-

ing to get an estimate of fast-moving regions instead. The

Untext regions are computed by taking the gradient of the

image, thresholding the magnitude, and dilating with a 3×3

box. The pixels excluded from the All masks are also ex-

cluded from both Disc and Untext masks.

5 Experimental Results

We now discuss our empirical findings. We start in Sect. 5.1

by outlining the evolution of our online evaluation since the

publication of our preliminary paper (Baker et al. 2007). In

Sect. 5.2, we analyze the flow errors. In particular, we in-

vestigate the correlation between the various metrics, sta-

tistics, region masks, and datasets. In Sect. 5.3, we analyze

the interpolation errors and in Sect. 5.4, we compare the in-

terpolation error results with the flow error results. Finally,

in Sect. 5.5, we compare the algorithms that have reported

results using our evaluation in terms of which components

of our taxonomy in Sect. 2 they use.

5.1 Online Evaluation

Our online evaluation at http://vision.middlebury.edu/flow/

provides a snapshot of the state-of-the-art in optical flow.

Seeded with the handful of methods that we implemented as

part of our preliminary paper (Baker et al. 2007), the evalu-

ation has quickly grown. At the time of writing (December

2009), the evaluation contains results for 24 published meth-

ods and several unpublished ones. In this paper, we restrict

attention to the published algorithms. Four of these meth-

ods were contributed by us (our implementations of Horn

and Schunck 1981, Lucas-Kanade 1981, Combined Local-

Global—Bruhn et al. 2005, and Black and Anandan 1996).

Results for the 20 other methods were submitted by their au-

thors. Of these new algorithms, two were published before

2007, 11 were published in 2008, and 7 were published in

2009.

On the evaluation website, we provide tables comparing

the performance of the algorithms for each of the four er-

ror measures, i.e., endpoint error (EE), angular error (AE),

interpolation error (IE), and normalized interpolation error

(NE), on a set of 8 test sequences. For EE and AE, which

measure flow accuracy, we use the 8 sequences for which we

have ground-truth flow: Army, Mequon, Schefflera, Wooden,

Grove, Urban, Yosemite, and Teddy. For IE and NE, which

measure interpolation accuracy, we use only four of the

above datasets (Mequon, Schefflera, Urban, and Teddy) and

replace the other four with the high-speed datasets Back-

yard, Basketball, Dumptruck, and Evergreen. For each mea-

sure, we include a separate page for each of the eight sta-

tistics in Sect. 4.2. Figure 7 shows a screenshot of the first

of these 32 pages, the average endpoint error (Avg. EE). For

each measure and statistic, we evaluate all methods on the

set of eight test images with three different regions masks

http://vision.middlebury.edu/flow/
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Fig. 7 A screenshot of the default page at http://vision.middlebury.

edu/flow/eval/, evaluating the current set of 24 published algorithms

(as of December 2009) using the average endpoint error (Avg. EE).

This page is one of 32 possible metric/statistic combinations the user

can select. By moving the mouse pointer over an underlined perfor-

mance score, the user can interactively view the corresponding flow

and error maps. Clicking on a score toggles between the computed and

the ground-truth flows. Next to each score, the corresponding rank in

the current column is indicated with a smaller blue number. The min-

imum (best) score in each column is shown in boldface. The methods

are sorted by their average rank, which is computed over all 24 columns

(eight sequences times three region masks each). The average rank

serves as an approximate measure of performance under the selected

metric/statistic

(all, disc, and untext; see Sect. 4.3), resulting in a set of 24

scores per method. We sort each table by the average rank

across all 24 scores to provide an ordering that roughly re-

flects the overall performance on the current metric and sta-

tistic.

We want to emphasize that we do not aim to provide

an overall ranking among the submitted methods. Authors

sometimes report the rank of their method on one or more of

the 32 tables (often average angular error); however, many

of the other 31 metric/statistic combinations might be better

suited to compare the algorithms, depending on the appli-

cation of interest. Also note that the exact rank within any

of the tables only gives a rough measure of performance,

as there are various other ways that the scores across the

24 columns could be combined.

We also list the runtimes reported by authors on the Ur-

ban sequence on the evaluation website (see Table 1). We

made no attempt to normalize for the programming environ-

ment, CPU speed, number of cores, or other hardware ac-

celeration. These numbers should be treated as a very rough

guideline of the inherent computational complexity of the

algorithms.

http://vision.middlebury.edu/flow/eval/
http://vision.middlebury.edu/flow/eval/
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Table 1 Reported runtimes on the Urban sequence in seconds. We do not normalize for the programming environment, CPU speed, number of

cores, or other hardware acceleration. These numbers should be treated as a very rough guideline of the inherent computational complexity of the

algorithms

Algorithm Runtime Algorithm Runtime

Adaptive (Wedel et al. 2009) 9.2 Seg OF (Xu et al. 2008) 60

Complementary OF (Zimmer et al. 2009) 44 Learning Flow (Sun et al. 2008) 825

Aniso. Huber-L1 (Werlberger et al. 2009) 2 Filter Flow (Seitz and Baker 2009) 34,000

DPOF (Lei and Yang 2009) 261 Graph Cuts (Cooke 2008) 1,200

TV-L1-improved (Wedel et al. 2008) 2.9 Black & Anandan (Black and Anandan 1996) 328

CBF (Trobin et al. 2008) 69 SPSA-learn (Li and Huttenlocher 2008) 200

Brox et al. (Brox et al. 2004) 18 Group Flow (Ren 2008) 600

Rannacher (Rannacher 2009) 0.12 2D-CLG (Bruhn et al. 2005) 844

F-TV-L1 (Wedel et al. 2008) 8 Horn & Schunck (Horn and Schunck 1981) 49

Second-order prior (Trobin et al. 2008) 14 TI-DOFE (Cassisa et al. 2009) 260

Fusion (Lempitsky et al. 2008) 2,666 FOLKI (Le Besnerais and Champagnat 2005) 1.4

Dynamic MRF (Glocker et al. 2008) 366 Pyramid LK (Lucas and Kanade 1981) 11.9

Table 2 A comparison of the average endpoint error (Avg. EE) results for 2D-CLG (Bruhn et al. 2005) (overall the best-performing algorithm in

our preliminary study, Baker et al. 2007) and the best result uploaded to the evaluation website at the time of writing (Fig. 7)

Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy

Best 0.09 0.18 0.24 0.18 0.74 0.39 0.08 0.50

2D-CLG (Bruhn et al. 2005) 0.28 0.67 1.12 1.07 1.23 1.54 0.10 1.38

Finally, we report on the evaluation website for each

method the number of input frames and whether color in-

formation was utilized. At the time of writing, all of the 24

published methods discussed in this paper use only 2 frames

as input; and 10 of them use color information.

The best-performing algorithm (both in terms of average

endpoint error and average angular error) in our prelimi-

nary study (Baker et al. 2007) was 2D-CLG (Bruhn et al.

2005). In Table 2, we compare the results of 2D-CLG with

the current best result in terms of average endpoint error

(Avg. EE). The first thing to note is that performance has

dramatically improved, with average EE values of less than

0.2 pixels on four of the datasets (Yosemite, Army, Mequon,

and Wooden). The common elements of the more difficult

sequences (Grove, Teddy, Urban, and Schefflera) are the

presence of large motions and strong motion discontinuities.

The complex discontinuities and fine structures of Grove

seem to cause the most problems for current algorithms.

A visual inspection of some computed flows (Fig. 8) shows

that oversmoothing motion discontinuities is common even

for the top-performing algorithms. A possible exception is

DPOF (Lei and Yang 2009). On the other hand, the prob-

lems of complex non-rigid motion confounded with illu-

mination changes, moving shadows, and real sensor noise

(Army, Mequon, Wooden) do not appear to present as much

of a problem for current algorithms.

5.2 Analysis of the Flow Errors

We now analyze the correlation between the metrics, statis-

tics, region masks, and datasets for the flow errors. Figure 9

compares the average ranks computed over different subsets

of the 32 pages of results, each of which contains 24 re-

sults for each algorithm. Column (a) contains the average

rank computed over seven of the eight statistics (the stan-

dard deviation is omitted) and the three region masks for the

endpoint error (EE). Column (b) contains the corresponding

average rank for the angular error (AE). Columns (c) contain

the average rank for each of the seven statistics for the end-

point error (EE) computed over the three masks and the eight

datasets. Columns (d) contain the average endpoint error

(Avg. EE) for each of the three masks just computed over the

eight datasets. Columns (e) contains the Avg. EE computed

for each of the datasets, averaged over each of the three

masks. The order of the algorithms is the same as Fig. 7, i.e.,

we order by the average endpoint error (Avg. EE), the high-

lighted, leftmost column in (c). To help visualize the num-

bers, we color-code the average ranks with a color scheme

where green denotes low values, yellow intermediate, and

red large values.

We also include the Pearson product-moment coefficient

r between various subsets of pairs of columns at the bot-

tom of the figure. The Pearson measure of correlation takes
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Fig. 8 The results of some of the top-performing methods on three

of the more difficult sequences. All three sequences contain strong

motion discontinuities. Grove also contains particularly fine structures.

The general tendency is to oversmooth motion discontinuities and fine

structures. A possible exception is DPOF (Lei and Yang 2009)

on values between −1.0 and 1.0, with 1.0 indicating perfect

correlation. First, we include the correlation between each

column and column (a). As expected, the correlation of col-

umn (a) with itself is 1.0. We also include the correlation

between all pairs of the statistics, between all pairs of the

masks, and between all pairs of the datasets. The results are

shown in the 7 × 7, 3 × 3, and 8 × 8 (symmetric) matrices at

the bottom of the table. We color-code the correlation results

with a separate scale where 1.0 is dark green and yellow/red

denote lower values (less correlation).

5.2.1 Comparison of the Endpoint Error and the Angular

Error

Columns (a) and (b) in Fig. 9 contain average ranks

for the endpoint error (EE) and angular error (AE). The

rankings generated with these two measures are highly cor-

related (r = 0.989), with only a few ordering reversals.

At first glance, it may seem that the two measures could

be used largely interchangeably. Studying the qualitative re-

sults contained in Fig. 10 for the Complementary OF algo-

rithm (Zimmer et al. 2009) on the Urban sequence leads to

a different conclusion. The Complementary OF algorithm

(which otherwise does very well) fails to correctly estimate

the flow of the building in the bottom left. The average AE

for this result is 4.64 degrees which ranks 6th in the table

at the time of writing. The average EE is 1.78 pixels which

ranks 20th at the time of writing. The huge discrepancy is

due to the fact that the building in the bottom left has a very

large motion, so the AE in that region is downweighted.

Based on this example, we argue that the endpoint error (EE)

should become the preferred measure of flow accuracy.

5.2.2 Comparison of the Statistics

Columns (c) in Fig. 9 contains a comparison of the var-

ious statistics, the average (Avg), the robustness mea-
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Fig. 9 A comparison of the various different metrics, statistics, region

masks, and datasets for flow errors. Each column contains the aver-

age rank computed over a different subset of the 32 pages of results,

each of which contains 24 different results for each algorithm. See the

main body of the text for a description of exactly how each column

is computed. To help visualize the numbers, we color-code the aver-

age ranks with a color scheme where green denotes low values, yellow

intermediate, and red large values. The order of the algorithms is the

same as Fig. 7, i.e., we order by the average endpoint error (Avg. EE),

the leftmost column in (c), which is highlighted in the table. At the

bottom of the table, we include correlations between various subsets

of pairs of the columns. Specifically, we compute the Pearson

product-moment coefficient r . We separately color-code the correla-

tions with a scale where dark green is 1.0 and yellow/red denote lower

values

Fig. 10 Results of the Complementary OF algorithm (Zimmer et al.

2009) on the Urban sequence. The average AE is 4.64 degrees which

ranks 6th in the table at the time of writing. The average EE is 1.78 pix-

els which ranks 20th at the time of writing. The huge discrepancy is

due to the fact that the building in the bottom left has a very large mo-

tion, so the AE in that region is downweighted. Based on this example,

we argue that the endpoint error (EE) should become preferred mea-

sure of flow accuracy

sures (R0.5, R1.0, and R2.0), and the accuracy measures

(A50, A75, and A95). The first thing to note is that again

these measures are all highly correlated with the average

over all the statistics in column (a) and with themselves.

The outliers and variation in the measures for any one

algorithm can be very informative. For example, the per-

formance of DPOF (Lei and Yang 2009) improves dramat-

ically from R0.5 to R2.0 and similarly from A50 to A95.
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This trend indicates that DPOF is good at avoiding gross

outliers but is relatively weak at obtaining high accuracy.

DPOF (Lei and Yang 2009) is a segmentation-based dis-

crete optimization algorithm, followed by a continuous re-

finement (Sect. 2.4.2). The variation of the results across

the measures indicates that the combination of segmenta-

tion and discrete optimization is beneficial in terms of avoid-

ing outliers, but that perhaps the continuous refinement is

not as sophisticated as recent purely continuous algorithms.

The qualitative results obtained by DPOF on the Schefflera

and Grove sequences in Fig. 8 show relatively good results

around motion boundaries, supporting this conclusion.

5.2.3 Comparison of the Region Masks

Columns (d) in Fig. 9 contain a comparison of the region

masks, All, Disc, and Untext. Overall, the measures are

highly correlated by rank, particularly for the All and Un-

text masks. When comparing the actual error scores in the

individual tables (e.g., Fig. 7), however, the errors are much

higher throughout in the Disc regions than in the All regions,

while the errors in the Untext regions are typically the low-

est. As expected, the Disc regions thus capture what is still

the hardest task for optical flow algorithms: to accurately

recover motion boundaries. Methods that strongly smooth

across motion discontinuities (such as the Horn and Schunck

algorithm 1981, which uses a simple L2 prior) also show a

worse performance for Disc in the rankings (columns (d) in

Fig. 9). Textureless regions, on the other hand, seem to be

no problem for today’s methods, essentially all of which op-

timize a global energy.

5.2.4 Comparison of the Datasets

Columns (e) in Fig. 9 contain a comparison across the

datasets. The first thing to note is that the results are less

strongly correlated than across statistics or region masks.

The results on the Yosemite sequence, in particular, are either

poorly or negatively correlated with all of the others. (The

main reason is that the Yosemite flow contains few discon-

tinuities and consequently methods do well here that over-

smooth other sequences with more motion boundaries.) The

most correlated subset of results appear to be the four hidden

texture sequences Army, Mequon, Schefflera, and Wooden.

These results show how performance on any one sequence

can be a poor predictor of performance on other sequences

and how a good benchmark needs to contain as diverse a set

of data as possible. Conversely, any algorithm that performs

consistently well across a diverse collection of datasets can

probably be expected to perform well on most inputs.

Studying the results in detail, a number of interesting

conclusions can be noted. Complementary OF (Zimmer

et al. 2009) does well on the hidden texture data (Army,

Mequon, Schefflera, Wooden) presumably due to the use of

a relatively sophisticated data term, including the use of a

different robust penalization function for each channel in

HSV color space (the hidden texture data contains a number

of moving shadows and other illumination-related effects),

but not as well on the sequences with large motion (Urban)

and complex discontinuities (Grove). DPOF (Lei and Yang

2009), which involves segmentation and performs best on

Grove, does particular poorly on Yosemite presumably be-

cause segmenting the grayscale Yosemite sequence is diffi-

cult. F-TV-L1 (Wedel et al. 2008) does well on the largely

rigid sequences (Grove, Urban, Yosemite, and Teddy), but

poorly on the non-rigid sequences (Army, Mequon, Schef-

flera, and Wooden). F-TV-L1 uses a rigidity prior and so it

seems that this component is being used too aggressively.

Note, however, that a later algorithm by the same group

of researchers (Adaptive—Wedel et al. 2009—which also

uses a rigidity prior) appears to have addressed this prob-

lem. The flow fields for Dynamic MRF (Glocker et al. 2008)

all appear to be over-smoothed; however, quantitatively, the

performance degradation is only apparent on the sequences

with strong discontinuities (Grove, Urban, and Teddy). In

summary, the relative performance of an algorithm across

the various datatypes in our benchmark can lead to insights

into which of its components work well and which are lim-

iting performance.

5.3 Analysis of the Interpolation Errors

We now analyze the correlation between the metrics, statis-

tics, region masks, and datasets for the interpolation errors.

In Fig. 11, we include results for the interpolation errors that

are analogous to the flow error results in Fig. 9, described

in Sect. 5.2. Note that we are now comparing interpolated

frames (generated from the submitted flow fields using the

interpolation algorithm from Sect. 3.3.2) with the true in-

termediate frames. Also, recall that we use a different set of

test sequences for the interpolation evaluation: the four high-

speed datasets Backyard, Basketball, Dumptruck, and Ever-

green, in addition to Mequon, Schefflera, Urban, and Teddy,

as representatives of the three other types of datasets. We

sort the algorithms by the average interpolation error per-

formance (Avg. IE), the leftmost column in Fig. 11(c). The

ordering of the algorithms in Fig. 11 is therefore different

from that in Fig. 9.

5.3.1 Comparison of the Interpolation and Normalized

Interpolation Errors

Columns (a) and (b) in Fig. 11 contain average ranks for the

interpolation error (IE) and the normalized interpolation er-

ror (NE). The rankings generated with these two measures

are highly correlated (r = 0.981), with only a few ordering
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Fig. 11 A comparison of the various different metrics, statistics, re-

gion masks, and datasets for interpolation errors. These results are

analogous to those in Fig. 9, except the results here are for interpola-

tion errors rather than flow errors. See Sect. 5.2 for a description of

how this table was generated. We sort the algorithms by the average

interpolation error performance (Avg. IE), the first column in (c). The

ordering of the algorithms is therefore different to that in Fig. 9

reversals. Most of the differences between the two measures

can be explained by the relative weight given to the discon-

tinuity and textureless regions. The rankings in columns (a)

and (b) are computed by averaging the ranking over the

three masks. The normalized interpolation error (NE) gener-

ally gives additional weight to textureless regions, and less

weight to discontinuity regions (which often also exhibit an

intensity gradient). For example, CBF (Trobin et al. 2008)

performs better on the All and Disc regions than it does on

the Untext regions, which explains why the NE rank for this

algorithm is slightly higher than the IE rank.

5.3.2 Comparison of the Statistics

Columns (c) in Fig. 11 contain a comparison of the vari-

ous statistics, the average (Avg), the robustness measures

(R2.5, R5.0, and R10.0), and the accuracy measures (A90,

A95, and A99). Overall the results are highly correlated.

The most obvious exception is R2.5, which measures the

percentage of pixels that are predicted very precisely (within

2.5 graylevels). In regions with some texture, very accu-

rate flow is needed to obtain the highest possible precision.

Algorithms such as CBF (Trobin et al. 2008) and DPOF (Lei

and Yang 2009), which are relatively robust but not so accu-

rate (compare the performance of these algorithms for R0.5

and R2.0 in Fig. 9), therefore perform worse in terms of R2.5

than they do in terms of R5.0 and R10.0.

5.3.3 Comparison of the Region Masks

Columns (d) in Fig. 11 contain a comparison of the region

masks, All, Disc, and Untext. The All and Disc results are

highly correlated, whereas the Untext results are less corre-

lated with the other two masks. Studying the detailed results

on the webpage for the outliers in columns (d), there does

not appear to be any obvious trend. The rankings in the Un-

text regions just appear to be somewhat more “noisy” due to

the fact that for some datasets there are relatively few Untext

pixels and all algorithms have relatively low interpolation er-

rors in those regions. The actual error values (as opposed to

their rankings) are quite different between the three regions

masks. Like the flow accuracy errors (Sect. 5.2.3), the IE

values are highest in the Disc regions since flow errors near

object boundaries usually cause interpolation errors as well.
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5.3.4 Comparison of the Datasets

Columns (e) in Fig. 11 contain a comparison across the

datasets. The results are relatively uncorrelated, just like the

flow errors in Fig. 9. The most notable outlier for interpola-

tion is Schefflera. Studying the results in detail on the web-

site, the primary cause appears to the right hand side of the

images, where the plant leaves move over the textured cloth.

This region is difficult for many flow algorithms because the

difference in motions is small and the color difference is not

great either. Only a few algorithms (e.g., DPOF—Lei and

Yang 2009, Fusion—Lempitsky et al. 2008, and Dynamic

MRF—Glocker et al. 2008) perform well in this region.

Getting this region correct is more important in the inter-

polation study than in the flow error study because: (1) the

background is quite highly textured, so a small flow error

leads to a large interpolation error (see the error maps on the

webpage) and (2) the difference between the foreground and

background flows is small, so oversmoothing the foreground

flow is not penalized by a huge amount in the flow errors.

The algorithms that perform well in this region do not per-

form particularly well on the other sequences, as none of the

other seven interpolation datasets contain regions with sim-

ilar causes of difficulty, leading to the results being fairly

uncorrelated.

5.4 Comparison of the Flow and Interpolation Errors

In Fig. 12, we compare the flow errors with the interpola-

tion errors. In the left half of the figure, we include the av-

erage rank scores, computed over all statistics (except the

standard deviation) and all three masks. We compare flow

endpoint errors (EE), interpolation errors (IE), and normal-

ized interpolation errors (NE), and include two columns for

each, Avg and Avg4. The first column, Avg EE, is computed

over all eight flow error datasets, and corresponds exactly to

column (a) in Fig. 9. Similarly, the third and fifth columns,

Avg IE and Avg NE, are computed over all eight interpo-

lation error datasets, and correspond exactly to columns (a)

and (b) in Fig. 11. To remove any dependency on the differ-

ent datasets, we provide the Avg4 columns, which are com-

puted over the four sequences that are common to the flow

and interpolation studies: Mequon, Schefflera, Urban, and

Teddy.

The right half of Fig. 12 shows the 6 × 6 matrix of the

column correlations. It can be seen that the correlation be-

tween the results for Avg4 EE and Avg4 IE is only 0.763.

The comparison here uses the same datasets, statistics, and

masks; the only difference is the error metric, flow end-

point error (EE) vs. interpolation error (IE). Part of the rea-

son these measures are relatively uncorrelated is that the

Fig. 12 A comparison of the flow errors, the interpolation errors, and

the normalized interpolation errors. We include two columns for the

average endpoint error. The leftmost (Avg EE) is computed over all

eight flow error datasets. The other column (Avg4 EE) is computed

over the four sequences that are common to the flow and interpola-

tion studies (Mequon, Schefflera, Urban, and Teddy). We also include

two columns each for the average interpolation error and the average

normalized interpolation error. The leftmost of each pair (Avg IE and

Avg NE) are computed over all eight interpolation datasets. The other

columns (Avg4 IE and Avg NE) are computed over the four sequences

that are common to the flow and interpolation studies (Mequon, Schef-

flera, Urban, and Teddy). On the right, we include the 6 × 6 matrix of

the correlations of the six columns on the left. As in previous figures,

we separately color-code the average rank columns and the 6 × 6 cor-

relation matrix
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Fig. 13 A comparison of the flow and interpolation results for DPOF

(Lei and Yang 2009) and CBF (Trobin et al. 2008) on the Teddy se-

quence to illustrate the differences between the two measures of per-

formance. DPOF obtains the best flow results with an Avg. EE of

0.5 pixels, whereas CBF is ranked 9th with an Avg. EE of 0.76 pix-

els. CBF obtains the best interpolation error results with an Avg. IE of

5.21 graylevels, whereas DPOF is ranked 6th with an Avg. IE of 5.58

graylevels

interpolation errors are themselves a little noisy internally.

As discussed above, the R2.5 and Untext mask results are

relatively uncorrelated with the results for the other mea-

sures and masks. The main reason, however, is that the in-

terpolation penalizes small flow errors in textured regions

a lot, and larger flow errors in untextured regions far less.

An illustration of this point is included in Fig. 13. We in-

clude both flow and interpolation results for DPOF (Lei and

Yang 2009) and CBF (Trobin et al. 2008) on the Teddy se-

quence. DPOF obtains the best flow results with an average

endpoint error of 0.5 pixels, whereas CBF is the 9th best

with an average endpoint error of 0.76 pixels. CBF obtains

the best interpolation error results with an average interpo-

lation error of 5.21 graylevels, whereas DPOF is 6th best

with an average interpolation error of 5.58 graylevels. Al-

though the flow errors for CBF are significantly worse, the

main errors occur where the foreground flow is “fattened”

into the relatively textureless background to the left of the

birdhouse and the right of the teddy bear. The interpolation

errors in these regions are low. On the other hand, DPOF

makes flow errors on the boundary between the white cloth

and blue painting that leads to large interpolation errors.

The normalized interpolation error (NE) is meant to com-

pensate for this difference between the flow and interpo-

lation errors. Figure 12 does show that the Avg4 NE and

Avg4 EE measures are more correlated (r = 0.803) than the

Avg4 IE and Avg4 EE measures (r = 0.763). The increased

degree of correlation is marginal, however, due to the dif-

ficulty in setting a spatial smoothing radius for the gradi-

ent computation, and the need to regularize the NE measure

by adding ǫ to the denominator. Therefore, as one might

expect, the performance of a method in the interpolation

evaluation yields only limited information about the accu-

racy of the method in terms of recovering the true motion

field.

5.5 Analysis of the Algorithms

Table 3 contains a summary of most of the algorithms for

which results have been uploaded to our online evaluation.

We omit the unpublished algorithms and a small number of

the algorithms that are harder to characterize in terms of

our taxonomy. We list the algorithms in the same order as

Figs. 7 and 9. Generally speaking, the better algorithms are

at the top, although note that this is just one way to rank the

algorithms. For each algorithm, we mark which elements

of our taxonomy in Sect. 2 it uses. In terms of the data

term, we mark whether the algorithm uses the L1 norm or

a different robust penalty function (Sect. 2.1.2). Neither col-

umn is checked for an algorithm such as Horn and Schunck

(1981), which uses the L2 norm. We note if the algorithm

uses a gradient component in the data term or any other

more sophisticated features (Sect. 2.1.3). We also note if the

algorithm uses an explicit illumination model (Sect. 2.1.4),

normalizes the data term in any way, or uses a sophisticated

color model to reduce the effects of illumination variation

(Sect. 2.1.5).

For the spatial prior term, we also mark whether the algo-

rithm uses the Total Variation (TV) norm or a different ro-

bust penalty function (Sect. 2.2.2). We note if the algorithm

spatially weights the prior (Sect. 2.2.3) or if the weighting

is anisotropic (Sect. 2.2.4). We also note if the algorithm
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Table 3 A classification of most of the algorithms for which results have been uploaded to our online evaluation in terms of which elements of

our taxonomy in Sect. 2 they use

uses a higher-order prior (Sect. 2.2.5) or a rigidity prior

(Sect. 2.2.6).

In terms of the optimization algorithm, we mark if the

algorithm uses a gradient-descent based continuous opti-

mization (Sect. 2.3.1). We also specify which algorithms are

variational or use other extremal approaches (Sect. 2.3.2).

Other approaches (Sect. 2.3.3), such as the dual variable ap-

proach and the use of Linear Programming, are grouped to-

gether. In terms of discrete optimization, we distinguish fu-

sion based algorithms (Sect. 2.4.1) from reparameterization

based algorithms (Sect. 2.4.1) and note which approaches

also use a continuous optimization phase to refine the results

(Sect. 2.4.3).

Finally, we also denote which algorithms use learning

(Sect. 2.5.1) to optimize the parameters and which algo-

rithms perform explicit visibility or occlusion reasoning

(Sect. 2.5.5). In the last column we mark whether the al-

gorithm uses color images.

Based on Table 3, we note the following:

• Degree of Sophistication: The algorithms toward the top

of the table tend to use a lot more of the refinements to

the data and prior terms. Spatial weighting, anisotropic

weighting, and the addition of robustness to illumination

changes through data term normalization or the use of fea-

tures, are all common components in the top-performing

algorithms.
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• Choice of Penalty Function: The L1 norm is a very pop-

ular choice, particularly for the data term. A couple of

the top-performing algorithms combine a L1 norm on the

data term with a different (more truncated) robust penalty

function on the prior term.

• Rigidity: As discussed in Sect. 5.2.4, one algorithm that

uses rigidity (F-TV-L1—Wedel et al. 2008) does poorly

on the non-rigid scenes, however, Adaptive (Wedel et al.

2009) (a subsequent algorithm by the same researchers)

does well on all sequences.

• Continuous Optimization: The gradient descent algo-

rithms (discounting the ones that first perform a discrete

optimization) all appear at the bottom of the table. On the

other hand, the variational approaches appear through-

out the table. Note that there is a correlation between the

use of variational methods and more sophisticated energy

functions that is not intrinsic to the variational approach.

A direct comparison of different optimization methods

with the same objective functions needs to be carried out.

The dual-variable approach is competitive with the best

algorithms, and may offer a speed advantage.

• Discrete Optimization: The discrete optimization algo-

rithms do not perform particularly well. Note, however,

that the energy functions used in these methods are gen-

erally relatively simple and might be extended in the fu-

ture to incorporate some of the more sophisticated ele-

ments. It does, however, appear that refining the results

with a continuous optimization is required to obtain good

results (if accuracy is measured using average endpoint

error).

• Miscellaneous: There are few algorithms that employ

learning in the table, making it difficult to draw conclu-

sions in terms of performance. This is likely to change

in the future, as learning techniques are maturing and

more labeled training data is becoming available. Simi-

larly, few algorithms incorporate explicit visibility or oc-

clusion reasoning, making it difficult to assess how im-

portant this could be. Notably, all 24 algorithms consid-

ered here utilize only 2 input frames, despite the fact

that we make 8-frame sequences available. In contrast,

on previous evaluation sets (particularly Yosemite) multi-

frame methods relying on temporal smoothing were quite

common. This raises the question of whether temporal

smoothing, at least as applied so far, is less suited for

the more challenging sequences considered here. A de-

finitive answer to this point cannot be given in this paper,

but should be subject of future work. Finally, less than

half of the algorithms utilize color information, and there

is no obvious correlation with performance. The utility of

color for image matching clearly deserves further study

as well; see Bleyer and Chambon (2010) for some re-

cent insights on this issue in the context of stereo match-

ing.

5.6 Comparison with State-of-the-Art Stereo Methods

As mentioned in Sect. 3.4, evaluating the flow algorithms

on the modified Teddy stereo dataset allows a comparison

with current stereo methods from the online Middlebury

stereo evaluation at http://vision.middlebury.edu/stereo/

(Scharstein and Szeliski 2002). To compare the state of the

art, we select the best-performing flow and stereo meth-

ods from the two evaluations and compute the median of

the lowest five R0.5 and R1.0 endpoint error scores on the

Teddy dataset. Recall that the RX endpoint error score mea-

sures the percentage of pixels whose endpoint (or dispar-

ity) error is greater than X pixels. We compute these scores

for both All and Disc region masks. While there are slight

differences in the definition of the Disc region masks be-

tween flow and stereo evaluations, the comparison provides

a good sense of the relative accuracy of the two classes of

methods.

When comparing these scores, it becomes clear that the

current top stereo methods significantly outperform the top

flow methods. In particular, the median of the lowest five

R1.0 error rates in All regions is 9.9 for flow, but only 6.5

for stereo (a reduction by 34%). In the Disc regions, the er-

rors are much higher and the difference is even more pro-

nounced, with a median error of 27.6 for flow and 10.0 for

stereo (a reduction by 64%). Of course, stereo methods solve

an easier problem, since correspondences are restricted to lie

on epipolar lines, which may be one reason for the perfor-

mance difference (though, as mentioned earlier, some flow

methods employ rigidity priors that aid in the recovery of

static scenes). Another significant difference is that many

current stereo methods employ either discrete label sets to

model disparities, or piecewise planar surface models. In

contrast, current flow methods typically perform a continu-

ous optimization. This explains why current stereo methods

are able to recover much sharper depth discontinuities than

most current flow methods, which is apparent both quantita-

tively from the Disc scores and qualitatively from examining

the recovered disparity maps and flow fields.

When comparing the R0.5 scores, which reflect subpixel

accuracy, the errors are higher overall, but the difference be-

tween the top stereo and flow methods is slightly less pro-

nounced: the median of the lowest five scores in All regions

is now 16.6 for flow, and 13.8 for stereo (a reduction by

17%); in the Disc regions the median is now 38.0 for flow,

and 22.5 for stereo (a reduction by 41%). A possible expla-

nation for the smaller performance difference when using

the R0.5 scores is that the continuous approaches used in

optical flow techniques are better able to achieve subpixel

precision.

In summary, current flow algorithms, when run on a

stereo pair, cannot quite match the performance of state-of-

the-art stereo methods, particularly near depth discontinu-

ities. Conversely, most current stereo methods use discrete

http://vision.middlebury.edu/stereo/
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label sets or simplified surface models that cannot be eas-

ily adapted to the problem of recovering continuous and

smoothly varying 2D motion fields. It is likely that stereo

and flow algorithms will become more similar in the future,

in particular with the advance of discrete/continuous opti-

mization techniques (Lempitsky et al. 2008; Bleyer et al.

2010).

6 Conclusion

We have presented a collection of datasets for the evalu-

ation of optical flow algorithms. These datasets are sig-

nificantly more challenging and comprehensive than pre-

vious ones. We have also extended the set of evaluation

measures and improved the evaluation methodology of

Barron et al. (1994). The data and results are available at

http://vision.middlebury.edu/flow/. Since the publication of

our preliminary paper (Baker et al. 2007), a large number

of authors have uploaded results to our online evaluation.

The best results are a huge improvement over the algo-

rithms in Baker et al. (2007) (Table 2). Our data and metrics

are diverse, offering a number of insights into the choice

of the most appropriate metrics and statistics (Sect. 5.2),

the effect of the datatype on the performance of algorithms

and the difficulty of the various forms of data (Sect. 5.2.4),

the differences between flow errors and interpolation errors

(Sect. 5.3), and the importance of the various components

in an algorithm (Sect. 5.5). Of course, as newer papers con-

tinue to be published, e.g., Sun et al. (2010), which as we go

to press (June 2010) is now the leading algorithm, our un-

derstanding of which factors contribute to good performance

will continue to evolve.

Progress on our data has been so rapid that the per-

formance on some of the sequences is already very good

(Table 2). The main exceptions are Grove, Teddy, Urban,

and perhaps Schefflera. As our statistical analysis shows,

however, the correlation in performance across datasets is

relatively low. This suggest that no single method is yet

able to achieve strong performance across a wide variety of

datatypes. We believe that such generality is a requirement

for robust optical flow algorithms suited for real-world ap-

plications.

Any such dataset and evaluation has a limited lifespan

and new and more challenging sequences should be col-

lected. A natural question, then, is how such data is best

collected. Of the various possible techniques—synthetic

data (Barron et al. 1994; McCane et al. 2001), some form

of hidden markers (Mova LLC 2004; Tappen et al. 2006;

Ramnath et al. 2008), human annotation (Liu et al. 2008),

interpolation data (Szeliski 1999), and modified stereo data

(Scharstein and Szeliski 2003)—the authors believe that

synthetic data is probably the best approach (although gen-

erating high-quality synthetic data is not as easy as it might

seem). Large motion discontinuities and fast motion of com-

plex, fine structures appear to be more of a problem for cur-

rent optical flow algorithms than non-rigid motion, complex

illumination changes, and sensor noise. The level of diffi-

culty is easier to control using synthetic data. Degradations

such as sensor noise, etc., can also easily be added. The re-

alism of synthetic sequences could also be improved further

beyond the data in our evaluation.

Future datasets should also consider more challenging

types of materials, illumination change, atmospheric effects,

and transparency. Highly specular and transparent materials

present not just a challenge for current algorithms, but also

for quantitative evaluation. Defining the ground-truth flow

and error metrics for these situations will require some care.

With any synthetic dataset, it is important to understand

how representative it is of real data. Hence, the use of mul-

tiple types of data and an analysis of the correlation across

them is critical. A diverse set of datatypes also reduces over-

fitting to any one type, while offering insights into the rel-

ative performance of the algorithms in different scenarios.

On balance, however, we would recommend that any future

studies contain a higher proportion of challenging, realistic

synthetic data. Future studies should also extend the data to

longer sequences than the 8-frame sequences that we col-

lected.
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