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Abstract

We announce the creation of a database of invariant rings. This database contains a large
number of invariant rings of finite groups, mostly in the modular case. It gives information on
generators and structural properties of the invariant rings. The main purpose is to provide a
tool for researchers in invariant theory.

1 Introduction

Invariant theory of finite groups is a subject which has a large variety of applications, but also dis-
plays many open questions. This applies in particular to the modular case, where the characteristic
of the ground field divides the group order. Consequently, much of the recent research activity went
into this area (see Benson [1], Smith [16] and the references there). For a general introduction into
the invariant theory of finite groups we refer the reader to the survey article by Stanley [17], or the
book by Smith [15], which gives a problem-oriented presentation.

Research in invariant theory (and, in fact, many other areas of mathematics as well) greatly
benefits from the availability of examples. Examples provide a means to gain experience and
understanding, to find or test conjectures, search for interesting (counter-)examples, and sometimes
to prove results. In invariant theory, new algorithms and the emergence of faster computers have
made it possible to study problems in a way that would be impossible by hand calculations and
ad hoc methods. In fact, the computational aspects of invariant theory have recently enjoyed
considerable interest in their own right (as is documented by the book by Sturmfels [18] and many
more recent papers such as Derksen and Kraft [6] or Kemper [10]). With this in mind, we have
decided to assemble a collection of examples, in the form of a database, and to provide it to the public
as a research tool. All computations were done in the computer algebra system Magma (Bosma
et al. [2]), which has an efficient package for invariant theory (see Kemper and Steel [12]). We used
the Sun computers at the IWR in Heidelberg. Currently the database contains 5922 examples,
almost all modular, and takes about 100 Mbytes of storage space. The database, together with
software for the retrieval of data and documentation, can be downloaded via anonymous ftp from
the site

ftp.iwr.uni-heidelberg.de

in the directory

/pub/kemper/DataBase/

The database runs with Unix operating systems. More specifically, we have tested the database
with Linux and Solaris operating systems.

We ask users to quote this paper when they write articles on research which involved the
database.
∗This project was supported by the Deutsche Forschungsgemeinschaft under the project Ma 1062/8-2 (“Invari-

antentheorie endlicher Gruppen”).
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2 Concepts of the database

Retrieval functions. To use the database, one cannot look at all the several thousand examples
with the “naked idea”. Instead, significant examples must be retrieved by systematic searches. For
example, a user might want to

• see examples where Noether’s degree bound [13] is violated (i.e., the maximal degree of a
generating invariant exceeds the group order |G|),

• know whether in all examples the Hilbert ideal (i.e., the ideal in the polynomial ring K[V ]
generated by all invariants of positive degree) is generated by homogeneous elements of degree
at most |G|,

• find the invariant ring of some particular group, or of a group which is conjugate to it.

It should be clear from these examples that there is no way to define a fixed catalogue of criteria
for which users can search the database. Therefore it seemed impossible to us to implement our
retrieval functions within some standard database program. In fact, the only practical way how such
criteria can be formulated in a language understandable to a computer is within some computer
algebra system. Moreover, a user should be able to manipulate the data retrieved from the database
and not just look at it. Therefore we have decided to base our retrieval functions on the computer
algebra systems Magma (Bosma et al. [2]) and Maple (Char et al. [4]). There is the choice to use
either one of these systems (which of course must be available). We provide access functions that
take a boolean-valued function in Magma or Maple as an argument. Users can define search criteria
with such functions. After a search has been done, the examples which meet the search criterion
can be loaded into Magma or Maple, respectively, for closer examination. In the following section
we present an example session which shows how this works. What made it easier for us to abandon
the idea of using standard database software is the fact that we are dealing with a relatively small
number of items, but the data stored for each item is quite large.

Incomplete data. A further problem that we had to find a way to handle is the inherent difficulty
of computations in invariant theory. The algorithms require the computation of Gröbner bases and
the solution of large systems of linear equations (see Kemper [9], Kemper and Steel [12]). Therefore
there are examples in the database where not all information could be computed. For example,
it may happen that for some invariant ring the primary invariants could be computed, but the
secondary invariants were found to be out of reach. We also used an algorithm, found by Hughes
and Kemper [8], which for groups of order divisible by p := char(K) but not by p2 calculates the
Hilbert series and the depth of the invariant ring with a computational cost that is similar to the
evaluation of Molien’s formula. Thus for (almost) all groups in the database of order not divisible
by p2 we have the Hilbert series, depth, Cohen-Macaulay property, and the Gorenstein property of
the invariant ring, although in many cases not even a set of primary invariants is known. We did not
want to exclude such examples from the database. As a consequence, the retrieval functions have
to be able to deal with incomplete information. For example, a search function supplied by a user
might ask something about secondary invariants. Such a search function, when applied to a ring
where the secondary invariants are not known, should not return “true” or “false”, but “unknown”.
This feature was especially hard to implement in Magma, where there is no traperror mechanism.

Computational difficulty. The computational difficulty also led to some problems in the cre-
ation of the database. Usually when one performs difficult computations on a computer, one has
the computer run for a while and at some point when patience runs out, one chooses to interrupt
the computation and tries a different method. Obviously this approach is not feasible for computing
several thousand of examples. Instead, we implemented a scheme where different steps (or groups of
steps) in the computation of each invariant ring are performed by different Magma processes which
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are run with a time and memory limit. If such a process terminates within the limit, it stores its
results to a file for subsequent use in later steps. Otherwise, the invariant ring is transferred to a
“problem queue”, where it can then be worked on by ad hoc or semi-automatic methods.

Efficient information transfer. When running the retrieval functions, information from the
database is automatically read into Magma or Maple in order to apply the search function to the
invariant rings. For reasons of efficiency it is important to transfer only that part of the informa-
tion about each invariant ring into Magma or Maple which is actually needed for the evaluation
of the search function. To decide what the relevant data is, one might subject the search func-
tion to a syntax analysis. Since this seemed impractical to us, we chose to implement a technique
for dynamically determining the required information. More precisely, information that is found
to be missing for the evaluation of the search function on some ring is reloaded for this ring, and
then included into the list of necessary information for subsequent evaluations of the search function.

We believe that the specific difficulties we encountered in this project generalize to many other
mathematical databases, and we hope that the concepts we developed will also be applicable in
other contexts as well.

3 An example session

After the database has been downloaded, it requires a minimal amount of installation. For details
see the documentation supplied with the database. Then the retrieval functions in Magma or Maple
can be used. We present an example session in Magma, and remark that the usage in Maple is
for the most part analogous. We start by calling the executable InvSearch. This starts Magma,
reads in the retrieval functions and sets up the communication with the database. In the sequel we
assume some basic familiarity with Magma.

(a) As a first example, suppose we are interested in the invariants of the group G = SO3(F5) in
the natural representation. The chances of finding the invariants of G in the database are
much higher if we search for groups which are conjugate to G in GL3(F5), rather than only
for G itself. A test for this is provided by the function IsGroupConjugateTo, which is part
of the retrieval functions. So we type:

> G := SO(3,5);
> T,F,U := SearchInvariants(func<R | IsGroupConjugateTo(R,G)>);
> T;
[ 10077 ]

The search through the database took 75 seconds. The function SearchInvariants is called
with a boolean-valued function (the “search function”) as argument. This function has an
invariant ring R as input and returns true if R is the invariant ring of a group conjugate to
G. SearchInvariants returns three lists, T,F, and U, which stand for the invariant rings for
which the search function yielded true, false, or could not be evaluated, respectively. Thus
we have found exactly one invariant ring of a group conjugate to G. Every invariant ring is
identified by a unique integer, its ExampleID. These ExampleID’s are listed in T,F, and U. So
far, no invariant ring has been loaded into Magma. We load the one we are interested in now,
and look at some of its properties.

> R := RequestInvariants(T[1]);
> DegreePrimaries(R);
[ 2, 6, 20 ]
> DegreeSecondaries(R);
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[ 0, 25 ]
> Hypersurface(R);
true

(b) Next we want to test the conjecture (Conjecture 1 below) that if K[V ]G is Cohen-Macaulay,
then Noether’s degree bound holds.

> CM,nCM,U := SearchInvariants(func<R | CohenMacaulay(R)>);
> #CM,#nCM,#U;
3330 1116 1476

This search took 19 seconds. So we have 3330 examples of Cohen-Macaulay invariant rings,
1116 examples of non-Cohen-Macaulay rings, and 1476 examples where the Cohen-Macaulay
property could not be evaluated. Now we wish to single out those examples which satisfy
Noether’s bound from the Cohen-Macaulay invariant rings. This can be done by giving a
search range as a second argument to SearchInvariants. The minimal number k such that
an invariant ring R can be generated by invariants of degree at most k is given by the function
Beta(R).

> NB,nNB,U := SearchInvariants(func<R | Beta(R) le GroupOrder(R)>,CM);
> #NB,#nNB,#U;
3105 0 225

Thus the conjecture could be verified in 3105 cases, and there is no counter-example.

4 Sources of examples and attributes stored

All finite groups with non-cyclic Sylow p-subgroup (p = char(K)) have an infinite number of non-
isomorphic indecomposable representations over K. Thus there is no way in which the repre-
sentations covered in our database can reach any level of comprehensiveness, and some degree of
arbitrariness is therefore unavoidable in the choice of what linear groups we included in the database.
This also means that for a user it will be a matter of luck if an invariant ring he or she is interested
in will be contained in the database. In order to obtain a selection of examples which is not too
biased in one direction or another, we decided to take our examples from the following sources:

(1) all subgroups of GL4(F2),

(2) all 2-subgroups of GL5(F2),

(3) all 3-subgroups of GL4(F3),

(4) all subgroups of GL4(F3) which can be generated by at most two elements,

(5) the exceptional irreducible complex reflection groups in characteristic 0, according to the
classification by Shephard and Todd [14] (Here the generating invariants for the groups with
numbers 36 and 37 (E7 and E8) are not included in the data base because of storage problems,
but they can be obtained from the authors upon request),

(6) a number of miscellaneous examples that seemed of special interest to us, including some small
representations of quasi-simple groups,

(7) an assortment of representations up to degree 7 of groups of small order.



A Database of Invariant Rings 5

The groups under (7) were produced as follows. First we used the SmallGroups library in Magma
to get some groups of small order. Then for each group and each prime p dividing the group order,
we produced many “random” representations over Fpi (1 ≤ i ≤ 3) by forming tensor products,
symmetric powers, Jacobson radicals and other standard operations of representations we already
had, and then extracting indecomposable representations from these with the Meat Axe. Since
decomposable representations are also of considerable interest in invariant theory, we formed direct
sums of the representations obtained in this way of total degree at most 7.

It should also be of interest what information we store for each invariant ring. The following
is a partial list of attributes that we store for an invariant ring K[V ]G, wherever they could be
computed.

(1) The ground field K,

(2) the dimension of V ,

(3) generators of G,

(4) some properties of G, such as the group order and whether G is a p-group (p = char(K)) or
a solvable group,

(5) some properties of the representation V , such as irreduciblility, or whether G acts as a
(pseudo-)reflection group,

(6) primary invariants,

(7) secondary invariants,

(8) fundamental invariants, i.e., a minimal system of generators of K[V ]G,

(9) syzygies, i.e., algebraic relations between the fundamental invariants,

(10) “module-syzygies”, i.e., linear relations between the secondary invariants over the subalgebra
generated by the primary invariants,

(11) the depth of K[V ]G,

(12) the Hilbert series,

(13) the Cohen-Macaulay and Gorenstein properties, and whether K[V ]G is a complete intersec-
tion, a hypersurface, or a polynomial ring.

5 Some conjectures

We conclude this note by adding a few conjectures which have all been confirmed by the database.
In the following, G ≤ GL(V ) is a finite linear group in dimension n := dim(V ).

Conjecture 1. If K[V ]G is Cohen-Macaulay, then Noether’s degree bound holds, i.e., K[V ]G is
generated by homogeneous invariants of degrees at most |G|.

This conjecture generalizes the fact that Noether’s degree bound holds in the non-modular case,
which was recently proved in full generality by Fleischmann [7]. We have 3330 examples of Cohen-
Macaulay invariant rings in the database. Of these, 3105 are known to satisfy Noether’s bound,
and for the rest generating invariants are not known. On the other hand, 133 examples from the
database violate Noether’s bound. Another generalization is contained in the following conjecture.
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Conjecture 2 (Derksen and Kemper [5, Conjecture 3.7.6]). Let I ⊂ K[V ] be the “Hilbert ideal”,
i.e., the ideal in the polynomial ring K[V ] generated by all homogeneous invariants of positive degree.
Then I is generated (as an ideal) by homogeneous elements of degree at most |G|.

Clearly Conjecture 2 holds if Noether’s degree bound is satisfied. But we also verified it for all
133 examples where Noether’s bound fails.

Conjecture 3 (Derksen, see Kemper [11]). Let f1, . . . , fn ∈ K[V ]G be primary invariants of de-
grees d1, . . . , dn. Then the degrees of the (corresponding) secondary invariants are bounded from
above by d1 + · · ·+ dn − n.

Conjecture 3 was proved in the Cohen-Macaulay case by Broer [3]. The secondary invariants
are only known for 771 of the 1116 non-Cohen-Macaulay invariant rings in the database. In all 771
examples, Conjecture 3 holds.

Conjecture 4 (Kemper [11, Conjecture 22]). The degree of the Hilbert series H(K[V ]G, t) (as a
rational function in C(t)) is at most −n.

Conjecture 4 is true in the Cohen-Macaulay case, since in this case it is equivalent to Con-
jecture 3. We verified the conjecture for all 1116 invariant rings in the database which are not
Cohen-Macaulay.

Conjecture 5. If K[V ]G is Cohen-Macaulay and G ≤ SL(V ), then K[V ]G is Gorenstein.

Conjecture 5 is true in the non-modular case by a result of Watanabe [19, 20]. 1916 examples
in our database satisfy the hypothesis of Conjecture 5, and all are Gorenstein. On the other hand,
we have 893 examples which are Cohen-Macaulay but not Gorenstein (where the groups are not
contained in SL(V ), of course).
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