
A Database to Support Development

And Evaluation of Intelligent Patient Monitoring

by

Christine Lieu

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Electrical [Computer] Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

May 24, 2002
JUL 3 1 2002

Copyright 2002 Christine Lieu. All rights reserved.

LIBRARIES

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author_

Department of Electrical Engineering and Computer Science
May 24, 2002

Certified
by

Roger G. Mark, M.D., Ph.D.
Distinguished Professor in Health Sciences and Technology, HST

Professor of Electrical and Bioengineering,
Department of Electrical Engineering and Computer Science, MIT

Thesis Supervisor

Accepted
by

Arthur C. Smith

Chairman, Department Committee on Graduate Theses

A Database to Support Development

And Evaluation of Intelligent Intensive Care Monitoring

By Christine Lieu

Submitted to the Department of Electrical Engineering and Computer Science

May 24, 2002

In Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science in Computer Science and Engineering

And Master of Engineering in Electrical Engineering and Computer Science

Abstract
Advances in medical observation equipment have allowed hospital caregivers to

collect a wealth of information about a patient's condition. Automated data collection

systems make it easy to store multiple clinical notes, lab results, and physiological

waveforms electronically. Organizing this data and making it useful to researchers is

a complex problem that requires a solution that is easily accessible, intuitive to use,

and versatile. The major aim of this project is to develop a framework for the

automated acquisition of patient data from clinical information systems and patient

monitors, and the subsequent storage, indexing, and presentation of patient records

using web and relational database technologies.

Thesis Supervisor: Roger G. Mark, M.D., Ph.D.
Distinguished Professor in Health Sciences and Technology, HST

Professor of Electrical and Bioengineering,
Department of Electrical Engineering and Computer Science, MIT

2

1 Problem Statement

Researchers in intelligent patient monitoring need large amounts of data to test and

validate hypotheses about patient care. The data test set must be sufficiently large

to ensure that results are not the artifacts of a specific group of patients, and that

hypotheses can be applied to the general patient population. One scientist notes that

data collection is one of the most complex and resource-intensive stages in clinical

research. He writes, "One of the difficulties facing researchers in clinical informatics

has been 'getting the data in.' In particular, the costs of acquiring detailed and

structured data from the clinical care process have been daunting."i

Advances in patient care monitoring have allowed physicians to track an Intensive

Care Unit (ICU) patient's physiological state more closely and with greater accuracy.

Modern computerized clinical information systems can take information from multiple

data sources and store it in a central location. To be useful to researchers, the data

collected from patient monitors and clinical information systems must be indexed

and presented in a user-friendly interface. It should be searchable so that

researchers studying a specific problem or pattern can locate relevant records.

This paper describes a utility, called MIMIC, which uses a relational database to

organize real patient data and makes it widely available to the general research

community. The MIMIC (Multi-parameter Intelligent Monitoring for Intensive Care)

database takes advantage of the data collection systems installed at a partner

hospital to collect large numbers of real patient records. This utility also organizes

the data and makes it searchable on multiple dimensions and provides an intuitive

user interface to view and browse data.

3

2 Background

Our partner hospital uses the CareVue Clinical Information System, developed by

Philips Medical Systems 2, to store clinical data in its ICU units. Each patient's room

and nursing station is equipped with a CareVue terminal where nurses may enter

notes, medications information, fluid balances, and more. CareVue also stores and

collects data from other sources, such as bedside monitors and results from lab

tests. The data collected by CareVue is also stored in the hospital's Information

Support Mart (ISM), which is built around Oracle database technology.

WaveformTe
Collection p rt o

System MIMIC

emwaveform
Data " ""

CareVue
Terminal

ICU Roo

ICU Room

CareVue
Central mimic

Repository

Figure I Data Collection at the Partner Hospital

The data in the ISM includes nursing notes, medication dosages and durations, fluid

balances, and vital signs. Real-time waveform data, such as blood pressure, pulse

oximetry, and ECG signals, are recorded in bedside monitors and collected in a

separate system that is not connected to CareVue.

We have access to the data stored in the ISM and the data collected in the waveform

4

collection system. The CareVue system ISM system is presently connected to 42 ICU

beds, which in a year can collect more than 15,000 patient days' of records.

3 Current Research

There are currently several alternate solutions to the problem of collecting and

organizing real patient data for research. Many are targeted toward solving specific

research problems, while others have less complete data or are not yet published.

3.1 Previous Solutions

MIMIC1 3 is a small-scale set of records that provides some support for research in

intelligent patient monitoring for ICU patients. MIMIC1 was developed by George

Moody and Roger Mark and is stored in Microsoft Access and contains data from the

same partner hospital's ICU. It contains only about 100 records and was entered

manually from paper records, leaving room for inconsistencies and errors. MIMIC1

contains both waveforms and clinical data. It provides search capabilities and a neat

user interface but is severely limited by the lack of automated data collection.

MIMIC1 is the precursor to the solution described in this paper.

3.2 Other Databases

Clinical Informatics is an exciting area that has made many advances in recent

years. This section describes other available databases of clinical data.

One interesting solution being explored by the Medical Informatics group at Columbia

University is to create an online support system based on a set of common clinical

questions.

"The aim of this study was to examine a method for creating an online support system for

developers of a clinical information system (CIS) from existing documentation and
question-answer exchanges (Q-A's). A question answer exchange consisted of a user's

question and an expert's corresponding answer. The study was motivated by the need to

improve online support systems for system developers using locally developed programs
within complex information systems. "

5

This is an innovative approach to a similar problem but lacks the flexibility of being

able to answer questions not included in a pre-determined set of frequently asked

questions.

The IMPROVE (Improving Control of Patient Status in Critical Care)5 database was

constructed from records from intensive care patients in Kuopio, Finland. IMPROVE

stores comprehensive records, including ECG waveforms, hemodynamics, respiratory

signals, lab tests, and annotations for 59 patients. For this project, a "physician

observed the patient state and monitored signals online and annotated any changes

in patient state or possible external causes for artifacts." 5 This provides useful

information that would be missing if annotations were made afterwards, but requires

extra effort by clinicians. IMPACT stores detailed records for ICU patients, but needs

more records to be useful in clinical research.

There are many clinical databases that have been developed to support research in a

specific problem. The HIV Information Infrastructure Program is developing a Central

Research Database (CRD) to record clinical data on HIV patients. The CRD will

"provide HIV researchers with access to real-time clinical data on a large number of

patients, creating unprecedented research opportunities." 6 The CRD provides are

similar to but are targeted toward HIV and AIDS patients.

There are several other databases similar to the CRD and the FAQ. The Penguin

project7 at Stanford is a database intended to support biomedical applications for

experimental data. The University of Virginia is developing an Echocardiogram data

collection system' to build up a database of records to support research) Duke

University's Clinical Informatics group is working on TMR (The Medical Record) 9 that

6

provides a solution to the problem of organizing and indexing patient records, but it

is in early stages of development. The MGH/MF Waveform Database5 is a collection

of ECG and hemodynamic waveforms, annotations, and relevant clinical data that

was collected from the Massachusetts General Hospital. The MGH project is only a

waveform database, so it does not process trends or contain other supporting data.

4 Solution

Our solution distinguishes itself from other currently available databases and search

engines by providing real high-quality patient data that is searchable through a

general-purpose search engine. It is different from other databases that were

created for research in only a specific problem, or lack search capabilities or data

collection facilities.

MIMIC is a utility that uses relational database technology to organize and index

large amounts of multidimensional patient data. The MIMIC RDBMS (Relational

Database Management System) is used to administer this database and create table

definitions. Data can be downloaded from the hospital's ISM and entered into the

MIMIC database. Once the MIMIC database is populated, the MIMIC Application

dynamically generates HTML pages that allow any researcher with a web browser to

access the records stored in MIMIC. The MIMIC application also provides search

capabilities on multiple dimensions and presents records in an intuitive interface.

The use of real patient data from the partner hospital and the development of this

project were approved by the Institutional Review Board (IRB), a review board for

clinical research studies. Since it is not feasible or convenient to request patient

consent for all data collected in the CareVue system, approval to archive the data

was contingent on removal of all patient identifiers from the database. The de-

7

identification measures are described in detail in Section 12.2.

5 Design Requirements

To useful in a research context, MIMIC needs to scale to large numbers of records. It

should take advantage of data collection resources at the partner hospital as a

source of data. The following sections describe other design ideals and requirements

specified for this project.

5.1 Provide Easy Access

MIMIC should be easily accessible to researchers. Scientists seeking real patient data

should not have to download the entire database or install specialized software to

view records. Instead, MIMIC is intended to be immediately available to any

researcher, free of charge, and have the flexibility to be useful for a wide range of

research problems.

5.2 Protect Patient Confidentiality

The partner hospital allows MIMIC access to its ISM under the condition that all data

in MIMIC must be sanitized to protect patient identities. "The Hippocratic oath

incorporated the principle of medical confidentiality into doctors' professional

ethics."8 MIMIC has the responsibility of de-identifying the data so that patients are

not identifiable by the records available in the MIMIC database. Patient records often

contain identifiers such as names, phone number, Social Security Number (SSN),

Medical Record Number (MRN). These must be removed from patient records before

they are added to MIMIC.

5.3 Data Accuracy

MIMIC must assure that data is downloaded and displayed accurately. "If information

is corrupted, clinicians may take incorrect decisions which harm or even kill patients.

If information is unreliable, in the sense that it could have been corrupted, then its

8

value as a basis for clinical decisions is diminished."' 0 In order to be useful, the data

in MIMIC must be accurate. Because the data in MIMIC is collected from the primary

source, a higher level of accuracy is achieved than databases that require

transcription from paper records.

6 Overall Architecture

The MIMIC utility

consists of two major

parts: the RDBMS

and the application.

The MIMIC server

refers to the machine

on which these parts

reside. MIMIC utilizes

the hospital's ISM is

the source of data.

There are also other

MIMIC
Database
(Postgre) -

Browsing
Users

- - - - ------ - -- - - - -- - - - -- - - - -- --

Hospital e
ISM*

(Oracde)
Text data files

.......-- -..... -. . -.-. 7.GETT! G'THE DA IA

Figure 2: Architecture of MIMIC

minor components to

MIMIC and modules that support MIMIC, that select, de-identify, parse, and upload

new data. These modules are described in more detail in the following sections.

7 Tools
A Postgres relational database was chosen for the MIMIC database because it is

open-source and free of charge. AOLServer is used for the MIMIC Application

because it has been successfully used with Postgres to create large-scale database-

based web sites". The Tcl scripting language is used to dynamically generate HTML

pages and interface the web server and database.

9

8 Data Collection

As described in Section 2, the partner hospital has 42 Intensive Care Unit (ICU) beds

in that are presently connected to the CareVue system. Nursing notes, medications,

fluid input and output, updates to patient charts, lab results, and more are stored in

the CareVue System. Waveforms such as ECGs, blood pressure, and pulse oximetry

are stored in a separate waveform collection system. MIMIC downloads clinical data

from the hospital ISM and stores it in a new database, the MIMIC database.

Waveform data is downloaded from the waveform collection system at the hospital

and stored in a separate database, which is the waveform counterpart to MIMIC.

rI
System mimic

J : Unifiedz

CareVue MI

Research Lab
os- al

Figure 3 MIMiC and Data Collection

In the future, these two projects will be merged to create a unified utility

search through clinical and waveform data.

to view and

9 Types of Users

Two classes of users will interact with MIMIC. Regular users include normal

researchers who are looking for interesting data to support their research.

Administrators will generally have some technical knowledge, be familiar with the

Administrator's manual for MIMIC (see Appendix E) and have administrative

privileges on the MIMIC Server. Administrators have access to the MIMIC RDBMS

and are able to upload new data.

10

10 MIMIC RDBMS

The MIMIC RDMS allows administrators to create,

update, and administer the Postgres relational Dta

database that stores records for MIMIC. It provides RDM

a user interface to access the database without Figure 4 The MIMIC RDBMS

requiring the user to know SQL or specific data

models. The MIMIC RDMS itself consists of a few metadata tables that store the table

definitions and a set of Tcl pages that modify and display table definitions. The

complete data models for these metadata tables appear in Appendix A

10.1 Managing Tables

The MIMIC RDMS allows users to define tables and columns within tables and specify

how they are used and displayed. Users can specify the database data type for the

entry, i.e. integer or varchar (100). The field for extrasql can be used to

specify whether this column references another table. An order sort key is used to

order the elements in a table. Administrators can also specify whether the column

should be included in the text search, and whether the column should be hidden.

Once the tables are defined, users can use the MIMIC RDMS to generate SQL CREATE

TABLE and DROP TABLE statements. These scripts can be cut and pasted into

Postgres to perform these operations. This process is described in step-by-step detail

in the Administrator's Manual in Appendix E.

11

Figure 5 Creating Table Definitions

10.1.1 MIMIC Table Definitions

There are currently 34 table definitions entered into the MIMIC RDBMS. These are

based on the CareVue ISM data models. There are slight differences between the

data types defined in ISM and those used for MIMIC due to differences in Postgres

and Oracle. The values entered for these tables can be found in Appendix B.

The ISM classifies tables into two types: dimension tables and fact tables.

Dimension tables "provide details around the who, what, where, and how of the

data." 2 For example, the d-patients table contains the patient's sex, dob, and a

database-generated pid (patient ID). Other tables that chart patient data will contain

a value for the pid of the patient.

Fact tables are used to "contain the raw data charted in <the> CareVue system.

These properties contain the actual values being charted. The fact table also contains

other properties which point to dimension tables."8 In general, dimension tables are

used to support fact tables and fact tables contain patient data. MIMIC stores both

types of tables.

12

Add ma Elaored to test-tble

Please enie, the followingfibl deeothat a eleee (oohnn) oftert table

Names

Abstract of hotr n
Doletatp boclean-uoser,

Dats atyp te.ewaw(200)-v%1egcc'

Datasypa e melchr(20)**mtrde

EVIVa SQL e i el roedt "'check foobp

Orere Sor Co bo

Ke tw e Tor fret coltuto

Emery -

Emosaaas

Teext Speh "

SQL CQd TWide "annmet for tesd-table

You aq cut mad pasta the Edftlw to creat dae tcsLjAbe table.

Pireae table (Lchartite

lbelo beseslo(.10

cat*"ct" VacbsoISZ).
Gat.gocyb var~c~(S2t,

one column ieae'wbs(to).
aceraeyt iee ae~3t

oot~eoryO '.orob~ctatt
osogsy Owe hcuI~

10.2 Managing Indexes

The MIMIC RDMS also includes a module to create and modify table indexes. SQL

indexes are used to improve the performance of common queries. Indexes can be

created on a column or a collection of columns in a table based on the structure and

usage of data. Users are able to use the MIMIC RDMS to define indexes and generate

SQL CREATE INDEX and DROP INDEX statements. A list of indexes created for MIMIC

tables can be found in Appendix C.

10.3 Creating Views

A SQL view is used to provide an additional layer of abstraction between the way

data is presented and its underlying data structures. MIMIC uses views to present

data in a form that is intuitive to the user. For instance, tables that use an Item ID to

reference a value in a dimension table will contain numerical values. However, the

view created for this table (named viewfortablename in MIMIC) will replace Item

Ids with their corresponding text. Views are automatically generated based on table

definitions and created and dropped at the same time as tables.

Postgres does not support materialized views, but their capability is imitated through

creating of tables that act as views. When new data is entered into mimic, these

table views are dropped and re-created to assure that new data is included.

13

charttime Itemid loitem Id amount dose units route culd id

10/1/2001 1:00 36 42 100 mg IV Drip 1 936
10/1/2001 1:00 36 42 100 mg IV Drip 1 1092
10/1/2001 1:00 36 42 100 mg NVDrip 2 1759

itemid label
36 Morphine Sulfate

Itemid label
D5W 100.Oml +

100mg Morphine
Sulfate

culd
unitname

2 MICU-A
12 SICU

charttime Itemid loitem ld amount dose units route culd cgld
D5W 100.Oml +

100mg Morphine
10/1/2001 1:00 Morphine Sulfate Sulfate 100 mg IV Drip MICU-A 936

D5W 100.Oml +

100mg Morphine
10/1/2001 1:00 Morphine Sulfate Sulfate 100 mg IV Drip MICU-A 1092

D5W 100.Oml +

100mg Morphine

10/1/2001 1:00 Morphine Sulfate Sulfate 100 mg IV Drip MICU-A 1759

Figure 6 Sample View Created for the Additives Table

10.4 More Metadata

In addition to the metadata defined in the table creation process, the MIMIC RDMS

also uses other metadata for managing and displaying tables.

10.4.1 Display Keys

A Display Key for a table is the column that should be used as a label for this table.

In some views where only one column for a table is displayed, this label is used. For

example, in the dmeditems table, the label is the display key. Other tables will

reference the dmeditems table. When it does, the label for dmeditems is used to

display that value.

10.4.2 Time Keys

Time Keys are used to select and order data. These are generally columns with the

timestamp data type. Each fact table is ordered by a time key so that results can be

displayed in chronological order.

14

1 42 1

10.4.3 Date Keys

Date Keys are also used to select and order data. These are columns with integers

that denote which day the item was stored. These date keys reference the ddays

table, which has entries for every day from January 1, 1970 to December 30, 2030.

Date keys are helpful in finding records for a specific day.

10.4.4 Menu Keys

Menu Keys are used in displaying data in a menu fashion. Administrators can

specify a column for each table and whether this menu key should be visible. This

controls the menus that are displayed to normal users. For instance, the Total

Balance Events table has Item ID as its menu key. This means that the values of this

column are available as menu options. One value for an Item ID is '24 Total Out.' A

user could click on this item to view only entries in the column with that menu value.

For this example, the result would be a table of only '24 Total Out' entries. Figure 13

shows and example of a menu for a table.

Current values for the keys described above can be found in Appendix D. These can

be modified and managed using the key management module in

/ server-path/admin/mimic /keys.

11 Data Extraction and Migration

This section describes the process of obtaining new data from the hospital system for

upload to MIMIC. MIMIC uses a simple ETL (extract, transform, and load)

architecture to add new data to the database.

11.1 Connecting via CareWeb
We obtain access to the hospital's data collection system by connecting remotely via

a virtual private network (VPN). In this way we are able to access the hospital's ISM

without having to be on-site. MIMIC contains records only for those patients who

15

have been discharged from the ICU, to assure that each record is a complete picture

of a patient's stay.

11.2 Choosing Records for Download

Data is chosen to be included in MIMIC based on available waveform data. Another

project, the waveform counterpart to MIMIC, computes wavelet coefficients for

analysis and trending. MIMIC is intended to complement that project by organizing

clinical records for the patients with corresponding waveforms. Data is chosen to be

included in MIMIC based on the waveform data that is collected and processed.

11.3 Extracting Data

To extract data from the hospital system, a user needs administrative privileges on

MIMIC, a web browser (such as Netscape), access to the MIMIC Server, access to the

hospital ISM (Oracle), and a list of patients. The list of patients should be in the

form:

case-idl last name lfirst namelMRN

The MRN is optional. An example appears below.

35511 LADEN JOSEPHI

35491STEELEIREMINGTON112428752
35461 FIELDSIANDREWI

35411COLE KENNETHI

35421 PIERFORIANTHONYI

35451YOUSEFFIANITHOMAS1 35408266

35641WALDEN LAMARI
3565 GARCIA ANDY

This file is then uploaded in the data update page to generate a script to extract

patient IDs for these patients. Patient IDs are integers used in the ISM as private

keys for each patient. Patient IDs are not associated with MRN or any other

identifying information for the patient and are only used internally.

With this list of Patient IDs, another script is run on the hospitals Oracle system to

extract data for these patients.

16

11.4 Reading from the Legacy Format

Postgres and Oracle are largely similar, but have a few

differences with respect to data types and how values connect via Hospital
CareWeb . ISM

are formatted. MIMIC uses Oracle's formatting

functions to select data in a format that Postgres can

recognize, based on metadata from table definitions.

For instance, Oracle has one data type for storing

dates, date. The default format for selecting the date Figure 7 Downloading Data
from the Hospital ISM

data type returns a string as 'YYYY-MM-DD.' MIMIC

tables are largely concerned with dates that are associated with times that an event

was charted and use the timestamp type to store these dates. To extract the full

timestamp of a date column in Oracle, we can formulate the select statement to

select the column as a full timestamp. A similar approach can be applied to other

data types to obtain data in the desired format.

Data is downloaded into a plain text file, which takes more time than simply dumping

tables from Oracle, but allows more flexibility in choosing only desired records. This

also prevents having to convert from an Oracle format to one that Postgres can

recognize.

110212001-07-18 22:00:0012001-07-19 18:42:001271111242111011
110212001-08-30 00:00:0012001-09-09 23:00:0012711115780111011
110212001-09-24 14:00:0012001-10-05 21:56:0012711116316111011
110212001-10-10 23:00:0012001-11-01 11:10:0012711130970111011
110212001-07-18 22:00:0012001-07-19 18:42:001311111242111011
110212001-08-30 00:00:0012001-09-09 23:00:0013111115780111011
110212001-09-24 14:00:0012001-10-05 21:56:00131111163161110t1
110212001-10-10 23:00:0012001-11-01 11:10:0013111130970111011

Figure 8 Sample Text Data File

The output is saved as .csv (comma spaced values) files that can later be parsed and

inserted into the MIMIC database. A sample of one of these files appears in Figure 8.

This process also allows us to perform some preliminary de-identification of the data,

17

which is described more in Section 12.2.

11.5 Migration

Since the files containing the data for the new records are large (75 MB for 100

patients), we use ftp to transfer them to the local server before parsing and inserting

into the MIIMC database. The text format of the files avoids compatibility issues with

versions of Oracle or Postgres by avoiding proprietary or database-specified formats.

The data extraction script is generated each time new data is requested so that

updates to data models (table definitions) do not disrupt the data migration process.

12 Adding New Data

Once the data is selected and downloaded from the hospital ISM and written to text

files, these files must be uploaded to the MIMIC database.

12.1 Uploading New Data

When these text files are transferred to the local system, they are ready to be

parsed and entered into the MIMIC

database. The administrator specifies
MIMIC

the location of the data files using the 'atabass

data update page located at

/server-path/admin/mimic/data/.

Text data files

The MIMIC server then searches for a Figure 9 Uploading New Data to MIMIC

.csv file for each table defined in its data model. If a tablename.csv file exists, the

indexes for that table are dropped in the database to speed the insertion of new

data. More about index management can be found in the Administrator's Manual in

Appendix C. MIMIC reads the text files and creates new files that are formatted

according to the Postgres specification by getting rid of extraneous white space,

18

formatting null values, and putting each row on a separate line. The newly formatted

file overwrites the original file. Once each file is formatted, MIMIC uses a 'COPY'

statement to add that data to the corresponding table. The indexes for this table are

re-created and the update for this table is complete. This process is repeated for

each table defined in the MIMIC RDBMS.

12.2 De-Identification

Part of the de-identification process is built into the data migration process. Much of

the confidential patient information is simply not selected to be in the data files, so

fields such as patient name and caregiver name are not included in the download.

They are part of the hospital's ISM, but not defined for MIMIC.

Another way to protect patient identities is by using a unique key called a patient ID

to identify each patient.

"Unique Patient Identifier eliminates the need for the repetitive use and disclosure of an
individual's personal identification information (i.e. name, age, sex, race, marital status,
place of residence, etc.) for routine internal and external communications (e.g. orders,
results, medication, consultation, etc.) and protects the privacy of the individual. It helps
preserve the patient anonymity while facilitating communication and information
sharing." 13

The pid (patient ID) is assigned by the ISM. New patient IDs are assigned for each

new admission, even for the same patient. MIMIC uses a Case ID to identify patients.

Each patient is assigned a Case ID, and the Case ID is reused for repeat admissions.

The second line of defense for patient de-identification uses a function to replace

patient names before writing the data to a file. This function runs on the hospital

system when new data is being requested and works by looking up the patient name

and replacing any instances of that name with 'patient.' The result is that data files

do not contain any patient names. This function does not make any changes to the

records on the hospital system, but only modifies the results of a query.

19

The resulting data files may still contain some personal information that must be

removed before the new entries can be published. Part of the data upload process

SELECT fullname INTO temp-lastname from d_patients WHERE pid =

find&pid;

new-string := replace(lower(replace-string),

lower(templastname), patient);
tempnum:=instr(temp_lastname,);

temp_firstname:=substr(temp_lastname, 0, tempnum);

temp-lastname:=substr(temp-lastname, temp-num);

newstring := replace(new-string, temp-firstname, patient);
new-string replace(new-string, temp-lastname, patient);

Figure 10 Function to Replace Names

includes a script that deletes entries that contain personal information such as

Spokesperson Phone Number and Insurance Number. We have identified 13 such

fields for deletion: "Attending MD", "Spokesperson", "Spokesperson Home Phone #",

"Spokesperson Work Phone #", "Religion", "Martial Status", "Home Phone No.",

"Work Phone No.", "Page Phone No.", "Pt. Name", "PIN", "Cell Phone No.", and

"Account #'.

Some of the free text fields may also contain phone numbers, Social Security

numbers, or medical record numbers. Before new data is uploaded, a script looks for

patterns (for example, a series of numbers of the form xxx-xxx-xxxx) that could be

an identifying number and replaces it.

12.3 Logging

Once all new data has been uploaded and entered into the MIMIC database, the

update is stored in a data log. The log records the date, location of .csv source file,

and the results of the update. This can be useful to administrators in evaluating

when updates were made and outcome of the update.

20

13 The MIMIC Application

Now that the data is loaded into the MIMIC Database, it is ready to be presented to

users. Each patient can have multiple days' worth of data, stored in multiple tables,

each containing thousands of entries. The pages of the MIMIC Application were

designed to provide a unified and intuitive user interface that presents a great deal

of data in a way that is easy to navigate and comprehend.

MIMIC
Database
(Postgres)

Brows n
users

Figure 1] The MIMIC Application

The MIMIC Application consists of .tcl pages that interact with the MIMIC database to

dynamically generate html pages to present to the end user. The MIMIC Application

consists of two main sections: data pages and search pages. The data pages present

patient data in an intuitive and easily browsable manner. The search pages provide

facilities to formulate queries on multiple dimensions.

13.1 General Presentation

In creating a user interface to MIMIC, we tried to keep the design as simple and

utilitarian as possible. The result is a user interface that is clean, compact, and

allows users to browse through records using several different approaches.

13.1.1 Hiding internals

One way MIMIC makes data more easily viewed is by hiding the internals of how

data is stored and accessed. MIMIC includes metadata about whether columns or

categories should be hidden or presented to users. Fields such as caseid or

date-key are numeric values that are meaningless to end-users and have no clinical

21

significance. These are not presented in normal user views. MIMIC also uses SQL

views to decode references to other tables and provide a level of abstraction

between the raw data and a format that is easily understood by the end user.

13.1.2 Utilizing data types (metadata)

Another way that MIMIC improves upon the appearance of raw data is through

utilization of data types stored in metadata. MIMIC uses this metadata to format

data for display. Time stamps are passed through a conversion function to format

them as text instead of ANSI format. Columns that are integers are truncated to

leave out insignificant figures. MIMIC uses time keys to present data in chronological

order. Other keys are used to view data based on category, table, or item type.

These different types of views are described in more detail in the next section.

13.2 Viewing the Data

MIMIC views organize data into three basic views. A patient record can be viewed

by table, which presents the first 25 entries of each table in one page. The record

can be viewed by day, which presents the first 25 entries of each table for that day

in one page. The category view presents the first 50 entries of each table in that

category in one page. It is not reasonable to present more than a few entries for

each table on the same page, so MIIMC presents a limited number from each table

and adds a menu to browse the rest of the entries. In addition to these views, MIMIC

provides the capabilities to concentrate on specific types of data

13.3 Viewing Medications

MIMIC currently uses five different tables to store medications information:

a_medurations, dmeditems, solutions, additives, and medevents. All of

these reference the dmeditems table for medication names. The MIMIC Application

includes a medications section to view all medications information for a given

patient, or concentrate on a specific medication for a given patient. This provides a

22

useful summary that can be

used in determining how a

medication was part of a

patient's course of care or how

it affected his prognosis.

Paftntrmard for Muphm Swat@s

Thwse an Me recoaftfog p*W NN6O and Uapin U~te.
Vou can dso'ic jj

Additives

O4 .ol2tM hIoqbi. DWW0+W0Ag 1W IV Maca A 936
01mm4 SUg. mapesumLbE Op

JaMW3Y 12.2 Moq %Sm 1Y k8CU A 1W2

Pebruy22,22 Mxqphin DsWM .z+103g 5 V CU 1
t4W aM-W sufa" Me.phr.304k. M DroCM13

13.4 Menus for Browsing M-W &" U9**,", 0tv
MuhIl, 302 Macphme D5W|M. +250mgg IV 174

Most of the tables containing "m.i""W"0 D"

Med Durations

patient information reference 0oe.,e, . M. *bZ213 ee .,
O*~w~2g1 316G4Ss4 1.. .. qSto4~a D1e 11meO04 hlcOI 373Om
Octobrw62001 13.0 4 Marph~aSU&Otob S.a2M I4c.4 U1CUA Z1W

dimension tables for the items " ' I""

they store. Because they Figure 13 Viewing Medications

reference dimension tables, these items are standardized across different entries. A

column that references the dchartitems table will contain multiple entries for the

same Item ID. MIMIC utilizes the normal form of this data to create menus to view

and browse all items with the

same Item ID. In practice,

this means this means there "" -

Total But-ance Events Tsbisxt0-25f1 er7ntdeooftis day v atare menus to concentrate on _ Iye , 2a s

tym P5t c [2 T H TWtIA 1hutej Q 1 In tnoa

a specific type of entry to a

table. For instance, the Total IL U 0 24 noa 0 33 1 39

04

8.uIsbcr,,
Balance Events table has 1 20 aau2 0 33013

04

menus for '24 Total Out' and r,02To 0 2 nn$ 0 330 1 39
00WI3 In
04

users can click on a value to

view all entries for that

specific item for a given Figure 12 Menufor Total Balance Events

patient.

23

21

14 Search

The interesting capabilities in MIMIC lie in the search engine. MIMIC uses an

incremental search to merge the results of criteria on multiple dimensions. This

search allows users to view incremental results at each step of the search.

Incremental search can further help the researcher pinpoint interesting results from

the collection of records stored in MIMIC.

When the user gets to the initial search

page, he can choose to add a search term -- - -- I a 4

based on a text search, medications MIMIC Complex Search

new seach

search, or patient demographics. These Enter sechtemutoprformacoplexsearchontheMimic
Datbae.

types of searches are described and defined So far:

in more detail in the following sections. DateofrBkth: afer1906-Jan-10
Contating Text: AND "SOB" AND
"albuterol"

Once the user enters the search criteria, Medicadom:ANDHeparin>5U

There we 9 patients in your results

the search terms are sent to be processed. A,1O3u3 414 4148416742043786.5223 1i48

The user can then see the number of
Figure 14 Search Results

results in MIMIC that satisfy these criteria,

and opt to perform the search or enter additional search terms. When no records

satisfy the search criteria, the criteria are removed from the search and a notification

message appears to the user.

More on these types of searches and a few details about their implementation are

described in the following sections.

14.1 Patient Demographics

The first and simplest search is based on patient demographics, namely age and sex.

Age is specified by denoting a date of birth (DOB) greater than or less than a given

24

date. Obviously, the choices for sex are male or female. All patients in MIMIC have

data for DOB and sex. MIMIC performs searching based on patient demographics by

simply scanning the d-patients table, which contains this information.

14.2 Text Search

One of the options for managing columns in MIMIC is whether the column should be

in included in a text search. In general, this field should be turned on for text fields

that are relevant to the patient record. Only these fields are considered for a text

search.

The text search facility allows users to enter in text search terms and searches free

text for these fields. Users may enter simple logic, such as 'patients AND doctors.

MIMIC parses the input to the text search and searches for these search terms. It

automatically detects key words for logic 'AND' and 'OR' and generates SQL for these

cases.

The design of the text component of the MIMIC Search engine is similar to the

specifications for an early version of the bboard search on http://www.photo.net. It

uses a Tcl ranking function to sort results and presents the most relevant result first.

"It does a simple ranking based on a list of keywords - it is not phrase-based. The

more keywords that are matched, the higher score you get."14 Ranking is based on

items matched for each patient record. For instance, a user may search for Atrial

Fibrillation. A patient whose record contains 5 instances of Atrial and 3 instances of

Fibrillation would receive a score of 8 in the search results.

MIMIC uses a Tcl-based ranking function and SQL 'like' comparison statements to

perform the search. SQL 'like' statements match each element of the input string.

The results are stored and ranked in a Tcl script. In text-only search, results are

25

returned in order of number of relevance. For more complex searches, results are

returned in an arbitrary order based on multiple search terms.

14.3 Medications Search

Medications are stored in the dmeditems table, which helps standardize spelling and

notation associated with medications. Patient records reference dmeditems. itemid

to record that a patient received a medication. Figure 6 shows an example of viewing

medication records. Since we know which tables reference the dmeditems table and

therefore contain medications information, we can limit the medications search to

these tables. Since searching for medications is based on an integer key, it is faster

than a text search because numerical comparison is faster than text comparison.

15 Design Issues

In the course of designing the components of MIMIC, there were many decisions and

tradeoffs considered. In general, design decisions were made according to efficiency

and simplicity.

15.1 Performance

Early versions of the MIMIC Application were extremely slow. Page views took about

6 seconds to load, due to the time to process queries to the database. Most web

users are unwilling to wait more than 2 seconds for a page to load. A great deal of

time was spent on creating indexes to speed up queries and reduce the amount of

time to retrieve data.

Another optimization measure used was to move some of the processing for queries

to the data upload process. When new data is added to the MIMIC database, new

table views are created and updated at the same time. These views perform the

costly JOIN operations needed to generate the materialized user views described in

26

Section 10.3. This increased data upload time up to 100%, but once the data was

processed, page views took 2 seconds. The alternative would be to create simple

SQL views, instead of tables that act as materialized views, and perform the JOIN

operations whenever a page was requested. The data upload process was much

faster, but pages took 6-8 seconds to load. The end decision was to move the JOIN

latency to the upload process to assure that page loads were fast. This makes MIMIC

more convenient for end users who are browsing records, and adds only start-up

costs to adding new data.

A few other approaches to optimization were also considered, including query

caching and warehousing strategies. In the end, a combination of creating indexes,

utilizing integer comparisons when possible, and an ad-hoc version of materialized

views were used to optimize the MIMIC Application.

15.2 Scalability

The MIMIC database will have hundreds of new records every few months. The

partner hospital currently has 42 beds connected to the CareVue system. Over the

course of a year, over 10,000 patient days' worth of data is available to MIMIC.

MIMIC must scale efficiently to handle these records. Relational databases have been

proven to handle scaling to thousands of records efficiently. MIMIC takes advantage

of this by using Postgres for its database.

The MIMIC Application is designed to scale to large numbers of records. The search

engine returns incremental results, but stores only the different search terms.

Storing incremental results for the search (instead of search terms) and re-

calculating only new terms as they are added becomes more complicated as the

number of records increases. As MIMIC grows to thousands of records, it becomes

27

more efficient to store search terms and perform the entire search at each step.

The user interface for MIMIC was also designed with large numbers of patient-days

in mind. The average stay for an ICU patient can vary greatly, so the user interface

was designed to display varying-length records efficiently. This is achieved through

menus to browse menus and a range of display options.

15.3 Versatility

The difference between MIMIC and similar databases is that MIMIC was not

developed for a specific application or problem. Some similar databases that were

developed for more specific research problems were described in Section 3.2. The

MIMIC database contains all available records from patients in one of the partner

hospital's intensive care units. Data is recorded from multiple data sources and can

be browsed based on medication, type of event, or category. The search utility is

intended to help researchers locate data that is relevant to their research. Unlike

other databases, MIMIC does not target specific problems, but aims to be a general-

purpose source of ICU patient data.

16 Evaluation of Current Design

16.1 De-Identification

The de-identification measures taken in the data upload process assure that no

patient names, phone numbers, medical record numbers, or social security numbers

appear in data for MIMIC. However, MIMIC does not handle other possibly identifying

information, such as doctor names or names of family members. Nursing notes

occasionally contain references to a patient's "sister Mary" or "home in Bedford."

Nursing notes may also contain misspellings that go undetected. MIMIC will replace

"Robert" but will not find "Robret." MIMIC lacks the sophisticated facilities to remove

such information. In future versions, natural language processing algorithms can be

28

applied to solve these problems.

16.2 Scalability

MIMIC currently contains about 300 patients, with a total of over 1,000 patient days.

MIMIC should easily scale to contain several hundred more patients. We are unsure

of how MIMIC will handle tens of thousands of records. The MIMIC server, which is

currently on a machine with a 1500Mhz Athlon AMD processor and 512MB memory,

would have to be upgraded to be a server for thousands of patient records. Once

MIMIC is merged with its waveform counterpart and regular data updates are made

to the MIMIC Database, the database should be backed up regularly and the MIMIC

Server used as a dedicated server for the MIMIC Application.

16.3 Usability

There are many possible additions to MIMIC that would make it more useful to

researchers. Once MIMIC has been merged with its waveform counterpart, complex

trending and analysis of those waveforms can be combined with searches on clinical

records. Currently, MIMIC does not support any conversion of units of measure for

medications searches, due in part to lack of available data. Units conversion may be

possible for future versions of MIMIC.

The display for MIMIC varies slightly across different web browsers. MIMIC was

tested mostly using Internet Explorer, Netscape, and Mozilla. Future versions of

MIMIC could add to the current design by using HTML elements that are displayed

uniformly across different browsers.

16.4 The Future of MIMIC

This project is the second version of an effort to solve the problems or collecting and

organizing real patient data for clinical research. However, there can still be

improvements and functionality added to MIMIC that could improve its value.

29

MIMIC only contains a portion of the data recorded from the ICU. The hospital also

collects discharge summaries, pathology reports, ECG signals, more detailed lab

reports, records for surgeries, X-rays, EEGs, outpatient care, and more. This data is

not currently stored in the ISM, but is stored on other hospital systems. In the

future, we could gain access to their records and add them to MIMIC. The MIMIC

RDBMS would have to be extended to include new table definitions and a different

extraction system to access the hospital information system. The richer content of

the resulting database would widen the range of research problems that MIMIC

supports.

In the future, MIMIC and its waveform counterpart will be integrated into a unified

resource for patient data. New versions of MIMIC could also include more

sophisticated patient de-identification procedures and add different user views. The

search facilities could allow for more complex searches, including searches on

waveform patterns. The current framework for MIMIC leaves the ability to extend to

include these capabilities. Even without these improvements, MIMIC will be a useful

utility to researchers looking for real patient data.

17 Conclusion

MIMIC provides a solution to some of the problems of protecting patient

confidentiality, migrating data to a new server, and presenting data in a usable

interface. It utilizes web and database technologies to create an application that

makes real hospital records available and searchable by researchers. Regular

updates from the hospital ISM will populate MIMIC with real patient data. All of these

elements are combined to create a useful utility for researchers looking for real

patient data.

30

18 Bibliography

Kohane, Isaac "The Imperative to Collaborate" Journal of the American Informatics
Association Volume 7 Number 5 Sep/Oct 2000

2 Product Description for Philips Medical Systems CareVue Clinical Information
System http://www3. medical.philips.com/en-

us/product home/product/carevuecis detail.asp

3 Moody, George and Mark, Roger "A Database to Support Development and
Evaluation of Intelligent Intensive Care Monitoring" Computers in Cardiology
23:657-660 1996

4 Wilcox, Adam, et al. "Developing Online Support for Clinical Information System
Developers: The FAQ Approach" Computers and Biomedical research, 31 112-121
(1998) Article No. CO 981470

5 Korhonen, Ilkka. vanGils, Mark. Gade, Jon. "The Challenges in Creating Critical
Care Databases" IEEE Engineering in Medicine and Biology May/June 2001

6 The HIV Central Research Database http://www.ohtn.on.ca/5 central hiip.html)

7 Stanford Penguin Project http://smi-web.stanford.edu/projects/penauin.html

8 "A Model Electronic Patient Record System for Clinical Echocardiography
http://hsc.virginia.edu/hs-library/newsletter/1994/november/echocard.html

9 Duke Medical Informatics Research
http://dmi-www.mc.duke.edu/dukemi/research/research.html

10 Anderson, Ross , "Security in Clinical Information Systems" Computer Laboratory
University of Cambridge - January 1996)

"Greenspun, Philip, "Phil and Alex's Guide to Web Publishing"
http://www.arsdiita.com/books/panda/

12 CareVue Clinical Data Management Information Support Mart User's Guide.
Agilent Technologies, 2000

13 Unique Patient Identifier

http://www.hipaanet.com/upin4.htm

14 Idea for doing Site-Wide Search
http://openacs.org/bboard/q-and-a-fetch-msg.tcl?msgid=000OSy&topicjid=11

31

APPENDIX A: Metadata Tables

create table mimic-tableelements (
metadata id
tablename
column-name
pretty-name
abstractdatatype
oracle-data-type
extra-sql
presentation-type
presentation-options
entry-explanation
help-text
include-in view-p
mandatory-p
sort-key
formsort-key
form-number
includeinctxindex-p
defaultvalue
order-sort-key
postgresdatatype

integer
varchar(21)
varchar(30)
varchar(100)
varchar(30)
varchar(30)
varchar(4000)
varchar(100)
varchar(4000)
varchar(4000)
varchar(4000)

char(l)
char(1)
integer
integer
integer
char(1)
varchar(200)
integer
varchar(80)

not null,
not null,
not null,
not null,
not null,

not null,

-- for display of tables by menu item
create table mimic-item_keys (
table name varchar(21),
item-key varchar(30),
includeinview-p varchar(l)

-- for display
create table mimic displaykeys
tablename varchar(100) primary key,
display-key varchar(100)

-- data log for updates
create sequence mimicindexessequence;
create table mimicdata log (

update-id
enterdate
tablename
filename
filestatus
extrac tkey
extrac tkey-start
extract keystop
insertstatus

integer,
timestamp with time zone,
character varying(40),
character varying(100),
character varying(400),
character varying(40),
numeric(30,6),
numeric(30,6),
character varying(400)

create table mimic-table-categories (
category-name varchar(100) not null,
cat-pretty-name varchar(100) not null,
description varchar(400),
include in view-p varchar(l),
order-sort-key integer

create table
tablename
time-key

create table
tablename
date-key

- for management of indexe

create table mimic indexes
indexname varchar(100),
tablename varchar(21),
columnname varchar(30),
primary key (index-name, tablename, column-name)

mimic timekeys

varchar(100),
varchar(100)

mimic date keys

varchar(100),
varchar(100)

APPENDIXA: Metadata Tables32

APPENDIX B: MIMIC Table Definitions
-- SQL create table statements for all tables
-- You may cut and paste the following to create tables.

-- tables for Dimensions

create table d-caregivers
cgid numeric,
employeeno varchar(20),
proftitle varchar(6)

create table dcareunits
cuid numeric,
unitname varchar(20)

create table d-chartitems
itemid numeric,
label varchar(110),
categoryl varchar(32),
category2 varchar(32),
category3 varchar(32),
category4 varchar(32),
category5 varchar(32),
category6 varchar(100)

create table d-days
dayid numeric,
calDay timestamp,
month numeric,
dayofmonth numeric,
year numeric,
monthText varchar(20),
dayofweek numeric,
holiday varchar(20)

create table d-interventionitems
itemid numeric,
label varchar(80),
categoryl varchar(32),
category2 varchar(32),
category3 varchar(32),

category4
category5
category6

varchar(32),
varchar(32),
varchar(32)

create table d-ioitems
itemid numeric,
label varchar(256),
categoryl varchar(32),
category2 varchar(32),
category3 varchar(32),
category4 varchar(32),
category5 varchar(32),
category6 varchar(32)

create table dmeditems
itemid numeric,
label varchar(20),
categoryl varchar(32),
category2 varchar(32),
category3 varchar(32),
category4 varchar(32),
category5 varchar(32),
category6 varchar(32)

create table d-outcomeitems
itemid numeric,
label varchar(60),
categoryl varchar(32),
category2 varchar(32),
category3 varchar(32),
category4 varchar(32),
category5 varchar(32),
category6 varchar(32)

create table d-patients
caseid integer,
pid numeric,
sex varchar(8),
dob date

create table d&problemitems
itemid numeric,

APPENDIX B: MIMIC Table Definitions

(

33

label
categoryl
category2
category3
category4
category5
category6

varchar(60),
varchar(32),
varchar(32),
varchar(32),
varchar(32),
varchar(32),
varchar(32)

create table viewforcensusevents
as select censusevents.oid as oid forcensusevents,
d-patients.caseid, round(censusevents.pid, 0) as pid,
censusevents.intime as intime, censusevents.outtime as outtime,
d_careunits.unitname as careunit, censusevents.careunit as
key-for-careunit, d careunits.unitname as destcareunit,
censusevents.destcareunit as keyjfordestcareunit,
censusevents.dischstatus as dischstatus,
round(censusevents.los, 0) as los, dsources.hospitalname as
sid, censusevents.sid as keyjfor-sid,
round(censusevents.indayid, 0) as indayid,
round(censusevents.outdayid, 0) as outdayid from censusevents,
d-patients, d careunits, dsources where
d-patients.pid=censusevents.pid and
d-careunits.cuid=censusevents.careunit and
d-careunits.cuid=censusevents.destcareunit and
d_sources.sid=censusevents.sid ;

create table d&primarycodes
label varchar(50),
code varchar(32),
pcode numeric

create table d-sources
systemid numeric,
siteid numeric,
sourceid numeric,
schemaRev numeric,
hospitalname varchar(60),
addressl varchar(30),
address2 varchar(30),
address3 varchar(30),
sid numeric

create table d-secondarycodes
label varchar(50),
code varchar(32),
scode numeric

-- tables for Events

create table censusevents
pid numeric,
intime timestamp,
outtime timestamp,
careunit numeric,
destcareunit numeric,
dischstatus varchar(20),
los numeric,
sid numeric,
indayid numeric,
outdayid numeric

create table chartevents
pid numeric,
charttime timestamp,
realtime timestamp,
itemid numeric,
valuel varchar(110),
valuelnum numeric,
valueluom varchar(20
value2 varchar(110),
value2num numeric,
value2uom varchar(20
stopped varchar(20),
resultstatus varchar
annotation varchar(5
cgid numeric,
cuid numeric,
scode numeric,
pcode numeric,
chartdate numeric,
sid numeric,
elemid numeric,
txid numeric

(20)
00),

create table view for chartevents
as select chartevents.oid as oid forchartevents,
d-patients.case-id, round(chartevents.pid, 0) as pid,
chartevents.charttime as charttime, chartevents.realtime as
realtime, d-chartitems.label as itemid, chartevents.itemid as

APPENDIX B: MIMIC Table Definitions34

key for itemid, chartevents.valuel as valuel,
round(chartevents.valuelnum, 2) as valuelnum,
chartevents.valueluom as valueluom, chartevents.value2 as
value2, round(chartevents.value2num, 2) as value2num,
chartevents.value2uom as value2uom, chartevents.stopped as
stopped, chartevents.resultstatus as resultstatus,
chartevents.annotation as annotation, round(chartevents.cgid,
0) as cgid, d careunits.unitname as cuid, chartevents.cuid as
key_forcuid, round(chartevents.scode, 0) as scode,
round(chartevents.pcode, 0) as pcode,
round(chartevents.chartdate, 0) as chartdate,
d_sources.hospitalname as sid, chartevents.sid as keyforsid,
round(chartevents.elemid, 0) as elemid, round(chartevents.txid,
0) as txid from chartevents, dpatients, d chartitems,
d_careunits, d-sources where d-patients.pid=chartevents.pid and
d-chartitems.itemid=chartevents.itemid and
d-careunits.cuid=chartevents.cuid and
d-sources.sid=chartevents.sid ;

create table formevents
pid numeric,
chartTime timestamp,
realtime timestamp,
formtitle varchar(40),
sectiontitle varchar(40),
subsectiontitle varchar(40),
itemid numeric,
value_ varchar(500),
valuenum varchar(100),
uom varchar(20),
cgid numeric,
cuid numeric,
scode numeric,
pcode numeric,
sid numeric,
elemid numeric,
txid numeric,
chartDay numeric,
formid numeric

create table viewforformevents as select formevents.oid as
oid for formevents, dpatients.case-id, round(formevents.pid,
0) as pid, formevents.chartTime as chartTime,
formevents.realtime as realtime, formevents.formtitle as
formtitle, formevents.sectiontitle as sectiontitle,

formevents.subsectiontitle as subsectiontitle,
d chartitems.label as itemid, formevents.itemid as

keyjfor_itemid, formevents.value_ as value_,
formevents.valuenum as valuenum, formevents.uom as uom,
round(formevents.cgid, 0) as cgid, dcareunits.unitname as
cuid, formevents.cuid as key-for-cuid, round(formevents.scode,
0) as scode, round(formevents.pcode, 0) as pcode,
d_sources.hospitalname as sid, formevents.sid as key-for-sid,
round(formevents.elemid, 0) as elemid, round(formevents.txid,
0) as txid, round(formevents.chartDay, 0) as chartDay,
round(formevents.formid, 0) as formid from formevents,

d_patients, d chartitems, d-careunits, d-sources where
d-patients.pid=formevents.pid and
d_chartitems.itemid=formevents.itemid and
d_careunits.cuid=formevents.cuid and
d-sources.sid=formevents.sid ;

create table medevents
pid numeric,
charttime timestamp,
itemid numeric,
elemid numeric,
chartdate numeric,
realtime timestamp,
volume numeric,
dose numeric,
doseuom varchar(20),
solutionid numeric,
solvolume numeric,
route varchar(20),
site varchar(20),
stopped varchar(20),
annotation varchar(500),
cgid numeric,
cuid numeric,
pcode numeric,
scode numeric,
sid numeric,
txid numeric

create table view for medevents as select medevents.oid as
oidfor medevents, d-patients.case-id, round(medevents.pid, 0)
as pid, medevents.charttime as charttime, d-meditems.label as
itemid, medevents.itemid as key-for-itemid,
round(medevents.elemid, 0) as elemid,
round(medevents.chartdate, 0) as chartdate, medevents.realtime

APPENDIX B: MIMIC Table Definitions3 5

as realtime, round(medevents.volume, 0) as volume,
round(medevents.dose, 2) as dose, medevents.doseuom as doseuom,
d-meditems.label as solutionid, medevents.solutionid as
key-for-solutionid, round(medevents.solvolume, 2) as solvolume,
medevents.route as route, medevents.site as site,
medevents.stopped as stopped, medevents.annotation as
annotation, round(medevents.cgid, 0) as cgid,
d_careunits.unitname as cuid, medevents.cuid as key-forcuid,
round(medevents.pcode, 0) as pcode, round(medevents.scode, 0)
as scode, d-sources.hospitalname as sid, medevents.sid as
keyjfor sid, d secondarycodesl.scode as txid, medevents.txid as
key fortxid from medevents, dpatients, d meditems, d-meditems
d_meditems0, d-careunits, dsources, d-secondarycodes
d_secondarycodesl where d-patients.pid=medevents.pid and
d-meditems.itemid=medevents.itemid and
d_meditems0.itemid=medevents.solutionid and
d-careunits.cuid=medevents.cuid and d sources.sid=medevents.sid
and d-secondarycodesl.scode=medevents.txid ;

create table noteevents
pid numeric,
charttime timestamp,
realtime timestamp,
category varchar(26),
title varchar(52),
notetext varchar(4000),
correction varchar(2),
cgid numeric,
cuid numeric,
chartDate numeric,
sid numeric,
noteid numeric,
elemid numeric,
txid numeric

create table viewfornoteevents as select noteevents.oid as
oidfornoteevents, d-patients.caseid, round(noteevents.pid,
0) as pid, noteevents.charttime as charttime,
noteevents.realtime as realtime, noteevents.category as
category, noteevents.title as title, noteevents.notetext as
notetext, noteevents.correction as correction,
round(noteevents.cgid, 0) as cgid, d careunits.unitname as
cuid, noteevents.cuid as key-for-cuid,
round(noteevents.chartDate, 0) as chartDate,
d_sources.hospitalname as sid, noteevents.sid as keyforsid,
round(noteevents.noteid, 0) as noteid, round(noteevents.elemid,

0) as elemid, round(noteevents.txid, 0) as txid from
noteevents, d-patients, d_careunits, d-sources where
d-patients.pid=noteevents.pid and
d_careunits.cuid=noteevents.cuid and
d-sources.sid=noteevents.sid

create table resultevents
pid numeric,
resultid numeric,
chartTime timestamp,
chartDate numeric,
cgid numeric,
cuid numeric,
resulttext varchar(1000),
sourcetime timestamp,
firstresult numeric,
nextresult numeric,
status varchar(20),
sid numeric,
txid numeric

create table viewforresultevents

as select resultevents.oid as oid forresultevents,
dpatients.case id, round(resultevents.pid, 0) as pid,

round(resultevents.resultid, 0) as resultid,
resultevents.chartTime as chartTime,
round(resultevents.chartDate, 0) as chartDate,
round(resultevents.cgid, 0) as cgid, d-careunits.unitname as

cuid, resultevents.cuid as keyjfor-cuid,
resultevents.resulttext as resulttext, resultevents.sourcetime
as sourcetime, round(resultevents.firstresult, 0) as

firstresult, round(resultevents.nextresult, 0) as nextresult,
resultevents.status as status, d sources.hospitalname as sid,
resultevents.sid as key_forsid, round(resultevents.txid, 0) as

txid from resultevents, dpatients, d-careunits, d-sources
where dpatients.pid=resultevents.pid and
d-careunits.cuid=resultevents.cuid and
d_sources.sid=resultevents.sid

create table totalbalevents
pid numeric,
charttime timestamp,
chartdate numeric,
itemid integer,
realtime timestamp,
pervolume numeric,

APPENDIX B: MIMIC Table Definitions36

cumvolume numeric,
accumperiod varchar(20),
approx varchar(10),
reset-p integer,
stopped varchar(20),
annotation varchar(500),
cgid numeric,
cuid numeric,
scode numeric,
pcode numeric,
sid numeric,
txid numeric,
elemid numeric

create table viewfortotalbalevents
as select totalbalevents.oid as oidfortotalbalevents,
d-patients.case-id, round(totalbalevents.pid, 0) as pid,
totalbalevents.charttime as charttime,
round(totalbalevents.chartdate, 0) as chartdate,
d ioitems.label as itemid, totalbalevents.itemid as
key_forjitemid, totalbalevents.realtime as realtime,
round(totalbalevents.pervolume, 0) as pervolume,
round(totalbalevents.cumvolume, 0) as cumvolume,
totalbalevents.accumperiod as accumperiod,
totalbalevents.approx as approx, round(totalbalevents.reset-p,
0) as resetp, totalbalevents.stopped as stopped,
totalbalevents.annotation as annotation,
round(totalbalevents.cgid, 0) as cgid, d careunits.unitname as
cuid, totalbalevents.cuid as keyjforcuid,
round(totalbalevents.scode, 0) as scode,
round(totalbalevents.pcode, 0) as pcode, d sources.hospitalname
as sid, totalbalevents.sid as key-forsid,
round(totalbalevents.txid, 0) as txid,
round(totalbalevents.elemid, 0) as elemid from totalbalevents,
dpatients, d ioitems, d-careunits, dsources where
dpatients.pid=totalbalevents.pid and
d_ioitems.itemid=totalbalevents.itemid and
d_careunits.cuid=totalbalevents.cuid and
d_sources.sid=totalbalevents.sid ;

-- tables for IOEvents. Solutions, Additives, and Deliveries

create table ioevents
pid numeric,
charttime timestamp,
realtime timestamp,

itemid
altid
volume

numeric,
numeric,
numeric,

volumeuom varchar(20),
unitshung numeric,
unitshunguom varchar(20),
newbottle numeric,
dressingchanged numeric,
tubingchanged numeric,
assessment numeric,
stopped varchar(20),
estimate varchar(20),
annotation varchar(500),
cgid numeric,
cuid numeric,
scode numeric,
pcode numeric,
chartdate numeric,
sid numeric,
elemid numeric,
txid numeric

create table viewfor-ioevents
as select ioevents.oid as oidforioevents, d-patients.case-id,
round(ioevents.pid, 0) as pid, ioevents.charttime as charttime,
ioevents.realtime as realtime, d ioitems.label as itemid,
ioevents.itemid as key-for-itemid, dioitems0.label as altid,
ioevents.altid as keyforaltid, round(ioevents.volume, 0) as
volume, ioevents.volumeuom as volumeuom,
round(ioevents.unitshung, 0) as unitshung,
ioevents.unitshunguom as unitshunguom,
round(ioevents.newbottle, 0) as newbottle,
round(ioevents.dressingchanged, 0) as dressingchanged,
round(ioevents.tubingchanged, 0) as tubingchanged,
round(ioevents.assessment, 0) as assessment, ioevents.stopped
as stopped, ioevents.estimate as estimate, ioevents.annotation
as annotation, round(ioevents.cgid, 0) as cgid,
d careunits.unitname as cuid, ioevents.cuid as key-for-cuid,
round(ioevents.scode, 0) as scode, round(ioevents.pcode, 0) as
pcode, round(ioevents.chartdate, 0) as chartdate,
d sources.hospitalname as sid, ioevents.sid as keyjfor-sid,
round(ioevents.elemid, 0) as elemid, round(ioevents.txid, 0) as
txid from ioevents, dpatients, d ioitems, djioitems
d-ioitems0, d-careunits, d-sources where
d-patients.pid=ioevents.pid and

APPENDIX B: MIMIC Table Definitions37

d_ioitems.itemid=ioevents.itemid and
d ioitemsO.itemid=ioevents.altid and
d_careunits.cuid=ioevents.cuid and dsources.sid=ioevents.sid

create table additives
pid numeric,
charttime timestamp,
chartdate numeric,
itemid numeric,
ioitemid numeric,
amount numeric,
doseunits varchar(20),
mperunit numeric,
route varchar(20),
cuid numeric,
cgid numeric,
scode numeric,
pcode numeric,
sid numeric,
elemid numeric,
txid numeric

create table viewforadditives
as select additives.oid as oidfor additives,
d-patients.case-id, round(additives.pid, 0) as pid,
additives.charttime as charttime, round(additives.chartdate, 0)
as chartdate, dmeditems.label as itemid, additives.itemid as
key_forjitemid, dioitems0.label as ioitemid,
additives.ioitemid as keyforioitemid, round(additives.amount,
0) as amount, additives.doseunits as doseunits,
round(additives.mlperunit, 0) as mlperunit, additives.route as
route, d careunits.unitname as cuid, additives.cuid as
keyfor-cuid, round(additives.cgid, 0) as cgid,
round(additives.scode, 0) as scode, round(additives.pcode, 0)
as pcode, d sources.hospitalname as sid, additives.sid as
key_forsid, round(additives.elemid, 0) as elemid,
round(additives.txid, 0) as txid from additives, dpatients,
dnmeditems, d-ioitems d-ioitems0, dcareunits, d-sources where
d-patients.pid=additives.pid and
d-meditems.itemid=additives.itemid and
d_ioitems0.itemid=additives.ioitemid and
d_careunits.cuid=additives.cuid and d-sources.sid=additives.sid

chartdate numeric,
charttime timestamp,
ioitemid numeric,
site varchar(20),
rate numeric,
cgid numeric,
cuid numeric,
sid numeric,
elemid numeric,
txid numeric

create table viewfordeliveries as select deliveries.oid as
oidfordeliveries, d-patients.case id, round(deliveries.pid,
0) as pid, round(deliveries.chartdate, 0) as chartdate,
deliveries.charttime as charttime, dioitems.label as ioitemid,
deliveries.ioitemid as key-for-ioitemid, deliveries.site as
site, deliveries.rate as rate, round(deliveries.cgid, 0) as
cgid, d careunits.unitname as cuid, deliveries.cuid as
keyjfor-cuid, dsources.hospitalname as sid, deliveries.sid as
keyfor-sid, round(deliveries.elemid, 0) as elemid,
round(deliveries.txid, 0) as txid from deliveries, dpatients,
d_ioitems, d-careunits, dsources where
dpatients.pid=deliveries.pid and
d-ioitems.itemid=deliveries.ioitemid and
d_careunits.cuid=deliveries.cuid and
dsources.sid=deliveries.sid ;

create table solutions
pid numeric,
charttime timestamp,
itemid numeric,
ioitemid numeric,
volume numeric,
doseunits varchar(20),
route varchar(20),
cgid numeric,
cuid numeric,
scode numeric,
pcode numeric,
chartdate numeric,
sid numeric,
elemid numeric,
txid numeric

create table deliveries
pid numeric,

APPENDIX B: MIMIC Table Definitions38

create table view-for solutions
as select solutions.oid as oidfor solutions,
d-patients.caseid, round(solutions.pid, 0) as pid,
solutions.charttime as charttime, d meditems.label as itemid,
solutions.itemid as keyjfor-itemid, djioitemsO.label as
ioitemid, solutions.ioitemid as keyforioitemid,
round(solutions.volume, 0) as volume, solutions.doseunits as
doseunits, solutions.route as route, round(solutions.cgid, 0)
as cgid, d-careunits.unitname as cuid, solutions.cuid as
key_forcuid, round(solutions.scode, 0) as scode,
round(solutions.pcode, 0) as pcode, round(solutions.chartdate,
0) as chartdate, d-sources.hospitalname as sid, solutions.sid
as keyjfor-sid, round(solutions.elemid, 0) as elemid,
round(solutions.txid, 0) as txid from solutions, d-patients,
d-meditems, d-ioitems d ioitems0, d-careunits, d-sources where
d-patients.pid=solutions.pid and
d_meditems.itemid=solutions.itemid and
dioitemsO.itemid=solutions.ioitemid and
d_careunits.cuid=solutions.cuid and dsources.sid=solutions.sid

-- tables for Care Plan/Pathway

create table problems
pid numeric,
itemid numeric,
charttime timestamp,
chartdate numeric,
cgid numeric,
addcgid numeric,
cuid numeric,
startdate timestamp,
stopdate timestamp,
dateadded numeric,
problemnum numeric,
status varchar(60),
etiology varchar(600),
scode numeric,
pcode numeric,
sid numeric,
elemid numeric,
txid numeric

create table view for-problems
as select problems.oid as oid for-problems, dpatients.case-id,
round(problems.pid, 0) as pid, d-problemitems.label as itemid,

problems.itemid as key-for-itemid, problems.charttime as
charttime, round(problems.chartdate, 0) as chartdate,
round(problems.cgid, 0) as cgid, round(problems.addcgid, 0) as
addcgid, dIcareunits.unitname as cuid, problems.cuid as
keyjfor-cuid, problems.startdate as startdate,
problems.stopdate as stopdate, d-days.calDay as dateadded,
problems.dateadded as keyjfor-dateadded,
round(problems.problemnum, 2) as problemnum, problems.status as
status, problems.etiology as etiology, round(problems.scode, 0)
as scode, round(problems.pcode, 0) as pcode,
d sources.hospitalname as sid, problems.sid as key-for-sid,
round(problems.elemid, 0) as elemid, round(problems.txid, 0) as
txid from problems, dpatients, d_problemitems, dIcareunits,
d_days, dIsources where dpatients.pid=problems.pid and
dproblemitems.itemid=problems.itemid and
d&careunits.cuid=problems.cuid and
d&days.dayid=problems.dateadded and dsources.sid=problems.sid

create table outcomes
pid numeric,
itemid numeric,
charttime timestamp,
chartdate numeric,
cgid numeric,
cuid numeric,
comments varchar(600),
targetdate numeric,
dateadded numeric,
addcgid numeric,
evaltime timestamp,
evalcgid numeric,
shift varchar(20),
variancetype varchar(20),
variancecause varchar(40),
status varchar(20),
problem numeric,
probtime timestamp,
scode numeric,
pcode numeric,
sid numeric,
elemid numeric,
txid numeric

create table viewforoutcomes

APPENDIX B: MIMIC Table Definitions39

as select outcomes.oid as oid for outcomes, dpatients.caseIid,
round(outcomes.pid, 0) as pid, d-outcomeitems.label as itemid,
outcomes.itemid as keyjfor-itemid, outcomes.charttime as
charttime, round(outcomes.chartdate, 0) as chartdate,
round(outcomes.cgid, 0) as cgid, d careunits.unitname as cuid,
outcomes.cuid as key_forcuid, outcomes.comments as comments,
d-days.calDay as targetdate, outcomes.targetdate as
keyjfor-targetdate, d days.calDay as dateadded,
outcomes.dateadded as key_for_dateadded, dIcaregivers0.cgid as
addcgid, outcomes.addcgid as keyfor_addcgid, outcomes.evaltime
as evaltime, d caregiversl.cgid as evalcgid, outcomes.evalcgid
as keyfor-evalcgid, outcomes.shift as shift,
outcomes.variancetype as variancetype, outcomes.variancecause
as variancecause, outcomes.status as status,
d-problemitems2.label as problem, outcomes.problem as
key-forproblem, outcomes.probtime as probtime,
round(outcomes.scode, 0) as scode, round(outcomes.pcode, 0) as
pcode, d-sources.hospitalname as sid, outcomes.sid as
keyforsid, round(outcomes.elemid, 0) as elemid,
round(outcomes.txid, 0) as txid from outcomes, dpatients,
d_outcomeitems, dcareunits, d days, d-caregivers
d_caregiversO, d caregivers d-caregiversl, d problemitems
d-problemitems2, dsources where d-patients.pid=outcomes.pid
and d outcomeitems.itemid=outcomes.itemid and
d careunits.cuid=outcomes.cuid and
d-days.dayid=outcomes.targetdate and
d-days.dayid=outcomes.dateadded and
d_caregiversO.cgid=outcomes.addcgid and
d-caregiversl.cgid=outcomes.evalcgid and
d-problemitems2.itemid=outcomes.problem and
d_sources.sid=outcomes.sid

create table interventions
pid numeric,
itemid numeric,
charttime timestamp,
chartdate numeric,
cgid numeric,
cuid numeric,
ordercgid numeric,
ordertime timestamp,
dateadded timestamp,
addcgid numeric,
targetdate numeric,
instructions varchar(250),
orderstatus varchar(20),
problem numeric,

probtime timestamp,
guidelinename varchar(80),
guideline varchar(2000),
chartstatus varchar(20),
shift varchar(60),
variancetype varchar(20),
variancecause varchar(40),
scode numeric,
pcode numeric,
sid numeric,
elemid numeric,
txid numeric

create table viewforinterventions
as select interventions.oid as oidforinterventions,
dpatients.case id, round(interventions.pid, 0) as pid,
d interventionitems.label as itemid, interventions.itemid as
key-for-itemid, interventions.charttime as charttime,
round(interventions.chartdate, 0) as chartdate,
round(interventions.cgid, 0) as cgid, d careunits.unitname as
cuid, interventions.cuid as keyjfor_cuid,
round(interventions.ordercgid, 0) as ordercgid,
interventions.ordertime as ordertime, interventions.dateadded
as dateadded, round(interventions.addcgid, 0) as addcgid,
ddays.calDay as targetdate, interventions.targetdate as
key-for-targetdate, interventions.instructions as instructions,
interventions.orderstatus as orderstatus, dproblemitems0.label
as problem, interventions.problem as keyjfor-problem,
interventions.probtime as probtime, interventions.guidelinename
as guidelinename, interventions.guideline as guideline,
interventions.chartstatus as chartstatus, interventions.shift
as shift, interventions.variancetype as variancetype,
interventions.variancecause as variancecause,
round(interventions.scode, 0) as scode,
round(interventions.pcode, 0) as pcode, d-sources.hospitalname
as sid, interventions.sid as keyfor-sid,
round(interventions.elemid, 0) as elemid,
round(interventions.txid, 0) as txid from interventions,
d_patients, d interventionitems, d careunits, d days,
d_problemitems d-problemitems0, d-sources where
d-patients.pid=interventions.pid and
d_interventionitems.itemid=interventions.itemid and
d_careunits.cuid=interventions.cuid and
d-days.dayid=interventions.targetdate and
d-problemitems0.itemid=interventions.problem and
d_sources.sid=interventions.sid ;

APPENDLXYB: MIMIC Table Definitions40

-- tables for orders

create table driporders
pid numeric,
itemid numeric,
charttime timestamp,
chartdate numeric,
cuid numeric,
verifiedtime timestamp,
verifiedby numeric,
addtime timestamp,
addby numeric,
addverifytime timestamp,
addverifyby numeric,
duration numeric,
durationtype varchar(20),
orderedby varchar(30),
starttime timestamp,
stoptime timestamp,
schedcomments varchar(60),
discontinuecomments varchar(60),
mdinstr varchar(500),
rninstr varchar(500),
phinstr varchar(500),
mdcosign varchar(30),
rnreview varchar(30),
phreview varchar(30),
freqlabel varchar(16),
action varchar(20),
state varchar(20),
stopstate varchar(20),
education varchar(20),
base numeric,
basevol numeric,
rate numeric,
dosemin numeric,
doseminuom numeric,
dosemax numeric,
dosemaxuom numeric,
doseunits varchar(20),
scode numeric,
pcode numeric,
sid numeric,
elemid numeric,
txid numeric

create table view-for driporders
as select driporders.oid as oidfor driporders,
dpatients.case-id, round(driporders.pid, 0) as pid,
dmeditems.label as itemid, driporders.itemid as
keyjfor_itemid, driporders.charttime as charttime,
round(driporders.chartdate, 0) as chartdate,
d_careunits.unitname as cuid, driporders.cuid as key-for-cuid,
driporders.verifiedtime as verifiedtime, d caregivers.cgid as
verifiedby, driporders.verifiedby as keyjforverifiedby,
driporders.addtime as addtime, d-caregiversO.cgid as addby,
driporders.addby as keyjfor-addby, driporders.addverifytime as
addverifytime, d caregiversl.cgid as addverifyby,
driporders.addverifyby as keyjforaddverifyby,
round(driporders.duration, 0) as duration,
driporders.durationtype as durationtype, driporders.orderedby
as orderedby, driporders.starttime as starttime,
driporders.stoptime as stoptime, driporders.schedcomments as
schedcomments, driporders.discontinuecomments as
discontinuecomments, driporders.mdinstr as mdinstr,
driporders.rninstr as rninstr, driporders.phinstr as phinstr,
driporders.mdcosign as mdcosign, driporders.rnreview as
rnreview, driporders.phreview as phreview, driporders.freqlabel
as freqlabel, driporders.action as action, driporders.state as
state, driporders.stopstate as stopstate, driporders.education
as education, d-meditems2.label as base, driporders.base as
keyjfor-base, round(driporders.basevol, 2) as basevol,
round(driporders.rate, 2) as rate, round(driporders.dosemin, 2)
as dosemin, round(driporders.doseminuom, 2) as doseminuom,
round(driporders.dosemax, 2) as dosemax,
round(driporders.dosemaxuom, 2) as dosemaxuom,
driporders.doseunits as doseunits, round(driporders.scode, 0)
as scode, round(driporders.pcode, 0) as pcode,
d-sources.hospitalname as sid, driporders.sid as key_for_sid,
round(driporders.elemid, 0) as elemid, round(driporders.txid,
0) as txid from driporders, dpatients, d-meditems,
d careunits, d-caregivers, d-caregivers d&caregiversO,
d caregivers d-caregiversl, d-meditems d-meditems2, d-sources
where d-patients.pid=driporders.pid and
d_meditems.itemid=driporders.itemid and
d-careunits.cuid=driporders.cuid and
dcaregivers.cgid=driporders.verifiedby and
d-caregiversO.cgid=driporders.addby and
d_caregiversi.cgid=driporders.addverifyby and
d-meditems2.itemid=driporders.base and
d-sources.sid=driporders.sid ;

create table freeformorders (

APPENDIX B: MIMIC Table Definitions41

pid numeric,
itemid numeric,
charttime timestamp,
chartdate numeric,
cuid numeric,
verifiedtime timestamp,
verifiedby numeric,
addtime timestamp,
addby numeric,
addverifytime timestamp,
addverifyby numeric,
duration numeric,
durationtype varchar(20),
orderedby varchar(30),
starttime timestamp,
stoptime timestamp,
schedcomments varchar(60),
discontinuecomments varchar(60),
mdinstr varchar(500),
rninstr varchar(500),
phinstr varchar(500),
mdcosign varchar(30),
rnreview varchar(30),
phreview varchar(30),
freglabel varchar(16),
action varchar(20),
state varchar(20),
stopstate varchar(20),
education varchar(20),
order_ varchar(900),
scode numeric,
pcode numeric,
sid numeric,
txid numeric

create table view for freeformorders
as select freeformorders.oid as oidforfreeformorders,
d-patients.case_id, round(freeformorders.pid, 0) as pid,
d_chartitems.label as itemid, freeformorders.itemid as
key_forjitemid, freeformorders.charttime as charttime,
round(freeformorders.chartdate, 0) as chartdate,
d careunits.unitname as cuid, freeformorders.cuid as
key_for_cuid, freeformorders.verifiedtime as verifiedtime,
d caregivers.cgid as verifiedby, freeformorders.verifiedby as
key-for-verifiedby, freeformorders.addtime as addtime,
dccaregiversO.cgid as addby, freeformorders.addby as

keyfor-addby, freeformorders.addverifytime as addverifytime,
d caregiversl.cgid as addverifyby, freeformorders.addverifyby
as keyjfor-addverifyby, round(freeformorders.duration, 0) as
duration, freeformorders.durationtype as durationtype,
freeformorders.orderedby as orderedby, freeformorders.starttime
as starttime, freeformorders.stoptime as stoptime,
freeformorders.schedcomments as schedcomments,
freeformorders.discontinuecomments as discontinuecomments,
freeformorders.mdinstr as mdinstr, freeformorders.rninstr as
rninstr, freeformorders.phinstr as phinstr,
freeformorders.mdcosign as mdcosign, freeformorders.rnreview as
rnreview, freeformorders.phreview as phreview,
freeformorders.freqlabel as freqlabel, freeformorders.action as
action, freeformorders.state as state, freeformorders.stopstate
as stopstate, freeformorders.education as education,
freeformorders.order_ as order, round(freeformorders.scode, 0)
as scode, round(freeformorders.pcode, 0) as pcode,
d_sources.hospitalname as sid, freeformorders.sid as
keyfor-sid, round(freeformorders.txid, 0) as txid from
freeformorders, dpatients, d-chartitems, dccareunits,
d_caregivers, d-caregivers d-caregivers0, dcaregivers
d&caregiversl, d sources where
d_patients.pid=freeformorders.pid and
dchartitems.itemid=freeformorders.itemid and
d_careunits.cuid=freeformorders.cuid and
d_caregivers.cgid=freeformorders.verifiedby and
d_caregiversO.cgid=freeformorders.addby and
d-caregivers1.cgid=freeformorders.addverifyby and
dsources.sid=freeformorders.sid

create table infusionorders
pid numeric,
itemid numeric,
charttime timestamp,
chartdate numeric,
cuid numeric,
verifiedtime timestamp,
verifiedby numeric,
addtime timestamp,
addby numeric,
addverifytime timestamp,
addverifyby numeric,
duration numeric,
durationtype varchar(20),
orderedby varchar(30),
starttime timestamp,
stoptime timestamp,

APPENDIX B. MIMIC Table Definitions42

schedcomments varchar(60),
discontinuecomments varchar(60),
mdinstr varchar(500),
rninstr varchar(500),
phinstr varchar(500),
mdcosign varchar(30),
rnreview varchar(30),
phreview varchar(30),
freqlabel varchar(16),
action varchar(20),
state varchar(20),
stopstate varchar(20),
education varchar(20),
base numeric,
basevol numeric,
rate numeric,
scode numeric,
pcode numeric,
sid numeric,
elemid numeric,
txid numeric

create table viewforinfusionorders
as select infusionorders.oid as oid for infusionorders,
d-patients.caseid, round(infusionorders.pid, 0) as pid,
d-chartitems.label as itemid, infusionorders.itemid as
keyfor_itemid, infusionorders.charttime as charttime,
round(infusionorders.chartdate, 0) as chartdate,
d careunits.unitname as cuid, infusionorders.cuid as
key_forcuid, infusionorders.verifiedtime as verifiedtime,
d_caregivers.cgid as verifiedby, infusionorders.verifiedby as
key-forIverifiedby, infusionorders.addtime as addtime,
d-caregivers0.cgid as addby, infusionorders.addby as
keyjfor-addby, infusionorders.addverifytime as addverifytime,
d_caregiversl.cgid as addverifyby, infusionorders.addverifyby
as keyfor_addverifyby, round(infusionorders.duration, 0) as
duration, infusionorders.durationtype as durationtype,
infusionorders.orderedby as orderedby, infusionorders.starttime
as starttime, infusionorders.stoptime as stoptime,
infusionorders.schedcomments as schedcomments,
infusionorders.discontinuecomments as discontinuecomments,
infusionorders.mdinstr as mdinstr, infusionorders.rninstr as
rninstr, infusionorders.phinstr as phinstr,
infusionorders.mdcosign as mdcosign, infusionorders.rnreview as
rnreview, infusionorders.phreview as phreview,
infusionorders.freqlabel as freqlabel, infusionorders.action as

action, infusionorders.state as state, infusionorders.stopstate
as stopstate, infusionorders.education as education,

d_meditems2.label as base, infusionorders.base as key_forbase,
round(infusionorders.basevol, 2) as basevol,
round(infusionorders.rate, 2) as rate,
round(infusionorders.scode, 0) as scode,
round(infusionorders.pcode, 0) as pcode, d sources.hospitalname
as sid, infusionorders.sid as keyjforsid,
round(infusionorders.elemid, 0) as elemid,
round(infusionorders.txid, 0) as txid from infusionorders,
d_patients, d chartitems, d-careunits, d-caregivers,
d_caregivers d caregivers0, dtcaregivers dcaregiversl,
dmeditems d-meditems2, dsources where
d-patients.pid=infusionorders.pid and
d_chartitems.itemid=infusionorders.itemid and

dcareunits.cuid=infusionorders.cuid and
d-caregivers.cgid=infusionorders.verifiedby and
d_caregiverso.cgid=infusionorders.addby and
d-caregiversl.cgid=infusionorders.addverifyby and
d-meditems2.itemid=infusionorders.base and
d_sources.sid=infusionorders.sid

create table medorders
pid numeric,
itemid numeric,
charttime timestamp,
chartdate numeric,
cuid numeric,
verifiedtime timestamp,
verifiedby numeric,
addtime timestamp,
addby numeric,
addverifytime timestamp,
addverifyby numeric,
duration numeric,
durationtype varchar(20),
orderedby varchar(30),
starttime timestamp,
stoptime timestamp,
schedcomments varchar(60),
discontinuecomments varchar(60),

mdinstr varchar(500),
rninstr varchar(500),
phinstr varchar(500),
mdcosign varchar(30),
rnreview varchar(30),
phreview varchar(30),

APPENDIX B: MIMIC Table Definitions43

freqlabel varchar(16)
action varchar(20),
state varchar(20),
stopstate varchar(20)
education varchar(20)
renewtime timestamp,
dosemin numeric,
doseminuom numeric,
dosemax numeric,
dosemaxuom numeric,
scode numeric,
pcode numeric,
sid numeric,
elemid numeric,
txid numeric

create table viewformedorders
as select medorders.oid as oidformedorders,
d_patients.caseid, round(medorders.pid, 0) as pid,
d ioitems.label as itemid, medorders.itemid as key-for itemid,
medorders.charttime as charttime, round(medorders.chartdate, 0)
as chartdate, dcareunits.unitname as cuid, medorders.cuid as
keyforcuid, medorders.verifiedtime as verifiedtime,
d-caregivers.cgid as verifiedby, medorders.verifiedby as
key-forverifiedby, medorders.addtime as addtime,
d_caregiverso.cgid as addby, medorders.addby as key-for-addby,
medorders.addverifytime as addverifytime, d-caregiversl.cgid as
addverifyby, medorders.addverifyby as keyjfor-addverifyby,
round(medorders.duration, 0) as duration,
medorders.durationtype as durationtype, medorders.orderedby as
orderedby, medorders.starttime as starttime, medorders.stoptime
as stoptime, medorders.schedcomments as schedcomments,
medorders.discontinuecomments as discontinuecomments,
medorders.mdinstr as mdinstr, medorders.rninstr as rninstr,
medorders.phinstr as phinstr, medorders.mdcosign as mdcosign,
medorders.rnreview as rnreview, medorders.phreview as phreview,
medorders.freqlabel as freqlabel, medorders.action as action,
medorders.state as state, medorders.stopstate as stopstate,
medorders.education as education, medorders.renewtime as
renewtime, round(medorders.dosemin, 2) as dosemin,
round(medorders.doseminuom, 2) as doseminuom,
round(medorders.dosemax, 2) as dosemax,
round(medorders.dosemaxuom, 2) as dosemaxuom,
round(medorders.scode, 0) as scode, round(medorders.pcode, 0)
as pcode, d sources.hospitalname as sid, medorders.sid as
key forsid, round(medorders.elemid, 0) as elemid,

round(medorders.txid, 0) as txid from medorders, d-patients,
d_ioitems, d-careunits, d-caregivers, d-caregivers
d_caregiversO, d-caregivers dcaregiversl, dsources where
dpatients.pid=medorders.pid and
d ioitems.itemid=medorders.itemid and
d_careunits.cuid=medorders.cuid and
d_caregivers.cgid=medorders.verifiedby and
d-caregiversO.cgid=medorders.addby and
d_caregiversi.cgid=medorders.addverifyby and
d_sources.sid=medorders.sid

-- tables for Duration

create table achartdurations
pid numeric,
starttime timestamp,
endtime timestamp,
itemid numeric,
cuid numeric,
duration numeric,
scode numeric,
pcode numeric,
sid numeric,
elemid numeric

create table view for a chartdurations
as select a chartdurations.oid as oid-for-a-chartdurations,
d-patients.case-id, round(a-chartdurations.pid, 0) as pid,
a chartdurations.starttime as starttime,
a chartdurations.endtime as endtime, d chartitems.label as
itemid, a chartdurations.itemid as key_for_itemid,
dcareunits.unitname as cuid, a-chartdurations.cuid as
keyjforcuid, round(achartdurations.duration, 2) as duration,
round(a chartdurations.scode, 0) as scode,
round(a chartdurations.pcode, 0) as pcode,
d-sources.hospitalname as sid, achartdurations.sid as
keyfor-sid, round(a-chartdurations.elemid, 0) as elemid from
a-chartdurations, d patients, d-chartitems, dcareunits,
d_sources where d-patients.pid=a-chartdurations.pid and
d_chartitems.itemid=achartdurations.itemid and
d-careunits.cuid=achartdurations.cuid and
d_sources.sid=a_chartdurations.sid

create table ajiodurations
pid numeric,
itemid numeric,

APPENDIX B: MIMIC Table Definitions44

starttin
endtime
cuid
duratio r
scode
pcode
sid
elemid

e timestamp,
timestamp,

numeric,
numeric,

numeric,
numeric,

numeric,
numeric

create table viewfor_a_iodurations
as select aiodurations.oid as oidfor_a_iodurations,
d-patients.caseid, round(a-iodurations.pid, 0) as pid,
d ioitems.label as itemid, aiodurations.itemid as
key-forjitemid, aiodurations.starttime as starttime,
a-iodurations.endtime as endtime, dcareunits.unitname as cuid,
a-iodurations.cuid as keyjforcuid,
round(aiodurations.duration, 2) as duration,
round(aiodurations.scode, 0) as scode,
round(aiodurations.pcode, 0) as pcode, d-sources.hospitalname
as sid, aiodurations.sid as keyjforsid,
round(aiodurations.elemid, 0) as elemid from a iodurations,
d_patients, d-ioitems, d-careunits, dsources where
d-patients.pid=aiodurations.pid and
dioitems.itemid=aiodurations.itemid and
d_careunits.cuid=aiodurations.cuid and
dsources.sid=aiodurations.sid ;

itemid, a meddurations.itemid as key-for-itemid,
a_meddurations.endtime as endtime, d-careunits.unitname as
cuid, a-meddurations.cuid as key-forcuid,
round(a meddurations.duration, 2) as duration,
round(ameddurations.scode, 0) as scode,
round(a meddurations.pcode, 0) as pcode, d sources.hospitalname
as sid, a meddurations.sid as keyjforsid,
round(ameddurations.elemid, 0) as elemid from ameddurations,
d-patients, d-meditems, dcareunits, d-sources where
d-patients.pid=ameddurations.pid and
dmeditems.itemid=a meddurations.itemid and
d_careunits.cuid=ameddurations.cuid and
d_sources.sid=a meddurations.sid ;

create table ameddurations
pid numeric,
startrealtime timestamp,
starttime timestamp,
itemid numeric,
endtime timestamp,
cuid numeric,
duration numeric,
scode numeric,
pcode numeric,
sid numeric,
elemid numeric

create table viewfor_a_meddurations
as select a-meddurations.oid as oidfor_a_meddurations,
d-patients.case-id, round(a meddurations.pid, 0) as pid,
a_meddurations.startrealtime as startrealtime,
a-meddurations.starttime as starttime, d-meditems.label as

APPENDIX B: MIMIC Table Definitions45

APPENDIX C: MIMIC Index Definitions

-- indexes for all tables in MIMIC

-- for metatdata
create index mimictablecolumns on mimictable-elements (column-name);
create index mimictabletables on mimictable elements (table-name);
create index mimic table cats on mimictable categories (category-name);
create index mimictable-index on mimic-tableelements (table-name, includeinview-p);
create index mimicdisplaykeysindex on mimic-displaykeys(table-name);
create index mimictime-keysjindex on mimic-time-keys(table-name);
create index mimic elementview on mimictableelements (table-name, includeinview-p);
create index mimicelement search on mimictableelements (tablename,
include in-ctx-index-p);
create index mimic-display-keys-index on mimic-display-keys (tablename);

-- for data log

create index mimic-updateid on newdatalog (update-id);

-- for patient fact tables
create index caseidfor-problems on d-patients (caseid);
create index key-index-for_problems on problems (pid);
create index key-indexforresultevents on resultevents (pid);
create index key-indexfor_a_meddurations on ameddurations (pid);
create index keyindexfor_a_chartdurations on achartdurations (pid);
create index key-indexjfor-d-patients on dpatients (pid);
create index key-indexfor_a_iodurations on ajiodurations (pid);
create index key-indexforchartevents on chartevents (pid);
create index key-indexfordeliveries on deliveries (pid);
create index key-indexjfor-driporders on driporders (pid);
create index key-indexjforformevents on formevents (pid);
create index key-indexjforfreeformorders on freeformorders (pid);
create index key-indexforinfusionorders on infusionorders (pid);
create index key-indexforinterventions on interventions (pid);
create index key-indexforioevents on ioevents (pid);
create index key-indexformedevents on medevents (pid);
create index key-indexformedorders on medorders (pid);
create index key-indexforoutcomes on outcomes (pid);
create index keyindexforcensusevents on censusevents (pid);
create index key-indexforsolutions on solutions (pid);
create index key-indexjfor-additives on additives (pid);
create index key-indexfornoteevents on noteevents (pid);
create index key-indexfortotalbalevents on totalbalevents (pid);

-- for dimension tables

create index key-index for-d-caregivers on d&caregivers (cgid);
create index key-indexfor_d_careunits on dcareunits (cuid);
create index key-indexfor_d_chartitems on dchartitems (itemid);
create index key-index for-d-days on d-days (dayid);
create index key-index for-d-days on d-days (calday);
create index cal-key-indexfor_d-days on ddays (calday);
create index key-indexfor_d_interventionitems on d interventionitems (itemid);
create index key-indexfor_d_ioitems on dioitems (itemid);
create index key-index for_d_meditems on dmeditems (itemid);
create index key-indexfor_d_outcomeitems on doutcomeitems (itemid);
create index key-index-for-d-primarycodes on d_primarycodes (pcode);
create index key-index-for-dproblemitems on d-problemitems (itemid);
create index key-index-for-d-secondarycodes on dsecondarycodes (scode);
create index key-indexfor-d-sources on d-sources (sid);

-- for time elements

create index timeindexfor_a_chartdurations on a_chartdurations (starttime);
create index time-index for additives on additives (charttime);
create index time-indexforaiodurations on a-iodurations (starttime);
create index timeindexfor_a_meddurations on ameddurations (starttime);
create index timeindexforcensusevents on censusevents (intime);
create index time indexforchartevents on chartevents (charttime);

46 APPENDIX C: MMC Index Definitions

create index time index for deliveries on deliveries (charttime);
create index timeindex for driporders on driporders (charttime);
create index timejindexforformevents on formevents (charttime);
create index time index-for freeformorders on freeformorders (charttime);
create index time index for infusionorders on infusionorders (charttime);
create index timeindex-for interventions on interventions (charttime);
create index timeindexforioevents on ioevents (charttime);
create index timeindex-for-medevents on medevents (charttime);
create index time index for medorders on medorders (charttime);
create index time index for noteevents on noteevents (charttime);
create index timeindex for outcomes on outcomes (charttime);
create index timeindex-for-problems on problems (charttime);
create index time indexforresultevents on resultevents (chartTime);
create index timeindexforsolutions on solutions (charttime);
create index timeindexfortotalbalevents on totalbalevents (charttime);

-- time and key elements

create index time key-index-a_chartdurations on a-chartdurations (starttime, pid);
create index time key-indexadditives on additives (charttime, pid);
create index time-key-index_a_iodurations on ajiodurations (starttime, pid);
create index time-key-index_a_meddurations on ameddurations (starttime, pid);
create index time-key-indexcensusevents on censusevents (intime, pid);
create index time-key-indexchartevents on chartevents (charttime, pid);
create index time-key-indexdeliveries on deliveries (charttime, pid);
create index time-keyindex-driporders on driporders c(harttime, pid);
create index time-key-indexformevents on formevents (charttime, pid);
create index time-key-index_freeformorders on freeformorders (charttime, pid);
create index time-key-indexinfusionorders on infusionorders (charttime, pid);
create index time-key-indexinterventions on interventions (charttime, pid);
create index time-keyindex_ioevents on ioevents (charttime, pid);
create index time-keyindexmedevents on medevents (charttime, pid);
create index time-key-indexmedorders on medorders (charttime, pid);
create index time-key-indexnoteevents on noteevents (charttime, pid);
create index time-key-index-outcomes on outcomes (charttime, pid);
create index time-key-index-problems on problems (charttime, pid);
create index time-key-indexresultevents on resultevents (chartTime, pid);
create index time-key-indexsolutions on solutions (charttime, pid);
create index time-key-index-totalbalevents on totalbalevents (charttime, pid);

-- for search display

create index itemidindexchartevents on chartevents (itemid);

-- for menu item display

create index menuitem totalbalevents on totalbalevents(itemid);
create index menuitemcensusevents on censusevents (careunit);
create index menuitemchartevents on chartevents (itemid);
create index menuitem_a_chartdurations on a-chartdurations (itemid);
create index menuitem a iodurations on a-iodurations (itemid);
create index menuitem deliveries on deliveries (ioitemid);
create index menuitem-formevents on formevents (sectiontitle);
create index menuitem ioevents on ioevents (itemid);
create index menuitemmedevents on medevents (itemid);
create index menu item noteevents on noteevents (category);
create index menu item solutions on solutions (itemid);
create index menu item totalbalevents on totalbalevents (itemid);

-- for datekeys

create index viewdate for additives on view for-additives (chartdate);
create index view-date-for-censusevents on viewforcensusevents (indayid);
create index viewdatejfor-chartevents on viewforchartevents (chartdate);
create index viewdate for deliveries on viewfordeliveries (chartdate);
create index view-datejfor-driporders on viewfor_driporders (chartdate);
create index viewdate-for-formevents on viewforformevents (chartDay);
create index viewdate-forjfreeformorders on viewforfreeformorders (chartdate);
create index viewdateforinfusionorders on viewforinfusionorders (chartdate);
create index view-date for interventions on viewforinterventions (chartdate);
create index viewdateforioevents on viewforioevents (chartdate);
create index viewdateformedevents on viewformedevents (chartdate);
create index viewdateformedorders on viewformedorders (chartdate);
create index viewdatefornoteevents on viewfornoteevents (chartDate);
create index viewdateforoutcomes on viewforoutcomes (chartdate);

47 APPENDIX C: MMC Index Definitions

create index viewdate-for-problems on viewjfor-problems (chartdate);
create index view date for resultevents on view for resultevents (chartDate);
create index viewdate_forsolutions on view_forsolutions (chartdate);
create index view datefortotalbalevents on view for totalbalevents (chartdate);

-- for case-ids
create index caseidforchartevents on viewforchartevents (caseid);
create index caseidfor_a_meddurations on viewfor_ajmeddurations (case-id);
create index caseidfor_a_iodurations on viewjfor-a-iodurations (caseid);
create index case id-for_a_chartdurations on viewfor-a-chartdurations (case-id);
create index caseidforinterventions on view for interventions (caseid);
create index caseidforoutcomes on view for outcomes (case-id);
create index caseidfor-problems on viewfor-problems (case-id);
create index caseidformedorders on view for medorders (case-id);
create index caseidforinfusionorders on viewforinfusionorders (case-id);
create index case id-forfreeformorders on viewforfreeformorders (case-id);
create index case id-fordriporders on viewjfor-driporders (case_id);
create index case id forsolutions on viewforsolutions (case-id);
create index caseidfordeliveries on viewfordeliveries (case-id);
create index case-id-forioevents on viewforioevents (case-id);
create index case id-fornoteevents on viewfornoteevents (case-id);
create index caseidfor formevents on viewforformevents (case-id);
create index caseid-for censusevents on viewforcensusevents (case id);
create index caseidforadditives on viewforadditives (case-id);
create index case id for-resultevents on viewforresultevents (case-id);
create index caseidformedevents on viewformedevents (case-id);
create index caseidfortotalbalevents on viewfortotalbalevents (case-id);
create index case id-for-d-patients on viewjfor-d-patients (case-id);

48 APPENDIX C: MMC Index Definitions

APPENDIX D: MIMIC Keys

mimic-date keys

"tablename"

"date-key"

additives
censusevents
chartevents
deliveries
driporders
formevents
freeformorders chartd
infusionorders chartd
interventions
totalbalevents chartd
ioevents
medevents
medorders
noteevents
outcomes
resultevents
problems
solutions

mimic-item keys

"table-namen

"itemkkey"
"include in view-p"

d-secondarycodes
d sources
d caregivers
d careunits
d interventionitems
d ioitems
d meditems
d outcomeitems itemid
d-problemitems itemid
additives
a meddurations itemid
d chartitems
d days
d-patients
dprimarycodes code
driporders

chartdate
indayid
chartdate
chartdate
chartdate
chartDay

ate
ate
chartdate

ate
chartdate
chartdate
chartdate
chartDate
chartdate
chartDate
chartdate
chartdate

code
siteid
cgid
cuid
itemid
itemid
itemid

i temid

itemid
dayid
pid

itemid

f
f

f

f

f

f

f

f

f

f

f

f

f

f

f

freeformorders itemid
infusionorders itemid

interventions
medorders
outcomes
problems
resultevents
a-iodurations
deliveries
ioevents
medevents
solutions
totalbalevents itemid
censusevents
formevents
chartevents
a-chartdurations
noteevents

mimic-timekeys

"tablename"

"time-key"

d_days
resultevents
deliveries
driporders

f

f

itemid
itemid
itemid
itemid
resultid
itemid
ioitemid
itemid
itemid
itemid

t
careunit
sectiontitle
itemid
itemid
title

month
chartTime
charttime
charttime

freeformorders charttime
infusionorders charttime
medorders charttime
problems charttime
outcomes charttime
interventions charttime
a_iodurations starttime
ameddurations starttime
censusevents intime
solutions charttime
a_chartdurations starttime
chartevents charttime
formevents charttime
ioevents charttime
medevents charttime
noteevents charttime
totalbalevents charttime
d-patients pid
additives charttime

APPENDIX D. MMC Keys49

mimic-display-keys

"tablename"
"displaykey"

d-patients pid
d careunits unitname
d_chartitems label
d-days calDay
d_interventionitems label
d ioitems label
d_meditems label
d outcomeitems label
d-problemitems label
d_sources hospitalname
d caregivers cgid
d-primarycodes pcode
d_secondarycodes scode
censusevents pid
chartevents itemid
formevents itemid
medevents itemid
noteevents pid
resultevents objectid
totalbalevents pid

ioevents itemid
additives itemid
deliveries ioitemid
solutions itemid
driporders itemid
freeformorders itemid
infusionorders itemid
medorders itemid
problems itemid
outcomes itemid
interventions itemid
a_chartdurations itemid
a-iodurations itemid
a-meddurations itemid
(34 rows)

APPENDIX D: MIMJC Keys50

Appendix E MIMIC Administrator's Manual

Background on MIMIC
The Mimic Relational Database Management System (RDBMS) is designed for patient
records taken from a hospital's clinical information system called CareVue. This
automated system consolidates patient data and stores it in an Oracle database.
Those records have been available to MIMIC through a partnership with a local
hospital.

The purpose of the MIMIC RDBMS is to provide an interface to define tables and
manage how they are accessed, displayed, and presented to the end user. The
MIMIC RDBMS is used to select data to be downloaded from the partner hospital,
parse, upload, and organize these records, and present them to the end user.

Manualfor MIMIC Administrators51

Administrative Modules for MIMIC

Administrators to MIMIC have the ability to manage table definitions, add new data
to the database, and control parameters that affect how data is displayed and
managed.

Administrative tasks can be divided into two categories: making table definitions,
and adding new data to the database. Table definitions need to be made only once,
and updated as necessary. New data can be added at anytime. It is likely that there
will be regular updates to add new data as it is collected.

Log In

Curreut m eue: Please enter your emil and password below.

New woes: Welcome to 8ystemName. Please begin the registration process by entering a valid 0mail address and a
password for signingimto the system We will direct youtto anotherform to complete yourregisration.

Your emai address: user _acunt

Your password-

1 Remember this address and password?()

Ifyoukeep getting thrown backhee, it is probablybecause your browser does not accept cookies. We're socy for
the inconvenience but it really is impossible to program a system like this withodt keeping track of who is posting
what

In Netscape 4. you can enable cookies from Edit-> Preferences -> Advanced. In Microsoft Internet Explorer 4A you
can enable cookies from View-> lnteotetOptions -> Advanced-> Security.

Administrators will need a username and password to log into MIMIC before being
able to perform any of the administrative tasks described in this section.

Manualfor MIMIC Administrators52

The administrative database management module located in
/server path/www/admin/mimic/ allows administrators to enter table definitions for
tables in MIMIC. These definitions are then used to generate SQL CREATE TABLE
statements that the administrator can cut and paste into Postgres to create tables.
The administrator does not need to have previous knowledge of SQL.

Tables are stored in categories and consist of a number of elements (columns) for
that table.

Category Category

table table table table table

el el el

Hierarchy of Metadata

Step 1: Creating a Catenory
Tables are organized into categories. The section for normal users describes how
category definitions affect how data is viewed. The administrator first needs to define
a category for the table by clicking on "Create a New Category" link in
/server path/www/admin/mimic/. The administrator can then enter the attributes
associated with this category.

The Category Name is the
name used in SQL for this -

category. Category names
must be unique and should
not contain any white space.

The Pretty Name is the name
used when displaying this
category name to normal
users.

(optional) The Description
field may be used to enter a
short description about the
usage or contents of this
category.

The Order Sort Key is an
integer used in sorting

Create a New MhN&c Table Category

Cagory Nama s F 7
PrettyNote ITst

This In a test category created for our
demonstration

OrdrSat K e

1uehad iUer Viw tvyes r no

~ ~-:4

categories. For instance, a category with an Order Sort Key of 1 would appear first in
53 Manualfor MiMIC Administrators

the list of categories. Order
sort keys are constrained to be
unique. The default value for
order sort keys is the next
largest value order sort key.

Lastly, the administrator may
specify whether this category
should be Included in the
User View. This allows
categories to be defined, but
hidden from normal users. This
is useful for administrative or
dimension tables.

OG rn&et SQL statmnts to Le or k these tables.

T" Name

the. re am o tAb43 in s zcategory

Ad' "o

Once these attributes are entered, the administrator can create this category by
clicking on the "create" button.

Once a category is created, the
administrator is taken to a page that
lists the tables for that category. To
create a new table, click on "Add a
New Table."

Figure 1 New Category

Manualfor MIMIC Administrators54

Step 2: Creating a
Table
Now that a category has been
defined, tables can be added
to that category. The
attributes for tables are
similar to those for
categories.

The Table Name is the name
used in SQL for this table. The
Table Name is constrained to
be unique should not contain
any white space.

The Pretty Name is the
name used when displaying
this table to normal users.

Creat, a New mie Table fur t Test cate.y

TAIW Nime Itebe

PruyNm lTestTable

this is a test table

this table is used for de onstrational
purposes.1

U...

The Description field is used to store information about the table.

The Usage field is used to describe how this table should be used.

Once these attributes have
been defined, the
administrator can click on the
"create" button to create this
table. The table is not actually
created on the database
system at this time. Step 4 TacT"TWr

describes how to actually b.off T.t.T.

create the table in the Qq ,, SQL,,,s1,fob"ta

database.
thee we no elswntz in th taNble

Now the administrator has
defined a category and a table
in that category. He can now
add elements (columns) to
that table by clicking on "Add a New Element."

Manualfor MIMIC Administrators55

Step 3: Adding Elements to a Table
Administrators can then enter attributes
for an element in this table.

The Column Name is the name used in
SQL for this table and should not
contain any whitespace. The Column
Name is constrained to be unique for
this table.

The Pretty Name is the label used for
displaying this column to normal users.

The Abstract Data Type specifies what
type this column is, i.e. "boolean" or
"integer" or "text." This value is used in
formatting this column for display.

The Postgres Data Type is the type
used for Postgres, i.e. "numeric" or
"timestamp." This value is used in
generating SQL to create and select
from tables in Postgres.

The Oracle Data type is the type used
in Oracle, i.e. "integer" or "date." This
value is used in selecting data from
hospital tables that are stored in Oracle.

(optional) The Extra SQL field can be
used for any extra SQL that should be
included when creating this table, such
as "not null" or "references
d_tests.test."

The Order Sort Key is used to sort
elements in this table. An element of
order sort key of 1 would appear first in
this table. The default value for this
attribute is the maximum value +1 for
this table.

(optional) The Entry Explanation field
can be used to give a description of this
column.

Administrators can specify whether this
column should be included in a text

Ad -n Elemat to Tes Table

Psese entas thea Moowwi"s deacibisig an seemct (cohmas) of Test Table

CGSII l'et

Warn ITest One

Aitract wx i.e. "tA" or "shorttex" boolean'

DeaP-leraar~ 00 LO.Ivteeba(2Ci)* "istegee

V IM. WIa O) -.'vochuM"5 "- inte?

adre .-L g.."notnu" ox -chekfoobarin

Ke s'
1 lF i e. 1 for fnt esh=a

jqae~ I~ is inthe f irst teet cniun.Fj~lma~*

i.ia tTeta
Search

T"~ View

es r, Wno

is .r ,

Test Table Table

Elemnts of Table Test Table

'ewvr te SQL create table statemen for tis tables

Comm Name Petty Name

1 I testi Test One this is the frst test column

edit 2 test2 Test Two 2nd test colum

edit 3 test3 Test Three 3rd test con

Adda New Element

n4 ~

Manualfor MIMIC Administrators

141 , , , - .-- " ' I I !*?

90" 7 77777'7 7

_tMkPidt
F

56

search of this table in the Include in Text Search field. Typically, this value is turned
on for free text fields and turned off for fields that contain date or numeric
information.

The Include in Table View field controls whether this field is visible to normal
users. Some fields may not be significant to the end user and should be hidden.

Step 4: Generating SQL Cee ::::een ll o

Once all elements are defined for this
table, the administrator can generate
SQL to create this table by clicking on
"Generate."

A code sample generated by this step
appears below.

This will generate SQL create table
statements that the administrator can
cut and paste into the Postgres
command line.

SQL Create Table stateumt far Test Table

Youay"cut ndpa'te the fo"ow .gto create.the TetTable t .

create table test-table
teati vazchax (100),

teat varchar (1) ,

Test Three integer

ZYME5C fltZ L

bash-2.05$ peqi openac4
Welcome to peql, the PostreSOL interactive terminal.

Two: \cop~fright for distribution terms
\ii for help with SOL commands
\? for help on internal slah commands
\g or terminate with semicolon to execute q.jerg
\q to qpdt

apnes4ee* create table test-table
opwnce(* teeti varchar(lOO).
operwcs4(e teat.2 varcherti).

oees(# tast3 integer
oees(C)

C~TE
openecs4=0

Note: These administrative table management pages are also used to modify category,
element, and table definitions. Each time an element's column name, Oracle data type,
or Postgres data type is updated, the Administrator should first drop and then re-create
the table in Postgres for the changes to take affect. Other modifications to columns take
effect without having to recreate the table.

Currently, MIMIC contains table definitions for those tables defined in the CareVue
ISM. A description of these table definitions appears in Appendix B.

Manualfor MIMIC Administrators

j

6-4* MMtM|MfT MMi:1 -_lM

57

Index Management

SQL indexes are used to speed common queries for tables with indexable columns.

The index management module in /server path/admin/mimic/indexes allows users
to create and manage indexes for tables defined in the table management module
and created in Postgres as described in Step 4. Indexes are optional but can provide
added performance.

Administrators can create new
indexes by clicking on "Add a New
Index." He can then add
attributes to define the index.

The Name for the Index is the
name used in SQL for this index.
It is constrained to be unique and
should not contain any white
space and.

The Table for this Index is the
table that this index is created on.
This can be selected from a pull-
down menu of tables defined
using the table management
module. Once the index name and
table have been chosen, click on
"next."

The next step in creating a new
index is to choose columns for the
index. Columns can be chosen
from a pull-down menu of
previously defined columns
(elements) for this table.

Clicking "next" will add a column
to the index. Repeat to add more
columns. Once all columns have
been added, the Administrator can
click on the link to "Create this
index." The index will be added to
the index management system and
also created in the database.

Name fr this (please do not include any whitespace in the
ltesundex

ajcoduratons

- ajiiedduratons
*~2~ censusevents

c-days

Creindex test-idex on a_chardurabons (C7-at ld-

Please choose choose coluans(s) to add to this index scods

pc-de- -

pid
sid
elemid
cuid
itemid
.. 7
esdtfime
stWme
duration

MIMIC contains indexes for the
tables for tables that are currently defined. These indexes are described in more
detail in Appendix C.

Manualfor MIMIC Administrators

7,

58

Key Management

Keys store more information about how to display the data in tables. The key

management module is in /server path/admin/mimic/data/keys/. These keys are
simply columns of a table that are designated for a specific use.

A Display Key for a table is the column that should be used as a label for this table.
In some views where only one column for a table is displayed, this label is used. For

example, the dmeditems table, the label is the display key. Oftentimes other tables

will reference the dmeditems table. When it does, the label is used to display that

value.

Menu Keys are used in
displaying data in a menu
fashion. Administrators can
specify a column for each ___- --- .

table and whether this menu
key should be visible. This Total Balance Events T1l7.1aufottb.

controls the menus that are L4=Tr4§

displayed to normal users.
For instance, the
totalbalevents table has Ss0 4 o 03 3

MM0(&3 Tota
itemid as its menu key. This 04

means that the values of this [Wi 8 24 .M 03M01 39 1

column are available as menu 04

options. One value for o 1s3
11,2001 24TOW 40 3W 1 3

itemid is "24 Total Out." A 1u'vA in

user could click on this item
to view only entries in that
column with that menu value.
For this example, the result would be a table of only "24 Total Out" entries.

Time Keys are used to select and order data. These are generally columns with
timestamps. Each table is ordered by a time key so that results can be displayed in
chronological order.

Date Keys are also used to select and order data. These are generally columns with
integers that denote which day the item was stored. These date keys generally
reference the d days table, which has entries for every day from January 1, 1970 to
December 30, 2030. Date keys are helpful in finding records for a specific day.

Current values for the keys described above can be found in Appendix D.

Manual for MIMIC Administrators59

Once tables have been defined in the table management module and created in
Postgres, the system is ready to be populated with data. This section describes the
steps involved in adding new data to MIMIC.

Overview
The data comes from a hospital's Information Support Mart (ISM) that is stored in
Oracle. Through a special partnership with the hospital, we are able to connect
remotely to the hospital's network to download data.

:' network
Hospital *

ISM O
(Oracle)--. .: '-

-sMIMIC
''' Database

o (Pbstgres)

Connected via
CareWeb

Currently, a separate system is used to initially collect and store waveform data.
Patients are each assigned a case id (case-id). The hospital's ISM uses a different
patient ID (pid) for each admission. Caseids are assigned to be the same for each
patient and reused for readmissions. The data download process for MIMIC consists
of the following steps:

1. Find the hospital's patient ID for each patient by matching their names and/or
MRN

2. Extract data with these patient ID's and de-identify records.
3. Upload data to the MIMIC database

Tools Needed
* Web browser (i.e. Netscape or Internet Explorer)
* Access to hospital network (i.e. via CareWeb)
* Access to the hospital ISM (Oracle)
" Access to local server that MIMIC is on (pc44)
* List of patients

This should be of the format:

case-id last-name l firstnamelMRN

The MRN (Medical Record Number) is optional.

Samples of all files needed for and generated by the data

found at the end of this document

60

update process can be

Manualfor MIMIC Administrators

Getting New Data

1. Connect to the CareGroup (eurkea.caregroup.org) system at the partner hospital
via the CareGroup VPN Dialer.

lCxGiwVPNU CJ&-

2. Start Oracle SQL*Plus and connect to the hospital ISM. You should enter your
username, password, and 'ISM' as the host string. You are now connected to the
hospital network and have access to patient records.

SQL*Plus: Release 0.U.5.8.8 - Production on Wed Kay I 15:24:12 2682

(c) Copyright 1998 Oracle Corporation. All rights reserved.

Connected to:
Oracle$ Enterprise Editiol Release 6.3.5.6.6 - Production
PL/SQL Release B.6.5.8.6 - Production

SQL> I

Manualfor MIMIC Administrators61

Go to the data upload page at /server path/admin/mimic/data.
Upload a file containing the list of patients for Step #1.
The list of patients should be a text file of the format:

Getting new data

Step 1:

Input file should contain rows of case-id, firstname, last_name, mm with whitespace
as null

Fenama:C-TEMPnarms.csv yd

This generates a script that extracts hospital pids for each patient.
Run this script by typing 86s cz.p name at the Oracle prompt

caseid| last-name first_name jmrn

where each patient is listed on a separate line. A sample appears below.

35511 LADENIJOSEPHI

35491STEELEIREMINGTON112428752
35461FIELDSIANDREWI

Manual for MIMIC Administrators62

Here is a sample of a script generated by this step. Save this file as scriptname.

Pet heading off;
set feedback off;
set termout off;

spool C:/teap/data/d patients.cxv;

select '3551 111I1 p.pid 1III'11p.sex 1'1I1l to-char(p.dob,
(upper(p.firstname) like upper(14;JCSEPH3%) and
upper (p. lastname) like upper(' %LADENI))
or (upper(p.fullname) like upper(1 JOSEPM) and
upper(p.fullname) like upper(' LADEN1)) ;

'Vy-rmo-dd') from d_

select '3549' 111I111 p.pid 1111''1 p.sex 11''l1 tochar(p.dob, lyyyy-in-dd') from d_
(upper(p.firstnae) like upper('9RENINGTON%') and
upper (p. lastname) like upper(' %STEELE%'))
or (upper(p.fullname) like upper('RENINGTCM') and
upper(p.fullnme) like upper('%STEELE')) or p.mrn-12428'752;

select '35461 I I ' 111 p.pid I I ' I ' I I p.sex I1 ' I ' I I to-char (p.dob, ' yyyy-=m-dd') from d_
(upper(p.firstname) like upper('!ANDREW') and
upper (p. lastneme) like upper(' %FIELDS'))

or (upper(p.fullname) like upper(' ANDREWV') and
upper(p.fullname) like upper('%FIELDSV'));

4 1
Fa H*e pixm

3. Take the script
by typing: @@©

A~ I
~ 9~, 4F1

generated by the previous step and run it on the hospital system
scriptname at the Oracle prompt.

SQL*Plus: Release 8.6.5.0.8 - Production on Thu May 2 11:22:8 2682

(c) Copyright 1996 Oracle Corporation. 011 rights reserved.

Connected to:
OracleS Enterprise Edition Release I.4.5.8.8 - Production
PL/SQL Release 3.1.5.D.6 - Production

SQL> - C:/temp/scriptname.txt

This step generates a file called dpatients.csv. This file will be of the format

caseidipidlsexldob

A sample appears below:

35051
35051

35091

592IF11936-09-09
2316IF11936-09-09

1901IMI1927-07-05

No Patient names are used from this point forward.

Manualfor MIMIC Administrators63

4. Take the d-patients.csv file generated in the previous step and upload it in Step
#2. This step generates a file that will extract complete patient records for the

Once you have a list of padients (dpaents.csv) you generate a script to extract
complete records.

Filanum: lCij1116\d-'paOw-nts.csv yI LAE

Use the "Browse" button to locate the dpafients.csv fie generated by step 1 and then
click 'Open".

Step 3:

er ate a . cnpt to download support (d&nension) tables if you haven't already done
so.

To run these scripts, log into the hospital system and type ne r.2.enmwe at the Oracle prompt. Go
here for more mfotnation.

desired patients. Save this file as scriptname.

5. Run the script generated by the previous step by typing

I

@@ scriptname

at the Oracle prompt. This will
create several .csv files in
C:/temp/data on the local
filesystem.

6. (optional) Mimic uses some
support tables in storing
patient data. If you have not
already done so, you can
generate a script to download
support tables in Step #3 .
Save this file as
scriptname.

Run this script by typing

@@ scriptname

at the Oracle prompt. This will generate more .csv files in C:/temp/data.

Manualfor MIMIC Administrators64

7. Move all .csv files generated by the previous steps to the local server (i.e. by
ftp). Next, upload the data in Step 4 by specifying the location of the .csv files.
Note that the files must be stored in a folder that is readable and writeable by the
Postgres user..

The next screen will ask for confirmation to begin the data upload process. The

1. Transfer the files generated by the above steps to some folder on the local system (Le. via fip
or sep).

2. Enter the location of the directory of where the data files are located on the local system.

Diepagod

Download

you can download data as a text file to process. by ngbt-cickeg on the links below and savig to file.

medicatons
Case IDIChart Timeitem IDIO Item ID Amount|Dose UnitsptoutelCare Unit IDiCare Giver ID

Case IDIChart Trnetem IDPenodic volumelCumiaive VolumeAccunulafion
Periodlapproximatefreset|Care Giver IDiCare Unit IDlrransaction IDlOement ID

-j
~% ~..

time to upload new data depends on the number of records being
and the size of each record.

downloaded

Enter New Data

Are you sure you want to update the database now?
This may take a while and slow the system down

The results of your update can be viewed in the log page.
Please wait untl you are redirected to the log page to view the results of the update.

The data will then be parsed, de-identified, and entered into the database.
Once this process is complete, the browser will be redirected to the data log
where the results of the update can be viewed.

Manual for MIMIC Administrators65

Normal users can now view these records in /server path/mimic.

to CdMe.-

Record for April 29, 2002 17:19:51-04

Table Name ile Stats pdate Result

[acbartdaaons fm/daa/04_25_02/a_chartdurahons csv file found update successful

addshves /mmcdata042502/addkives csv e found_ [pdate successful

ajodurahons /lic/data/04_25_02/a_iodrahons csv ie found update successful

a meddurabons tnc/data042502/ameddurations cov fie found upate successUl

censusevents /mnecdata/04_25_02/censusevents sv ile found update successful

chateveits /rm c/datal04_25_02/chartevents sv fie found dupate successful

dcaregver frnnIdata4 25_02 d_c vercv file found update successful

dcareunts f idata/0425_02/d-careuntscsv fie found update successful

d-chartms data025_02/d.chatitemscsv Sle found update successful

~d~days / f/data/425~_2tddays -v - file fo d unpd ae successful

dehvenes knmc/data/04_25_02/dehvenes.csv fe found update successful

Id..mtervenkonatem5 k cdta0202d, terventontew s cv fie found [paescesu

dioitems / mic/data/042502/dioteiscov file found update successful

dkmeditems icdata/0425_02/dmeditems.csv fle found update successfU

doutcometesen fanmcdata/04-25_02/d-oucometems.csv fe found udate successful

dpaients- -m dat042502/dpaents.csv file found [update successfi

Manualfor MIMIC Administrators66

Sample Files

Sample input file of names for Step 1

12661BROWNIJAMES10033085
21061 THOMAS ISARAHI

Sample Script generated by Step 1

set heading of f;
set feedback off;
set termout of f;

spool C: /temp/data/dpatients.csv;

select '1266' 11 ' ' 1 p-pid I I' I ' I p-sex I| |' I to-char(p.dob,

'yyyy-mm-dd') from d-patients p, dual where

(upper (p. firstname) like upper('%JAMES% ') and
upper (p. lastname) like upper ('%BROWN% '))
or (upper (p. fullname) like upper ('%JAMES%') and

upper (p. fullname) like upper ('%BROWN%')) or p.mrn='0033085';

select '2106' II'' p.pid II'I' I p.sex IIl to-char(p.dob,
'yyyy-mm-dd') from d-patients p, dual where

(upper (p. f irstname) like upper('%SARAH%') and

upper(p.lastname) like upper('%THOMAS%'))
or (upper(p.fullname) like upper('%SARAH%') and
upper (p. fullname) like upper('%THOMAS%'));

spool off;

Sample dpatients.csv file generated by script from Step 1.

126611210IM11912-11-05
2601111721F11917-01-28

Manualfor MIMIC Administrators67

Sample script generated by Step 2

set heading off;
set feedback off;
set termout of f;

CREATE OR REPLACE FUNCTION replace-names
(find-pid in number,
replace-string in char)

RETURN varchar
IS newstring varchar(5000);
tempjlastname varchar(100);
tempfirstname varchar(100);
temp num number;

BEGIN
SELECT fullname INTO tempjlastname from d-patients

WHERE pid =

findpid;
new-string := replace(lower(replace-string),

lower (templastname),
'patient');

tempnum:=instr (temp-lastname, '
tempfirstname:=substr (tempjlastname, 0, tempnum);
temp-lastname:=substr(tempjlastname, temp-num);
newstring := replace(new-string, tempjfirstname,

'patient ');

new_string replace(new-string, temp-lastname,
'patient ');

RETURN (new string);
END replace-names;

spool C: /temp/data/a-chartdurations.csv;

select pidi li'll
tochar(starttime, 'YYYY-MM-DD HH24:MI:SS')I| I '

to char(endtime, 'YYYY-MM-DD HH24:MI:SS') II' '
itemidi 'I'll
cuidi 'I'll
duration I 'I'll
scodel 'I'll
pcodel 'I'll
sidi 'I'll
elemid

from ism.a-chartdurations where pid=1266 or pid=2106;

spool C:/temp/data/additives.csv;

select pid1 'I'||
tochar(charttime, 'YYYY-MM-DD HH24:MI:SS')11'
chartdatel 'I'll
itemid 'I'll
ioitemid 'I'll
amount j' '1

replace-names(pid, doseunits) | | |
mlperunitI 'I'll
replace_names(pid, route) I ''l

cuid
cgid 'I'll
scodell'I'II
pcodell'I' I
sid 'I'll
elemid I' 'I
txid

from ism.additives where pid=1266 or pid=2106;

spool off;

spool C: /temp/data/ajiodurations.csv;

select pid ''l|
itemid 'I'll
tochar(starttime, 'YYYY-MM-DD HH24:MI:SS') 1|'1'1
tochar(endtime, 'YYYY-MM-DD HH24:MI:SS') II|' |'
cuidl 'I'll
duration I ''l
scodel I'!'
pcode I I I '
sidi iI' I
elemid

from ism.a iodurations where pid=1266 or pid=2106;

spool off;

spool C: /temp/data/a-meddurations .csv;

select pidi 'I'll
to-char (startrealtime, 'YYYY-MM-DD

HH24:MI:SS') 11111
to-char(starttime, 'YYYY-MM-DD HH24:MI:SS') |' |'|

spool off;

itemidi l il
tochar(endtime, 'YYYY-MM-DD HH24:MI:SS')jj'j' l
cuidI'I'l l
duration| I ' l
scodel|| I I
pcodel 'I'll
sidi ' I'l l
elemid

from ism.ameddurations where pid=1266 or pid=2106;

spool off;

spool C:/temp/data/censusevents.csv;

select pid1|l ' I
tochar(intime, 'YYYY-MM-DD HH24:MI:SS')11'1'11
to-char(outtime, 'YYYY-MM-DD HH24:MI:SS')jj'|'j
careunit!11 lii
destcareunitI1l' I
replace-names(pid, dischstatus)11'1'||
losI|' ' II
sidil'I '|
indayidl I'|'l
outdayid

from ism.censusevents where pid=1266 or pid=2106;

spool off;

spool C:/temp/data/chartevents.csv;

select pidil'i ' I
tochar(charttime,
tochar(realtime,
itemid|'I'l|
replacenames(pid,
valuelnumi|'l II
replace-names(pid,
replace-names(pid,
value2numl I''
replace names(pid,
replace-names(pid,
replace-names(pid,
replace-names(pid,
cgidj j'j'
cuidi l'I'l l
scodel 'I' I
pcodel'i'll

'YYYY-MM-DD HH24:MI:SS')II'I'II
'YYYY-MM-DD HH24:MI:SS')II''I1

valuel) I' I'll

valueluom) I ' I
value2)11' li

value2uom)11'' I I
stopped)'' I I I
resultstatus) I' I'|
annotation) I' I'l|

chartdateI'I'l l
sid '1'||
elemidi 'I'l l
txid

from ism.chartevents where pid=1266 or pid=2106;

spool off;

spool C:/temp/data/deliveries.csv;

select pid 'I'll
chartdatel' I'l l
to-char(charttime, 'YYYY-MM-DD HH24:MI:SS')11'1'11
ioitemid|l'I'll
replacenames(pid, site)'11111
rate ' I'll
cgid I 'l
cuid|l 'I'll
sid|l 'I 'll
elemid 'I'll
txid

from ism.deliveries where pid=1266 or pid=2106;

spool off;

spool C:/temp/data/driporders.csv;

select pid|'|'I l
itemid 'I'lI
to_char(charttime, 'YYYY-MM-DD HH24:MI:SS')1|'|'||
chartdatel 'I' |
cuidi l'I'I
tochar(verifiedtime, 'YYYY-MM-DD HH24:MI:SS')||'1'11
verifiedbyl l'I'l l
to-char(addtime, 'YYYY-MM-DD HH24:MI:SS')1| I' I
addbyl l'I'l l
tochar(addverifytime, 'YYYY-MM-DD

HH24:MI:SS')11' ' I I
addverifybyll'I'll
duration ''
replacenames(pid, durationtype)I'I'l l
replacenames(pid, orderedby) 1''I I
to char(starttime, 'YYYY-MM-DD HH24:MI:SS') ' I'll
tochar(stoptime, 'YYYY-MM-DD HH24:MI:SS')j|''j
replacenames(pid, schedcomments)11 I'l
replacenames(pid, discontinuecomments)11'1'11
replacenames(pid, mdinstr)11'I'll

Manualfor MIMIC Administrators69

replace names(pid,
replace names(pid,
replace names(pid,
replace-names(pid,
replace-names(pid,
replace names(pid,
replace-names(pid,
replace-names(pid,
replace-names(pid,
replace-names(pid,
base I' '|I
basevoll ' 'l|
rate|| 'l
dosemin 'I' I
doseminuoml|'I'l
dosemaxi 'I' II
dosemaxuoml'I' I
replacenames(pid,
scodel 'I' I
pcode |'| II
sidi 'l'I
elemid '|'||
txid

rninstr)
phinstr)
mdcosign)l
rnreview)l
phreview)l
freqlabel)
action)
state) I'
stopstate)
education)

I,
II

II

I'

I' II
Ill|

formid
from ism.formevents where pid=1266 or pid=2106;

spool off;

spool C:/temp/data/freeformorders.csv;

select pidiiI'lI
itemidil'I'll
tochar(charttime, 'YYYY-MM-DD HH24:MI:SS')||' 'l
chartdate 'I'll
cuidllI'I'll
tochar(verifiedtime, 'YYYY-MM-DD HH24:MI:SS')11'1'11
verifiedbyl 'I'l l
to-char(addtime, 'YYYY-MM-DD HH24:MI:SS') |'I|'

addbyl' I'll
to_char(addverifytime, 'YYYY-MM-DD

HH24:MI:SS') ' ' I I
addverifyby I 'l
duration| lil

doseunits)1'' LI

from ism.driporders where pid=1266 or pid=2106;

spool off;

spool C:/temp/data/formevents.csv;

select pidiI'l' I
tochar(chartTime,
to-char(realtime,
replace-names(pid,
replace-names(pid,
replace-names(pid,
itemidil''ll
replace-names(pid,
replace-names(pid,
replace-names(pid,
cgidil'I'I|
cuid ' I 'l l
scode I'I'l l
pcodel|'I'l
sidiI'l'II
elemid I ' l I
txidI Il lI
chartDayl l'i'

'YYYY-MM-DD HH24:MI:SS')l'l'l1
'YYYY-MM-DD HH24:MI:SS')11' 1'1|
formtitle)1Il'1i
sectiontitle)111''11
subsectiontitle)1I'1'11

value_)11'I'I I
valuenum) ' I'1 I
uom) I ' ' I I

replace-names(pid,
replace_names(pid,
to-char(starttime,
tochar(stoptime,
replace-names(pid,
replace-names(pid,
replace_names(pid,
replace-names(pid,
replace-names(pid,
replace-names(pid,
replacenames(pid,
replace_names(pid,
replacenames(pid,
replace-names(pid,
replace-names(pid,
replace_names(pid,
replace-names(pid,
replace-names(pid,
scodel 'I 'l l
pcodeI|'I 'l l
sidi'il li
txid

durationtype) I'I'll
orderedby)|I'I'l l
'YYYY-MM-DD HH24:MI:SS')

'YYYY-MM-DD HH24:MI:SS')l
schedcomments) I'l'll
discontinuecomments)ll'l
mdinstr)l ''lI
rninstr)11'1'I
phinstr) I 'll
mdcosign)l'I 'll
rnreview) '' I I I
phreview)I|'1'1I
freqlabel)ll'|' |
action) l' I lII
state) I 'I I
stopstate) |' 'l l
education)1I'1'11
order_)||'I'I |

1'1'

I I

from ism.freeformorders where pid=1266 or pid=2106;

spool off;

spool C:/temp/data/infusionorders.csv;

Manualfor MIMIC Administrators

l
l
l
l l

70

select pidi lI 'l
itemidl lI'll
tochar(charttime, 'YYYY-MM-DD HH24:MI:SS') I'll|
chartdatel ' I 'l l
cuidl i' l l
to-char(verifiedtime, 'YYYY-MM-DD HH24:MI:SS')'ll
verifiedbyl ' 'll
to-char(addtime, 'YYYY-MM-DD HH24:MI:SS')Ill
addbyl l'I'I I
tochar(addverifytime, 'YYYY-MM-DD

HH24:MI:SS') IIII
addverifybyl l'I'|
durationi i'l l
replace-names(pid, durationtype)'' l1l
replace-names(pid, orderedby)11'1'1 I
tochar(starttime, 'YYYY-MM-DD HH24:MI:SS')'II'| II
to-char(stoptime, 'YYYY-MM-DD HH24:MI:SS')II'I'||
replace-names(pid, schedcomments)ll'i'll
replace-names(pid, discontinuecomments)JI'I'll
replace-names(pid, mdinstr)'l'll I
replace names(pid, rninstr) II'll
replace-names(pid, phinstr) II'' I
replace-names(pid, mdcosign)11 I'II
replace-names(pid, rnreview)1I'' I
replace-names(pid, phreview) I'I'll
replace-names(pid, freqlabel) ll' I
replace-names(pid, action)I 'I'11
replace-names(pid, state)II' 'l|
replace-names(pid, stopstate)1'1'1|
replace-names(pid, education)||'I'|l
base |' I 'l
basevol|I' '||
rate|I'l||
scode ' I'l l
pcodel|'I'|
sidil'I'||
elemidi l'I'll
txid

from ism.infusionorders where pid=1266 or pid=2106;

spool off;

spool C:/temp/data/interventions.csv;

select pidlIl'
itemidllili

to_char(charttime,
chartdatel'I'l l
cgidi 'I 'I
cuidl l''|
ordercgidll'I'll
tochar(ordertime,
to char(dateadded,
addcgidl'I'l l
targetdatel 'I'll
replacenames (pid,
replacenames(pid,
problemI II'l
to-char(probtime,
replace-names(pid,
replace-names(pid,
replace-names(pid,
replacenames(pid,
replace-names(pid,
replacenames(pid,
scodel|'I'l|
pcode|l I'll
sidl l 'Ill
elemidl 'III'
txid

'YYYY-MM-DD HH24:MI:SS')II'I'l

'YYYY-MM-DD HH24:MI:SS')II'|'I|
'YYYY-MM-DD HH24:MI:SS')II'I'Il

instructions) I 'I'll
orderstatus) 'II II

YYYY-MM-DD HH24:MI:SS')II''ll
guidelinename)' II'll
guideline)11'1'1I
chartstatus)II'l l
shift)l|'l'
variancetype)ll'I'll
variancecause)lI'l' |

from ism.interventions where pid=1266 or pid=2106;

spool off;

spool C:/temp/data/ioevents.csv;

select pidl l''
to-char(charttime,
tochar(realtime,
itemid 'I'll
altid' I II
volumelI'I'l l
replace-names(pid,
unitshungli|iI
replacenames(pid,
newbottlel l'I I
dressingchangedlI'
tubingchangedlI 'I
assessment|I 'll
replacenames(pid,
replace-names(pid,
replace-names(pid,
cgidl I IIl

'YYYY-MM-DD HH24:MI:SS')Il'l'I|
'YYYY-MM-DD HH24:MI:SS')ll'IIl

volumeuom)I|'1'I |

unitshunguom)11'|'1 I

I II

stopped)|I'
estimate) I
annotation) 'I I

Manualfor MIMIC Administrators71

cuid l' I'
scodel l' 'll
pcode ' l I I
chartdatel ' I 'l l
sid l ' I'll
elemidiI I II
txid

from ism.ioevents where pid=1266 or pid=2106;

spool off;

spool C:/temp/data/medevents.csv;

select pidl ''III
tochar(charttime, 'YYYY-MM-DD HH24:MI:SS') I' 'll
itemidI 'I'll
elemid 'IIII
chartdate I I 'l|
to char(realtime, 'YYYY-MM-DD HH24:MI:SS')III'll
volume|I'l
dose | I'l
replace-names(pid, doseuom)1I'i'll
solutionidI' III
solvolumel' I 'll
replace names(pid, route)1 I'|
replace-names(pid, site)JI'I'l
replace-names(pid, stopped) I'll
replace names(pid, annotation)11'1'1|
cgid|II'l'l
cuidII I I
pcodell'I ' |
scodel 'I I'l|
sidII II
txid

from ism.medevents where pid=1266 or pid=2106;

spool off;

spool C:/temp/data/medorders.csv;

select pid I I II
itemidl II'l'l
tochar(charttime, 'YYYY-MM-DD HH24:MI:SS')11 I'
chartdate 'I'l|
cuidI I'II
tochar(verifiedtime, 'YYYY-MM-DD HH24:MI:SS') I''ll
verifiedbyl l'I'l l

tochar(addtime, 'YYYY-MM-DD HH24:MI:SS') I ''ll
addbyl l'I'll
to-char(addverifytime, 'YYYY-MM-DD

HH24:MI:SS') I||''I
addverifybyl l'I'l l
duration i' I'll
replace_names(pid, durationtype)I|'II
replacenames(pid, orderedby)|I''|
tochar(starttime, 'YYYY-MM-DD HH24:MI:SS')I'|'
to_char(stoptime, 'YYYY-MM-DD HH24:MI:SS')' ' I
replace_names(pid, schedcomments)11'1'|1
replacenames(pid, discontinuecomments)I'I'l l
replace_names(pid, mdinstr) II' I l
replace-names(pid, rninstr)111''11
replace-names(pid, phinstr)11'1'11
replace names(pid, mdcosign)11'' l
replace-names(pid, rnreview)11'I'1 I
replacenames(pid, phreview)11'1'11
replacenames(pid, freqlabel)JI'I 'l
replacenames(pid, action)1j'|' 1
replacenames(pid, state) 1'1'1|
replace-names(pid, stopstate)JI' 'l|
replacenames(pid, education)|j'I'll
to_char(renewtime, 'YYYY-MM-DD HH24:MI:SS')II
dosemin'I'll
doseminuomll I'l
dosemaxIl'I'l l
dosemaxuom'I'l l
scodel' I'l l
pcodel i'l
sidi'I'l l
elemidl ' I' ll
txid

from ism.medorders where pid=1266 or pid=2106;

IIl

' 1 ' 1 1

spool off;

spool C:/temp/data/noteevents.csv;

select pidI'II
to-char(charttime,
tochar(realtime,
replace_names(pid,
replacenames(pid,
replace_names(pid,
correction IIII
cgid I' I

72

'YYYY-MM-DD HH24:MI:SS')IlI'|
'YYYY-MM-DD HH24:MI:SS')II'llll
category)II'II I
title) III' I
notetext)11' ' I

Manualfor MIMIC Administrators

cuidi 'I'll
chartDateII'I'l l
sidiI'l'll
noteidl l'I'll
elemidl l' I'l l
txid

from ism.noteevents where pid=1266 or pid=2106;

spool off;

spool C:/temp/data/outcomes.csv;

select pid| I I II
itemidilI'l
to-char(charttime,
chartdatel|I 'l
cgidll''I I
cuidII 'lIl
replace-names(pid,
targetdatel 'i'll
dateaddedl il'I
addcgidl l'i'|
tochar(evaltime,
evalcgidl ''ll|
replace names(pid,
replacenames(pid,
replace names(pid,
replace-names(pid,
problemi l I 'll
tochar(probtime,
scodelI'I'l l
pcodel|''
sidl'I'l l
elemidi '' I l
txid

'YYYY-MM-DD HH24:MI:SS') lll

comments) 'IIIII

'YYYY-MM-DD HH24:MI:SS')II'I'II

shift)lI'I '|
variancetype)1'1'1 I
variancecause)11''I I
status)||'I' I

'YYYY-MM-DD HH24:MI:SS')III'II

from ism.outcomes where pid=1266 or pid=2106;

spool off;

cuidI 'I'll
to-char(startdate,
tochar(stopdate,
dateadded l I'll
problemnumi I'l l
replace_names(pid,
replace-names(pid,
scodeI 'I 'l l
pcodel i'lI
sidl' 'l l
elemid l'I'll

'YYYY-MM-DD HH24:MI:SS')1''
'YYYY-MM-DD HH24:MI:SS')I|''llI

status)|| ' 'l l
etiology)|I' '

txid
from ism.problems where pid=1266 or pid=2106;

spool off;

spool C:/temp/data/solutions.csv;

select pidi LI'l
tochar(charttime, 'YY

itemidilI' '
ioitemidl I I'II
volume I I'l
replace-names(pid, dos
replace-names(pid, rou
cgidl lII'll
cuidI Il I
scodeI|'I 'l l
pcodeI|'I 'l l
chartdatel'I'l l
sidIIl Il
elemidil'I'll
txid

from ism.solutions where

YY-MM-DD HH24:MI:SS')II'I'II

eunits) I|I I
te)| liii

pid=1266 or pid=2106;

spool off;

spool C:/temp/data/totalbalevents.csv;

spool C:/temp/data/problems.csv;

select pidlI l II
itemidll'I'll
tochar(charttime, 'YYYY-MM-DD HH24:MI:SS')' 1111
chartdatel ' I'll
cgidj ''II
addcgidl 'I'll

select pidi I'l
to-char(charttime,
chartdatel' I'l l
itemidI 'l'l
tochar(realtime,
pervolumelI'I'l l
cumvolumelI' I Il
replace-names(pid,

73

'YYYY-MM-DD HH24:MI:SS')I'I'11

'YYYY-MM-DD HH24:MI:SS')I'I'IIl

accumperiod)II'I'l l

Manualfor MIMIC Administrators

replace-names(pid, approx)11''11
reset||'|'||
replace-names(pid, stopped)11'I'II
replace-names(pid, annotation)11'1'11
cgidli'|'
cuid I' ' I
scodel' I'll
pcodel'|'||
sid l' I'll
txid I 'l|
elemid

from ism.totalbalevents where pid=1266 or pid=2106;

spool off;

spool C:/temp/data/resultevents.csv;

select pidili'|i
resultid l' I'l l
to char(chartTime, 'YYYY-MM-DD HH24:MI:SS')||'1' |
chartDatel|'i'l l
cgidl li 'll
cuidi l'|'I
replace names(pid, resulttext)11'1'11
tochar(sourcetime, 'YYYY-MM-DD HH24:MI:SS')11'1'11
firstresultf i'l
nextresulti I'l l
replace-names(pid, status) |'ll
sid i| i I
txid

from ism.resultevents where pid=1266 or pid=2106;

spool off;

Manualfor MIMIC Administrators74

