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Abstract—Person re-identification involves recognising individ-
uals in different locations across a network of cameras and is a
challenging task due to a large number of varying factors such as
pose (both subject and camera) and ambient lighting conditions.
Existing databases do not adequately capture these variations,
making evaluations of proposed techniques difficult. In this paper,
we present a new challenging multi-camera surveillance database
designed for the task of person re-identification. This database
consists of 150 unscripted sequences of subjects travelling in a
building environment though up to eight camera views, appearing
from various angles and in varying illumination conditions. A
flexible XML-based evaluation protocol is provided to allow
a highly configurable evaluation setup, enabling a variety of
scenarios relating to pose and lighting conditions to be evaluated.
A baseline person re-identification system consisting of colour,
height and texture models is demonstrated on this database.

I. INTRODUCTION

In a surveillance network, it is often desirable to be able to

recognise and track people as they move through the environ-

ment. In a single camera view, this can be achieved through

object tracking techniques, however, in a large space with

multiple non-overlapping cameras where it is not certain which

path people will take, appearance matching methods must be

applied to re-identify an individual as they move between

cameras. This problem is termed person re-identification, and

involves recognising an individual in different locations across

a network of cameras, typically assuming that individuals

wear the same clothing between sightings, as represented in

Figure 1.

Despite the assumption that people within the environment

have the same appearance from camera to camera, several

complexities which arise from the environment make this a

challenging problem. These factors include:

1) subjects will often only be visible at low resolution;

2) subjects may appear at different poses and viewpoints

(e.g. front-on or side-on) as they move through the

camera network;

3) the environment often contains many different lighting

conditions, altering the appearance of people in the

space;

4) and subjects may be partially occluded (e.g. by bags or

other people).

In such conditions, traditional biometrics such as face,

iris or gait generally cannot be used. Instead, models which

Fig. 1: A scene at two time instants, t1 and tn, is represented,

with the coloured people representing different identities.

Person re-identification seeks to recognise the identity of a

person as they move between different locations, given a set

of previously observed people. For example, the blue person

visible from the yellow camera at t1, later appears in the red

camera at tn. A person re-identification system should be able

to reconcile this identity despite the change in appearance in

the acquired video frames.

characterise the overall appearance of a person, or models

which consist of a collection of local descriptors are used.

Such models are often termed “soft biometrics" [1] and are

defined as characteristics which can be used to describe, but

not uniquely identify an individual. Soft biometrics include

traits such as height, body build, gender, ethnicity, and char-

acteristics which may change more frequently such as clothing

colour. Using such features, we can detect if a given person has

been previously observed elsewhere in a network of cameras,

or search for an individual in a camera network.

To evaluate models for person recognition and re-

identification, a dataset is required which consists of multiple

cameras, in which the subjects appear in different poses,

viewing angles and lighting conditions. Due to the limitations

of existing databases that either contain only still images

(i.e. VIPER [2]), few camera views (i.e. ETHZ [3], PETS

2006 [4]), highly controlled conditions (i.e. CASIA [5]), or a



lack of sufficient frames per subject (i.e. i-LIDS MCTS [6]),

a new database is proposed. This new database consists of

150 people, with an average of over 400 frames per person

spanning up to eight camera views in challenging surveil-

lance conditions. A flexible XML-based evaluation protocol is

provided to allow for a highly configurable evaluation setup,

enabling a variety of scenarios relating to pose and lighting

conditions to be evaluated.

This new dataset provides a platform from which to answer

questions such as:

• What features are best for recognising the identity of a

person in low resolution footage across different camera

views, illumination conditions and with variable pose?

• How much data is necessary to build a sufficient model

of a person?

• How does data from multiple views impact performance?

• Can details about pose be used to improve performance?

We demonstrate the utility and flexibility of the proposed

database by using it to answer these questions with a baseline

person re-detection system consisting of colour, height and

texture features.

The remainder of this paper is structured as follows:

Section II covers related work in the field of person re-

identification and the existing databases used in evalua-

tions; Section III describes our new multi-camera surveillance

database; Section IV describes the baseline models which are

used to demonstrate the utility of our database, followed by

results in Section V, and conclusions in Section VI.

II. RELATED WORK

A. Person re-identification

In a surveillance environment, traits that can be observed at

a greater range are desirable, and such traits should be invariant

to view and to lighting conditions.

Colour features are commonly used to model appearance

and can be used to encode information about a person’s

clothing, hair and skin colour. They are popular for use in

surveillance as they are mostly view invariant and can be

sensed at a far distance from a camera. The most common

method of utilising colour information is through histograms.

Position information can be incorporated by splitting the

person into parts (e.g. in [7], [8], histograms are extracted

for the head, torso and legs) which allows matching based

on colour and distribution. A more advanced approach such

as the Mean Riemannian Covariance Grid (MRCG) [9] can

better provide colour and spatial information.

Histograms allow for some degree of variation in colour

caused by illumination, as a range of colours are allocated

to each histogram bin. A “soft" binning approach [10] can

be applied to further compensate for illumination changes

and prevent the case where similar colours are allocated to

different bins. In soft histogram binning, a pixel colour value

is allocated to multiple bins, weighted according to the pixel

value’s proximity to the centre value of each bin.

Illumination changes between cameras can be compensated

for using image based transformations [11], or a brightness

transfer function between cameras [12] can be learned with

prior training. Culture colours [13], which are a set of 11

colours recognised by most cultures (black, blue, brown, green,

grey, orange, pink, purple, red, yellow, white), can also be used

as they are less prone to variation across cameras.

Some approaches to person re-identification use texture

based features or interest points to match people between

cameras. Hamdoun et al. [14] use interest points to detect

people across different views, however the method is only

evaluated on a dataset of 10 subjects across 2 camera views.

Gheissari et al. [15] use a decomposable triangulated graph

model to segment a person into six horizontal strips and for

each strip, extract HSV colour information, and edgels which

encode edge orientation (vertical or horizontal), and the colour

change across the edge. This method is evaluated on a 44

subject dataset across 3 cameras views (consisting of mostly

frontal frames of a person).

Other methods for person re-identification combine colour

and texture features, and aim to extract texture features

which are view independent. Bazzani et al. [16] proposed a

person descriptor which includes a global HSV histogram,

an ‘average’ texture of the person and a a set of recurring

textural motifs within the subject. This work was extended by

Farenzena et al. [17] by using a symmetry-driven approach to

extract features, and by including Maximally Stable Colour

Regions (MSCRs) [18] in the appearance models. Bak et

al. [19] proposed appearance models based on Haar-like

features and dominant colour descriptors. The most invariant

and discriminative signature was extracted using the AdaBoost

algorithm. Schwartz et al. [20] proposed a large feature set

consisting of texture, edge and colour information projected

into a low-dimensional discriminant latent space using Partial

Least Squares (PLS) reduction. The PLS scheme is shown to

outperform PCA and SVM approaches.

While these methods have demonstrated applicability in the

datasets provided, it is uncertain how they would perform in

different conditions, as the datasets do not allow for different

evaluation conditions. Even though many of the discussed

features are designed to be view and illumination tolerant, not

all the datasets are able to show that this is the case, and none

are able to show how the models are affected by viewing angle

or illumination. Also, many approaches only look at the single

image case, which is unrealistic in a surveillance network, as

video is captured and available for use to perform foreground

segmentation and allows for better selection of frames to use

in the model.

B. Existing datasets

To date, researchers have used a variety of data sources to

evaluate their models. Existing tracking databases have been

used (e.g. [8] used a subset of PETS2006 [4]); the VIPeR

(Viewpoint Invariant Pedestrian Recognition) database [2] has

been used extensively (see [2], [17], [21]–[23]); some have

used the ETHZ [3] and i-LIDS [6] databases; while others

have simply captured their own data (e.g. [15], [19]).
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Fig. 2: Example video frames from each of the eight cameras (C1 to C8) of our database. A subject dressed in a white shirt,

marked with a red bounding box, is shown in each of the cameras, highlighting the significant appearance variations (pose,

viewpoint, illumination) as the subject moves through the camera network.

While these databases have their merits, it is difficult to

compare and evaluate person re-identification models in real

environments due to the lack of a suitable database. While

PETS 2006 (and similar tracking databases), VIPeR, ETHZ,

and i-LIDS are public data sets, they are limited for soft

biometric applications. Tracking data sets typically consist

of few cameras and a small number of distinct subjects

for whom there is a suitable amount of footage for a soft

biometric evaluation (PETS 2006 has four cameras of which

only three are suitable), VIPeR is limited to a single image

of each pedestrian from two viewpoints, ETHZ is captured

from a moving stereo rig, and hence only captures similar

(mostly frontal) viewing angles of a person, and the annotated

component of i-LIDS only contains up to four images per

person. While databases used in gait recognition research often

contain a larger number of subjects and camera angles (e.g. the

CASIA database [5] contains over 100 subjects observed from

11 cameras), they are captured in highly controlled conditions,

very dissimilar to a typical surveillance environment.

III. THE MULTI-CAMERA SURVEILLANCE DATABASE

The multi-camera surveillance database 1 was captured from

an existing surveillance network, to enable the evaluation

of person recognition and re-identification models in a real-

life multi-camera surveillance environment. The database con-

sists of 150 people moving through a building environment,

recorded by eight surveillance cameras. Each camera captures

data at 25 frames per second, at a resolution of 704 × 576
pixels, and is calibrated using Tsai’s method [24]. An example

image from each camera is shown in Figure 2, with the

1Available from http://eprints.qut.edu.au/53437/ or by contacting the au-
thors

Fig. 3: Approximate camera placement and orientation in the

Multi-Camera Surveillance Database. The three entrances to

the building are indicated with arrows.

approximate camera placement and orientation displayed in

Figure 3. The placement of cameras is a real-life surveillance

setup, and cameras have been placed to provide maximal

coverage of the space (with some overlap) and observation

of the entrances to the building.

The database was collected in an uncontrolled manner, so

subjects can travel any route through the building. Thus, the

vast majority of subjects will only pass through a subset of

the camera network and that subset varies from person to

person. This provides a highly unconstrained environment in

which to test person re-identification models. From Figure 2

and 4, it can be seen that there is varied lighting across
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Fig. 4: Example annotations of four subjects from the Multi-Camera Surveillance Database at different locations in the camera

network, where S represents the subject ID and C represents the camera number.

the different camera views, and that subjects are observed

from different angles as they move through the network. To

enable a consistent evaluation in such conditions, a coarse

bounding box indicating the location of the subjects has been

annotated (every 20th frame was annotated and intermediate

frame locations were interpolated). The frames are recorded

from when the subject enters the building through one of

the three main doorways visible in Camera 4, Camera 7 and

Camera 5/8, until they leave observation either through exiting

the building or entering a lecture theatre. Any frames which

are significantly occluded, have been omitted. Examples of the

annotated subjects are shown in Figure 4

XML files are used to store information about the database

to enable different evaluations to be easily performed based on

which subset of the database fits the desired criteria. For each

subject, an XML file is used to summarise the camera views

and frame information which can be used to select subjects

which fit the desired evaluation conditions (e.g. only subjects

that exist in specific cameras or locations can be selected). The

overall database is also summarised in an XML file, which

provides information on the camera calibration data for each

subject. Zones of interest can be specified to further filter

the person annotations, allowing for additional conditions to

be evaluated (i.e. lighting changes can either be reduced or

emphasised by only considering certain scene areas).

The database provides great flexibility in the possible evalu-

ations that can be carried out due to the variations captured by

the eight cameras. It can be used for traditional biometric iden-

tification and verification tasks, as well as the tracking person

re-detection simulated by Synthetic Recognition Rates [2].

IV. PERSON MODELS

In this work, we consider colour, height and texture models

for a person. The overall evaluation procedure and the steps to

acquire our baseline models is displayed in Figures 5 and 6.

For all models outlined within this section, a motion seg-

mentation algorithm [25] is used to separate the subject from

the background. After extracting the foreground regions (i.e.

pixels belonging to the person), the person is divided into head,

Description
Extraction

Query 
subject 

sequence

Description
Extraction

Matching Evaluation

Database 
subject 

sequences

Training:

Testing:

Database of 
subject models

Fig. 5: Person re-identification system evaluation flowchart

Motion 

Segmentation

Segmentation into head, torso, legs

- width projection

- intensity gradient analysis

Feature extraction:

- Colour x2

- Height

- Texture

Fig. 6: The steps involved in extracting a description of a

person in our baseline system

torso and legs parts through horizontal projection and image

gradient analysis as described in [26]. Example output from

this process is shown in Figure 7.

A. Colour Models

Colour information of a person is extracted by computing

histograms of their head, torso and leg regions. For each of

the three regions, a soft histogram of the full colour space is

calculated as well as a histogram of the culture colours [13],

resulting in two colour soft biometric models (soft histogram

and culture colour histogram). A moving average of each

histogram is calculated to incorporate multiple frames into the

model.

In the soft histogram, variation in colour across different

cameras is reduced through the soft-binning, where each pixel

colour value is assigned to multiple bins based on its proximity

to the centre of each bin. This means that samples which lie

on a bin boundary, where there is greater uncertainty, are split
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Fig. 7: Segmenting a person into head, torso and leg regions

(coloured in red, green and blue respectively). The top row

shows the input colour images, the bottom row shows the

segmented silhouettes.

more evenly and prevents very similar colours from being

wholly allocated to different bins.

The culture colour model quantises the image into 11

colours (black, brown, grey, red, orange, yellow, green, blue,

purple, pink, white), with the aim of transforming the colours

into a space less affected by illumination variations. To convert

the image into its corresponding culture colour image, Gaus-

sian mixture models (GMMs) were trained to represent each of

the 11 culture colours from a set of small image patches (each

containing a single culture colour). Each foreground pixel of

a person is then classified into the culture colour with the

greatest likelihood, and then the histograms are computed.

The histograms are normalised to sum to 1, ensuring invari-

ance to the number of images used to build the model and the

size of those images, and are compared using the Bhattacharya

coefficient. When comparing colour models for two people, the

similarity score is taken as the average of the three histogram

region (head, torso, legs) comparisons.

B. Height Model

The height of a person is used as a simple descriptor as it is

most view invariant. Other dimensions (width and depth) are

dependent on the camera angle and a person’s pose.

Heights are calculated using the detected positions of the

head, torso and legs (which are converted into a real world

coordinate scheme using camera calibration), and we use a

soft histogram approach as described in [27]. Figure 8 shows

an example of the located head and feet points, and the points

used to divide the subject into head, torso and legs.

C. Texture Model

To model the texture information of a person, we calculate

local binary patterns (LBPs) [28]. The LBP is an excellent

texture descriptor for its invariance to illumination, and can

also be made to be rotation invariant. In this work, we use an

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8: Detecting the head, neck, waist, and feet. The top row

shows the colour input image and the bottom row shows the

corresponding silhouette with the detected points overlaid. The

head points are shown in red, feet shown in yellow, and median

position of the waist and neck divisions shown in cyan.

LBP model consisting of 8 points with a radius of 1 pixel,

and a single texture model is extracted for the whole person,

resulting in a feature vector of size 256. The LBP calculation

procedure, from which the histograms are built, is shown in

Figure 9.
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Fig. 9: Calculating the LBP feature vector

D. Fusion

As each model (colour, height, texture) forms a weak

classifier, they can be fused together to take advantage of

the complementary information of each model. We apply a

weighted summation of the models, so that the overall match

between two people i and j is:

M(i, j) =

4∑

n=1

wn ×Mn(i, j), (1)

where w is the weight applied to model n (soft histogram

colour model, culture colour model, height model and texture

model); and Mn(i, j) is the matching score for model n,

between person i and j.

V. RESULTS

To demonstrate the utility of the proposed database, we

investigate how the baseline soft biometrics are affected by

a variety of factors captured by this database. We present the

results for the following evaluations:



1) effect of the number of frames considered in the models

2) effect of viewing angle

3) effect of the number of camera views considered in the

models

Results are presented using Cumulative Matching Char-

acteristic (CMC) curves, which represent the probability of

finding the correct match in the top x matches, and Synthetic

Recognition Rate (SRR) curves which represent the probabil-

ity that any of the y best matches is correct, as proposed in [2].

Note that the number of subjects present in each evaluation

is not consistent as only subjects that match the criteria set

out for the given evaluation are used. As the database is

unconstrained, different numbers of people appear in different

cameras, leading to this variation.

A. Effect of number of frames considered in the model

As a person moves through the environment, their sensed

appearance will change according to the camera and ambient

conditions. By considering more frames we expect more of

this variation to be incorporated in the models. Results for

this evaluation are presented using SRR instead of CMC

curves, as they better represent the difference with the variable

number of subjects (as we increase the number of frames

for modelling, less subjects are available which fit this cri-

teria in the database). In Figure 10 and Table I, a slight

improvement is observed when considering more frames in

the models (SRR values generally increase as more frames

are considered, with best performance always obtained using

20 or 40 frames). Sometimes a slight decrease is observed

which may be caused by noise being incorporated in the

models, for example due to segmentation errors or strong

lighting variations. While generally only a small improvement

is gained, having a dataset with many frames allows for motion

segmentation to be performed, so only pixels belonging to a

person will be incorporated in the models. Having multiple

frames available for modelling a person is more representative

of a realistic scenario (surveillance is captured as video),

and with more frames available, criteria can be applied to

filter out frames detected to be of poor quality (e.g. poor

segmentation/illumination as in Figure 13 (a)).

5 targets 10 targets

#Fr CC SH H T CC SH H T

1 45.1 45.7 31.3 27.4 30.8 30.1 17.4 15.3

3 46.0 43.7 29.9 27.7 30.8 28.9 16.4 15.3

5 46.3 44.3 29.6 27.40 31.4 28.0 16.7 15.8

10 47.6 45.4 30.7 29.8 31.3 31.2 17.7 15.5

15 47.5 47.9 31.9 30.6 31.5 32.0 20.3 16.9

20 49.3 48.1 34.0 32.0 30.9 33.6 21.5 18.4

40 48.7 49.5 36.0 32.8 33.5 32.5 21.0 16.8

TABLE I: Synthesised recognition rates (%) from Fig 10 for

5 and 10 targets with increasing number of frames. The best

#frames is shaded for each model. [Models: CC = culture

colour, SH = soft histogram, H = height, T = texture]
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(b) Soft Histogram
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(c) Height
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(d) Texture

Fig. 10: Effect of number of frames used in the model when

building models from a single camera view. All camera views

are considered in this evaluation, with gallery and probe

models trained off separate views. (See Table I for values at

5 and 10 targets)

B. Effect of viewing angle

To evaluate the effect of viewing angle, we limit evaluation

of testing and training models to two camera views which are

similar in the captured viewing angle of a subject (Camera 3

and 8), and two camera views which are dissimilar (Camera

5 and 8). We make the assumption that subjects generally

walk straight through the building and do not turn around,

which holds true for the majority of subjects. It can be seen

in Figure 3, that if this assumption holds (e.g. subjects walk

left to right or right to left in the building diagram), we will

obtain similar subject viewing angles in Camera 3 and 8 and

dissimilar angles in Camera 5 and 8 as in Figure 11 (c). Results

are presented in Figure 11.

It can be seen that all models degrade in performance with

dissimilar views (recognition rates in Figure 11 (b) are lower

than (a)), except for height which works similarly in differing

viewing conditions (e.g. Height Rank-10 performance only de-

grades slightly, from 45% to 38%, while Colour-Soft degrades

significantly from 70% to 31%), suggesting that height is more

view invariant. This is expected, as height does not change

from different viewing angles while colour and texture of a

person may be different from the front/side/back. The full soft

colour model outperforms culture colours in similar viewing

angles (Figure 11 (a)), but culture colours perform better

than full colour in differing viewing angles (Figure 11 (b))

and generally better across all camera conditions (Figure 12),

suggesting that culture colours or other heavily quantised

learned colour spaces are more stable than full colour in varied

viewing conditions. The degradation in performance in the
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(a) Similar view (Cam 3 and 8)
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(b) Dissimilar view (Cam 5 and 8) (c)

Fig. 11: The effect of viewing angle mismatches in training and testing. Evaluations consider gallery and probe models trained

on separate views, with models built off 20 images. (a) shows CMC plots where testing and training models contain similar

viewing angles, while in (b) testing and training models are built from dissimilar viewing angles. (c) displays example frames

of a person in the selected similar and dissimilar camera views.
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(a) 1 View
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(b) 2 Views
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(c) 3 Views

Fig. 12: CMC plots for colour, size, texture models, trained and tested on 1, 2 and 3 camera views using 20 images each.

colour and texture models may be attributed to the fact that

many of the subjects appear different from the front, side and

back due to items they are carrying (backpacks, shoulder bags)

and their clothing (such as open jackets). However, considering

all viewing angles, as in Figure 12, it can be seen that colour

features are more discriminative and robust to all variations.

C. Effect of the number of viewpoints

In Figure 12, plots are presented for models trained on 1, 2

and 3 views. We consider all cameras and use 20 frames, with

mutually exclusive views used in gallery and probe models.

Colour models consistently outperform the height and texture

models, and all models improve as more views are used to

train the models. The improvement as more views are used is

expected, as more information is included in the model. By

including different viewing angles, the models better represent

the person’s overall appearance.

The superior performance of the colour models compared

to height is expected, as there is more variation in colour,

as heights will only differ by a few centimetres between

subjects. Also, the height model is more affected by errors

in segmentation (both of foreground pixels and segmentation

into head, torso and legs). Small errors in the silhouette can

result in a difference of a few centimetres or more, depending

on where in the image the subject appears. While the colour

biometric is also susceptible to segmentation errors, the colour

models are less affected, except where segmentation errors

result in large portions of the person not being visible (e.g.

their legs or torso are not detected, as in Figure 13 (a)),

or a large portion of the background being included in the

model. The poor performance of the texture models may

be caused by poor resolution which results in blurring of

texture, and the lack of textural information in the majority

of subjects. However, texture performs fairly consistently in

differing conditions. In all cases, a fused model outperforms

all individual models, as the complementary information from

each model combined gives greater discrimination between

people.



(a) Poor segmentation (b) Better segmentation

Fig. 13: An example of (a) poor segmentation and (b) better

segmentation. Poor segmentation can result in missing body

parts and reduce performance of the models. With many

frames available, frame selection criteria can be used to filter

out poorly segmented frames.

VI. CONCLUSION

In this paper we have presented a new database for the eval-

uation of person re-identification models in real surveillance

conditions. Using the baseline models, we have shown how

this new database can be used to better evaluate person recog-

nition models in variable real-world conditions. In particular,

we have demonstrated how this dataset can be used to evaluate

a number of scenarios related to number of frames, number

of cameras and viewing angles which can only be evaluated

with a database consisting of a large number of subjects in a

variable and unconstrained environment.

With the baseline models, it was found that colour models

perform better across all viewing angles as there is greater

discrimination in the models compared to height and texture.

However, when considering exclusively different viewing an-

gles, height was found to be quite stable, with colour and

texture seen to be more view specific, as many subjects in

the dataset appear different from the front, side and back

due to carrying of objects (e.g. backpacks) and clothing

characteristics (e.g. open jacket). It was also observed that

culture colours (a quantised set of 11 colours) are slightly

more stable than full colour histograms, suggesting that a

heavily quantised learned colour space is preferable when

encountering view mismatch.

In future work, methods to better fuse models with knowl-

edge of the acquisition conditions will be explored to take

advantage of the qualities of each model.
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