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Abstract

This paper presents a database containing ‘ground

truth’ segmentations produced by humans for images of a

wide variety of natural scenes. We define an error measure

which quantifies the consistency between segmentations of

differing granularities and find that different human seg-

mentations of the same image are highly consistent. Use of

this dataset is demonstrated in two applications: (1) eval-

uating the performance of segmentation algorithms and (2)

measuring probability distributions associated with Gestalt

grouping factors as well as statistics of image region prop-

erties.

1. Introduction

Two central problems in vision are image segmentation

and recognition1. Both problems are hard, and we do not

yet have any general purpose solution approaching human

level competence for either one.

While it is unreasonable to expect quick solutions to ei-

ther problem, there is one dimension on which research in

recognition is on much more solid grounds–it is consider-

ably easier to quantify the performance of computer vision

algorithms at recognition than at segmentation. Recogni-

tion is classification, and one can empirically estimate the

probability of misclassification by simply counting classifi-

cation errors on a test set. The ready availability of test sets

– two of most significant ones are the MNIST handwrit-

ten digit dataset and the FERET face data set–has meant

that different algorithms can be compared directly using the

same quantitative error measures. It is well accepted that

one cannot evaluate a recognition algorithm by showing a

few images of correct classification. In contrast, image seg-

1It could be argued that they are aspects of the same problem. We do

not necessarily disagree!

Figure 1: Sample of 10 images from the segmentation database. Each

image has been segmented by 3 different people. A total of 10 people are

represented in this data.
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(a) (b) (c) (d)

Figure 2: Using the segmentation tool. See x2.1 for details.

(a) (b)

(c) (d)

Figure 3: Motivation for making segmentation error measures tolerant

to refinement. (a) shows the original image. (b)-(d) show three segmen-

tations in our database by different subjects. (b) and (d) are both simple

refinements of (c), while (b) and (d) illustrate mutual refinement.

mentation performance evaluation remains subjective. Typ-

ically, researchers will show their results on a few images

and point out why the results ‘look good’. We never know

from such studies whether the results are best examples or

typical examples, whether the technique will work only on

images that have no texture, and so on.

The major challenge is that the question “What is a cor-

rect segmentation” is a subtler question than “Is this digit

a 5”. This has led researchers e.g. Borra and Sarkar[3]

to argue that segmentation or grouping performance can be

evaluated only in the context of a task such as object recog-

nition. We don’t wish to deny the importance of evaluating

segmentations in the context of a task. However, the the-

sis of this paper is that segmentations can also be evaluated

purely as segmentations by comparing them to those pro-

duced by multiple human observers and that there is consid-

erable consistency among different human segmentations of

the same image so as to make such a comparison reliable.

Figure 1 shows some example images from the database

and 3 different segmentations for each image. The images

are of complex, natural scenes. In such images, multiple

cues are available for segmentation by a human or a com-

puter program–low level cues such as coherence of bright-

ness, texture or continuity of contour, intermediate level

cues such as symmetry and convexity, as well as high level

cues based on recognition of familiar objects. The instruc-

tions to the human observers made no attempt to restrict or

encourage the use of any particular type of cues. For in-

stance, it is perfectly reasonable for observers to use their

familiarity with faces to guide their segmentation of the im-

age in the second row of Figure 1. We realize that this im-

plies that a computational approach based purely on, say,

low-level coherence of color and texture, would find it dif-

ficult to attain perfect performance. In our view, this is per-

fectly fine. We wish to define a ‘gold standard’ for seg-

mentation results without any prior biases on what cues and

algorithms are to be exploited to obtain those results. We

expect that as segmentation and perceptual organization al-

gorithms evolve to make richer use of multiple cues, their

performance could continue to be evaluated on the same

dataset.

Note that the segmentations produced by different hu-

mans for a given image in Figure 1 are not identical. But,

are they consistent? One can think of a human’s percep-

tual organization as imposing a hierarchical tree structure

on the image. Even if two observers have exactly the same

perceptual organization of an image, they may choose to

segment at varying levels of granularity. See e.g. Figure 3.

This implies that we need to define segmentation consis-

tency measures that do not penalize such differences. We

demonstrate empirically that human segmentations for the

wide variety of images in the database are quite consistent

according to these criteria, suggesting that we have a re-

liable standard with which to evaluate different computer

algorithms for image segmentation. We exploit this fact to

develop a quantitative performance measure for image seg-

mentation algorithms.

There has been a limited amount of previous work evalu-

ating segmentation performance using datasets with human

observers providing the ground truth. Heath et al. [8] eval-

uated the output of different edge detectors on a subjective

quantitative scale using the criterion of ease of recogniz-

ability of objects (for human observers) in the edge images.

Closer to our work is the Sowerby image dataset that has

been used by Huang [9] and Konishi et al. [12]. This dataset

is small, not publicly available, and contains only one seg-

mentation for each image. In spite of these limitations, the

dataset has proved quite useful for work such as that of Kon-

ishi et al. who used it to evaluate the effectiveness of dif-

ferent edge filters as indicators of boundaries. We expect

that our dataset would find far wider use, by virtue of being

considerably more varied and extensive, and the fact that
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Figure 4: Distributions of the GCE (left) and LCE (right) measures

over the segmentation database. The error measures are applied to all pairs

of segmentations. The upper graphs show the error for segmentations of

the same image. The lower graphs show the error for segmentations of

different images. The spike at zero in the different-image graphs is due

to degenerate segmentations of one particular image, of which everything

else is a refinement. Clockwise from the top-left, the means are 0.11, 0.07,

0.39, 0.30.

we provide a mechanism for computing the consistency of

different segmentations.

The database that we have collected is a valuable re-

source for studying statistics of natural images. Most such

studies in the past have concentrated on first and second or-

der statistics such as the power spectrum or covariances, ei-

ther on pixel brightnesses directly or on wavelet coefficients

[10, 15, 16, 11, 12, 5, 13, 18]. We can go much further

given the additional information provided by the segmen-

tations. For instance, we can evaluate prior distributions

corresponding to the various Gestalt factors such as simi-

larity, proximity, convexity etc. and thus provide objective

justifications for the use of these cues in grouping. While

this way of thinking about the Gestalt factors was suggested

nearly 50 years ago by Brunswik [4], so far empirical mea-

surements of probability distributions have been limited to

the factor of good continuation, e.g. [2]. Another applica-

tion of the database is in studying the empirical distribution

of sizes of regions in an image. This turns out to follow a

power law, consistent with the work of Alvarez, Gousseau

and Morel [1] with a rather different definition of sizes.

This paper is organized as follows. In x 2, we describe in

detail the construction of the database of image segmenta-

tions. In x 3 we define measures for evaluating consistency

of different segmentations of an image. x 4 puts the database

to use by evaluating the performance of the Normalized cut

algorithm on the different images. Performance is evaluated

by computing the consistency of the computer segmenta-

tions with those made by human observers and comparing

that to consistency among human observers. In x 5, we find

another use for the database, namely in evaluating the eco-

logical statistics of various Gestalt grouping factors. We

conclude in x 6.

GCE LCE Ideal Measure

Figure 5: Error matrix for all image pairs, for GCE (left) and LCE

(middle). Mij corresponds to the error between segmentations i and j,

where black signifies zero error. Segmentations are sorted by image, so

segmentations of the same image are adjacent. The spurious horizontal

and vertical bands confirm that the spike in the different-image graphs of

Figure 4 are caused by degenerate segmentations of one image. The right-

most matrix shows the block-diagonal structure of the ideal error measure

applied to a flawless dataset.
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Figure 6: LCE vs. GCE for segmentations of different images (left)

and the same image (right). The dashed line x = y shows that GCE is a

stricter measure than LCE.

2. Image Segmentation Database

The first task in constructing the segmentation database

was to select a set of images. We chose 1000 representa-

tive 481x321 RGB images from the Corel image database.

This database of 40,000 images is widely used in computer

vision (e.g. [6, 7]). The criterion for selecting images was

simple: We chose images of natural scenes that contain at

least one discernible object. This criterion culls images that

are inappropriate for the task of recognition, such as pho-

tographs of reflections of neon signs on wet concrete side-

walks, or photographs of marble textures.

2.1. Segmentation Tool

In order to easily collect segmentations from a wide

range of people, we have developed a Java application that

one can use to divide an image into segments, where a seg-

ment is simply a set of pixels. This approach has several

advantages. First, anyone with Internet access can segment

images. Second, the process produces an explicit partition

of the pixels into groups (segments). Third, a server process

can dynamically assign images to users, which gives precise

control over the database content as it evolves.
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Figure 2 shows a sequence of snapshots taken from a

typical session with the segmentation tool. Each snapshot

shows two windows. The upper window is the main win-

dow of the application. It shows the image with all segments

outlined in white. The lower window in each snapshot is the

splitter window, which is used to split an existing segment

into two new segments.

Consider Figure 2(a). The main window shows two seg-

ments. The user has selected the larger one in order to split

it using the lower window. Between (a) and (b), the user

drew a contour around the leftmost two pups in the top pane

of the splitter window. This operation transfers the enclosed

pixels to the bottom pane, creating a new segment. Between

(c) and (d), the user split the two pups from each other. In

(d), there are 4 segments.

In addition to simply splitting segments, the user can

transfer pixels between any two existing segments. This

provides a tremendous amount of flexibility in the way in

which users create and define segments. The interface is

simple, yet accommodates a wide range of segmentation

styles. In less than 5 minutes, one can create a high-quality,

pixel-accurate segmentation with 10-20 segments using a

standard PC.

2.2. Experiment Setup and Protocol

It is imperative that variation among human segmenta-

tions of an image is due to different perceptual organiza-

tions of the scene, rather than aspects of the experimental

setup. In order to minimize variation due to different inter-

pretations of the task, the instructions were made intention-

ally vague in an effort to cause the subjects to break up the

scene in a “natural” manner: Divide each image into pieces,

where each piece represents a distinguished thing in the im-

age. It is important that all of the pieces have approximately

equal importance. The number of things in each image is up

to you. Something between 2 and 20 should be reasonable

for any of our images.

The initial subject group was a set of students in a

graduate-level computer vision class who were additionally

instructed to segment as naive observers. The subjects were

provided with several example segmentations of simple, un-

ambiguous images as a visual description of the task.

Images were assigned to subjects dynamically. When a

subject requested a new image, an image was chosen ran-

domly with a bias towards images that had been segmented

by some other subject. In addition, the software ensured

that (1) no subject saw the same image twice, (2) no im-

age was segmented by more than 5 people, and (3) no two

images were segmented by exactly the same set of subjects.

Figure 7: Segmentations produced by the Normalized Cuts algorithm

using both contour and texture cues. Compare with Figure 1.
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Figure 8: Distributions of the GCE (left) and LCE (right) measures for

NCuts segmentations vs. human segmentations. The error measures were

applied to pairs of segmentations, where each pair contains one NCuts and

one human segmentations (see x4 for details). The upper graphs show the

error for segmentations of the same image. For reference, the lower graphs

show the error for segmentations of different images. Clockwise from the

top-left, the means are 0.28, 0.22, 0.38, 0.31. Compare with Figure 4.

2.3. Database Status and Plans

The results in this paper were generated using our first

version of the dataset that contains 150 grayscale segmen-

tations by 10 people of 50 images, with 30 images with 3 or

more segmentations. The data collection is ongoing, and at

this time, we have 3000 segmentations by 25 people of 800

images. We aim to ultimately collect at least 4 grayscale

and 4 color segmentations of 1000 images.

3. Segmentation Error Measures

There are two reasons to develop a measure that pro-

vides an empirical comparison between two segmentations

of an image. First, we can use it to validate the segmen-

tation database by showing that segmentations of the same

image by different people are consistent. Second, we can
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Figure 9: The GCE for human vs. human (gray) and NCuts vs. human

(white) for each image for which we have � 3 human segmentations. The

LCE data is similar.

use the measure to evaluate segmentation algorithms in an

objective manner.

A potential problem for a measure of consistency be-

tween segmentations is that there is no unique segmenta-

tion of an image. For example, two people may segment an

image differently because either (1) they perceive the scene

differently, or (2) they segment at different granularities. If

two different segmentations arise from different perceptual

organizations of the scene, then it is fair to declare the seg-

mentations inconsistent. If, however, one segmentation is

simply a refinement of the other, then the error should be

small, or even zero. Figure 3 shows examples of both sim-

ple and mutual refinement from our database. We do not pe-

nalize simple refinement in our measures, since it does not

preclude identical perceptual organizations of the scene.

In addition to being tolerant to refinement, any error

measure should also be (1) independent of the coarseness

of pixelation, (2) robust to noise along region boundaries,

and (3) tolerant of different segment counts between the two

segmentations. The third point is due to the complexity of

the images: We need to be able to compare two segmenta-

tions when they have different numbers of segments. In the

remainder of this section, we present two error measures

that meet all of the aforementioned criteria. We then apply

the measures to the database of human segmentations.

3.1. Error Measure Definitions

A segmentation is simply a division of the pixels of an

image into sets. A segmentation error measure takes two

segmentations S1 and S2 as input, and produces a real-

valued output in the range [0::1℄ where zero signifies no

error.

We define a measure of error at each pixel that is tolerant

to refinement as the basis of both measures. For a given

pixel pi consider the segments in S1 and S2 that contain

that pixel. The segments are sets of pixels. If one segment

is a proper subset of the other, then the pixel lies in an area

of refinement, and the local error should be zero. If there

is no subset relationship, then the two regions overlap in an

inconsistent manner. In this case, the local error should be

non-zero. Let n denote set difference, and jxj the cardinality

of set x. If R(S; pi) is the set of pixels corresponding to the

region in segmentation S that contains pixel p i, the local

refinement error is defined as:

E(S1; S2; pi) =
jR(S1; pi)nR(S2; pi)j

jR(S1; pi)j
(1)

Note that this local error measure is not symmetric. It

encodes a measure of refinement in one direction only:

E(S1; S2; pi) is zero precisely when S1 is a refinement of

S2 at pixel pi, but not vice versa. Given this local refinement

error in each direction at each pixel, there are two natural

ways to combine the values into a error measure for the en-

tire image. Global Consistency Error (GCE) forces all local

refinements to be in the same direction. Local Consistency

Error (LCE) allows refinement in different directions in dif-

ferent parts of the image. Let n be the number of pixels:

GCE(S1; S2) =
1

n
min

(X
i

E(S1; S2; pi);

X
i

E(S2; S1; pi)

)
(2)

LCE(S1; S2) =
1

n

X
i

min
�
E(S1; S2; pi);

E(S2; S1; pi)
	

(3)

As LCE � GCE for any two segmentations, it is clear

that GCE is a tougher measure than LCE. Looking at Fig-

ure 3, GCE would tolerate the simple refinement from (c)

to (b) or (d), while LCE would also tolerate the mutual

refinement of (b) and (d). Note that since both measures

are tolerant of refinement, they are meaningful only when

comparing two segmentations with an approximately equal

number of segments. This is because there are two trivial

segmentations that achieve zero error: One pixel per seg-

ment, and one segment for the entire image. The former is

a refinement of any segmentation, and any segmentation is

a refinement of the latter.

3.2. Error Measure Validation

We apply the GCE and LCE measures to all pairs of seg-

mentations in our dataset with two goals. First, we hope to

show that given the arguably ambiguous task of segmenting

an image into an unspecified number of segments, different

people produce consistent results on each image. Second,

we hope to validate the measures by showing that the error
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between segmentations of the same image is low, while the

error between segmentations of different images is high.

Figure 4 shows the distribution of error between pairs of

human segmentations. The top graphs show the error be-

tween segmentations of the same image; the bottom graphs

show the error between segmentations of different images.

As expected, the error distribution for segmentations of the

same image shows a strong spike near zero, while the error

distribution for segmentations of different images is neither

localized nor close to zero.

We characterize the separation of the two distributions

by noting that for LCE, 5.9% of segmentation pairs lie

above 0.12 for the same image or below 0.12 for different

images. For GCE, 5.9% of pairs lie above 0.16 for the same

image or below 0.16 for different images. Note the good

behavior of both measures despite the fact that the number

of segments in each segmentation of a particular image can

vary by a factor of 10. Figure 5 shows the raw data used to

the compute the histograms.

In Figure 6, we plot LCE vs. GCE for each pair of seg-

mentations. As expected, we see (1) that GCE and LCE are

measuring similar qualities, and (2) that GCE > LCE in all

cases.

4. A Segmentation Benchmark

In this section, we use the segmentation database and er-

ror measures to evaluate the Normalized Cuts (NCuts) im-

age segmentation algorithm.

In collecting our dataset, we permitted a great deal of

flexibility in how many segments each subject created for an

image. This is desirable from the point of view of creating

an information-rich dataset. However, when comparing a

human segmentation to a computer segmentation, our mea-

sures are most meaningful when the number of segments

is approximately equal. For example, an algorithm could

thwart the benchmark by producing one segment for the

whole image, or one segment for each pixel. Due to the

tolerance of GCE and LCE to refinement, both of these de-

generate segmentations have zero error.

Since image segmentation is an ill-posed problem with-

out stating the desired granularity, we can expect any seg-

mentation algorithm to provide some sort of control over

the number of segments it produces. If our human segmen-

tations of an image contain 4, 9, and 13 segments, then we

instruct the computer algorithm to also produce segmenta-

tions with 4, 9, and 13 segments. We then compare each

computer segmentation to each human segmentation. In this

way, we can make a meaningful comparison to the human

segmentation error shown in Figure 4. In addition, we con-

sider the mean error over all images as a summary statistic

that can be used to rank different segmentation algorithms.

The NCuts algorithm [17, 14] takes a graph theoretic ap-

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P(samesegment|distance)

distance (normalized)

p
ro

b
a
b
ili

ty
 o

f 
s
a
m

e
 s

e
g
m

e
n
t

Figure 10: Proximity: The probability that two points belong to the

same segment given their distance. Distances have been scaled per image

as discussed in the text and normalized to range from 0 to 1. We sample

1000 points from each segmentation and compute all pairwise distances.

Error bars show �� intervals.

proach to the problem of image segmentation. An image

is treated as a weighted graph. Each pixel corresponds to

a node, and edge weights computed from both contour and

texture cues denote a local measure of similarity between

two pixels. NCuts segments an image by cutting this graph

into strongly connected parts. The version of NCuts de-

scribed in [14] automatically determines the number of re-

gions by splitting the graph until the cuts surpass a thresh-

old. We modified the stopping criterion to provide explicit

control over the final number of segments.

Figure 8 shows the error between NCuts segmentations

and human segmentations. In comparing this NCuts error

to the human error shown in Figure 4, we see that NCuts is

producing segmentations worse than humans, but still better

than “random.” The error distributions for segmentations of

different images (the bottom graphs in each figure) approx-

imate the performance of random segmentation. The mean

error over all segmentation pairs gives NCuts an overall er-

ror of 22% by LCE (compared to 7% for humans), and 28%

by GCE (compared to 11% for humans).

Figure 9 shows both the human error (blue) and NCuts

error (red) for each image separately. In most cases, the

human segmentations form a tight distribution near zero. In

virtually all cases, NCuts performs worse than humans, but

it fares better on some images than others. This data can be

used to find the type of images for which an algorithm has

the most difficulty.

5. Bayesian Interpretation of Gestalt Grouping

Factors

Brunswik [4] suggested that the various Gestalt factors

of grouping such as proximity, similarity, convexity, etc.

made sense because they reflected the statistics of natural

scenes. For instance, if nearby pixels are more likely to
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Figure 11: Similarity: The probability that two points belong to the

same segment given their absolute difference in intensity (256 gray levels).

We sample 1000 points from each segmentation and compute all pairwise

similarities. Error bars show �� intervals.

belong to the same region, it is justified to group them.

In computer vision, we would similarly like grouping al-

gorithms to be based on these ecological statistics. The

Bayesian framework provides a rigorous approach to ex-

ploiting this knowledge in the form of prior probability dis-

tributions. Our database enables the empirical measurement

of these distributions.

In this section, we present our measurements of the

probability distributions associated with the Gestalt cues of

proximity, similarity of intensity, and convexity of regions.

As another interesting empirical finding, we determine the

frequency distribution of region areas and show that it fol-

lows a power law.

5.1. Proximity Cues

Experiments have long shown that proximity is an im-

portant low-level cue in deciding how stimuli will be

grouped. We characterize this cue by estimating the prob-

ability that two points in an image will lie in the same re-

gion given their distance on the image plane. The results

are summarized in the form of a histogram where each

bin counts the proportion of point-pairs in a given distance

range that lie within the same segment as designated by the

human segmentor. We would like our estimate to be in-

variant to the granularity at which a particular image has

been segmented. To this end, we scale all distances byq
number of segments

image area
.

Results are show in Figure 10. As might be expected the

probability of belonging to the same group is one when the

distance is zero and decreases monotonically with increas-

ing distance.

5.2. Similarity Cues

Using a similar methodology to x5.1, we examine the

probability that two points lie in the same region given their
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Figure 12: Convexity: The distribution of the convexity of segments.

Convexity is measured as ratio of a region’s area to the area of its convex

hull yielding a number between 0 and 1. Error bars show �� intervals.

similarity. We evaluate point-wise similarity based on the

absolute difference in pixel intensity (256 gray levels). This

could be clearly be extended to make use of color or local

texture. The results are shown in Figure 11. If images of ob-

jects were uniform in intensity over the extent of the object

with some additive noise and each object in a given scene

had a unique intensity, we would expect to see a curve that

started at 1 and quickly decayed to 0. However, images of

natural objects feature variation in intensity due to texture,

shading, and lighting so the histogram we compute starts

at 0.6 and monotonically decays to 0.2. This suggests that

although similarity in intensity isn’t a perfect cue, it does

capture some useful information about group membership.

5.3. Region Convexity

One commonly posited mid-level grouping cue is the

convexity of foreground object boundaries. We capture

the notion of convexity for discrete, pixel-based regions by

measuring the ratio of a region’s area to the area of its con-

vex hull. This yields a number between zero and one where

one indicates a perfectly convex region. Since the regions

in our dataset have no labels that designate them as fore-

ground or background we are forced to look at the distribu-

tion of the convexity of all image regions. This on its own is

arguably instructive and we imagine that since there can be

many foreground groups and only a few background groups

in a given image, the distribution for only foreground re-

gions would look very similar. Figure 12 shows our results.

As expected, grouped pixels commonly form a convex re-

gion.

5.4. Region Area

The authors of [1] approach the problem of estimating

the distribution of object sizes in natural imagery by au-

tomatically finding connected components of bilevel sets

and fitting the distribution of their areas. Our results from
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Figure 13: Region Area: This log-log graph shows the distribution in

region areas. We fit a curve of the form y =
A
x�

yielding an � = 1:008.

For the purposes of fitting, we throw out those sparsely populated bins

which contain regions that are greater than 25% of the total image area.

x5.2 suggest that intensity bilevel sets are only a rough ap-

proximation to perceptual segments in the image. Figure 13

shows the distribution of region areas in our data set. We get

an excellent fit from a power law curve of the form y = A

x�

yielding an � = 1:008.

6. Summary and Conclusion

In this paper, we presented a database of natural images

segmented by human subjects along with two applications

of the dataset. First, we developed an image segmentation

benchmark by which one can objectively evaluate segmen-

tation algorithms. Second, we measured ecological statis-

tics related to Gestalt grouping factors. In time, we expect

the database to grow to cover 1000 images, with 4 human

segmentations of each image in both grayscale and color.

This data is to be made available to the community in the

hope that we can place the problem of image segmentation

on firm, quantitative ground.
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