A Database to Support Development
And Evaluation of Intelligent Patient Monitoring
by

Christine Lieu

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degrees of
Bachelor of Science in Electrical [Computer] Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology MASSACHUSETTS INSTIUTE

OF TECHNOLOGY

May 24, 2002
JUL 312002
Copyright 2002 Christine Lieu. All rights reserved.

LIBRARIES
-y O
Bf"*‘(“t:!‘

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis
and to grant others the right to do so.

Author_ - ,
Department of Electrical Engineering and Computer Science
May 24, 2002
Certified
by
Roger G. Mark, M.D., Ph.D.
Distinguished Professor in Health Sciences and Technology, HST
Professor of Electrical and Bioengineering,
Department of Electrical Engineering and Computer Science, MIT
Thesis Supervisor
Accepted
by

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

A Database to Support Development
And Evaluation of Intelligent Intensive Care Monitoring

By Christine Lieu

Submitted to the Department of Electrical Engineering and Computer Science
May 24, 2002

In Partial Fulfillment of the Requirements for the Degree of
Bachelor of Science in Computer Science and Engineering
And Master of Engineering in Electrical Engineering and Computer Science

Abstract

Advances in medical observation equipment have allowed hospital caregivers to
collect a wealth of information about a patient’s condition. Automated data collection
systems make it easy to store multiple clinical notes, lab results, and physiological
waveforms electronically. Organizing this data and making it useful to researchers is
a complex problem that requires a solution that is easily accessible, intuitive to use,
and versatile. The major aim of this project is to develop a framework for the
automated acquisition of patient data from clinical information systems and patient
monitors, and the subsequent storage, indexing, and presentation of patient records
using web and relational database technologies.

Thesis Supervisor: Roger G. Mark, M.D., Ph.D.

Distinguished Professor in Health Sciences and Technology, HST
Professor of Electrical and Bioengineering,

Department of Electrical Engineering and Computer Science, MIT

1 Problem Statement

Researchers in intelligent patient monitoring need large amounts of data to test and
validate hypotheses about patient care. The data test set must be sufficiently large
to ensure that results are not the artifacts of a specific group of patients, and that
hypotheses can be applied to the general patient population. One scientist notes that
data collection is one of the most complex and resource-intensive stages in clinical
research. He writes, “One of the difficulties facing researchers in clinical informatics
has been ‘getting the data in.’ In particular, the costs of acquiring detailed and

structured data from the clinical care process have been daunting.”*

Advances in patient care monitoring have allowed physicians to track an Intensive
Care Unit (ICU) patient’s physiological state more closely and with greater accuracy.
Modern computerized clinical information systems can take information from multiple
data sources and store it in a central location. To be useful to researchers, the data
collected from patient monitors and clinical information systems must be indexed
and presented in a user-friendly interface. It should be searchable so that

researchers studying a specific problem or pattern can locate relevant records.

This paper describes a utility, called MIMIC, which uses a relational database to
organize real patient data and makes it widely available to the general research
community. The MIMIC (Multi-parameter Intelligent Monitoring for Intensive Care)
database takes advantage of the data collection systems installed at a partner
hospital to collect large numbers of real patient records. This utility also organizes
the data and makes it searchable on multiple dimensions and provides an intuitive

user interface to view and browse data.

2 Background

Our partner hospital uses the CareVue Clinical Information System, developed by
Philips Medical Systems?, to store clinical data in its ICU units. Each patient’s room
and nursing station is equipped with a CareVue terminal where nurses may enter
notes, medications information, fluid balances, and more. CareVue also stores and
collects data from other sources, such as bedside monitors and results from lab
tests. The data collected by CareVue is also stored in the hospital’s Information

Support Mart (ISM), which is built around Oracle database technology.

Waveform Waveform
Collection =] part of
System © MIMIC

Waveform
Data

s

CareVue
Terminal

I

ICU Room

CareVue
Central
Repository

1—»| wmmmic

Figure 1 Data Collection at the Partner Hospital
The data in the ISM includes nursing notes, medication dosages and durations, fluid
balances, and vital signs. Real-time waveform data, such as blood pressure, pulse
oximetry, and ECG signals, are recorded in bedside monitors and collected in a

separate system that is not connected to CareVue.

We have access to the data stored in the ISM and the data collected in the waveform

collection system. The CareVue system ISM system is presently connected to 42 ICU

beds, which in a year can collect more than 15,000 patient days’ of records.

3 Current Research

There are currently several alternate solutions to the problem of collecting and
organizing real patient data for research. Many are targeted toward solving specific

research problems, while others have less complete data or are not yet published.

3.1 Previous Solutions
MIMIC13 is a small-scale set of records that provides some support for research in

intelligent patient monitoring for ICU patients. MIMIC1 was developed by George
Moody and Roger Mark and is stored in Microsoft Access and contains data from the
same partner hospital’s ICU. It contains only about 100 records and was entered
manually from paper records, leaving room for inconsistencies and errors. MIMIC1
contains both waveforms and clinical data. It provides search capabilities and a neat
user interface but is severely limited by the lack of automated data collection.

MIMIC1 is the precursor to the solution described in this paper.

3.2 Other Databases
Clinical Informatics is an exciting area that has made many advances in recent

years. This section describes other available databases of clinical data.

One interesting solution being explored by the Medical Informatics group at Columbia
University is to create an online support system based on a set of common clinical
questions.

“The aim of this study was to examine a method for creating an online support system for
developers of a clinical information system (CIS) from existing documentation and
question-answer exchanges (Q-A’s). A question answer exchange consisted of a user’s
question and an expert’s corresponding answer. The study was motivated by the need to
improve online support systems for system developers using locally developed programs
within complex information systems. “*

This is an innovative approach to a similar problem but lacks the flexibility of being

able to answer questions not included in a pre-determined set of frequently asked

questions.

The IMPROVE (Improving Control of Patient Status in Critical Care)® database was
constructed from records from intensive care patients in Kuopio, Finland. IMPROVE
stores comprehensive records, including ECG waveforms, hemodynamics, respiratory
signals, lab tests, and annotations for 59 patients. For this project, a “physician
observed the patient state and monitored signals online and annotated any changes
in patient state or possible external causes for artifacts.”” This provides useful
information that would be missing if annotations were made afterwards, but requires
extra effort by clinicians. IMPACT stores detailed records for ICU patients, but needs

more records to be useful in clinical research.

There are many clinical databases that have been developed to support research in a
specific problem. The HIV Information Infrastructure Program is developing a Central
Research Database (CRD) to record clinical data on HIV patients. The CRD will
“provide HIV researchers with access to real-time clinical data on a large number of
patients, creating unprecedented research opportunities.” ® The CRD provides are

similar to but are targeted toward HIV and AIDS patients.

There are several other databases similar to the CRD and the FAQ. The Penguin
project’ at Stanford is a database intended to support biomedical applications for
experimental data. The University of Virginia is developing an Echocardiogram data
collection system® to build up a database of records to support research) Duke

University’s Clinical Informatics group is working on TMR (The Medical Record)® that

provides a solution to the problem of organizing and indexing patient records, but it
is in early stages of development. The MGH/MF Waveform Database® is a collection
of ECG and hemodynamic waveforms, annotations, and relevant clinical data that
was collected from the Massachusetts General Hospital. The MGH project is only a

waveform database, so it does not process trends or contain other supporting data.

4 Solution

Our solution distinguishes itself from other currently available databases and search
engines by providing real high-quality patient data that is searchable through a
general-purpose search engine. It is different from other databases that were
created for research in only a specific problem, or lack search capabilities or data

collection facilities.

MIMIC is a utility that uses relational database technology to organize and index
large amounts of multidimensional patient data. The MIMIC RDBMS (Relational
Database Management System) is used to administer this database and create table
definitions. Data can be downloaded from the hospital’s ISM and entered into the
MIMIC database. Once the MIMIC database is populated, the MIMIC Application
dynamically generates HTML pages that allow any researcher with a web browser to
access the records stored in MIMIC. The MIMIC application also provides search

capabilities on multiple dimensions and presents records in an intuitive interface.

The use of real patient data from the partner hospital and the development of this
project were approved by the Institutional Review Board (IRB), a review board for
clinical research studies. Since it is not feasible or convenient to request patient

consent for all data collected in the CareVue system, approval to archive the data

was contingent on removal of all patient identifiers from the database. The de-

identification measures are described in detail in Section 12.2.

5 Design Requirements

To useful in a research context, MIMIC needs to scale to large numbers of records. It
should take advantage of data collection resources at the partner hospital as a
source of data. The following sections describe other design ideals and requirements

specified for this project.

5.1 Provide Easy Access
MIMIC should be easily accessible to researchers. Scientists seeking real patient data

should not have to download the entire database or install specialized software to
view records. Instead, MIMIC is intended to be immediately available to any
researcher, free of charge, and have the flexibility to be useful for a wide range of

research problems.

5.2 Protect Patient Confidentiality
The partner hospital allows MIMIC access to its ISM under the condition that all data

in MIMIC must be sanitized to protect patient identities. “"The Hippocratic oath
incorporated the principle of medical confidentiality into doctors’ professional
ethics.”® MIMIC has the responsibility of de-identifying the data so that patients are
not identifiable by the records available in the MIMIC database. Patient records often
contain identifiers such as names, phone number, Social Security Number (SSN),
Medical Record Number (MRN). These must be removed from patient records before

they are added to MIMIC.

5.3 Data Accuracy
MIMIC must assure that data is downloaded and displayed accurately. “If information

is corrupted, clinicians may take incorrect decisions which harm or even kill patients.

If information is unreliable, in the sense that it could have been corrupted, then its

value as a basis for clinical decisions is diminished.”*° In order to be useful, the data
in MIMIC must be accurate. Because the data in MIMIC is collected from the primary
source, a higher level of accuracy is achieved than databases that require

transcription from paper records.

6 Overall Architecture

The MIMIC utility

consists of two major

parts: the RDBMS

MIMIC
Database

and the application. (Postgre)

The MIMIC server

refers to the Machine ' =:=«==«msmcmemsmemimemimmememmem rromme fn o b e S

on which these parts

Hospital
ISM

the hospital’s ISM is (Oracle)

1
1
)
reside. MIMIC utilizes !
1
1
1
I

Text data files

the source of data. S EETTNE TR

There are also other
Figure 2: Architecture of MIMIC
minor components to

MIMIC and modules that support MIMIC, that select, de-identify, parse, and upload

new data. These modules are described in more detail in the following sections.

7 Tools

A Postgres relational database was chosen for the MIMIC database because it is
open-source and free of charge. AOLServer is used for the MIMIC Application
because it has been successfully used with Postgres to create large-scale database-
based web sites!!. The Tcl scripting language is used to dynamically generate HTML

pages and interface the web server and database.

USING.THE DATA _

8 Data Collection

As described in Section 2, the partner hospital has 42 Intensive Care Unit (ICU) beds
in that are presently connected to the CareVue system. Nursing notes, medications,
fluid input and output, updates to patient charts, lab results, and more are stored in
the CareVue System. Waveforms such as ECGs, blood pressure, and pulse oximetry
are stored in a separate waveform collection system. MIMIC downloads clinical data
from the hospital ISM and stores it in a new database, the MIMIC database.
Waveform data is downloaded from the waveform collection system at the hospital

and stored in a separate database, which is the waveform counterpart to MIMIC.

Waveform Waveform

Collection s part of
System =

— !

CareVue

‘. Research Lab I

[———

Figure 3 MIMIC and Data Collection
In the future, these two projects will be merged to create a unified utility to view and

search through clinical and waveform data.

9 Types of Users

Two classes of users will interact with MIMIC. Regular users include normal
researchers who are looking for interesting data to support their research.
Administrators will generally have some technical knowledge, be familiar with the
Administrator’'s manual for MIMIC (see Appendix E) and have administrative
privileges on the MIMIC Server. Administrators have access to the MIMIC RDBMS

and are able to upload new data.

10

10 MIMIC RDBMS

The MIMIC RDMS allows administrators to create,

MIMIC
Database
(Postgres)

update, and administer the Postgres relational

database that stores records for MIMIC. It provides
a user interface to access the database without Figure 4 The MIMIC RDBMS
requiring the user to know SQL or specific data

models. The MIMIC RDMS itself consists of a few metadata tables that store the table
definitions and a set of Tcl pages that modify and display table definitions. The

complete data models for these metadata tables appear in Appendix A

10.1 Managing Tables
The MIMIC RDMS allows users to define tables and columns within tables and specify

how they are used and displayed. Users can specify the database data type for the
entry, i.e. integer or varchar(100). The field for extra_sgl can be used to
specify whether this column references another table. An order sort key is used to
order the elements in a table. Administrators can also specify whether the column

should be included in the text search, and whether the column should be hidden.

Once the tables are defined, users can use the MIMIC RDMS to generate SQL CREATE
TABLE and DROP TABLE statements. These scripts can be cut and pasted into
Postgres to perform these operations. This process is described in step-by-step detail

in the Administrator’'s Manual in Appendix E.

11

u— m:ﬂmmmx el

Add an Element to test_table SQL Create Table siatement for test_table
Please enter the following fields descnbmg an element (column) of test_table You may cut and paste the followmng to create the test_table table.
Colems —— i prcreate teble d_charcitems |
N itemid numeric,
_— iabel varchar(110),
P{IF” EE— categoryl wvarchar (32),
Name ' categoryd varchar (32) ,
catagory) varchar (32),
Abstract te. "t=xt” or “shorttext’ category4 verehar (32),
Datatype “boclean" "user” categorys varchar (32),
Po categorys varchar (100
Data type 1. varchar(200)" ‘mieger” L&
Oracle T e = create table test_table |
Datatype 1¢ "varchar(200)" “mteger one_column varchar (100),
1

T T — PR l;lmt.hu_l:c wa integer
Statemen i (one',two)'
KD':' e 1" for first cohama = O
Entry | E
Explanation | ol
Inchade in
Text Semrch ~ 7% 20

B o
o I Ay Computmr v &) owre | By Computr 3

Figure 5 Creating Table Definitions

10.1.1 MIMIC Table Definitions
There are currently 34 table definitions entered into the MIMIC RDBMS. These are

based on the CareVue ISM data models. There are slight differences between the
data types defined in ISM and those used for MIMIC due to differences in Postgres
and Oracle. The values entered for these tables can be found in Appendix B.

The ISM classifies tables into two types: dimension tables and fact tables.
Dimension tables “provide details around the who, what, where, and how of the
data.”*? For example, the d_patients table contains the patient’s sex, dob, and a
database-generated pid (patient ID). Other tables that chart patient data will contain

a value for the pid of the patient.

Fact tables are used to “contain the raw data charted in <the> CareVue system.
These properties contain the actual values being charted. The fact table also contains
other properties which point to dimension tables.” In general, dimension tables are
used to support fact tables and fact tables contain patient data. MIMIC stores both

types of tables.

172

10.2 Managing Indexes
The MIMIC RDMS also includes a module to create and modify table indexes. SQL

indexes are used to improve the performance of common queries. Indexes can be
created on a column or a collection of columns in a table based on the structure and
usage of data. Users are able to use the MIMIC RDMS to define indexes and generate
SQL CREATE INDEX and DROP INDEX statements. A list of indexes created for MIMIC

tables can be found in Appendix C.

10.3 Creating Views
A SQL view is used to provide an additional layer of abstraction between the way

data is presented and its underlying data structures. MIMIC uses views to present
data in a form that is intuitive to the user. For instance, tables that use an Item ID to
reference a value in a dimension table will contain numerical values. However, the
view created for this table (named view_for_table_name in MIMIC) will replace Item
Ids with their corresponding text. Views are automatically generated based on table

definitions and created and dropped at the same time as tables.

Postgres does not support materialized views, but their capability is imitated through
creating of tables that act as views. When new data is entered into mimic, these

table views are dropped and re-created to assure that new data is included.

cha?ttlma ioitem_id amount
10/1/2001 1:00 36 42 100 mg IV Drip 1 936
10/1/2001 1:00 36 42 100 mg IV Drip 1 1092
10/1/2001 1:00 36 mg IV Drip 2 1759

itemid label cuid unitname
36 Morphine Sulfate D5W 100.0ml + 1 MICU-A
100mg Morphine 2 SICU
42 Sulfate
charttime itemid ioitem_id amount |dose_units
D5W 100.0ml +
100mg Morphine
10/1/2001 1:00| Morphine Sulfate Sulfate 100 mg IV Drip| MICU-A| 936
D5W 100.0ml +
100mg Morphine
10/1/2001 1:00| Morphine Sulfate Sulfate 100 mg IV Drip|MICU-A | 1092
D5W 100.0ml +
100mg Morphine
10/1/2001 1:00 | Morphine Sulfate Sulfate 100 mg IV Drip| MICU-A | 1759

Figure 6 Sample View Created for the Additives Table

10.4 More Metadata
In addition to the metadata defined in the table creation process, the MIMIC RDMS

also uses other metadata for managing and displaying tables.

10.4.1 Display Keys
A Display Key for a table is the column that should be used as a label for this table.

In some views where only one column for a table is displayed, this label is used. For
example, in the d_meditems table, the label is the display key. Other tables will

reference the d_meditems table. When it does, the label for d_meditems is used to

display that value.

10.4.2 Time Keys
Time Keys are used to select and order data. These are generally columns with the

timestamp data type. Each fact table is ordered by a time key so that results can be

displayed in chronological order.

14

10.4.3 Date Keys
Date Keys are also used to select and order data. These are columns with integers

that denote which day the item was stored. These date keys reference the d_days
table, which has entries for every day from January 1, 1970 to December 30, 2030.

Date keys are helpful in finding records for a specific day.

10.4.4 Menu Keys
Menu Keys are used in displaying data in a menu fashion. Administrators can

specify a column for each table and whether this menu key should be visible. This
controls the menus that are displayed to normal users. For instance, the Total
Balance Events table has Item ID as its menu key. This means that the values of this
column are available as menu options. One value for an Item ID is ‘24 Total Out.’ A
user could click on this item to view only entries in the column with that menu value.
For this example, the result would be a table of only ‘24 Total Out’ entries. Figure 13

shows and example of a menu for a table.

Current values for the keys described above can be found in Appendix D. These can
be modified and managed using the key management module in

/server_path/admin/mimic/keys.

11 Data Extraction and Migration

This section describes the process of obtaining new data from the hospital system for
upload to MIMIC. MIMIC uses a simple ETL (extract, transform, and load)

architecture to add new data to the database.

11.1 Connecting via CareWeb
We obtain access to the hospital’s data collection system by connecting remotely via

a virtual private network (VPN). In this way we are able to access the hospital’s ISM

without having to be on-site. MIMIC contains records only for those patients who

15

have been discharged from the ICU, to assure that each record is a complete picture

of a patient’s stay.

11.2 Choosing Records for Download
Data is chosen to be included in MIMIC based on available waveform data. Another

project, the waveform counterpart to MIMIC, computes wavelet coefficients for
analysis and trending. MIMIC is intended to complement that project by organizing
clinical records for the patients with corresponding waveforms. Data is chosen to be

included in MIMIC based on the waveform data that is collected and processed.

11.3 Extracting Data
To extract data from the hospital system, a user needs administrative privileges on

MIMIC, a web browser (such as Netscape), access to the MIMIC Server, access to the
hospital ISM (Oracle), and a list of patients. The list of patients should be in the
form:

case_id|last_name|first|name|MRN

The MRN is optional. An example appears beiow.

3551 | LADEN | JOSEPH |

3549 | STEELE | REMINGTON | 12428752
3546 | FIELDS | ANDREW |

3541 | COLE | KENNETH |

3542 | PIERFOR | ANTHONY |

3545 | YOUSEFFIAN | THOMAS | 35408266
3564 | WALDEN | LAMAR |

3565 | GARCIA | ANDY

This file is then uploaded in the data update page to generate a script to extract
patient IDs for these patients. Patient IDs are integers used in the ISM as private
keys for each patient. Patient IDs are not associated with MRN or any other

identifying information for the patient and are only used internally.

With this list of Patient IDs, another script is run on the hospitals Oracle system to

extract data for these patients.

11.4 Reading from the Legacy Format
Postgres and Oracle are largely similar, but have a few

differences with respect to data types and how values Connectvia § Hospital
CareWeb , ISM
(Oracle

are formatted. MIMIC uses Oracle’s formatting

functions to select data in a format that Postgres can

recognize, based on metadata from table definitions.

For instance, Oracle has one data type for storing

dates, date. The default format for selecting the date Figure 7 Downloading Data
from the Hospital ISM

data type returns a string as ‘YYYY-MM-DD." MIMIC

tables are largely concerned with dates that are associated with times that an event

was charted and use the timestamp type to store these dates. To extract the full

timestamp of a date column in Oracle, we can formulate the select statement to

select the column as a full timestamp. A similar approach can be applied to other

data types to obtain data in the desired format.

Data is downloaded into a plain text file, which takes more time than simply dumping
tables from Oracle, but allows more flexibility in choosing only desired records. This
also prevents having to convert from an Oracle format to one that Postgres can

recognize.

1102|2001-07-18 22:00:00[2001-07-19 18:42:00|27|1|1242] ||
1102|2001-08-30 00:00:00|2001-09-09 23:00:00|27|1|15780]| | i
1102|2001-09-24 14:00:00|2001-10-05 21:56:00|27|1|16316]| | 1
1102|2001-10-10 23:00:00|2001-11-01 11:10:00|27|1|30970]| | L
1102|2001-07-18 22:00:00|2001-07-19 18:42:00|31|1|1242]||
1102|2001-08-30 00:00:00|2001-09-09 23:00:00|31|1|15780]| |
1102|2001-09-24 14:00:00|2001-10-05 21:56:00|31|1|16316] |

N

1102|2001-10-10 23:00:00|2001-11-01 11:10:00|31|1|30970

0|1
|o]
|o]
|o]
o)1
|o]1
|o]1
lo]1
Figure 8 Sample Text Data File
The output is saved as .csv (comma spaced values) files that can later be parsed and

inserted into the MIMIC database. A sample of one of these files appears in Figure 8.

This process also allows us to perform some preliminary de-identification of the data,

17

which is described more in Section 12.2.

11.5 Migration
Since the files containing the data for the new records are large (75 MB for 100

patients), we use ftp to transfer them to the local server before parsing and inserting
into the MIIMC database. The text format of the files avoids compatibility issues with
versions of Oracle or Postgres by avoiding proprietary or database-specified formats.
The data extraction script is generated each time new data is requested so that

updates to data models (table definitions) do not disrupt the data migration process.

12 Adding New Data

Once the data is selected and downloaded from the hospital ISM and written to text

files, these files must be uploaded to the MIMIC database.

12.1 Uploading New Data

When these text files are transferred to the local system, they are ready to be

parsed and entered into the MIMIC

MIMIC Server
database. The administrator specifies

MIMIC
Database

the location of the data files using the (Postgres)

data update page located at

/server_path/admin/mimic/data/.

Text data files

Fi; 9 Uploading New Data to MIMIC
The MIMIC server then searches for a *gure = Lpioading ew Bata fo

.csv file for each table defined in its data model. If a table_name.csv file exists, the
indexes for that table are dropped in the database to speed the insertion of new
data. More about index management can be found in the Administrator’s Manual in
Appendix C. MIMIC reads the text files and creates new files that are formatted

according to the Postgres specification by getting rid of extraneous white space,

18

formatting null values, and putting each row on a separate line. The newly formatted
file overwrites the original file. Once each file is formatted, MIMIC uses a ‘COPY’
statement to add that data to the corresponding table. The indexes for this table are
re-created and the update for this table is complete. This process is repeated for

each table defined in the MIMIC RDBMS.

12.2 De-Identification
Part of the de-identification process is built into the data migration process. Much of

the confidential patient information is simply not selected to be in the data files, so
fields such as patient name and caregiver name are not included in the download.

They are part of the hospital’s ISM, but not defined for MIMIC.

Another way to protect patient identities is by using a unique key called a patient ID

to identify each patient.
“Unique Patient Identifier eliminates the need for the repetitive use and disclosure of an
individual's personal identification information (i.e. name, age, sex, race, marital status,
place of residence, etc.) for routine internal and external communications (e.g. orders,
results, medication, consultation, etc.) and protects the privacy of the individual. It helps
preserve the patient anonymity while facilitating communication and information
sharing.” "

The pid (patient ID) is assigned by the ISM. New patient IDs are assigned for each

new admission, even for the same patient. MIMIC uses a Case ID to identify patients.

Each patient is assigned a Case ID, and the Case ID is reused for repeat admissions.

The second line of defense for patient de-identification uses a function to replace
patient names before writing the data to a file. This function runs on the hospital
system when new data is being requested and works by looking up the patient name
and replacing any instances of that name with ‘patient.” The result is that data files
do not contain any patient names. This function does not make any changes to the

records on the hospital system, but only modifies the results of a query.

19

The resulting data files may still contain some personal information that must be

removed before the new entries can be published. Part of the data upload process

SELECT fullname INTO temp_lastname from d_patients WHERE pid =
find pid;
new_string := replace(lower(replace_string),
lower (temp_lastname), patient);
temp_num:=instr(temp_ lastname,);
temp_firstname:=substr(temp_lastname, 0, temp_num);
temp_lastname:=substr(temp_lastname, temp_ num);
new_string := replace(new_string, temp_ firstname, patient);
new_string := replace(new_string, temp lastname, patient);

Figure 10 Function to Replace Names
includes a script that deletes entries that contain personal information such as
Spokesperson Phone Number and Insurance Number. We have identified 13 such
fields for deletion: “Attending MD”, “Spokesperson”, “Spokesperson Home Phone #”,
“Spokesperson Work Phone #”, “Religion”, “Martial Status”, “Home Phone No.”,
“Work Phone No.”, “"Page Phone No.”, “Pt. Name”, *PIN”, “Cell Phone No.”, and

“Account #'.

Some of the free text fields may also contain phone numbers, Social Security
numbers, or medical record numbers. Before new data is uploaded, a script looks for
patterns (for example, a series of numbers of the form xxx-xxx-xxxx) that could be

an identifying nhumber and replaces it.

12.3 Logging
Once all new data has been uploaded and entered into the MIMIC database, the

update is stored in a data log. The log records the date, location of .csv source file,
and the results of the update. This can be useful to administrators in evaluating

when updates were made and outcome of the update.

20

13 The MIMIC Application

Now that the data is loaded into the MIMIC Database, it is ready to be presented to
users. Each patient can have multiple days’ worth of data, stored in multiple tables,
each containing thousands of entries. The pages of the MIMIC Application were

designed to provide a unified and intuitive user interface that presents a great deal

of data in a way that is easy to navigate and comprehend.

MIMIC
Database
(Postgres)

Browsing
users

Figure 11 The MIMIC Application

The MIMIC Application consists of .tcl pages that interact with the MIMIC database to
dynamically generate html pages to present to the end user. The MIMIC Application
consists of two main sections: data pages and search pages. The data pages present
patient data in an intuitive and easily browsable manner. The search pages provide

facilities to formulate queries on multiple dimensions.

13.1 General Presentation
In creating a user interface to MIMIC, we tried to keep the design as simple and

utilitarian as possible. The result is a user interface that is clean, compact, and
allows users to browse through records using several different approaches.
13.1.1 Hiding internals

One way MIMIC makes data more easily viewed is by hiding the internals of how
data is stored and accessed. MIMIC includes metadata about whether columns or
categories should be hidden or presented to users. Fields such as case_id or

date_key are numeric values that are meaningless to end-users and have no clinical

21

significance. These are not presented in normal user views. MIMIC also uses SQL
views to decode references to other tables and provide a level of abstraction

between the raw data and a format that is easily understood by the end user.

13.1.2 Utilizing data types (metadata)
Another way that MIMIC improves upon the appearance of raw data is through

utilization of data types stored in metadata. MIMIC uses this metadata to format
data for display. Time stamps are passed through a conversion function to format
them as text instead of ANSI format. Columns that are integers are truncated to
leave out insignificant figures. MIMIC uses time keys to present data in chronological
order. Other keys are used to view data based on category, table, or item type.

These different types of views are described in more detail in the next section.

13.2 Viewing the Data
MIMIC views organize data into three basic views. A patient record can be viewed

by table, which presents the first 25 entries of each table in one page. The record
can be viewed by day, which presents the first 25 entries of each table for that day
in one page. The category view presents the first 50 entries of each table in that
category in one page. It is not reasonable to present more than a few entries for
each table on the same page, so MIIMC presents a limited number from each table
and adds a menu to browse the rest of the entries. In addition to these views, MIMIC

provides the capabilities to concentrate on specific types of data

13.3 Viewing Medications
MIMIC currently uses five different tables to store medications information:

a_medurations, d_meditems, solutions, additives, and medevents. All of
these reference the d_meditems table for medication names. The MIMIC Application
includes a medications section to view all medications information for a given

patient, or concentrate on a specific medication for a given patient. This provides a

22

useful summary that can be
used in determining how a
medication was part of a
patient’s course of care or how

it affected his prognosis.

13.4 Menus for Browsing
Most of the tables containing

patient information reference
dimension tables for the items

they store. Because they

Patient records for Morphine Sulfate @
Thunhmuﬁhp“mll)dlluﬂ-.m X
You can also ¢ &
i | Dese. Care /[Care Gives

October 1, 2001 w £

gt Dep MICU-A 936 .

Janwary 12, 2002 v ;

vl W =g g MICUA I 4

F 22,2002 w

lmns W mg pL CSCU 1%

Maseh 7, 2002 w

11000003 Mo o

Mazch 11, 2002 w

0300009 W e g CSCU DA

Med Dumnons

| stwtlime | lem | Emdlime |Care UnitlDuracin)

October 1, 2001 M Sutfute October 2, 2001 110000-04 MICU-A 202000

October 3,2001 21000004 Morphins Sulfus October, 2001 11300004 MICU-A 750,00

October 6, 2001 130000.04 Morphins Sulfute October3, 2001 14:8:00-04 MICU-A 298800

:mszmm mm:—.qum:mmm A0 =
e T R T I S T S A S P ——3

Figure 13 Viewing Medications

reference dimension tables, these items are standardized across different entries. A

column that references the d_chartitems table will contain multiple entries for the

same Item ID. MIMIC utilizes the normal form of this data to create menus to view

and browse all items with the
same Item ID. In practice,
this means this means there
are menus to concentrate on
a specific type of entry to a
table. For instance, the Total
Balance Events table has
menus for 24 Total Out’ and
users can click on a value to
view all entries for that
specific item for a given

patient.

Total Balance Events This is the 025 of 117 entries for this day. view next 20 sntrise

24h Met Eody Balence 24 24nTotelOut [V InfusionIn Total LOS Net 3odw ;xlg;n.
Balance PO/Gastric [n T:dal T:\m Hourly Oufpat Urine Dnat Total

(..z" Care{Transacrion
?Ireset? [Giver| Unit o

m .
0 330 1 39 1

et Howaly

ulative| Accumulation
lume | Period
|

Figure 12 Menu for Total Balance Events

23

14 Search

The interesting capabilities in MIMIC lie in the search engine. MIMIC uses an
incremental search to merge the results of criteria on multiple dimensions. This
search allows users to view incremental results at each step of the search.
Incremental search can further help the researcher pinpoint interesting results from

the collection of records stored in MIMIC.

When the user gets to the initial search

ZRMIMIC Complex Search - Microsolt Internet Explorer

| e ek v Fovotss Tk Heb BRI e o]
page, he can choose to add a search term |- T G0 A | Rhsewh (Gibovobes CMetory [B FE- 10
| ddoss €] c siimclsearchay arche4 bl 3] oo e
based on a text search, medications MIMIC Complex Search
new search
search, or patient demographics. These i o i i it o e
Database.
types of searches are described and defined So far:
in more detail in the following sections. Date of Birth: after 1906-Jan-10
Containing Text: AND "SOB" AND
. . llalh‘mlll
Once the user enters the search criteria, Medications: AND Heparin > 5 U
There are 9 patients in your results
the search terms are sent to be processed. 36103633 414241484167 4204 3786 3522 3848 .
4 > | 3
G T T
The user can then see the number of
Figure 14 Search Results

results in MIMIC that satisfy these criteria,
and opt to perform the search or enter additional search terms. When no records
satisfy the search criteria, the criteria are removed from the search and a notification

message appears to the user.

More on these types of searches and a few details about their implementation are

described in the following sections.

14.1 Patient Demographics
The first and simplest search is based on patient demographics, namely age and sex.

Age is specified by denoting a date of birth (DOB) greater than or less than a given

24

date. Obviously, the choices for sex are male or female. All patients in MIMIC have
data for DOB and sex. MIMIC performs searching based on patient demographics by

simply scanning the d_patients table, which contains this information.

14.2 Text Search
One of the options for managing columns in MIMIC is whether the column should be

in included in a text search. In general, this field should be turned on for text fields
that are relevant to the patient record. Only these fields are considered for a text

search.

The text search facility allows users to enter in text search terms and searches free
text for these fields. Users may enter simple logic, such as ‘patients AND doctors.
MIMIC parses the input to the text search and searches for these search terms. It
automatically detects key words for logic ‘AND’ and ‘OR’ and generates SQL for these

cases.

The design of the text component of the MIMIC Search engine is similar to the
specifications for an early version of the bboard search on http://www.photo.net. It
uses a Tcl ranking function to sort results and presents the most relevant result first.
“It does a simple ranking based on a list of keywords - it is not phrase-based. The
more keywords that are matched, the higher score you get.”** Ranking is based on
items matched for each patient record. For instance, a user may search for Atrial
Fibrillation. A patient whose record contains 5 instances of Atrial and 3 instances of

Fibrillation would receive a score of 8 in the search results.

MIMIC uses a Tcl-based ranking function and SQL ‘1ike’ comparison statements to
perform the search. SQL '1ike’ statements match each element of the input string.

The results are stored and ranked in a Tcl script. In text-only search, results are

25

returned in order of number of relevance. For more complex searches, results are

returned in an arbitrary order based on multiple search terms.

14.3 Medications Search
Medications are stored in the d_meditems table, which helps standardize spelling and

notation associated with medications. Patient records reference d_meditems.itemid
to record that a patient received a medication. Figure 6 shows an example of viewing
medication records. Since we know which tables reference the d_meditems table and
therefore contain medications information, we can limit the medications search to
these tables. Since searching for medications is based on an integer key, it is faster

than a text search because numerical comparison is faster than text comparison.

15 Design Issues

In the course of designing the components of MIMIC, there were many decisions and
tradeoffs considered. In general, design decisions were made according to efficiency

and simplicity.

15.1 Performance
Early versions of the MIMIC Application were extremely slow. Page views took about

6 seconds to load, due to the time to process queries to the database. Most web
users are unwilling to wait more than 2 seconds for a page to load. A great deal of
time was spent on creating indexes to speed up queries and reduce the amount of

time to retrieve data.

Another optimization measure used was to move some of the processing for queries
to the data upload process. When new data is added to the MIMIC database, new
table views are created and updated at the same time. These views perform the

costly JOIN operations needed to generate the materialized user views described in

26

Section 10.3. This increased data upload time up to 100%, but once the data was
processed, page views took 2 seconds. The alternative would be to create simple
SQL views, instead of tables that act as materialized views, and perform the JOIN
operations whenever a page was requested. The data upload process was much
faster, but pages took 6-8 seconds to load. The end decision was to move the JOIN
latency to the upload process to assure that page loads were fast. This makes MIMIC
more convenient for end users who are browsing records, and adds only start-up

costs to adding new data.

A few other approaches to optimization were also considered, including query
caching and warehousing strategies. In the end, a combination of creating indexes,
utilizing integer comparisons when possible, and an ad-hoc version of materialized

views were used to optimize the MIMIC Application.

15.2 Scalability
The MIMIC database will have hundreds of new records every few months. The

partner hospital currently has 42 beds connected to the CareVue system. Over the
course of a year, over 10,000 patient days’ worth of data is available to MIMIC.
MIMIC must scale efficiently to handle these records. Relational databases have been
proven to handle scaling to thousands of records efficiently. MIMIC takes advantage

of this by using Postgres for its database.

The MIMIC Application is designed to scale to large numbers of records. The search
engine returns incremental results, but stores only the different search terms.
Storing incremental results for the search (instead of search terms) and re-
calculating only new terms as they are added becomes more complicated as the

number of records increases. As MIMIC grows to thousands of records, it becomes

27

more efficient to store search terms and perform the entire search at each step.

The user interface for MIMIC was also designed with large numbers of patient-days
in mind. The average stay for an ICU patient can vary greatly, so the user interface
was designed to display varying-length records efficiently. This is achieved through

menus to browse menus and a range of display options.

15.3 Versatility
The difference between MIMIC and similar databases is that MIMIC was not

developed for a specific application or problem. Some similar databases that were
developed for more specific research problems were described in Section 3.2. The
MIMIC database contains all available records from patients in one of the partner
hospital's intensive care units. Data is recorded from multiple data sources and can
be browsed based on medication, type of event, or category. The search utility is
intended to help researchers locate data that is relevant to their research. Unlike
other databases, MIMIC does not target specific problems, but aims to be a general-

purpose source of ICU patient data.

16 Evaluation of Current Design

16.1 De-Identification
The de-identification measures taken in the data upload process assure that no

patient names, phone numbers, medical record numbers, or social security numbers
appear in data for MIMIC. However, MIMIC does not handle other possibly identifying
information, such as doctor names or names of family members. Nursing notes
occasionally contain references to a patient’s “sister Mary” or “home in Bedford.”
Nursing notes may also contain misspellings that go undetected. MIMIC will replace
“Robert” but will not find “Robret.” MIMIC lacks the sophisticated facilities to remove

such information. In future versions, natural language processing algorithms can be

28

applied to solve these problems.

16.2 Scalability
MIMIC currently contains about 300 patients, with a total of over 1,000 patient days.

MIMIC should easily scale to contain several hundred more patients. We are unsure
of how MIMIC will handle tens of thousands of records. The MIMIC server, which is
currently on a machine with a 1500Mhz Athlon AMD processor and 512MB memory,
would have to be upgraded to be a server for thousands of patient records. Once
MIMIC is merged with its waveform counterpart and regular data updates are made
to the MIMIC Database, the database should be backed up regularly and the MIMIC

Server used as a dedicated server for the MIMIC Application.

16.3 Usability
There are many possible additions to MIMIC that would make it more useful to

researchers. Once MIMIC has been merged with its waveform counterpart, complex
trending and analysis of those waveforms can be combined with searches on clinical
records. Currently, MIMIC does not support any conversion of units of measure for

medications searches, due in part to lack of available data. Units conversion may be

possible for future versions of MIMIC.

The display for MIMIC varies slightly across different web browsers. MIMIC was
tested mostly using Internet Explorer, Netscape, and Mozilla. Future versions of
MIMIC could add to the current design by using HTML elements that are displayed

uniformly across different browsers.

16.4 The Future of MIMIC
This project is the second version of an effort to solve the problems or collecting and

organizing real patient data for clinical research. However, there can still be

improvements and functionality added to MIMIC that could improve its value.

29

MIMIC only contains a portion of the data recorded from the ICU. The hospital also
collects discharge summaries, pathology reports, ECG signals, more detailed lab
reports, records for surgeries, X-rays, EEGs, outpatient care, and more. This data is
not currently stored in the ISM, but is stored on other hospital systems. In the
future, we could gain access to their records and add them to MIMIC. The MIMIC
RDBMS would have to be extended to include new table definitions and a different
extraction system to access the hospital information system. The richer content of
the resulting database would widen the range of research problems that MIMIC

supports.

In the future, MIMIC and its waveform counterpart will be integrated into a unified
resource for patient data. New versions of MIMIC could also include more
sophisticated patient de-identification procedures and add different user views. The
search facilities could allow for more complex searches, including searches on
waveform patterns. The current framework for MIMIC leaves the ability to extend to
include these capabilities. Even without these improvements, MIMIC will be a useful

utility to researchers looking for real patient data.

17 Conclusion

MIMIC provides a solution to some of the problems of protecting patient
confidentiality, migrating data to a new server, and presenting data in a usable
interface. It utilizes web and database technologies to create an application that
makes real hospital records available and searchable by researchers. Regular
updates from the hospital ISM will populate MIMIC with real patient data. All of these
elements are combined to create a useful utility for researchers looking for real

patient data.

30

18 Bibliography

' Kohane, Isaac “The Imperative to Collaborate” Journal of the American Informatics
Association Volume 7 Number 5 Sep/Oct 2000

? Product Description for Philips Medical Systems CareVue Clinical Information
System http://www3.medical.philips.com/en-
us/product home/product/carevuecis detail.as

3 Moody, George and Mark, Roger “A Database to Support Development and
Evaluation of Intelligent Intensive Care Monitoring” Computers in Cardiology
23:657-660 1996

* Wilcox, Adam, et al. “Developing Online Support for Clinical Information System
Developers: The FAQ Approach” Computers and Biomedical research, 31 112-121
(1998) Article No. CO 981470

> Korhonen, Ilkka. vanGils, Mark. Gade, Jon. “The Challenges in Creating Critical
Care Databases” IEEE Engineering in Medicine and Biology May/June 2001

® The HIV Central Research Database http://www.ohtn.on.ca/5 central hiip.html)

7 Stanford Penguin Project http://smi-web.stanford.edu/projects/penguin.html

8 “A Model Electronic Patient Record System for Clinical Echocardiography
http://hsc.virginia.edu/hs-library/newsletter/1994/november/echocard.html

° Duke Medical Informatics Research
http://dmi-www.mc.duke.edu/dukemi/research/research.html

19 Anderson, Ross , “Security in Clinical Information Systems” Computer Laboratory
University of Cambridge - January 1996)

1 Greenspun, Philip, “Phil and Alex’s Guide to Web Publishing”
http://www.arsdigita.com/books/panda/

'? CareVue Clinical Data Management Information Support Mart User’s Guide.
Agilent Technologies, 2000

13 Unique Patient Identifier
http://www.hipaanet.com/upin4.htm

14 Idea for doing Site-Wide Search
http://openacs.org/bboard/q-and-a-fetch-msg.tcl?msg_id=0000Sy&topic_id=11

31

APPENDIX A: Metadata Tables

create table mimic_table_elements (

metadata_id integer not
table_name varchar(21) not
column_name varchar (30) not
pretty_name varchar (100) not
abstract_data_type varchar (30) not
oracle_data_type varchar (30)
extra_sql varchar (4000) ,
presentation_type varchar (100) not
presentation_options varchar (4000) ,
entry_explanation varchar (4000) ,
help_text varchar (4000) ,
include_in_view_p char (1) ,
mandatory_p char (1) ,
sort_key integer ,
form_sort_key integer
form_number integer ,
include_in_ctx_index_p char(l) ,
default_value varchar (200)
order_sort_key integer
postgres_data_type varchar (80)

)

create table mimic_table_categories (

category_name varchar (100) not null,
cat_pretty name varchar(100) not null,
description varchar (400),

include_in_view_p varchar(1l),
order_sort_key integer
)i

create table mimic_time_ keys (
table_name wvarchar(100),
time_key varchar (100)

)i

create table mimic_date_keys (
table_name varchar(100),
date_key varchar (100)

) ;

32

~-- for display of tables by menu item
create table mimic_item keys (

table_name varchar (21),
item_key varchar (30),

include_in_view_p varchar (1)
)

-- for display

create table mimic_display keys (
table_name varchar(100) primary key,
display_key varchar(100)

)

-- data log for updates
create sequence mimic_indexes_sequence;
create table mimic_data_log (

update_id integer,

enter_date timestamp with time zone,
table_name character varying(40),
filename character varying(100),
file_status character varying(400),
extract_key character varying(40),

extract_key start numeric(30,6),
extract_key_stop numeric(30,6),
insert_status character varying(400)
)

- for management of indexe

create table mimic_indexes (
index_name varchar (100),
table_name varchar(21),
column_name varchar(30),

primary key {index_name, table_name, column_name)

)

APPENDIX A: Metadata Tables

APPENDIX B: MIMIC Table Definitions

-- SQL create table statements for all tables
-- You may cut and paste the following to create tables.

-- tables for Dimensions

create table

d_caregivers (

cgid numeric,

employeeno
proftitle
)

create table
cuid n
unitname
)

create table
itemid
label
categoryl
category?2
category3
category4
category5b
category6

)

create table
dayid
calDay
month
dayofmonth
year n
monthText
dayofweek
holiday

)i

create table d_interventionitems

itemid
label
categoryl
category?2
category3

varchar (20),

varchar (6)

d_careunits (
umeric,
varchar (20)

d_chartitems (

numeric,

varchar (110),
varchar (32),
varchar (32),
varchar(32),
varchar(32),
varchar({32),
varchar (100)

d_days (
numeric,
timestamp,
numeric,
numeric,
umeric,
varchar (20),
numeric,
varchar (20)

numeric,
varchar (80),
varchar(32),
varchar (32),
varchar (32)

.

categoryd varchar (32),
category5 varchar(32),
category6 varchar (32)

’

create table d_ioitems (

itemid numeric,

label varchar (256) ,
categoryl varchar (32),
category?2 varchar (32),
category3 varchar (32),
category4 varchar (32),
category5 varchar(32),
categoryé varchar (32)

)

create table 4 _meditems (

itemid numeric,

label varchar (20),
categoryl varchar (32),
category2 varchar(32),
category3 varchar(32),
category4d varchar(32),
category5 varchar (32),
category6 varchar (32)

)

create table d_outcomeitems (

itemid numeric,

label varchar (60),
categoryl varchar (32),
category?2 varchar(32),
category3 varchar(32),
category4 varchar (32),
category>b varchar (32),
category6 varchar (32)

)

create table d_patients (

case_id integer,
pid numeric,

sex varchar (8),
dob date

)

create table 4 _problemitems (
itemid numeric,

APPENDIX B

. MIMIC Table Definitions

label varchar (60),

categoryl varchar (32),
category?2 varchar(32),
category3 varchar (32),
categoryéd varchar (32),
category5 varchar(32),
categoryé6 varchar (32)

)

create table d_primarycodes (

label varchar (50),
code varchar(32),
pcode numeric

)i

create table d_sources (

systemid numeric,

siteid numeric,

sourceid numeric,
schemaRev numeric,
hospitalname varchar (60),
addressl varchar (30),
address2 varchar (30),
address3 varchar (30),

sid numeric

)i

create table d_secondarycodes

label varchar (50),
code varchar (32),
scode numeric

):

-- tables for Events
create table censusevents (
pid numeric,
intime timestamp,
outtime timestamp,
careunit numeric,
destcareunit numeric,

dischstatus varchar (20),

los numeric,
sid numeric,
indayid numeric,
outdayid numeric

34

create table view_for_censusevents

as select censusevents.oid as oid_for_censusevents,
d_patients.case_id, round(censusevents.pid, 0) as pid,
censusevents.intime as intime, censusevents.outtime as outtime,
d_careunits.unitname as careunit, censusevents.careunit as
key_for_careunit, d_careunits.unitname as destcareunit,
censusevents.destcareunit as key_for_destcareunit,
censusevents.dischstatus as dischstatus,

round (censusevents.los, 0) as los, d_sources.hospitalname as
sid, censusevents.sid as key_for_sid,

round (censusevents.indayid, 0) as indayid,

round (censusevents.outdayid, 0) as outdayid from censusevents,
d_patients, d_careunits, d_sources where
d_patients.pid=censusevents.pid and
d_careunits.cuid=censusevents.careunit and
d_careunits.cuid=censusevents.destcareunit and
d_sources.sid=censusevents.sid ;

create table chartevents (

pid numeric,

charttime timestamp,
realtime timestamp,
itemid numeric,

valuel varchar (110),
valuelnum numeric,
valueluom varchar (20),
value2 varchar(110),
value2num numeric,
value2uom varchar (20),
stopped varchar (20),
resultstatus varchar (20),
annotation varchar (500) ,
cgid numeric,

cuid numeric,

scode numeric,

pcode numeric,
chartdate numeric,

sid numeric,

elemid numeric,

txid numeric

)

create table view_for_chartevents

as select chartevents.oid as oid_for_chartevents,
d_patients.case_id, round(chartevents.pid, 0) as pid,
chartevents.charttime as charttime, chartevents.realtime as
realtime, d_chartitems.label as itemid, chartevents.itemid as

APPENDIX B: MIMIC Table Definitions

key_for_itemid, chartevents.valuel as valuel,

round (chartevents.valuelnum, 2) as valuelnum,
chartevents.valueluom as valueluom, chartevents.value2 as
value2, round(chartevents.value2num, 2) as value2num,
chartevents.value2uom as value2uom, chartevents.stopped as
stopped, chartevents.resultstatus as resultstatus,
chartevents.annotation as annotation, round(chartevents.cgid,
0) as cgid, d_careunits.unitname as cuid, chartevents.cuid as
key for_cuid, round(chartevents.scode, 0) as scode,

round (chartevents.pcode, 0) as pcode,
round(chartevents.chartdate, 0) as chartdate,
d_sources.hospitalname as sid, chartevents.sid as key_for_sid,
round (chartevents.elemid, 0) as elemid, round(chartevents.txid,
0) as txid from chartevents, d_patients, d_chartitems,
d_careunits, d_sources where d_patients.pid=chartevents.pid and
d_chartitems.itemid=chartevents.itemid and
d_careunits.cuid=chartevents.cuid and
d_sources.sid=chartevents.sid ;

create table formevents (

pid numeric,

chartTime timestamp,
realtime timestamp,
formtitle varchar (40),
sectiontitle varchar (40),
subsectiontitle varchar (40),
itemid numeric,

value_ varchar (500),
valuenum varchar (100),
uom varchar (20),

cgid numeric,

cuid numeric,

scode numeric,

pcode numeric,

sid numeric,

elemid numeric,

txid numeric,

chartDay numeric,

formid numeric

)

create table view_for_ formevents as select formevents.oid as
oid_for_formevents, d_patients.case_id, round(formevents.pid,
0) as pid, formevents.chartTime as chartTime,
formevents.realtime as realtime, formevents.formtitle as
formtitle, formevents.sectiontitle as sectiontitle,

35

formevents.subsectiontitle as subsectiontitle,
d_chartitems.label as itemid, formevents.itemid as
key_for_itemid, formevents.value_ as value_,
formevents.valuenum as valuenum, formevents.uom as uom,

round (formevents.cgid, 0) as cgid, d_careunits.unitname as
cuid, formevents.cuid as key_for_cuid, round(formevents.scode,
0) as scode, round(formevents.pcode, 0) as pcode,
d_sources.hospitalname as sid, formevents.sid as key_for_sid,
round (formevents.elemid, 0) as elemid, round(formevents.txid,
0) as txid, round(formevents.chartDay, 0) as chartDay,

round (formevents. formid, 0) as formid from formevents,
d_patients, d_chartitems, d_careunits, d_sources where
d_patients.pid=formevents.pid and
d_chartitems.itemid=formevents.itemid and
d_careunits.cuid=formevents.cuid and
d_sources.sid=formevents.sid ;

create table medevents (

pid numeric,
charttime timestamp,
itemid numeric,
elemid numeric,
chartdate numeric,
realtime timestamp,
volume numeric,

dose numeric,
doseuom varchar (20),
solutionid numeric,
solvolume numeric,
route varchar (20),
site varchar (20),
stopped varchar (20),
annotation varchar (500),
cgid numeric,

cuid numeric,

pcode numeric,

scode numeric,

sid numeric,

txid numeric

)i

create table view_for_medevents as select medevents.oid as
0id_for_medevents, d_patients.case_id, round(medevents.pid, 0)
as pid, medevents.charttime as charttime, d_meditems.label as
itemid, medevents.itemid as key_for_itemid,

round (medevents.elemid, 0) as elemid,

round (medevents.chartdate, 0) as chartdate, medevents.realtime

APPENDIX B: MIMIC Table Definitions

as realtime, round(medevents.volume, 0) as volume,

round (medevents.dose, 2) as dose, medevents.doseuom as doseuom,
d_meditems(.label as solutionid, medevents.solutionid as
key_for_solutionid, round(medevents.solvolume, 2) as solvolume,
medevents.route as route, medevents.site as site,
medevents.stopped as stopped, medevents.annotation as
annotation, round(medevents.cgid, 0) as cgid,
d_careunits.unitname as cuid, medevents.cuid as key_for_cuid,
round (medevents.pcode, 0) as pcode, round(medevents.scode, 0)
as scode, d_sources.hospitalname as sid, medevents.sid as
key_for_sid, d_secondarycodesl.scode as txid, medevents.txid as
key for_txid from medevents, d_patients, d_meditems, d_meditems
d_meditems0, d_careunits, d_sources, d_secondarycodes
d_secondarycodesl where d_patients.pid=medevents.pid and
d_meditems.itemid=medevents.itemid and
d_meditems0.itemid=medevents.solutionid and
d_careunits.cuid=medevents.cuid and d_sources.sid=medevents.sid
and d_secondarycodesl.scode=medevents.txid ;

create table noteevents (

pid numeric,

charttime timestamp,
realtime timestamp,
category varchar (26),
title varchar (52),
notetext varchar (4000),
correction varchar (2),
cgid numeric,

cuid numeric,
chartbDate numeric,

sid numeric,

noteid numeric,

elemid numeric,

txid numeric

)i

create table view_for noteevents as select noteevents.oid as
oid_for_noteevents, d_patients.case_id, round(noteevents.pid,
0) as pid, noteevents.charttime as charttime,
noteevents.realtime as realtime, noteevents.category as
category, noteevents.title as title, noteevents.notetext as
notetext, noteevents.correction as correction,
round{noteevents.cgid, 0) as cgid, d_careunits.unitname as
cuid, noteevents.cuid as key_for_cuid,

round (noteevents.chartDate, 0) as chartDate,
d_sources.hospitalname as sid, noteevents.sid as key_for_sid,
round{noteevents.noteid, 0) as noteid, round(noteevents.elemid,

36

0) as elemid, round(noteevents.txid,
noteevents, d_patients, d_careunits,
d_patients.pid=noteevents.pid and
d_careunits.cuid=noteevents.cuid and
d_sources.sid=noteevents.sid ;

0) as txid from
d_sources where

create table resultevents (
pid numeric,
resultid numeric,
chartTime timestamp,
chartDate numeric,
cgid numeric,
cuid numeric,
resulttext varchar (1000},
sourcetime timestamp,
firstresult numeric,
nextresult numeric,
status varchar (20),
sid numeric,
txid numeric

)

create table view_for_resultevents

as select resultevents.oid as oid_for_resultevents,
d_patients.case_id, round(resultevents.pid, 0) as pid,
round(resultevents.resultid, 0) as resultid,
resultevents.chartTime as chartTime,
round(resultevents.chartDate, 0) as chartDate,
round(resultevents.cgid, 0) as cgid, d_careunits.unitname as
cuid, resultevents.cuid as key_for_cuid,
resultevents.resulttext as resulttext, resultevents.sourcetime
as sourcetime, round(resultevents.firstresult, 0) as
firstresult, round(resultevents.nextresult, 0) as nextresult,
resultevents.status as status, d_sources.hospitalname as sid,
resultevents.sid as key_for_sid, round(resultevents.txid, 0) as
txid from resultevents, d_patients, d_careunits, d_sources
where d_patients.pid=resultevents.pid and
d_careunits.cuid=resultevents.cuid and
d_sources.sid=resultevents.sid ;

create table totalbalevents (

pid numeric,
charttime timestamp,
chartdate numeric,
itemid integer,
realtime timestamp,
pervolume numeric,

APPENDIX B: MIMIC Table Definitions

cumvolume numeric,

accumperiod varchar (20),
approx varchar (10),
reset_p integer,

stopped varchar (20),
annotation varchar (500),
cgid numeric,

cuid numeric,

scode numeric,

pcode numeric,

sid numeric,

txid numeric,

elemid numeric

)

create table view_for_totalbalevents

as select totalbalevents.oid as oid_for_totalbalevents,
d_patients.case_id, round(totalbalevents.pid, 0) as pid,
totalbalevents.charttime as charttime,
round(totalbalevents.chartdate, 0) as chartdate,
d_ioitems.label as itemid, totalbalevents.itemid as
key_for_itemid, totalbalevents.realtime as realtime,
round(totalbalevents.pervolume, 0) as pervolume,
round{totalbalevents.cumvolume, 0) as cumvolume,
totalbalevents.accumperiod as accumperiod,
totalbalevents.approx as approx, round(totalbalevents.reset_p,
0) as reset_p, totalbalevents.stopped as stopped,
totalbalevents.annotation as annotation,
round({totalbalevents.cgid, 0) as cgid, d_careunits.unitname as
cuid, totalbalevents.cuid as key_for_cuid,
round(totalbalevents.scode, 0) as scode,
round{totalbalevents.pcode, 0) as pcode, d_sources.hospitalname
as sid, totalbalevents.sid as key_for_sid,
round(totalbalevents.txid, 0) as txid,
round(totalbalevents.elemid, 0) as elemid from totalbalevents,
d_patients, d_ioitems, d_careunits, d_sources where
d_patients.pid=totalbalevents.pid and
d_ioitems.itemid=totalbalevents.itemid and
d_careunits.cuid=totalbalevents.cuid and
d_sources.sid=totalbalevents.sid ;

-- tables for IOEvents. Solutions, Additives, and Deliveries

create table ioevents (

pid numeric,
charttime timestamp,
realtime timestamp,

37

numeric,
numeric,
numeric,
varchar(20),
numeric,

itemid
altid
volume
volumeuom
unitshung
unitshunguom varchar (20),
newbottle numeric,
dressingchanged nuneric,
tubingchanged numeric,
assessment numeric,
stopped varchar (20),
estimate varchar (20),
annotation varchar (500),
cgid numeric,
cuid numeric,
scode numeric,
pcode numeric,
chartdate numeric,
sid numeric,
elemid numeric,
txid numeric

)

create table view for iocevents

as select ioevents.oid as oid_for_ioevents, d_patients.case_id,
round(ioevents.pid, 0) as pid, ioevents.charttime as charttime,
icevents.realtime as realtime, d_ioitems.label as itemid,
ioevents.itemid as key_for_itemid, d_ioitems0.label as altid,
ioevents.altid as key_for_altid, round(ioevents.volume, 0) as
volume, ioevents.volumeuom as volumeuom,

round (iocevents.unitshung, 0) as unitshung,
ioevents.unitshunguom as unitshunguom,

round (iocevents.newbottle, 0) as newbottle,

round (iocevents.dressingchanged, 0) as dressingchanged,

round (icevents.tubingchanged, 0) as tubingchanged,

round (icevents.assessment, 0) as assessment, ioevents.stopped
as stopped, ioevents.estimate as estimate, ioevents.annotation
as annotation, round(iocevents.cgid, 0) as cgid,
d_careunits.unitname as cuid, ioevents.cuid as key_for_cuid,
round (ioevents.scode, 0) as scode, round(ioevents.pcode, 0) as
pcode, round(iocevents.chartdate, 0) as chartdate,
d_sources.hospitalname as sid, ioevents.sid as key_for_sid,
round(ioevents.elemid, 0) as elemid, round(ioevents.txid, 0) as
txid from ioevents, d_patients, d_ioitems, d_iocitems
d_ioitems0, d_careunits, d_sources where
d_patients.pid=iocevents.pid and

APPENDIX B: MIMIC Table Definitions

d_ioitems.itemid=iocevents.itemid and
d_ioitems0O.itemid=ioevents.altid and
d_careunits.cuid=iocevents.cuid and d_sources.sid=ioevents.sid ;

create table additives (

pid numeric,
charttime timestamp,
chartdate numeric,
itemid numeric,
ioitemid numeric,
amount numeric,
doseunits varchar (20),
mlperunit numeric,
route varchar (20),
cuid numeric,

cgid numeric,

scode numeric,
pcode numeric,

sid numeric,

elemid numeric,

txid numeric

)

create table view for_ additives

as select additives.oid as oid_for_additives,
d_patients.case_id, round(additives.pid, 0) as pid,
additives.charttime as charttime, round(additives.chartdate, 0)
as chartdate, d_meditems.label as itemid, additives.itemid as
key_for_itemid, d_ioitems0.label as ioitemid,
additives.ioitemid as key_ for_ioitemid, round(additives.amount,
0) as amount, additives.doseunits as doseunits,
round{additives.mlperunit, 0) as mlperunit, additives.route as
route, d_careunits.unitname as cuid, additives.cuid as
key_for_cuid, round({additives.cgid, 0) as cgid,
round(additives.scode, 0) as scode, round(additives.pcode, 0)
as pcode, d_sources.hospitalname as sid, additives.sid as
key_for_sid, round(additives.elemid, 0) as elemid,
round(additives.txid, 0) as txid from additives, d_patients,
d_meditems, d_ioitems d_ioitems0, d_careunits, d_sources where
d_patients.pid=additives.pid and
d_meditems.itemid=additives.itemid and
d_joitems0.itemid=additives.ioitemid and
d_careunits.cuid=additives.cuid and d_sources.sid=additives.sid

i

create table deliveries (
pid numeric,

38

chartdate numeric,
charttime timestamp,
ioitemid numeric,
site varchar (20),
rate numeric,

cgid numeric,

cuid numeric,

sid numeric,

elemid numeric,

txid numeric

)

create table view_for_ deliveries as select deliveries.oid as
oid_for_deliveries, d_patients.case_id, round(deliveries.pid,
0) as pid, round{deliveries.chartdate, 0) as chartdate,
deliveries.charttime as charttime, d_ioitems.label as ioitemid,
deliveries.ioitemid as key_ for_ioitemid, deliveries.site as
site, deliveries.rate as rate, round(deliveries.cgid, 0) as
cgid, d_careunits.unitname as cuid, deliveries.cuid as
key_for_cuid, d_sources.hospitalname as sid, deliveries.sid as
key_for_sid, round(deliveries.elemid, 0) as elemid,

round (deliveries.txid, 0) as txid from deliveries, d_patients,
d_ioitems, d_careunits, d_sources where
d_patients.pid=deliveries.pid and
d_ioitems.itemid=deliveries.ioitemid and
d_careunits.cuid=deliveries.cuid and
d_sources.sid=deliveries.sid ;

create table solutioms (

pid numeric,
charttime timestamp,
itemid numeric,
ioitemid numeric,
volume numeric,
doseunits varchar (20),
route varchar (20),
cgid numeric,

cuid numeric,

scode numeric,

pcode numeric,
chartdate numeric,
sid numeric,

elemid numeric,

txid numeric

APPENDIX B: MIMIC Table Definitions

create table view_for_solutions

as select solutions.oid as oid_for_solutions,
d_patients.case_id, round(solutions.pid, 0) as pid,
solutions.charttime as charttime, d_meditems.label as itemid,
solutions.itemid as key_for_itemid, d_ioitems0.label as
ioitemid, solutions.ioitemid as key for_ioitemid,
round (solutions.volume, 0) as volume, solutions.doseunits as
doseunits, solutions.route as route, round(solutions.cgid, 0)
as cgid, d_careunits.unitname as cuid, solutions.cuid as
key_for_cuid, round(solutions.scode, 0) as scode,
round(solutions.pcode, 0) as pcode, round(solutions.chartdate,
0) as chartdate, d_sources.hospitalname as sid, solutions.sid
as key_for_sid, round(solutions.elemid, 0) as elemid,
round(solutions.txid, 0) as txid from solutions, d_patients,
d_meditems, d_ioitems d_ioitems0, d_careunits, d_sources where
d_patients.pid=solutions.pid and
d_meditems.itemid=solutions.itemid and
d_ioitems0.itemid=solutions.ioitemid and
d_careunits.cuid=solutions.cuid and d_sources.sid=solutions.sid

-- tables for Care Plan/Pathway

create table problems (

pid numeric,

itemid numeric,
charttime timestamp,
chartdate numeric,
cgid numeric,
addcgid numeric,
cuid numeric,
startdate timestamp,
stopdate timestamp,
dateadded numeric,
problemnum numeric,
status varchar (60),
etiology varchar (600),
scode numeric,

pcode numeric,

sid numeric,

elemid numeric,

txid numeric

)

create table view for_problems
as select problems.oid as oid_for_problems, d_patients.case_id,
round (problems.pid, 0) as pid, d_problemitems.label as itemid,

problems.itemid as key_for_itemid, problems.charttime as
charttime, round(problems.chartdate, 0) as chartdate,

round (problems.cgid, 0) as cgid, round({problems.addcgid, 0) as
addcgid, d_careunits.unitname as cuid, problems.cuid as
key_for_cuid, problems.startdate as startdate,
problems.stopdate as stopdate, d_days.calDay as dateadded,
problems.dateadded as key_ for_dateadded,

round (problems.problemnum, 2) as problemnum, problems.status as
status, problems.etiology as etiology, round(problems.scode, 0)
as scode, round(problems.pcode, 0) as pcode,
d_sources.hospitalname as sid, problems.sid as key_for_sid,
round (problems.elemid, 0) as elemid, round(problems.txid, 0) as
txid from problems, d_patients, d_problemitems, d_careunits,
d_days, d_sources where d_patients.pid=problems.pid and
d_problemitems.itemid=problems.itemid and
d_careunits.cuid=problems.cuid and
d_days.dayid=problems.dateadded and d_sources.sid=problems.sid

‘

create table outcomes (

pid numeric,

itemid numeric,
charttime timestamp,
chartdate numeric,
cgid numeric,

cuid numeric,

comments varchar (600),
targetdate numeric,
dateadded numeric,
addcgid numeric,
evaltime timestamp,
evalcgid numeric,
shift varchar (20),
variancetype varchar (20},
variancecause varchar (40),
status varchar(20),
problem numeric,
probtime timestamp,
scode numeric,

pcode numeric,

sid numeric,

elemid numeric,

txid numeric

)

create table view_for_outcomes

APPENDIX B: MIMIC Table Definitions

as select outcomes.oid as oid_for_outcomes, d_patients.case_id,
round(outcomes.pid, 0) as pid, d_outcomeitems.label as itemid,
outcomes.itemid as key_for_itemid, outcomes.charttime as
charttime, round(outcomes.chartdate, 0) as chartdate,
round(outcomes.cgid, 0) as cgid, d_careunits.unitname as cuid,
outcomes.cuid as key_for_cuid, outcomes.comments as comments,
d_days.calDay as targetdate, outcomes.targetdate as
key_for_targetdate, d_days.calDay as dateadded,
outcomes.dateadded as key_for_dateadded, d_caregivers0.cgid as
addcgid, outcomes.addcgid as key_for_addcgid, outcomes.evaltime
as evaltime, d_caregiversl.cgid as evalcgid, outcomes.evalcgid
as key_for_evalcgid, outcomes.shift as shift,
outcomes.variancetype as variancetype, outcomes.variancecause
as variancecause, outcomes.status as status,
d_problemitems2.label as problem, outcomes.problem as
key_for_problem, outcomes.probtime as probtime,

round (outcomes.scode, 0) as scode, round(outcomes.pcode,
pcode, d_sources.hospitalname as sid, outcomes.sid as
key_for_sid, round(outcomes.elemid, 0) as elemid,

round (outcomes.txid, 0) as txid from outcomes, d_patients,
d_outcomeitems, d_careunits, d_days, d_caregivers
d_caregivers0, d_caregivers d_caregiversl, d_problemitems
d_problemitems2, d_sources where d_patients.pid=outcomes.pid
and d_outcomeitems.itemid=outcomes.itemid and
d_careunits.cuid=outcomes.cuid and
d_days.dayid=outcomes.targetdate and
d_days.dayid=outcomes.dateadded and
d_caregivers(.cgid=outcomes.addcgid and

d _caregiversl.cgid=outcomes.evalcgid and
d_problemitems2.itemid=outcomes.problem and
d_sources.sid=outcomes.sid ;

0) as

create table interventions (

pid numeric,

itemid numeric,
charttime timestamp,
chartdate numeric,

cgid numeric,

cuid numeric,

ordercgid numeric,
ordertime timestamp,
dateadded timestamp,
addcgid numeric,
targetdate numeric,
instructions varchar (250),
orderstatus varchar (20),
problem numeric,

40

timestamp,
varchar (80),

probtime
guidelinename
guideline varchar (2000),
chartstatus varchar (20),
shift varchar (60},
variancetype varchar (20),
variancecause varchar (40),
scode numeric,
pcode numeric,
sid numeric,
elemid numeric,
txid numeric

) ;

create table view for_ interventions

as select interventions.oid as oid_for_interventions,
d_patients.case_id, round(interventions.pid, 0) as pid,
d_interventionitems.label as itemid, interventions.itemid as
key_for_itemid, interventions.charttime as charttime,

round (interventions.chartdate, 0) as chartdate,

round (interventions.cgid, 0) as cgid, d_careunits.unitname as
cuid, interventions.cuid as key_for_cuid,

round (interventions.ordercgid, 0) as ordercgid,
interventions.ordertime as ordertime, interventions.dateadded
as dateadded, round(interventions.addcgid, 0) as addcgid,
d_days.calDay as targetdate, interventions.targetdate as
key_for_targetdate, interventions.instructions as instructions,
interventions.orderstatus as orderstatus, d_problemitems0.label
as problem, interventions.problem as key_for_problem,
interventions.probtime as probtime, interventions.guidelinename
as guidelinename, interventions.guideline as guideline,
interventions.chartstatus as chartstatus, interventions.shift
as shift, interventions.variancetype as variancetype,
interventions.variancecause as variancecause,
round(interventions.scode, 0) as scode,
round(interventions.pcode, 0) as pcode, d_sources.hospitalname
as sid, interventions.sid as key_for_sid,
round(interventions.elemid, 0) as elemid,
round(interventions.txid, 0) as txid from interventions,
d_patients, d_interventionitems, d_careunits, d_days,
d_problemitems d_problemitems0, d_sources where
d_patients.pid=interventions.pid and
d_interventionitems.itemid=interventions.itemid and
d_careunits.cuid=interventions.cuid and
d_days.dayid=interventions.targetdate and
d_problemitems0.itemid=interventions.problem and
d_sources.sid=interventions.sid ;

APPENDIX B: MIMIC Table Definitions

-~ tables for orders
create table driporders (

pid numeric,

itemid numeric,
charttime timestamp,
chartdate numeric,

cuid numeric,
verifiedtime timestamp,
verifiedby numeric,
addtime timestamp,
addby numeric,
addverifytime timestamp,
addverifyby numeric,
duration numeric,
durationtype varchar (20),
orderedby varchar (30),
starttime timestamp,
stoptime timestamp,
schedcomments varchar (60),
discontinuecomments varchar (60),
mdinstr varchar (500),
rninstr varchar (500),
phinstr varchar (500),
ndcosign varchar(30),
rnreview varchar(30),
phreview varchar (30),
freglabel varchar (16),
action varchar (20),
state varchar(20),
stopstate varchar (20),
education varchar (20),
base numeric,

basevol numeric,

rate numeric,

dosemin numeric,
doseminuom numeric,
dosemax numeric,
dosemaxuom numeric,
doseunits varchar (20),
scode numeric,

pcode numeric,

sid numeric,

elemid numeric,

txid numeric

41

create table view_for_driporders

as select driporders.oid as oid_for_driporders,
d_patients.case_id, round(driporders.pid, 0) as pid,
d_meditems.label as itemid, driporders.itemid as

key_ for_itemid, driporders.charttime as charttime,
round{driporders.chartdate, 0) as chartdate,
d_careunits.unitname as cuid, driporders.cuid as key_for_cuid,
driporders.verifiedtime as verifiedtime, d_caregivers.cgid as
verifiedby, driporders.verifiedby as key_for_verifiedby,
driporders.addtime as addtime, d_caregivers0.cgid as addby,
driporders.addby as key_for_addby, driporders.addverifytime as
addverifytime, d_caregiversl.cgid as addverifyby,
driporders.addverifyby as key_for_addverifyby,
round(driporders.duration, 0) as duration,
driporders.durationtype as durationtype, driporders.orderedby
as orderedby, driporders.starttime as starttime,
driporders.stoptime as stoptime, driporders.schedcomments as
schedcomments, driporders.discontinuecomments as
discontinuecomments, driporders.mdinstr as mdinstr,
driporders.rninstr as rninstr, driporders.phinstr as phinstr,
driporders.mdcosign as mdcosign, driporders.rnreview as
rnreview, driporders.phreview as phreview, driporders.freglabel
as freglabel, driporders.action as action, driporders.state as
state, driporders.stopstate as stopstate, driporders.education
as education, d_meditems2.label as base, driporders.base as
key_for_base, round(driporders.basevol, 2) as basevol,

round (driporders.rate, 2) as rate, round(driporders.dosemin, 2)
as dosemin, round{driporders.doseminuom, 2) as doseminuom,
round (driporders.dosemax, 2) as dosemax,

round (driporders.dosemaxuom, 2) as dosemaxuom,
driporders.doseunits as doseunits, round(driporders.scode, 0)
as scode, round(driporders.pcode, 0) as pcode,
d_sources.hospitalname as sid, driporders.sid as key_ for_sid,
round(driporders.elemid, 0) as elemid, round(driporders.txid,
0) as txid from driporders, d_patients, d_meditems,
d_careunits, d_caregivers, d_caregivers d_caregivers0,
d_caregivers d_caregiversl, d_meditems d_meditems2, d_sources
where d_patients.pid=driporders.pid and
d_meditems.itemid=driporders.itemid and
d_careunits.cuid=driporders.cuid and
d_caregivers.cgid=driporders.verifiedby and
d_caregivers(.cgid=driporders.addby and
d_caregiversl.cgid=driporders.addverifyby and
d_meditems2.itemid=driporders.base and
d_sources.sid=driporders.sid ;

create table freeformorders (

APPENDIX B: MIMIC Table Definitions

pid numeric,

itemid numeric,
charttime timestamp,
chartdate numeric,

cuid numeric,
verifiedtime timestamp,
verifiedby numeric,
addtime timestamp,

addby numeric,
addverifytime timestamp,
addverifyby numeric,
duration numeric,
durationtype varchar (20),
orderedby varchar (30),
starttime timestamp,
stoptime timestamp,
schedcomments varchar{60),
discontinuecomments varchar (60),
mdinstr varchar (500),
rninstr varchar (500),
phinstr varchar (500),
mdcosign varchar (30)
roreview varchar {30),
phreview varchar (30),
freglabel varchar (16),
action varchar (20),
state varchar (20),
stopstate varchar (20),
education varchar (20),
order_ varchar (900) ,
scode numeric,

pcode numeric,

sid numeric,

txid numeric

)

create table view for_ freeformorders

as select freeformorders.oid as oid_for_freeformorders,
d_patients.case_id, round(freeformorders.pid, 0) as pid,
d_chartitems.label as itemid, freeformorders.itemid as
key_for_itemid, freeformorders.charttime as charttime,
round (freeformorders.chartdate, 0) as chartdate,
d_careunits.unitname as cuid, freeformorders.cuid as

key_ for_cuid, freeformorders.verifiedtime as verifiedtime,
d_caregivers.cgid as verifiedby, freeformorders.verifiedby as
key_for_verifiedby, freeformorders.addtime as addtime,
d_caregivers0.cgid as addby, freeformorders.addby as

42

key_for_addby, freeformorders.addverifytime as addverifytime,
d_caregiversl.cgid as addverifyby, freeformorders.addverifyby
as key_for_addverifyby, round(freeformorders.duration, 0) as
duration, freeformorders.durationtype as durationtype,
freeformorders.orderedby as orderedby, freeformorders.starttime
as starttime, freeformorders.stoptime as stoptime,
freeformorders.schedcomments as schedcomments,
freeformorders.discontinuecomments as discontinuecomments,
freeformorders.mdinstr as mdinstr, freeformorders.rninstr as
rninstr, freeformorders.phinstr as phinstr,
freeformorders.mdcosign as mdcosign, freeformorders.rnreview as
rnreview, freeformorders.phreview as phreview,

freeformorders. freglabel as freglabel, freeformorders.action as
action, freeformorders.state as state, freeformorders.stopstate
as stopstate, freeformorders.education as education,
freeformorders.order_ as order_, round(freeformorders.scode, 0)
as scode, round(freeformorders.pcode, 0) as pcode,
d_sources.hospitalname as sid, freeformorders.sid as
key_for_sid, round(freeformorders.txid, 0) as txid from
freeformorders, d_patients, d_chartitems, d_careunits,
d_caregivers, d_caregivers d_caregivers(, d_caregivers
d_caregiversl, d_sources where
d_patients.pid=freeformorders.pid and
d_chartitems.itemid=freeformorders.itemid and
d_careunits.cuid=freeformorders.cuid and
d_caregivers.cgid=freeformorders.verifiedby and
d_caregivers0.cgid=freeformorders.addby and
d_caregiversl.cgid=freeformorders.addverifyby and
d_sources.sid=freeformorders.sid ;

create table infusionorders (

pid numeric,

itemid numeric,
charttime timestamp,
chartdate numeric,

cuid numeric,
verifiedtime timestamp,
verifiedby numeric,
addtime timestamp,

addby numeric,
addverifytime timestamp,
addverifyby numeric,
duration numeric,
durationtype varchar (20),
orderedby varchar (30),
starttime timestamp,
stoptime timestamp,

APPENDIX B: MIMIC Table Definitions

schedcomments varchar (60),
discontinuecomments varchar (60) ,

mdinstr varchar (500),
rninstr varchar (500) ,
phinstr varchar (500),
mdcosign varchar (30),
rnreview varchar (30),
phreview varchar (30),
freqlabel varchar(16),
action varchar (20),
state varchar (20),
stopstate varchar (20),
education varchar (20),
base numeric,

basevol numeric,

rate numeric,

scode numeric,

pcode nunmeric,

sid numeric,

elemid numeric,

txid numeric

)

create table view_ for_infusionorders

as select infusionorders.oid as oid_for_infusionorders,
d_patients.case_id, round(infusionorders.pid, 0) as pid,
d_chartitems.label as itemid, infusionorders.itemid as
key_for_itemid, infusionorders.charttime as charttime,
round(infusionorders.chartdate, 0) as chartdate,
d_careunits.unitname as cuid, infusionorders.cuid as
key_for_cuid, infusionorders.verifiedtime as verifiedtime,
d_caregivers.cgid as verifiedby, infusionorders.verifiedby as
key_for_verifiedby, infusionorders.addtime as addtime,
d_caregivers0.cgid as addby, infusionorders.addby as
key_for_addby, infusionorders.addverifytime as addverifytime,
d_caregiversl.cgid as addverifyby, infusionorders.addverifyby
as key_for_addverifyby, round(infusionorders.duration, 0) as
duration, infusionorders.durationtype as durationtype,
infusionorders.orderedby as orderedby, infusionorders.starttime
as starttime, infusionorders.stoptime as stoptime,
infusionorders.schedcomments as schedcomments,
infusionorders.discontinuecomments as discontinuecomments,
infusionorders.mdinstr as mdinstr, infusionorders.rninstr as
rninstr, infusionorders.phinstr as phinstr,
infusionorders.mdcosign as mdcosign, infusionorders.rnreview as
rnreview, infusionorders.phreview as phreview,

infusionorders. freglabel as freglabel, infusionorders.action as

43

infusionorders.state as state, infusionorders.stopstate
infusionorders.education as education,
d_meditems2.label as base, infusionorders.base as key_for_base,
round({infusionorders.basevol, 2) as basevol,
round(infusionorders.rate, 2) as rate,
round{infusionorders.scode, 0) as scode,
round(infusionorders.pcode, 0) as pcode, d_sources.hospitalname
as sid, infusionorders.sid as key_for_sid,
round(infusionorders.elemid, 0) as elemid,

round (infusionorders.txid, 0) as txid from infusionorders,
d_patients, d_chartitems, d_careunits, d_caregivers,
d_caregivers d_caregivers0, d_caregivers d_caregiversl,
d_meditems d_meditems2, d_sources where
d_patients.pid=infusionorders.pid and
d_chartitems.itemid=infusionorders.itemid and
d_careunits.cuid=infusionorders.cuid and
d_caregivers.cgid=infusionorders.verifiedby and
d_caregivers0.cgid=infusionorders.addby and
d_caregiversl.cgid=infusionorders.addverifyby and
d_meditems2.itemid=infusionorders.base and
d_sources.sid=infusionorders.sid ;

action,
as stopstate,

create table medorders (

pid numeric,

itemid numeric,

charttime timestamp,
chartdate numeric,

cuid numeric,
verifiedtime timestamp,
verifiedby numeric,
addtime timestamp,

addby numeric,
addverifytime timestamp,
addverifyby numeric,
duration numeric,
durationtype varchar(20),
orderedby varchar(30),
starttime timestamp,
stoptime timestamp,
schedcomments varchar (60),
discontinuecomments varchar(60),
mdinstr varchar (500),
rninstr varchar (500),
phinstr varchar (500),
mdcosign varchar (30),
rnreview varchar (30),
phreview varchar (30),

APPENDIX B: MIMIC Table Definitions

freglabel varchar (16),
action varchar (20),
state varchar(20),
stopstate varchar (20),
education varchar (20),
renewtime timestamp,
dosemin numeric,
doseminuom numeric,
dosemax numeric,
dosemaxuom numeric,
scode numeric,

pcode numeric,

sid numeric,

elemid numeric,

txid numeric

)

create table view_for medorders

as select medorders.oid as oid_for_medorders,
d_patients.case_id, round(medorders.pid, 0) as pid,
d_ioitems.label as itemid, medorders.itemid as key_for_itemid,
medorders.charttime as charttime, round(medorders.chartdate, 0)
as chartdate, d_careunits.unitname as cuid, medorders.cuid as
key_for_cuid, medorders.verifiedtime as verifiedtime,
d_caregivers.cgid as verifiedby, medorders.verifiedby as
key_for_verifiedby, medorders.addtime as addtime,
d_caregivers0.cgid as addby, medorders.addby as key_for_addby,
medorders.addverifytime as addverifytime, d_caregiversl.cgid as
addverifyby, medorders.addverifyby as key_for_addverifyby,
round (medorders.duration, 0) as duration,
medorders.durationtype as durationtype, medorders.orderedby as
orderedby, medorders.starttime as starttime, medorders.stoptime
as stoptime, medorders.schedcomments as schedcomments,
medorders.discontinuecomments as discontinuecomments,
medorders.mdinstr as mdinstr, medorders.rninstr as rninstr,
medorders.phinstr as phinstr, medorders.mdcosign as mdcosign,
medorders.rnreview as rnreview, medorders.phreview as phreview,
medorders. freqglabel as freglabel, medorders.action as action,
medorders.state as state, medorders.stopstate as stopstate,
medorders.education as education, medorders.renewtime as
renewtime, round(medorders.dosemin, 2) as dosemin,

round (medorders.doseminuom, 2) as doseminuom,

round (medorders.dosemax, 2) as dosemax,

round (medorders.dosemaxuom, 2) as dosemaxuom,

round (medorders.scode, 0) as scode, round(medorders.pcode, 0)
as pcode, d_sources.hospitalname as sid, medorders.sid as
key_for_sid, round(medorders.elemid, 0) as elemid,

44

round (medorders.txid, 0) as txid from medorders, d_patients,
d_ioitems, d_careunits, d_caregivers, d_caregivers
d_caregivers0, d_caregivers d_caregiversl, d_sources where
d_patients.pid=medorders.pid and
d_ioitems.itemid=medorders.itemid and
d_careunits.cuid=medorders.cuid and
d_caregivers.cgid=medorders.verifiedby and
d_caregivers(0.cgid=medorders.addby and
d_caregiversl.cgid=medorders.addverifyby and
d_sources.sid=medorders.sid ;

~- tables for Duration

create table a_chartdurations (

pid numeric,
starttime timestamp,
endtime timestamp,
itemid numeric,
cuid numeric,
duration numeric,
scode numeric,
pcode numeric,

sid numeric,

elemid numeric

)i

create table view_for_a_chartdurations

as select a_chartdurations.oid as oid_for_a_chartdurations,
d_patients.case_id, round(a_chartdurations.pid, 0) as pid,
a_chartdurations.starttime as starttime,
a_chartdurations.endtime as endtime, d_chartitems.label as
itemid, a_chartdurations.itemid as key_for_itemid,
d_careunits.unitname as cuid, a_chartdurations.cuid as
key_for_cuid, round(a_chartdurations.duration, 2) as duration,
round{a_chartdurations.scode, 0) as scode,
round(a_chartdurations.pcode, 0) as pcode,
d_sources.hospitalname as sid, a_chartdurations.sid as
key_for_sid, round(a_chartdurations.elemid, 0) as elemid from
a_chartdurations, d_patients, d_chartitems, d_careunits,
d_sources where d_patients.pid=a_chartdurations.pid and
d_chartitems.itemid=a_chartdurations.itemid and
d_careunits.cuid=a_chartdurations.cuid and
d_sources.sid=a_chartdurations.sid ;

create table a_iodurations (

pid numeric,
itemid numeric,

APPENDIX B: MIMIC Table Definitions

starttime timestamp,
endtime timestamp,
cuid numeric,
duration numeric,
scode numeric,
pcode numeric,

sid numeric,

elemid numeric

)

create table view_for_a_iodurations

as select a_iodurations.oid as oid_for_a_iodurations,
d_patients.case_id, round(a_iodurations.pid, 0) as pid,
d_ioitems.label as itemid, a_iodurations.itemid as
key_for_itemid, a_iodurations.starttime as starttime,
a_iodurations.endtime as endtime, d_careunits.unitname as cuid,
a_lodurations.cuid as key_for_cuid,
round(a_iodurations.duration, 2) as duration,
round(a_iodurations.scode, 0) as scode,
round(a_iodurations.pcode, 0) as pcode, d_sources.hospitalname
as sid, a_iodurations.sid as key_for_sid,
round(a_iodurations.elemid, 0) as elemid from a_iodurations,
d_patients, d_ioitems, d_careunits, d_sources where
d_patients.pid=a_iodurations.pid and
d_ioitems.itemid=a_iodurations.itemid and
d_careunits.cuid=a_iodurations.cuid and
d_sources.sid=a_iodurations.sid ;

create table a_meddurations (

pid numeric,
startrealtime timestamp,
starttime timestamp,
itemid numeric,
endtime timestamp,
cuid numeric,
duration numeric,
scode numeric,

pcode numeric,

sid numeric,

elemid numeric

)i

create table view_for_ a meddurations

as select a_meddurations.oid as oid_for_a_meddurations,
d_patients.case_id, round{a_meddurations.pid, 0) as pid,
a_meddurations.startrealtime as startrealtime,
a_meddurations.starttime as starttime, d_meditems.label as

45

itemid, a_meddurations.itemid as key for_itemid,
a_meddurations.endtime as endtime, d_careunits.unitname as
cuid, a_meddurations.cuid as key_ for_cuid,
round(a_meddurations.duration, 2) as duration,
round{a_meddurations.scode, 0) as scode,

round (a_meddurations.pcode, 0) as pcode, d_sources.hospitalname
as sid, a_meddurations.sid as key_for_sid,
round{a_meddurations.elemid, 0) as elemid from a_meddurations,
d_patients, d_meditems, d_careunits, d_sources where
d_patients.pid=a_meddurations.pid and
d_meditems.itemid=a_meddurations.itemid and
d_careunits.cuid=a_meddurations.cuid and
d_sources.sid=a_meddurations.sid ;

APPENDIX B: MIMIC Table Definitions

APPENDIX C: MIMIC Index Definitions

-- indexes for all tables in MIMIC

-- for metatdata

create index mimic_table_columns on mimic_table_elements (column_name) ;
create index mimic_table_tables on mimic_table_elements (table_name);
create index mimic_table_cats on mimic_table_categories (category_name) ;

create index mimic_table_index on mimic_table_elements (table_name, include_in_view_p);

create index mimic_display_keys_index on mimic_display_keys(table_name) ;
create index mimic_time_keys_index on mimic_time_keys(table_name);

create index mimic_element_view on mimic_table_elements (table_name, include_in_view_p);

create index mimic_element_search on mimic_table_elements (table_name,
include_in_ctx_index_p);
create index mimic_display_keys_index on mimic_display_keys (table_name);

-- for data log
create index mimic_update_id on new_data_log (update_id);

-- for patient fact tables

create index case_id_for_problems on d_patients (case_id);

create index key_index_for_problems on problems (pid);

create index key_index_for_resultevents on resultevents (pid);
create index key_index_for_a_meddurations on a_meddurations (pid);
create index key_index_for_a_chartdurations on a_chartdurations (pid);
create index key_index_for_d_patients on d_patients (pid);

create index key_index_for_a_iodurations on a_iodurations (pid);
create index key_index_for_chartevents on chartevents (pid);
create index key_index_for_deliveries on deliveries (pid);

create index key_index_for_driporders on driporders (pid);

create index key_index_for_ formevents on formevents (pid);

create index key_index_for_freeformorders on freeformorders (pid);
create index key_index_for_infusionorders on infusionorders (pid);
create index key_index_for_interventions on interventions (pid);
create index key_index_for_ioevents on ioevents (pid);

create index key_index_for_medevents on medevents (pid);

create index key_index_for_medorders on medorders (pid);

create index key_index_for_outcomes on outcomes (pid);

create index key_index_for_censusevents on censusevents (pid);
create index key_index_for_solutions on solutions (pid);

create index key_index_for_additives on additives (pid);

create index key_index_for_noteevents on noteevents (pid);

create index key_index_for_totalbalevents on totalbalevents (pid);

-- for dimension tables

create index key_index_for_d_caregivers on d_caregivers (cgid);
create index key_index_for_d_careunits on d_careunits (cuid);
create index key_index_for_d_chartitems on d_chartitems (itemid);
create index key_index_for_d_days on d_days (dayid);

create index key_index_for_d_days on d_days (calday);

create index cal_key_index_for_d_days on d_days (calday);

create index key_index_for_d_interventionitems on d_interventionitems (itemid);

create index key_index_for_d_ioitems on d_ioitems (itemid);

create index key_index_for_d_meditems on d_meditems (itemid);

create index key_index_for_d_outcomeitems on d_outcomeitems (itemid);
create index key_index_for_d_primarycodes on d_primarycodes (pcode);
create index key_index_for_d_problemitems on d_problemitems (itemid);
create index key_index_for_d_secondarycodes on d_secondarycodes (scode);
create index key_index_for_d_sources on d_sources (sid);

-- for time elements

create index time_index_for_a_chartdurations on a_chartdurations (starttime);

create index time_index_for_additives on additives (charttime);

create index time_index_for_a_iodurations on a_iodurations (starttime);
create index time_index_for_a_meddurations on a_meddurations (starttime);
create index time_index_for_censusevents on censusevents (intime);

create index time_index_for_chartevents on chartevents (charttime);

46 APPENDIX C: MIMIC Index Definitions

create
create
create
create
create
create
create
create
create
create
create
create
create
create
create

index
index
index
index
index
index
index
index
index
index
index
index
index
index
index

time_index_for_deliveries on deliveries (charttime);
time_index_for_driporders on driporders (charttime);
time_index_for_formevents on formevents (charttime);
time_index_for_freeformorders on freeformorders (charttime);
time_index_for_infusionorders on infusionorders (charttime);
time_index_for_interventions on interventions (charttime);
time_index_for_iocevents on ioevents (charttime);
time_index_for_medevents on medevents (charttime);
time_index_for_medorders on medorders {(charttime);
time_index_for_noteevents on noteevents (charttime);
time_index_for_outcomes on outcomes (charttime);
time_index_for_problems on problems (charttime);

time_index_ for_resultevents on resultevents (chartTime);
time_index_for_solutions on solutions (charttime);
time_index_for_totalbalevents on totalbalevents (charttime);

-- time and key elements

create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create

-- for
create

-~ for
create
create
create
create
create
create
create
create
create
create
create
create

-- for
create
create
create
create
create
create
create
create
create
create
create
create
create
create

index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index

time_key_index_a_chartdurations on a_chartdurations (starttime, pid);
time_key_index_additives on additives (charttime, pid);
time_key_index_a_iodurations on a_iodurations (starttime, pid);
time_key_index_a_meddurations on a_meddurations (starttime, pid);
time_key_ index_censusevents on censusevents (intime, pid);
time_key_index_chartevents on chartevents {(charttime, pid);
time_key_index_deliveries on deliveries (charttime, pid);
time_key index_driporders on driporders c(harttime, pid);
time_key_index_formevents on formevents (charttime, pid);
time_key index_freeformorders on freeformorders (charttime, pid);
time_key_index_infusionorders on infusionorders (charttime, pid);
time_key_ index_interventions on interventions (charttime, pid);
time_key_index_ioevents on ioevents (charttime, pid);
time_key_index_medevents on medevents (charttime, pid);
time_key_index_medorders on medorders (charttime, pid);
time_key_index _noteevents on noteevents (charttime, pid);
time_key_index_outcomes on outcomes (charttime, pid);
time_key_index_problems on problems (charttime, pid);
time_key_index_resultevents on resultevents (chartTime, pid);
time_key_index_solutions on solutions (charttime, pid);
time_key_index_totalbalevents on totalbalevents (charttime, pid);

search display

index

itemid_index_chartevents on chartevents (itemid);

menu item display

index
index
index
index
index
index
index
index
index
index
index
index

menu_item_totalbalevents on totalbalevents(itemid);
menu_item_censusevents on censusevents (careunit);
menu_item_chartevents on chartevents (itemid);
menu_item_a_chartdurations on a_chartdurations (itemid);
menu_item_a_iodurations on a_iodurations (itemid);
menu_item_deliveries on deliveries (ioitemid);
menu_item_ formevents on formevents (sectiontitle);
menu_item_ioevents on ioevents (itemid);

menu_item medevents on medevents {(itemid);
menu_item_noteevents on noteevents (category);
menu_item_solutions on solutions (itemid);
menu_item_totalbalevents on totalbalevents (itemid);

date_keys

index
index
index
index
index
index
index
index
index
index
index
index
index
index

view_date_for_additives on view_for_additives (chartdate);
view_date_for_censusevents on view_for_censusevents (indayid);
view_date_for_chartevents on view_for_chartevents (chartdate);
view_date_for_deliveries on view_for_deliveries (chartdate);
view_date_for_driporders on view_for_driporders (chartdate);
view_date_for_formevents on view_for_ formevents (chartDay);
view_date_for_freeformorders on view_for_freeformorders (chartdate);
view_date_for_infusionorders on view_for_infusionorders (chartdate);
view_date_for_interventions on view_for_interventions (chartdate);
view_date_for_ ioevents on view_for_ioevents (chartdate);
view_date_for_medevents on view_for_medevents (chartdate);
view_date_for_medorders on view_for_medorders (chartdate);
view_date_for_noteevents on view_for_noteevents (chartDate);
view_date_for_outcomes on view_for_outcomes (chartdate);

47 APPENDIX C: MIMIC Index Definitions

create
create
create
create

-- for
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create

index
index
index
index

view_date_for_problems on view_for_problems (chartdate);
view_date_for_resultevents on view_for_resultevents (chartDate);
view_date_for_solutions on view_for_solutions (chartdate);
view_date_for_totalbalevents on view_for_totalbalevents (chartdate);

case_ids
case_id_for_chartevents on view_for_chartevents (case_id);
case_id for_a_meddurations on view_for_a_meddurations (case_id);
case_id_for_a_iodurations on view_for_a_iodurations (case_id);
case_1id_for_a_chartdurations on view_for_a_chartdurations (case_id);
case_id for_interventions on view_for_interventions (case_id);
case_id_for_outcomes on view_for_outcomes (case_id);
case_id_for_problems on view_for_problems (case_id);
case_id_for_medorders on view_for_medorders (case_id);
case_1id_for_infusionorders on view_for_infusionorders (case_id);
case_id_for_freeformorders on view_for_freeformorders (case_id);
case_id_for_driporders on view_for_driporders (case_id);
case_1id_for_solutions on view_for_solutions (case_id);
case_id_for_deliveries on view_for_deliveries (case_id);
case_id_for_ioevents on view_for_ioevents (case_id);
case_id_for_noteevents on view_for_noteevents (case_id);
case_id_for_formevents on view_for_formevents (case_id);

on view_for_censusevents (case_id);
view_for_additives (case_id);

on view_for_resultevents (case_id);
view_for_medevents (case_id);
case_id_for_totalbalevents on view_for_totalbalevents (case_id);
case_id_for_d_patients on view_for_d_patients (case_id);

index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index

case_id_for_censusevents
case_id_ for_additives on
case_id_for_resultevents
case_id_for_medevents on

48

APPENDIX C: MIMIC Index Definitions

APPENDIX D: MIMIC Keys

mimic_date_keys
"table_name"

"date_key"

additives chartdate
censusevents indayid
chartevents chartdate
deliveries chartdate
driporders chartdate
formevents chartDay

freeformorders chartdate
infusionorders chartdate

interventions chartdate
totalbalevents chartdate

ioevents chartdate
medevents chartdate
medorders chartdate
noteevents chartDate
outcomes chartdate
resultevents chartDate
problems chartdate
solutions chartdate

mimic_item keys
"table_name™

"item _key"

"include_in_view p"
d_secondarycodes code
d_sources siteid
d_caregivers cgid
d_careunits cuid
d_interventionitems itemid
d_iocitems itemid
d_meditems itemid
d_outcomeitems itemid £
d_problemitems itemid f
additives itemid
a_meddurations itemid f
d_chartitems itemid
d_days dayid
d_patients pid
d_primarycodes code f
driporders itemid

Fh Fh Hh Fho b Y

49

freeformorders itemid f

infusionorders itemid £
interventions itemid
medorders itemid
outcomes itemid
problems itemid
resultevents resultid
a_iodurations itemid
deliveries ioitemid
ioevents itemid
medevents itemid
solutions itemid
totalbalevents itemid t
censusevents careunit
formevents sectiontitle
chartevents itemid
a_chartdurations itemid
noteevents title

mimic_time_keys
"table_name”
*time_key"

d_days month

resultevents chartTime
deliveries charttime
driporders charttime

freeformorders charttime
infusionorders charttime

medorders charttime
problems charttime
outcomes charttime
interventions charttime
a_iodurations starttime
a_meddurations starttime
censusevents intime
solutions charttime
a_chartdurations starttime
chartevents charttime
formevents charttime
ioevents charttime
medevents charttime
noteevents charttime
totalbalevents charttime
d_patients pid
additives charttime

(o i A i o T o T T T

Fh bty

APPENDIX D: MIMIC Keys

mimic_display keys
“table_name”
“display_key”

d_patients pid
d_careunits unitname
d_chartitems label

d_days

d_interventionitems label

d_ioitems label
d_meditems label
d_outcomeitems label
d_problemitems label
d_sources hospitalname
d_caregivers cgid
d_primarycodes pcode
d_secondarycodes scode
censusevents pid
chartevents itemid
formevents itemid
medevents itemid
noteevents pid
resultevents objectid
totalbalevents pid
ioevents itemid
additives itemid
deliveries ioitemid
solutions itemid
driporders itemid
freeformorders itemid
infusionorders itemid
medorders itemid
problems itemid
outcomes itemid
interventions itemid
a_chartdurations itemid
a_iodurations | itemid
a_meddurations | itemid
(34 rows)

50

APPENDIX D: MIMIC Keys

Appendix E MIMIC Administrator’s Manual

Background on MIMIC

The Mimic Relational Database Management System (RDBMS) is designed for patient
records taken from a hospital’s clinical information system called CareVue. This
automated system consolidates patient data and stores it in an Oracle database.

Those records have been available to MIMIC through a partnership with a local
hospital.

The purpose of the MIMIC RDBMS is to provide an interface to define tables and
manage how they are accessed, displayed, and presented to the end user. The
MIMIC RDBMS is used to select data to be downloaded from the partner hospital,
parse, upload, and organize these records, and present them to the end user.

51 Manual for MIMIC Administrators

Administrative Modules for MIMIC

Administrators to MIMIC have the ability to manage table definitions, add new data

to the database, and control parameters that affect how data is displayed and
managed.

Administrative tasks can be divided into two categories: making table definitions,
and adding new data to the database. Table definitions need to be made only once,
and updated as necessary. New data can be added at anytime. It is likely that there
will be regular updates to add new data as it is collected.

to Sweter Mane

Current users: Please enter your email and password below.

New users: Welcome to System Name. Please begin the registration process by entering a valid email address and a
password for signing into the system. We will direct you to another form to complete your registration.

‘Your email address: [u_sar_ucununl
‘Your password: m

¥ Remember this address and password? (1)

T IS A RS S S e

If you keep getling thrown back here, it is probably because your browser does not accept cookies. We're sorry for
the inconvenience but it really is impossible to program a system like this without keeping track of who is posting
what.

| s

In Netscape 40, you can enable cookiss from Edit -> Preferences -> Advanced. In Microsoft Intemnet Explorer 40, you
can enable cookies from View -> Intemet Options -> Advanced -> Security.

Administrators will need a username and password to log into MIMIC before being
able to perform any of the administrative tasks described in this section.

52 Manual for MIMIC Administrators

The admmlstratlve database management module Iocated in
/server_path/www/admin/mimic/ allows administrators to enter table definitions for
tables in MIMIC. These definitions are then used to generate SQL CREATE TABLE
statements that the administrator can cut and paste into Postgres to create tables.
The administrator does not need to have previous knowledge of SQL.

Tables are stored in categories and consist of a number of elements (columns) for
that table.

Category Category
table table table table table
el el el
Hierarchy of Metadata

Step 1: Creating a Category

Tables are organized into categories. The section for normal users describes how
category definitions affect how data is viewed. The administrator first needs to define
a category for the table by clicking on “Create a New Category” link in
/server_path/www/admin/mimic/. The administrator can then enter the attributes
associated with this category.

2 Crcate a New Mimic Table Cal olt Inteinet Explorer

The Category Name is the
name used in SQL for this
category. Category names
must be unique and should
not contain any white space.

Create a New Mimic Table Category

The Pretty Name is the name
used when displaying this

ame _I |
category name to normal catoper [} fos
users By, 1o
: This is a test category created for our _3!
|demonstration b
(optional) The Description Toaderiytit
field may be used to enter a)
short description about the Ovder SertXKay |
usage or contents of this m“"“‘"""’“’" € yes oo
category.

The Order Sort Key is an
integer used in sorting 1 TR R R T T e
categories. For instance, a category wnth an Order Sort Key of 1 wou[d appear first in

53 Manual for MIMIC Administrators

the list of categories. Order
sort keys are constrained to be
unique. The default value for
order sort keys is the next
largest value order sort key.

Lastly, the administrator may
specify whether this category

should be Included in the T et Totewtvgey

User View. This allows i e
categories to be defined, but Table Nasme

hidden from normal users. This AT ok o EabLAR N 2 ey

is useful for administrative or Addasisw Table
dimension tables. -

Once these attributes are entered, the administrator can create this category by
clicking on the “create” button.

Once a category is created, the
administrator is taken to a page that
lists the tables for that category. To
create a new table, click on “"Add a
New Table.”

Figure 1 New Category

54 Manual for MIMIC Administrators

Step 2: Creating a
Table

Now that a category has been
defined, tables can be added -
to that category. The Create a New Mimic Table for the Test category
attributes for tables are

similar to those for
categories. Teble N poeieblo
Prosty Name [Tost Table i
The Table Name is the name [SRS 3 E,
used in SQL for this table. The | Pt !
Table Name is constrained to | 9
be unique should not contain this teble is used for demonstrational L&J
any white space. s

The Pretty Name is the
name used when displaying
this table to normal users.

The Description field is used to store information about the table.

The Usage field is used to describe how this table should be used.

Micinzolt In

Once these attributes have
been defined, the
administrator can click on the
“create” button to create this
table. The table is not actually

Created on the database view this cate2ory view all cetegonies TI3W LS er PaZes
system at this time. Step 4 Test Table Table
describes how to actually Elements of Tble Test Table
create the table in the S
database.
there are no elements in this table
Now the administrator has 24 a Now Element

defined a category and a table
in that category. He can now

add elements (columns) to =
that table by clicking on “Add a New Element.”

55 Manual for MIMIC Administrators

Step 3: Adding Elements to a Table

Administrators can then enter attributes
for an element in this table.

The Column Name is the name used in 3 mmsmsmummmmmﬂmw

SQL for this table and should not
contain any whitespace. The Column
Name is constrained to be unique for
this table.

The Pretty Name is the label used for
displaying this column to normal users.

The Abstract Data Type specifies what
type this column is, i.e. “boolean” or
"integer” or “text.” This value is used in
formatting this column for display.

The Postgres Data Type is the type
used for Postgres, i.e. “numeric” or
“timestamp.” This value is used in
generating SQL to create and select
from tables in Postgres.

The Oracle Data type is the type used
in Oracle, i.e. “integer” or “date.” This
value is used in selecting data from
hospital tables that are stored in Oracle.

(optional) The Extra SQL field can be
used for any extra SQL that should be
included when creating this table, such

s “not null” or “references
d_tests.test.”

The Order Sort Key is used to sort
elements in this table. An element of
order sort key of 1 would appear first in
this table. The default value for this
attribute is the maximum value +1 for
this table.

(optional) The Entry Explanation field
can be used to give a description of this
column.

Administrators can specify whether this
column should be included in a text

Faivat

Add an Element to Test Table

Please enter ths following fields describing an element (column) of Test Table

Column

Name

M" ‘est One

Abstract E ie. "text" or "shorttext” "boolesn”
Data type "uger”

M'W mﬁlﬂmﬂ ie."varchan(200)" “integer"

Mu" e ar(100) ie."varchan200)" "integer"

Extra SQL I ¢.g, "not null" o "check foobarin
ShEmERt o0y oty

%l:l’h" |1 ie.'1' for first column

E This is the first test column. :i w
Swowios: H @
Inchude in :
Text € yes ® no -
Search

Inchude in
Tablo View © ¥es © 0o

€] /192.168.1.44:8000/

niew this category view all categones
Test Table Table
Elements of Table Test Table

Generate SQL create table statement for this table.

Column Name Pretty Name
edit 1 testl Test One this is the first test column
edit 2 test2 Test Two 2nd test column
edit 3 test3 Test Three 3rd test column

Add a New Element

56 Manual for MIMIC Administrators

search of this table in the Include in Text Search field. Typically, this value is turned
on for free text fields and turned off for fields that contain date or numeric
information.

The Include in Table View field controls whether this field is visible to normal
users. Some fields may not be significant to the end user and should be hidden.

step 4: Generatin!l SsaL) SUL Cieate Table stat Test Iable - Microsolt Internet Explorer

Once all elements are defined for this
table, the administrator can generate
SQL to create this table by clicking on

“Generate.” SQL Create Table statement for Test Tahle

A code sample generated by this step | Youmey e mdpesin elomngis sndshaTon Table e

appears below. 5 e S]
test varchar(l), &

Test Three integer
)

|
|
i
R A

This will generate SQL create table
statements that the administrator can bash-2,058 psal

openacsd
A Hel to psql, the PostgreSlL interactive terminal.
cut and paste into the Postgres e serve e

Tupe: ‘copyright for distribution teras

i N\h for help with SOL commands

command line. VI ral At A

\g or terminate with semicolon to execute query
g to quit

- :
=4 create table test_table (_I
openacsd(# testl varchar(100),

Note: These administrative table management pages are also used to modify category,
element, and table definitions. Each time an element’s column name, Oracle data type,
or Postgres data type is updated, the Administrator should first drop and then re-create
the table in Postgres for the changes to take affect. Other modifications to columns take
effect without having to recreate the table.

Currently, MIMIC contains table definitions for those tables defined in the CareVue
ISM. A description of these table definitions appears in Appendix B.

57 Manual for MIMIC Administrators

Index Management

SQL indexes are used to speed common queries for tables with indexable columns.

The index management module in /server_path/admin/mimic/indexes allows users
to create and manage indexes for tables defined in the table management module
and created in Postgres as described in Step 4. Indexes are optional but can provide
added performance.

Administrators can create new
indexes by clicking on “Add a New
Index.” He can then add
attributes to define the index.

Inteinet Expl

The Name for the Index is the
name used in SQL for this index. Create a new Mimic Index
It is constrained to be unique and

should not contain any white o - i b drsoscilia
space and. e est_index index name)

3]

The Table for this Index is the
table that this index is created on. —
This can be selected from a pull-
down menu of tables defined
using the table management
module. Once the index name and
table have been chosen, click on
“next."”

The next step in creating a new
index is to choose columns for the
index. Columns can be chosen
from a pull-down menu of

. 3 X A4 'admin/mimic./indexes/index
previously defined columns S e e - st 5
(elements) for this table. Create a new Mimic Index
Clicking "next” will add a column Current index test_index on a_chartdurations () C'reate tis vudex

to the index. Repeat to add more

Please choose choose column(s) to add to this mdex.
columns. Once all columns have

been added, the Administrator can |- .. o
click on the link to “Create this i
index.” The index will be added to i
the index management system and endtime
also created in the database. duration

MIMIC contains indexes for the
tables for tables that are currently defined. These indexes are described in more
detail in Appendix C.

58 Manual for MIMIC Administrators

Key Management

Keys store more information about how to display the data in tables. The key
management module is in /server_path/admin/mimic/data/keys/. These keys are
simply columns of a table that are designated for a specific use.

A Display Key for a table is the column that should be used as a label for this table.
In some views where only one column for a table is displayed, this label is used. For
example, the d_meditems table, the 1abel is the display key. Oftentimes other tables
will reference the d_meditems table. When it does, the label is used to display that
value.

Menu Keys are used in
displaying data in a menu
fashion. Administrators can
specify a column for each
table and whether this menu
key should be visible. This
controls the menus that are
displayed to normal users.
For instance, the
totalbalevents table has
itemid as its menu key. This | u
means that the values of this | {Fa"w
column are available as menu | 2™ wTad
options. One value for
itemid is “24 Total Out.” A
user could click on this item
to view only entries in that
column with that menu value.
For this example, the result would be a table of only “24 Total Out” entries.

ternet Exploier

tT lﬁllrl 24h Tetal Cnst [V InfusionIn Total LOS I
‘stal Tatal Houty Outgpul Unips Oul Total

Time Keys are used to select and order data. These are generally columns with
timestamps. Each table is ordered by a time key so that results can be displayed in
chronological order.

Date Keys are also used to select and order data. These are generally columns with
integers that denote which day the item was stored. These date keys generally
reference the d_days table, which has entries for every day from January 1, 1970 to
December 30, 2030. Date keys are helpful in finding records for a specific day.

Current values for the keys described above can be found in Appendix D.

59 Manual for MIMIC Administrators

', AddmgBata toV

Once tables have been defined in the table management module and created in
Postgres, the system is ready to be populated with data. This section describes the
steps involved in adding new data to MIMIC.

Overview

The data comes from a hospital’s Information Support Mart (ISM) that is stored in
Oracle. Through a special partnership with the hospital, we are able to connect
remotely to the hospital’s network to download data.

Hospital
ISM e s s ey
(Oracle)

v Database
. e —— (Postgres)

Connected via
CareWeb

Currently, a separate system is used to initially collect and store waveform data.
Patients are each assigned a case id (case_id). The hospital’s ISM uses a different
patient ID (pid) for each admission. Case_ids are assigned to be the same for each
patient and reused for readmissions. The data download process for MIMIC consists
of the following steps:

1. Find the hospital's patient ID for each patient by matching their names and/or
MRN

2. Extract data with these patient ID's and de-identify records.

3. Upload data to the MIMIC database

Tools Needed

Web browser (i.e. Netscape or Internet Explorer)
Access to hospital network (i.e. via CareWeb)
Access to the hospital ISM (Oracle)

Access to local server that MIMIC is on (pc44)
List of patients

This should be of the format:

case_id|last_name|first_name|MRN
The MRN (Medical Record Number) is optional.

Samples of all files needed for and generated by the data update process can be
found at the end of this document

60 Manual for MIMIC Administrators

Getting New Data

1. Connect to the CareGroup (eurkea.caregroup.org) system at the partner hospital
via the CareGroup VPN Dialer.

User Authentication lor CareGroup VPN Uraty

2. Start Oracle SQL*Plus and connect to the hospital ISM. You should enter your

username, password, and ‘ISM’ as the host string. You are now connected to the
hospital network and have access to patient records.

(c) Copyright 1998 Oracle Corporation.

All rights reserved.

Connected to:

Oracles Enterprise Editiof] Release 8.0.5.0.0 - Production
PL/SQL Release 8.0.5.0.0 - Production

sqL> |

61 Manual for MIMIC Administrators

Go to the data upload page at /server_path/admin/mimic/data.
Upload a file containing the list of patients for Step #1.
The list of patients should be a text file of the format:

[& htp:/7192 168.1.44:8000 adkmin/miic/data/ndentcl

Data for the Mimic Database

extraction keys pnmary keys datalog mdexes

more detailed nstructions
Getting new data
Step 1:

as null

Filename:|CATEMP\names.csv

This generates a script that extracts hospital pids for each patient.
Run this script by typing 88s criptname at the Oracle prompt.

o
= 3

caseid|last_name|first_name|mrn

Input file should contain rows of case_id, first_name, last_name, mm with whitespace

where each patient is listed on a separate line. A sample appears below.

3551 | LADEN | JOSEPH |
3549 | STEELE | REMINGTON| 12428752
3546 | FIELDS | ANDREW |

62

Manual for MIMIC Administrators

Here is a sample of a script generated by this step. Save this file as scriptname.

D‘ 7 -Jl-g X

et heading off: ~
set feedback off: &
set termout off;

spool C:/temp/data/d_patients.csv:

select '3551' ||'|'I| p.pid [|'|'|]| p.sex ||'|'|| to_char(p.dob, 'yyyy-nm-dd') from
(upper (p.firstname) like upper(':%JOSEPH:') and
upper (p. lastname) like upper('%¥LADEN%'))
or (upper (p.fullname) like upper (‘%JOSEPH%') and
upper (p.fullname) like upper('xLADEN%'));

select '3549' [|'1'I| p.pid [|'|'|| p.sex ||'|'|| to_char(p.dob, 'yyyy-mm-dd') from d_
(upper (p.firstname) like upper('3REMINGTON%') and
upper (p. lastname) like upper('sSTEELE%X'))
or (upper(p.fullname) like upper ('*REMINGTON%') and
upper (p.fullname) like upper('%STEELE%')) or p.mrn='12428752';

select '3546' ||"'1'1| p.pid ||'|"|| p.sex ||']"'|| to_char(p.dob, 'yyyy-mmw-dd') from d_
(upper (p.firstname) like upper ('%ANDREW%') and
upper (p. lastname) like upper('sFIELDS%'}))
or (upper(p.fullname) like upper (':*ANDREW:') and
upper (p.fullname) like upper('¥FIELDS%')):

FaHeppesFl B |
3. Take the script generated by the previous step and run it on the hospital system
by typing: @@ scriptname at the Oracle prompt.

+ Dracle SOL*Plus

SQL=#Plus: Release 8.0.5.0.0 - Production on Thu May 2 11:22:8 2082

{c) Copyright 1998 Oracle Corporation. All rights reserved.

Connected to:
Oracle8 Enterprise Edition Release 8.8.5.8.8 - Production
PL/SQL Release 8.0.5.0.0 - Production

SQL> @A C:/temp/scriptname.txt

o o

This step generates a file called d_patients.csv. This file will be of the format

case_id|pid|sex|dob
A sample appears below:

3505|592 |F|1936-09-09
3505|2316|F|1936-09-09
3509|1901|M|1927-07-05

No Patient names are used from this point forward.

63 Manual for MIMIC Administrators

4. Take the d_patients.csv file generated in the previous step and upload it in Step
#2. This step generates a file that will extract complete patient records for the

hitp://192.168.1.44:8000/ admin/mimic/data/index tcl

Step 2:

Once you have a list of patients (d_patients.csv) you generate a script to extract
complete records.

Filename: [C301_11_16\d_patients.cev B
Use the "Browse" button to locate the d_patients.csv file generated by step 1 and then

click *Open’”.

Step 3:

Uererate o senpt to download support (di ion) tables if you haven't already done

50,

To run these scnpts, log into the hospital system and type B8 £:11ename at the Oracle prompt. Go
here for more nformation.

desired patients. Save this file as scriptname.

5. Run the script generated by the previous step by typing

@@ scriptname

. 1/723/01 1255 M
.. 11/23/01 1255 AM
43XB Microsolt Excel Comma Sepa.. 11/23/01 1255AM
18KB Miciosolt Excel Comma Sepa... 11/23/01 1255 AM
43053KB Microsoft Excel Comma Sepa... 11/23/01 1:02 AM
I7KB Microsoft Excel Comma Sepa.. 11/29/01 1:02AM

at the Oracle prompt. This will
create several .csv files in
C:/temp/data on the local
filesystem.

dripordets.csv OKB Microsoft Excel Comma Sepa... 11/23/01 1:02 AM

i csv BI5KB Microsolt Excel Comma Sepa.. 11/29/01 1:02 AM

6 t l M H %) treelormornders. csv KB Microsoft Excel Comma Sepa.. 11/23/01 1:11 AM
. (optional) Mimic uses some EmI s B T
support tables in storing By)interventions.csv KB Microsolt Excel CommaSepa.. 11/23/01 1:02AM

= [ks.cev 346XB Microsoft Excel Comma Sepa.. 11/29/01 1:02 AM
patient data. If you have not %, medevents.csv 1156K8 Microsoft Excel Comma Sepa... 11/29/01 1:02AM
already done so, you can -, 24D Mt ExcolConmaSopn,, 1172801 103N

i cav OKB Microsolt Excel Comma Sepa.. 11/23/01 1:03 AM

generate a scnpt to download — el oo e gl e
support tables in Step #3 . cov 1KB Microsolt Excel CommaSepa... 11/23/01 1:10AM
Save this file as ¥ solutions.csv 131'KB beuﬂi:edCﬂﬂMSepA.. 11/23/01 1.03 AM

ST

scriptname.
Run this script by typing
@@ scriptname

at the Oracle prompt. This will generate more .csv files in C:/temp/data.

64 Manual for MIMIC Administrators

7. Move all .csv files generated by the previous steps to the local server (i.e. by
ftp). Next, upload the data in Step 4 by specifying the location of the .csv files.
Note that the files must be stored in a folder that is readable and writeable by the
Postgres user..

The next screen will ask for confirmation to begin the data upload process. The

T Data for the Mimic Database

Adding new data

1. Transfer the files generated by the above steps to some folder on the local system (Le. via fip

of Cp).
2. Enter the location of the directory of where the data files are located on the Jocal system.

Filepath: |
Download
you can download data as a text file to process. by nght-chcking on the inks below and saving to file.

medications

Case ID|Chart Time[ltem ID[IO Item ID|AmowntiDose Units|Route|Care Uit ID|Care Giver ID

funds
Case ID|Chart Time[Ttem ID[Periodic volume|Cumulative Vohime|Accumulation
Peniod|approximate 7jreset?|Care Giver ID|Care Unit ID[Transacthon ID[Element ID

S S e

time to upload new data depends on the number of records being downloaded
and the size of each record.

Are you sure you want to update the database now?
This may take a while and slow the system down.

The results of your update can be viewed in the log page.
Please wait untll you are redirected to the log page to view the results of the update.

begn data zollection

System Cvner

The data will then be parsed, de-identified, and entered into the database.
Once this process is complete, the browser will be redirected to the data log
where the results of the update can be viewed.

65 Manual for MIMIC Administrators

Normal users can now view these records in /server_path/mimic/.

T} Record tor Apnil

Record for April 29, 2002 17:19:51-04

Table Name [Filename File Status [Update Result
a_chartdurations | /mimic/data/04_25_02/a_chartdurations.csv fle found [update successful
[additives |fmimic/datal04_25_02/additives.csv fle found [update successful
a_iodurations Vmimic/data/04_25_02/a_iodurations.csv file found [update successful
!;__ ddurations fmimic/d “:E{dﬁ;:ijznz.nr;_ file found [update successful
vents fmimic/data/04_25_02/ .CSV file found [update successful
chartevents — {mimic/data/04_25_02/chartevents. csv fle found lupdnm x’ux:::eufuli 2
‘d caregivers enienic/data/04_25_02/d _caregivers.csv fle found | jupdate successful
d_carcunts |mimic/data/04_25_02/d_vareunits.csv file found ‘E.zpda.tc successul
[d hartten I' imnic/data/04, 25 02fd _charttems.csv fle found Eupdn: successful
d_days p‘nmcrwm 25_02/d_days.csv fle found [update successful
[deliveries [enimic/datal04_25_02/debveres.csv fle found |update successful
E.m fioni /mimic/data/04_25_02/d_interventi ‘*mscsv file found update successful
[ootems |Jasoucidata04_25_02/d jokoma.cov | fle found |[apdate succerstil
[d_meditems [fmirnic/datal04_25_02/d_mediterns. csv fle found |[update successful
|d_outcomeitems /mimic/data/04_25_02/d_outcomeitems.csv | fle found | fupdate successful |
|c| |_patients [lmdchth_Zi_Och! |_patients.csv file found |[update successful ﬂ

66 Manual for MIMIC Administrators

Sample Files

Sample input file of names for Step 1

1266 | BROWN | JAMES | 0033085
2106 | THOMAS | SARAH |

Sample Script generated by Step 1

set heading off;
set feedback off;
set termout off;

spool C:/temp/data/d_patients.csv;

select '1266' ||'|'|| p-pid ||'|'|| p-sex ||'|'|| to_char(p.dob,
'yyyy-mm-dd') from d_patients p, dual where
(upper (p.firstname) like upper ('$JAMES%') and
upper (p.lastname) like upper ('$BROWNS'))
or {(upper(p.fullname) like upper ('%JAMES%') and
upper (p. fullname) like upper('$BROWN%')) or p.mrn='0033085";

select '2106' ||'|'|| p.pid ||'|'|| p-sex ||']|'|| to_char(p.dob,
'yyyy-mm-dd') from d_patients p, dual where

(upper (p.firstname) like upper('$SARAH%') and

upper (p.lastname) like upper('$THOMAS%'))

or (upper (p.fullname) like upper ('$SARAH%') and

upper (p.fullname) like upper ('%$THOMAS%'));

spool off;

Sample d_patients.csv file generated by script from Step 1.

1266]1210|M|1912-11-05
2601|1172 |F[1917-01-28

67 Manual for MIMIC Administrators

Sample script generated by Step 2

set heading off;
set feedback off;
set termout off;

CREATE OR REPLACE FUNCTION replace_names
(find_pid in number,

replace_string in char)
RETURN varchar

IS new_string varchar (5000);
temp_lastname varchar (100);
temp_firstname varchar(100);

temp_num number;

BEGIN
SELECT fullname INTO temp_lastname from d_patients
WHERE pid =

find_pid;

new_string := replace(lower (replace_string),
lower (temp_lastname),
'patient');

temp_num:=instr{temp_lastname,' '});

temp_firstname:=substr (temp_lastname, 0, temp_num);
temp_lastname:=substr (temp_lastname, temp_num) ;

new_string := replace(new_string, temp_firstname,
'‘patient ');

new_string := replace(new_string, temp_lastname,
'patient ');

RETURN (new_string);
END replace_names;
/

spool C:/temp/data/a_chartdurations.csv;

select pid|]'|'||
to_char(starttime, 'YYYY-MM-DD HH24:MI:SS')||'|'|]
to_char(endtime, 'YYYY-MM-DD HH24:MI:SS')||'|']|]
itemid|]']']
cuid||"'] "]
duration] |
scode| ||
pcode| | ‘|
sid||"]']]
elemid

1

from ism.a_chartdurations where pid=1266 or pid=2106;

spool off;
spool C:/temp/data/additives.csv;

select pid|]'|'}]]
to_char (charttime, 'YYYY-MM-DD HH24:MI:SS')||'|']]|
chartdate||'|"']]
itemid|]| "]|
ioitemid||'|'||
amount | | "' |
replace_names (pid, doseunits)||'|']|
mlperunit}|']'|]
replace_names (pid, route)||'|']||
cuid| |||
cgid||"|
scode] | '
pcode]| |
sidf|'|"
elemid] |
txid
from ism.additives where pid=1266 or pid=2106;

spool off;
spool C:/temp/data/a_iodurations.csv;

select pid||'|']]

itemid| || ' |]
to_char (starttime, 'YYYY-MM-DD HH24:MI:SS')||'|']]|
to_char (endtime, 'YYYY-MM-DD HH24:MI:SS'}||'|"'|
cuid||"|"]]
duration||'|{'|]|
scodel|"|" |
pcode| | |||
sid||'|"]
elemid

from ism.a_iodurations where pid=1266 or pid=2106;

spool off;
spool C:/temp/data/a_meddurations.csv;
select pid}|'|']|]

to_char (startrealtime, 'YYYY-MM-DD

HH24:MI:SS") || ']]]
to_char (starttime, 'YYYY-MM-DD HH24:MI:SS')[|'[']

itemid| ||| chartdate||'|"|]

to_char (endtime, 'YYYY-MM-DD HH24:MI:SS')||'|']|] sidl|| ']}
cuid| || '] elemid||'|"|
duration]||'|']| txid
scode| ||| from ism.chartevents where pid=1266 or pid=2106;
pcode| |||
sid|{"{'|| spool off;
elemid
from ism.a_meddurations where pid=1266 or pid=2106; spool C:/temp/data/deliveries.csv;
spool off; select pid||'|'|]
chartdate||' |||
spool C:/temp/data/censusevents.csv; to_char (charttime, 'YYYY-MM-DD HH24:MI:SS'){|'|']]|
ioitemid]|'| "' ||

select pid||'|'|] replace_names (pid, site)||']|"]
to_char (intime, 'YYYY-MM-DD HH24:MI:SS')||'|'}] ratel|'|']|]
to_char (outtime, 'YYYY-MM-DD HH24:MI:SS')||'|']] cgidf | |||
careunit||'|']| cuid|[']|"|
destcareunit||'|']]| sid[|||
replace_names (pid, dischstatus)||'|"'[] elemid||'|']]
los||"| "l txid
sid|]"|']] from ism.deliveries where pid=1266 or pid=2106;
indayid||' |||
outdayid spool off;

from ism.censusevents where pid=1266 or pid=2106;
spool C:/temp/data/driporders.csv;

spool off;
select pid||']"']]|
spool C:/temp/data/chartevents.csv; itemid| |||
to_char (charttime, 'YYYY-MM-DD HH24:MI:SS')|[|'|"]
select pid||’'|'|]| chartdate||' |||

to_char {charttime, 'YYYY-MM-DD HH24:MI:SS') ||
to_char (realtime, 'YYYY-MM-DD HH24:MI:SS') ||’

! {I cuid||"| "]

| to_char (verifiedtime, 'YYYY-MM-DD HH24:MI:SS')|['|']]|

itemid{|']]| verifiedby||'|']]
replace_names (pid, valuel)||'}"'|] to_char (addtime, 'YYYY-MM-DD HH24:MI:SS')||'|'/[]|
valuelnum||'|'[] addby||"|]|

replace_names (pid, valueluom)|]|'|']|] to_char (addverifytime, 'YYYY-MM-DD

replace_names (pid, value2)||'|']|] HH24:MI:SS') ||'|"]]

value2num||'|'}|]| addverifyby||' |||

replace_names (pid, value2uom)||'|']] duration||'|'|]|

replace_names (pid, stopped)||'|']]| replace_names (pid, durationtype)||'|']]|

replace_names (pid, resultstatus)||'|']|] replace_names (pid, orderedby)}|'|"]

replace_names (pid, annotation)||']|"']|]| to_char (starttime, 'YYYY-MM-DD HH24:MI:SS') |

cgid|| ||| to_char (stoptime, 'YYYY-MM-DD HH24:MI:SS') ||’
|

cuid| ||} replace_names (pid, schedcomments)||']"|
scode| || "] replace_names (pid, discontinuecomments)||']|']]|
pcode| ||]| replace_names (pid, mdinstr)||'|']|

69 Manual for MIMIC Administrators

replace_names (pid, rninstr) |
replace_names (pid, phinstr) |
replace_names (pid, mdcosign)
replace_names (pid, rnreview)
replace_names (pid, phreview)
replace_names (pid, freqlabel
replace_names (pid, action) ||
replace_names (pid, state)||'
replace_names (pid, stopstate
replace_names (pid, education
base| | ']]|

basevoll||'|"']]

rate||'|"[|
dosemin]| | ']
doseminuom|
dosemax| | ' |
dosemaxuon | ||

replace_names (pid, doseunits)||']|']]
scode||"'|"']]

pcode| |||

sid| || ||

elemid| | | ']}
txid

al
L
al
"]
(

from ism.driporders where pid=1266 or pid=2106;
spool off;
spool C:/temp/data/formevents.csv;

select pid|]|'|']]|

to_char (chartTime, 'YYYY-MM-DD HH24:MI:SS') ||
to_char (realtime, 'YYYY-MM-DD HH24:MI:SS‘') ||’
replace_names (pid, formtitle)||'|"']]|
replace_names (pid, sectiontitle)||'|"]]|
replace_names (pid, subsectiontitle)||']|']]
itemid| || "] |
replace_names (pid, value_)||'|"']|]|
replace_names (pid, valuenum)||'|"’
replace_names (pid, uom) ||'|'[]
cgidil'}'ll

cuid||'|"
scode| ||
pcode| | ']
sid||']"]
elemid]| |
txidf ||
chartDay |

70

formid
from ism.formevents where pid=1266 or pid=2106;

spool off;
spool C:/temp/data/freeformorders.csv;

select pid||'|']]|
itemid||'| ']
to_char (charttime, 'YYYY-MM-DD HH24:MI:SS')||'|']|
chartdate||'|'|]|
cuid| |||
to_char (verifiedtime, 'YYYY-MM-DD HH24:MI:SS')||'|']|
verifiedby||'|']]|
to_char (addtime, 'YYYY-MM-DD HH24:MI:SS')||'|']]|
addby ||| ||
to_char (addverifytime, 'YYYY-MM-DD
HH24:MI:SS')||'|"']|]

addverifyby||'|"'|]|
duration||'|']|]
replace_names (pid, durationtype)||'|"']]
replace_names(pid, orderedby)||'|"']|]
to_char (starttime, 'YYYY-MM-DD HH24:MI:SS') ||’
to_char (stoptime, 'YYYY-MM-DD HH24:MI:SS')||']|
replace_names (pid, schedcomments)||'|"'|]
replace_names (pid, discontinuecomments)||'|"']]|
replace_names (pid, mdinstr)||'|'}]|
replace_names (pid, rninstr) ||’
replace_names (pid, phinstr) ||
replace_names (pid, mdcosign) |
replace_names (pid, rnreview) |
replace_names (pid, phreview) |
replace_names (pid, freglabel)
replace_names (pid, action) ||’
replace_names (pid, state)|]|']
replace_names (pid, stopstate)
replace_names (pid, education)
replace_names (pid, order_) ||’
scode| | '] "]
pcodel| || "]
sid[|"["]]
txid

from ism.freeformorders where pid=1266 or pid=2106;

spool off;

spool C:/temp/data/infusionorders.csv;

Manual for MIMIC Administrators

select pid||'|']]|
itemid]| | ']]|
to_char (charttime, 'YYYY-MM-DD HH24:MI:SS')||'|']|]
chartdate]||'|']]
cuid| || }]

to_char (verifiedtime, 'YYYY-MM-DD HH24:MI:SS')||'|'[]

verifiedby||'|'|]|
to_char (addtime, 'YYYY-MM-DD HH24:MI:SS')|]'|']]|
addby|{|"|"[|
to_char (addverifytime, 'YYYY-MM-DD
HH24:MI:SS')|]'|"'|]
addverifyby||'|'|]|
duration||' |||
replace_names (pid, durationtype)||'|']|]
replace_names (pid, orderedby)||'|"'||
to_char(starttime, 'YYYY-MM-DD HH24:MI:SS') ||
to_char (stoptime, 'YYYY-MM-DD HH24:MI:SS') ||’
replace_names (pid, schedcomments)||']|']]|
replace_names (pid, discontinuecomments)||'|‘']]|
replace_names(pid, mdinstr)||'|"'[|
replace_names (pid, rninstr)||’
replace_names (pid, phinstr) ||
replace_names (pid, mdcosign) |
replace_names (pid, rnreview) |
replace_names (pid, phreview) |
replace_names (pid, freglabel)
replace_names(pid, action) ||’
replace_names(pid, state)||']
replace_names (pid, stopstate)
replace_names (pid, education)

|
|
|
|
|
|
!

base||']"]]
basevol |
|

ratel |’

ol

!
scode] | ' |
pcode| | ' |
sidl]'|"|
elemid]| |

txid
from ism.infusionorders where pid=1266 or pid=2106;

spool off;
spool C:/temp/data/interventions.csv;

Bl

select pid] |’
itemid]| ||

"
H

71

to_char (charttime, 'YYYY-MM-DD HH24:MI:SS')||'|']|]|
chartdatel|'}"'|}|

cgid| |||

cuid| ||

ordercgid||'|']|

to_char (ordertime, 'YYYY-MM-DD HH24:MI:SS')||'|']]|
to_char (dateadded, 'YYYY-MM-DD HH24:MI:SS')j|'|']|]
addegid||"|'}]

targetdate]||'|']|
replace_names (pid, instructions)|{']|’
replace_names (pid, orderstatus)|]|‘']|"|
problem||"|"|]

to_char (probtime, 'YYYY-MM-DD HH24:MI:SS')||'|']|]|
replace_names (pid, guidelinename)||'|"[]|
replace_names (pid, guideline)||'|']|
replace_names(pid, chartstatus)||'|'|]
replace_names(pid, shift)|]']|']|]
replace_names(pid, variancetype)||'|"]|
replace_names (pid, variancecause)|]|'|"’
scode||'|"|]

pcode| ||]

sid||' |||

elemid||"'|"']|
txid

']
I

al
Ll

from ism.interventions where pid=1266 or pid=2106;
spool off;
spool C:/temp/data/iocevents.csv;

select pid||'|"' |

to_char (charttime, 'YYYY-MM-DD HH24:MI:SS')||'|
to_char (realtime, 'YYYY-MM-DD HH24:MI:SS')||']|®
itemid| || ||

altid||'|"|

volumel||"'|"]]

replace_names (pid, volumeuom) ||']|'}]
unitshung||*]"|]|

replace_names (pid, unitshunguom)||'|"']|]|
newbottle||']"'|]
dressingchanged||'|']|
tubingchanged||'|'|]
assessment | | '] ']]|
replace_names (pid, stopped) ||’
replace_names (pid, estimate) ||
replace_names (pid, annotation)
cgid| |||

Nl
1

Manual for MIMIC Administrators

sid||']"

elemid| |

txid
from ism.ioevents where pid=1266 or pid=2106;

Q
jog
)
a
-+
Qu
2
T
a— —— -

spool off;
spool C:/temp/data/medevents.csv;

select pid||'|"'||
to_char (charttime, 'YYYY-MM-DD HH24:MI:SS')||'|'|]
itemid| | |||
elemid}|"'|']]|
chartdate||']|']|
to_char(realtime, 'YYYY-MM-DD HH24:MI:SS')||'|']||
volume||']|"']|
dose||"'|"]]
replace_names (pid, doseuom)||']|']|]
solutionid||"|"'||
solvolume||'|"]|
replace_names (pid, route)||"]
replace_names{pid, site)||'|"’
replace_names (pid, stopped) ||
replace_names (pid, annotation

'
|
||1
Y

from ism.medevents where pid=1266 or pid=2106;
spool off;
spool C:/temp/data/medorders.csv;

select pid||'|']|
itemid]| |||
to_char (charttime, 'YYYY-MM-DD HH24:MI:SS')||'|']|
chartdatel||'| ']
cuid| |||
to_char (verifiedtime, 'YYYY-MM-DD HH24:MI:SS')||'|'|]
verifiedby||'|']]

72

to_char (addtime, 'YYYY-MM-DD HH24:MI:SS')||'|']
adaby "] ||
to_char(addverifytime, 'YYYY-MM-DD
HH24:MI:SS') | |'}']]

addverifyby||'|"' ||
duration||'|"']]|
replace_names(pid, durationtype)||'|']|]|
replace_names (pid, orderedby)||'|']/|
to_char (starttime, 'YYYY-MM-DD HH24:MI:SS') ||’
to_char (stoptime, 'YYYY-MM-DD HH24:MI:SS')||']
replace_names(pid, schedcomments)||'|"']]
replace_names (pid, discontinuecomments)||*|']]|
replace_names (pid, mdinstr)||'|'|]
replace_names(pid, rninstr) ||’
replace_names (pid, phinstr) ||
replace_names (pid, mdcosign) |
replace_names (pid, rnreview) |
replace_names(pid, phreview) |
replace_names (pid, freglabel)
replace_names (pid, action)||’
replace_names (pid, state)|]'|
replace_names (pid, stopstate) N
replace_names (pid, education)||'|'|]|
to_char (renewtime, 'YYYY-MM-DD HH24:MI:SS')||'|']|]
dosemin]| | '] " ||
doseminuom| | ' |||
dosemax| | '] ||
dosemaxuom]| | '] '] |
scode||'|"]
pcode| |||
sial|'|']|
elemid||'|"'|]
txid

from ism.medorders where pid=1266 or pid=2106;

l
I
|
|
l

|
I
|
|
I
I

spool off;
spool C:/temp/data/noteevents.csv;

select pid||']']|]
to_char (charttime, 'YYYY-MM-DD HH24:MI:SS') |
to_char (realtime, 'YYYY-MM-DD HH24:MI:SS') ||
replace_names (pid, category)||'|'|]|
replace_names (pid, title)||'|'}]|
replace_names(pid, notetext)||'|']|
correction]||'|']]
cgid| |||

Manual for MIMIC Administrators

cuid|] " ||| cuid||'|"]
chartbate||'|"|| to_char (startdate, 'YYYY-MM-DD HH24:MI:SS')||'|"']|
sial|' ||} to_char (stopdate, 'YYYY-MM-DD HH24:MI:SS'}||'|"]|
noteid||'|'|]| dateadded||' |||
elemid|] ||| problemnum| || " |
txid replace_names (pid, status)||'|']|]
from ism.noteevents where pid=1266 or pid=2106; replace_names (pid, etiology)||'|"']|
scodel| '] ']
spool off; pcode|| Pl
sid||][]
spool C:/temp/data/outcomes.csv; elemldll‘l'l
txid
select pid||'|"']|| from ism.problems where pid=1266 or pid=2106;
itemid] || ||
to_char (charttime, 'YYYY-MM-DD HH24:MI:SS')||'|'|| spool off;
chartdate||'|']]
cgid} ||| spool C:/temp/data/solutions.csv;
cuidf|'["]|
replace_names (pid, comments)||'|"']] select pid||"'|']]
targetdate||'|"']] to_char (charttime, 'YYYY-MM-DD HH24:MI:SS')||'|']]|
dateadded| |’ ||| itemid| || ||
addcgid||'|]| ioitemid||"|']]|
to_char (evaltime, 'YYYY-MM-DD HH24:MI:SS')|]|'|'[] volume||"'|"|}
evalcgid||'|'|]| replace_names (pid, doseunits)|]|'|"'|
replace_names (pid, shift)|]'|'{]| replace_names (pid, route)||'|"]
replace_names (pid, variancetype)||'|']| cgid| |||
replace_names (pid, variancecause)||'|']] cuid| |||
replace_names (pid, status)||'{']|| scode||'|" ||
problem||'|"']]| pcode| | |||
to_char (probtime, 'YYYY-MM-DD HH24:MI:SS')||'|'[]| chartdate||'|'}]|
scode| | |'|] sid| '] "]
pcode| | ']]} elemid||'|"'||
sid| || || txid
elemid|| '] "'} from ism.solutions where pid=1266 or pid=2106;
txid
from ism.outcomes where pid=1266 or pid=2106; spool off;
spool off; spool C:/temp/data/totalbalevents.csv;
spool C:/temp/data/problems.csv; select pid]||*| "]
to_char (charttime, 'YYYY-MM-DD HH24:MI:SS')||'|']|]
select pldll']'H chartdate|[‘|'||
itemid||'|']] itemid||'|"||
to_char (charttime, 'YYYY-MM-DD HH24:MI:SS')||'|'|] to_char (realtime, 'YYYY-MM-DD HH24:MI:SS')||'|"'|]
chartdate||'| '] pervolume||'|" ||
cgid||']']] cumvolume| || ']]
addegid| || ']] replace_names (pid, accumperiod)||'|'|]

73 Manual for MIMIC Administrators

replace_names (pid, approx)||'|"|
reset|| |||

replace_names (pid, stopped)||'|']
replace_names (pid, annotation)||"|

i

ol

from ism.totalbalevents where pid=1266 or pid=2106;
spool off;
spool C:/temp/data/resultevents.csv;

select pid||'|"]
resultid||'|'||
to_char (chartTime, 'YYYY-MM-DD HH24:MI:SS')||'|"']]|
chartbate||'}']|]|
cgid| |||
cuid| |||
replace_names (pid, resulttext)||'}|'|]
to_char (sourcetime, 'YYYY-MM-DD HH24:MI:SS')|]|'|'[]
firstresult||'|'||
nextresult||'|'[]
replace_names (pid, status)||'}"'[]|
sidl}'|']]
txid

from ism.resultevents where pid=1266 or pid=2106;

spool off;

74 Manual for MIMIC Administrators

