
A Datagenerator for Evaluating Machine
Learning Methods

Martin Atzmueller, Joachim Baumeister, Mario Goller, Frank Puppe
Evaluating and comparing machine learning methods concerning the effectiveness and the efficiency is a general research
problem. For a careful evaluation the availability of data sets with known characteristics is a key issue. We propose a novel
approach to intuitively generate data sets for the evaluation and the comparison of machine learning methods. Three case
studies are provided to demonstrate the presented approach.

1 Introduction

The evaluation of machine learning methods is a general re-
search problem: usually the quantitative and qualitative review
of a method and its comparison with related methods is of sci-
entific and practical interest. When evaluating a new method
we commonly consider the following general issues:

• Efficiency: Theoretically, the O–notation is used to de-
scribe an algorithm concerning its time and space com-
plexity. In practice, it is also interesting to see how the
time-performance of the method and its implementation
scales when the number of data samples is increased.

• Effectiveness: First, the effectiveness of a method often
concerns its accuracy – usually determined by measures
like precision or recall. Second, the effectiveness of a
method may concern the fraction of correctly learned pat-
terns: Then, it is very important to control the character-
istics of the data, i.e., the included patterns. Sometimes
the effectiveness is also related to the robustness, i.e., how
a method performs if the data contains noise.

We see a general problem when one wants to properly eval-
uate a machine learning method, because a priori often no data
base with appropriate samples is available. At best, a data base
embodies a sufficiently large collection of data sets with varying
sizes and describing characteristics at different complexity lev-
els. Such a setting would allow for a complete and representative
evaluation of the method. In the past, data sets were collected
from real world applications or were taken from synthetic collec-
tions such as the UCI repository [7]. However, existing data sets
like the UCI repository as well as samples from real world appli-
cations often lack reliability when evaluating a machine learning
method. On the one hand, the efficiency of the method can-
not be precisely tested if the data sets with different sizes do
not show equivalent characteristics. On the other hand, the ef-
fectiveness of the method cannot be concisely determined if the
complexity of the included patterns is not known beforehand and
it therefore cannot be appropriately diversified, respectively.

Salzberg [10] describes a similar problem: It is very difficult
to generalize evaluation results using a limited collection of data
sets with fixed characteristics. Using well-known evaluation data
it also becomes easier to (possibly unintentionally) tune parame-
ters of algorithms in order to obtain better results. Consequently,
a collection of data sets with known characteristics allows for the
estimation of the performance of a new algorithm since the input
characteristics of an algorithm can be controlled.

In this paper, we present a novel approach to generate data
sets for the evaluation and comparison of machine learning meth-
ods. The approach allows for the precise definition of the char-
acteristics of the data set and its size. The characteristics of the
data can be intuitively specified using subgroup descriptions and
are later refined using fragments of Bayesian networks. Based
on these a (final) data generation model is created: Then, a col-
lection of data sets with varying size can be created according
to the given semantics.

The rest of the paper is organized as follows: In Section 2 we
describe the process model for data generation. Next, the data
generation steps are described in Section 3 in detail. We describe
the adaptation techniques in Section 4. Section 5 evaluates the
proposed approach with three case studies. We conclude in
Section 6 with a summary of the presented work and discuss
related approaches.

2 The Data Generation Process

In this section, we first introduce the used knowledge representa-
tion and describe the basics of subgroup patterns. After that, we
give an informal introduction to Bayesian networks. Finally, we
present the process model for generating data which is discussed
in more detail in the next section.

2.1 General Definitions

Domain Ontology Let ΩA the set of all attributes. For each
attribute a ∈ ΩA a range dom(a) of values is defined. Fur-
thermore, we assume VA to be the (universal) set of attribute
values of the form (a = v), where a ∈ ΩA is an attribute and
v ∈ dom(a) is an assignable value. Let DS be the data set con-
taining all available instances. An instance i ∈ DS is given by
the tuple i = ((a1 = v1), . . . , (ak = vk)), (ai = vi) ∈ VA, k =
|VA| , containing the individual attribute values.

Subgroup Patterns Subgroup patterns [5], often provided by
conjunctive rules, describe ’interesting’ subgroups of cases, e.g.,
”the subgroup of 16-25 year old men that own a sports car
are more likely to pay high insurance rates than the people in
the reference population.” Subgroups are then described by re-
lations between independent (explaining) variables (Sex=male,
Age=16-25, Car type=Sportscar) and a dependent (target) vari-
able (Insurance rate).

Page 1

A subgroup pattern mainly relies on the following four main
properties: the subgroup description language, the subgroup
size, the target share of the subgroup, and the target variable. In
the context of this work we focus on binary target variables. The
description language specifies the individuals from the reference
population belonging to the subgroup.

Definition 1 (Subgroup Description) A subgroup description
sd = {e1, . . . , en} consists of a set of selection expressions
(selectors) that are selections on domains of attributes, i.e.,
ei = (ai, Vi), where ai ∈ ΩA, Vi ⊆ dom(ai). A subgroup de-
scription is defined by the conjunction of its contained selection
expressions.

Then, the subgroup s is the set of instances that fulfill the
subgroup description s = {i | i ∈ DS ∧ sd(i) = true}. The
parameters subgroup size n and target share p of the subgroup
are mainly used to measure the interestingness of the subgroup,
where n is the number of instances contained in a subgroup s,
i.e., n =

∣∣{i | i ∈ s}
∣∣; the target share p = 1

n
·
∣∣{i | i ∈ s∧t ∈ i}

∣∣
specifies the share of subgroup instances that contain the target
value t ∈ VA, and is usually compared to p0, the target share of
the total population.

Bayesian Networks A Bayesian network consists of a set of
attributes and a set of directed edges connecting the attributes
(e.g., [4]). For each attribute a the range dom(a) has to contain
a finite set of distinct values. A directed acyclic graph is defined
by the attributes and the set of edges inducing dependency re-
lations between pairs of attributes. For each attribute a and its
parents pa(a) (induced by the edges) a conditional probability
table (CPT) is attached. For an attribute with no parents an
unconditioned prior probability is used. We will show examples
of Bayesian networks in the case studies in Section 5.

2.2 The Process Model

In the following, we define the incremental process model for
generating data. We apply the data generation model given by
a Bayesian network as the underlying knowledge representation:
Using the network, we are able to express the dependency re-
lations between the individual attributes capturing the specific
data characteristics. Then, we can generate the output data
quite easily, e.g., by applying sampling algorithms.

The difficult part is the construction of the Bayesian network
itself which is usually non-trivial: The basic elements of the net-
work, i.e., the nodes with the attached conditional probability
tables are easy to model at the local (node) level. In contrast,
entering all the conditional probabilities is often a difficult prob-
lem, e.g., if relations between nodes need to be considered that
are not directly connected.

Therefore, we aim to help the user in an incremental process,
where the data characteristics can be described from abstract to
more specific ones. Parts of the data generation model can be
described using subgroup patterns which are structurally mapped
to the defined Bayesian network in turn. Then, these patterns
(or constraints) can be checked on the model, and inconsisten-
cies of the model can be identified. Alternatively, the Bayesian
network can be defined or modified directly with an interactive
adaptation step using the given (subgroup pattern) constraints
as test knowledge The process consists of the following steps
shown in Figure 1.

1. Define Domain Ontology: In the process we first define
the domain ontology, i.e., set of attributes and values used
for the data generation.

2. Specify Data Generation Model: The Bayesian network
or fragments of the network can be either be specified
manually, or it can be generated automatically by apply-
ing subgroup patterns that describe the interesting data
characteristics: These patterns describe relations between
a dependent and several independent variables, with cer-
tain characteristics given by the subgroup parameters, i.e.,
the subgroup size and the target share of the subgroup.
The given patterns and network fragments are structurally
merged into the data generation model for the output
generation. The relations between the variables are rep-
resented in the network by connections of the individual
nodes. However, the strength of these relations may not
yet be adequately represented by the conditional proba-
bility tables. Thus, using the subgroup parameters, con-
straints are derived in order to check these relations. Such
constraints can also be supplied by the user directly. Thus,
after the model has been initialized by the user the model
is tested given the available set of constraints.

3. Adapt Specification/Optimize Model: If the model fits
the constraints, then the process is finished, and the data
generation model is ready for use. Otherwise, an opti-
mization step is applied in order to adjust the conditional
probability tables contained in the network. Alternatively,
the user can also either adapt the patterns/constraints,
modify the network structure, or try to edit the condi-
tional probability tables by hand.

4. Generate Data: After the data generation model has
been fit to the specification of the user, the final data
generation step is performed using a sampling algorithm.
Given the network we apply the prior-sample algorithm [4]
also known as forward-sampling: In a top-down algorithm
for every node a value is computed according to the values
of its parent nodes.

Case base

Specify data
generation

model

Data
generation

model

Define
domain
ontology

Model fits
specification? Yes

NoAdapt
specification

Generate
data

Figure 1: Process model for data generation.

3 Interactive Data Specification

In this section, we describe the interactive data modeling ap-
proach: After modifications by the user, the data generation
model can always be adjusted in an interactive process. As dis-
cussed above, we use a Bayesian network to represent the data
generation model: The network can be approximated by pat-
terns, or the user can manually define the Bayesian network.
In either case, the network can be adapted with respect to the
specification in a final interactive step.

Page 2

Model Approximation by Patterns A collection of subgroup
patterns describe dependencies between a target variable and a
set of explaining variables. Using such subgroup patterns a two
layered network can be constructed automatically. Either the
target variable can be designated as the parent of the explaining
variables, or as the child of the set of variables.

For an example, let us consider propositional conjunctive
rules with the target variable in the rule head. Using subgroup
patterns we can model categoric rules as well as probabilistic
rules. For categoric rules we see that these have a target share
p = 1, i.e., the target concept is always established. For proba-
bilistic rules the target share is given by p ∈ [0; 1]. For example,
considering test data for discovering association rules [1], it is
easy to see that the target share relates to the concept of con-
fidence, because p is equivalent to the conditional probability
p(t | sd) of the target variable t given the subgroup description
sd; the support of an association rule is given by the joint prob-
ability supp = p(t ∧ sd). Then, we can describe the interesting
patterns for data generation quite easily by specifying these pa-
rameters.

Interactive Modeling of a Bayesian Network In addition to
the specification of a set of subgroup patterns the user can
also define the Bayesian network directly by connecting the
nodes/attributes. Additionally, the conditional probability ta-
bles of the nodes in the network can be adapted. If additional
nodes are entered manually, then the entries of the conditional
probability tables need to be specified. However, this step is usu-
ally the most difficult one. Therefore, we provide an interactive
adaptation step as discussed below.

In an advanced step the network structure can be enriched
using hidden nodes that enable further possibilities for data gen-
eration: Hidden nodes are used to add constraining relations of
the active nodes that are used for data generation. The hidden
nodes are used for the data generation step, but they are not
visible in the generated data.

Constraint-based Model Adaptation The major step during
the construction of the data generation model is the adapta-
tion of the (partially) defined Bayesian network. We can ap-
ply constraints represented by joint and conditional probabilities
of the network that can be derived from the defined subgroup
patterns. Additionally, the user can manually specify such con-
straints. The set of constraints can then be applied in order to
measure the state of the model, and to verify the specification.

The specified constraints are used to optimize the condi-
tional probability tables of the given network since the con-
straints are defined using the entries contained in the condi-
tional probability tables of the nodes of the network. Then, a
hill-climbing constraint satisfaction problem-solver is used to fit
the model to the constraints minimizing a global error function.
After the CSP-solver has been applied the resulting state of the
model can be controlled by the user interactively: The deviations
of the defined patterns and the patterns included (implicitly) in
the network are compared. Then, the model is tuned if neces-
sary.

For each target variable a constraint is generated using the
specified total target share considering the entire population,
i.e., the prior probability of the target variable p(t). Constraints
for the parameters of the subgroup patterns are based on the

contained target variable t and the set of selectors in the sub-
group description sd = {e1, e2, . . . , en}. Two constraints are
generated for each pattern, i.e., the subgroup size equivalent to
the joint probability p(e1, e2, . . . , ek), ei ∈ sd, and the target
share of the subgroup equivalent to the conditional probability
p(t | e1, e2, . . . , ek), ei ∈ sd. Using the subgroup patterns de-
fined for a target variable the user can select from two basic
network structures that are generated automatically if the re-
spective nodes contained in the subgroup description are not
already contained in the network: Either the target variable is
the parent of the subgroup selectors (Figure 2(a)), or the tar-
get variable is the child of the subgroup selectors (Figure 2(b)).
The first figure depicts the relation ’IF target TV THEN selec-
tors Si’; the latter models the inverse relation ’IF selectors Si

THEN target TV ’.

...S1 S2 SN

TV

(a) If target TV,
then selectors Si

...S1 S2 SN

TV

(b) If selectors Si,
then target TV

Figure 2: Possible network structures for modeling the depen-
dency relations between the target (dependent) variable and the
selectors (independent variables).

These options need to be selected based on the desired
relations of the data generation model. Both structures have
certain advantages and drawbacks concerning the optimization
step: Option a) includes a simple definition of the prior prob-
ability of the target variable; using the CPTs of the children
selectors it is very easy to adapt the parameter subgroup size.
On the other hand, option b) allows for an easier adaptation of
the subgroup target shares (contained as values in the CPT of
the target variable). Furthermore, option b) typically results in
larger CPTs. This allows for better adaptation possibilities for
the optimization algorithm. However, the size of the CPT of
the target is exponential with respect to the number of parent
selectors.

4 Constraint-Based Adaptation of a
Bayesian Network

In the following we discuss how the constraint-based adaptation
of the data generation model is implemented. We first describe
how we compute arbitrary probabilities in the Bayesian network.
After that, we show how the CPT entries of the network are
adapted using a CSP-solver.

Computing Arbitrary Joint Probabilities In order to check
and to optimize the constraints specified for the data genera-
tion model we need to compute joint probabilities of node values
corresponding to (arbitrary) combinations of subgroup selectors.
Additionally, conditional probabilities of a target variable given a
set of selectors also need to be calculated. It is easy to see that
if we can compute arbitrary joint probabilities in the Bayesian

Page 3

network, then we can also compute arbitrary conditional proba-
bilities. In principle, arbitrary joint probabilities can be estimated
using a sampling method, e.g., the forward sampling algorithm
discussed in Section 2.2, by counting the respective joint occur-
rences. However, this is only an approximation of the real prob-
abilities and also requires many generated samples. Therefore,

Algorithm 1 Computing arbitrary joint probabilities.

Require: Joint probability W , where var(W) are the variables
of W

1: Group nodes by layers: Nodes with a longest path to a root
node of size k are sorted into layer k.

2: Current network layer n := 0.
3: repeat
4: for all nodes K of layer n do
5: if K ∈ val(W)

then val+ = {v | v ∈ values(K) ∧ v ∈ W},
else val+ = values(K)

6: for all vK ∈ val+ do
7: Compute the prior probability p(vK) of the relevant

node values val+:
p(vK) =

∑
i
(p(vK | vpar(K)i) ·

∏
j
p(vj)), where

vpar is a combination of the node values of the par-
ent nodes and vj ∈ vpar is a single value of such a
parent node.

8: Let conchildren(K) be the set of child nodes of node
K that are linked to a node contained in W , and
that are not connected to each other. For every value
combination vchildren(K) of the nodes contained in
conchildren(K), we compute:
P (vK , vchildren(K)) = P (vK) ·

∏
i
P (vi | vK), where

vi ∈ vchildren(K)
9: n = n + 1

10: until the next network layer is empty or the desired joint
probability can be computed.

we propose to compute arbitrary joint probabilities directly us-
ing the atomic CPT values, and cache the used calculation rules.
Then, as long as the structure of the network does not change,
the modification of individual CPT values and their effect on
specific joint and conditional probabilities can be immediately
calculated.

The proposed approach is a top-down method shown in Al-
gorithm 1: Starting with the root nodes of the network, in a
recursive process the probabilities of the children nodes can be
computed given the prior probabilities of their parents. Calcu-
lation rules (for computing the individual probabilities) created
by the algorithm are stored for later reference. Then, these can
be reused, e.g., for the automatic adaptation of CPT-entries or
for computing joint probabilities for nodes in diverging connec-
tions in the algorithm. The computation works in a breadth-first
manner and terminates early, if the desired joint probability can
be already computed.

Automatic Adaptation of the CPT Entries As discussed
above the explicit constraints specified by a set of subgroup pat-
terns refer to probabilities that can be calculated using atomic
CPT entries of the Bayesian network. In addition, the network
includes also implicit constraints, i.e., the completeness relation

for a given CPT:
∑

i
p(xi | parents(X)j) = 1, for a given node

X with values xi and parents parents(X), with the correspond-
ing values parents(X)j . The explicit constraints can also be
disabled during the optimization step by the user on demand,
e.g., if it is clear that they cannot be fulfilled. Additionally, a
priority category can be assigned to each constraint, i.e., low,
normal, high, that is considered when selecting the adaptation
strategy.

In order to optimize and to adapt the network, we need to
compare the values of the explicit constraints with their current
values. Then, we apply a hill-climbing constraint satisfaction
problem-solver to solve possibly occurring inconsistencies. For
the adaptation of the data generation model, we use the created
calculation rules for the joint probabilities (see Algorithm 1) cor-
responding to the constraints. After that, we apply a recursive
approach terminating in the adaptation of CPT entries. Let us
consider three probabilities p1, p2, p3 in a Bayesian network. We
distinguish the following three elementary cases for computing
p1 given p2 and p3:

1. p1 = p2 + p3,
2. p1 = p2 · p3, and
3. p1 = p2/p3.

Using these relations, we can describe any probability computa-
tion recursively, terminating when we reach a CPT entry. Based
upon the structure of the probability computation we adapt the
value of the left hand side, modifying the values on the right
hand side, i.e., p1 ↑= p2↑

p3↓
or p1 ↑= p2 ↑ · p3 ↑. The ar-

rows indicate the direction of the adaptation. The current step
size defines the value to increase or to decrease a CPT entry in
every adaptation step. The constraint-based adaptation method
is shown in Algorithm 2.

Algorithm 2 CSP-Solver for the constraint-based adaptation of
the data generation model.

Require: Step size step, maximum number of iterations k
1: Group constraints such that constraints referring to a com-

mon set of nodes (and subgroups) are grouped into one
constraint group G ∈ G.

2: repeat
3: for all constraint groups G ∈ G do
4: for all constraints c ∈ G do
5: Determine the direction of the adaptation d, accord-

ing to the current constraint value and the specified
(goal) value defined by the constraint c

6: for all operands o of the right hand side of c, set the
adaptation direction to d do

7: If o is a CPT entry: Modify the value accord-
ing to d and step size step. Update the global
improvement I and revert the modification.
Otherwise, if o is not a CPT entry, then apply
step 6 recursively for the constraint o

8: Re-apply the modification with the best improve-
ment value I

9: until all constraints are fulfilled or the maximum number of
iterations k has been reached.

To compute the global improvement of the constraints we
first apply a localized error function v(c) for a constraint c:

v(c) = (goal value(c)− current value(c))2 · priority(c) .

Page 4

The sum of these local errors is compared to the global er-
ror in the previous adaptation step. An improvement can be
measured, if errorprevious > errorcurrent. In consequence, we
choose the adaptation with the maximum improvement value.
Besides this hill-climbing algorithm other algorithms, e.g., sim-
ulated annealing, could be used alternatively. In our own work
simulated annealing showed comparable results with respect to
the hill-climbing approach.

5 Case Studies

In this section, we demonstrate the proposed approach by three
case studies that consider different machine learning and data
mining techniques and the corresponding process of data gener-
ation. We describe appropriate modeling guidelines in order to
show how to use the given process model in an effective way. In
the case studies we generate nominal data. However, generating
numeric data is supported as well, since we can either generate
data using discretized intervals in the Bayesian network for nu-
meric variables, or common distributions (normal, uniform) can
be specified for a node of the Bayesian network.

The process and the case studies were implemented with the
data mining tool VIKAMINE [3], that was initially developed
for the efficient and interactive mining of subgroup patterns but
also offers an independent component for the generation of syn-
thetic data. A screen shot of VIKAMINE is shown in Figure 3.

Figure 3: Generating synthetic data with the data mining tool
VIKAMINE . The left pane shows the used attributes, and the
right pane shows an editor for the data generation model.

5.1 Association Rules

The first case study refers to the specification of data charac-
teristics concerning association rule learners [1]. As shown in
Section 3 we can easily describe the parameters confidence and
support by specifying the constraints for the corresponding prob-
abilities. For example, we can use the following association rule
scenario from the well known Wal-Mart domain: The husband
and father usually bought the diapers at the end of the work-
ing week when beer often becomes a priority; and so beer be-

came the product most often associated with the sale of diapers.
We can describe this relation by the rule: Beer ⇒ Diapers.
The support of this rule is equivalent to the joint probability
p(Beer, Diapers) and the confidence corresponds to the con-
ditional probability p(Diapers | Beer). There are no explicit
probability values given in our example, so we use some suitable
values to associate the common relations, for example we set
p(Diapers | Beer) = 0.6.

Milk

Eggs

H2

Bread

Diapers

Beer

Burger

Cola

H1

Fries Pizza

Candy Bar

Barbie Doll

Figure 4: A Bayesian network representing Wal-Mart data for
the generation of association rules.

After the specification of the basic constraints we refine the
data generation model by the construction of the appropriate
network structure. We can provide the attributes, that are a
part of the rule conditions as parent nodes and the variable in
the conclusion of the rule as the child node. Figure 4 shows
a Bayesian network containing several subnetworks according
to some specified association rules. When we create many of
these patterns we have to set a low support in order to min-
imize the joint probability of different association rules. To
generate a low support value we minimize the prior probabil-
ity of the parent nodes, because all root nodes are independent.
If a condition of an association rule contains more than one
attribute, then we have to ensure that these attribute values
frequently occur together. This can be obtained by adding a
hidden node (e.g., H1 or H2) as a parent of the co-occurring
attribute nodes. Additionally, we have to pay attention to the
corresponding conditional probabilities, e.g., p(Beer |Diapers)
when we specify p(Diapers |Beer), in order to avoid a high
value for p(Beer |Diapers). This example shows that adapting
the CPT entries in an arbitrary way can lead to some ”noisy”
undesired dependencies between the attribute values.

5.2 Decision Trees

In the following, we provide a model for a decision tree [8]. Every
path in a decision tree represents a categoric rule which predicts
the class of an unclassified instance, for example a1 ∧ a2 ∧ ... ∧
an ⇒ c. To specify such a rule in our generation model we
create a constraint which refers to the conditional probability
p(c | a1, a2, . . . , an), where the ai are the attribute values of
the condition and c is the predicted class value.

We use the exemplary decision tree model from [9] to demon-
strate how to specify the data generation model. The example
describes the problem of whether to wait for a table at a restau-
rant given some evidential attributes like hungry, raining, and
alternate restaurant. For example we have the rule Patrons=full
∧ WaitEstimate=10-30 ∧ Hungry=no ⇒ WillWait=yes or a
simple one like Patrons=none ⇒ WillWait=no. For each deci-

Page 5

sion rule we specify a corresponding subgroup pattern, where the
target variable is equal to the current class attribute WillWait.
For categoric rules the conditional probability (target share) for
a class value, given the rules condition variables as selectors, is
always equal to the probability value 1. If we want to include
noise into the generated data, then we use a lower probability
value, e.g., 0.95, enforcing some misclassified instances.

In the next step we construct the Bayesian network: In the
simplest case we can do this automatically to obtain a two-
layer network with the class attribute as the child node (see
Figure 2(b)). This can lead to a very large CPT, because of the
exponential growth of the CPT entries according to the num-
ber of parent values. We avoid this by splitting the structure
into several network levels connected by hidden-nodes. We can
then use these hidden-nodes to create direct dependencies be-
tween root nodes and leaf nodes, e.g., Patrons and WillWait.
The modeling process is finished by adapting the CPT entries

Patrons

H1

WaitEstimate Hungry

Fri/Sat

H2

Reservation Alternate

WillWait

Bar Raining

Figure 5: A Bayesian network to generate decision tree data.

according to the specified conditional probabilities in order to
represent all rules that the decision tree includes. Figure 5 shows
the Bayesian network for the restaurant domain.

5.3 Subgroup Patterns

The last use case refers to the evaluation of subgroup discovery
algorithms [5]. Because we use subgroup patterns as the under-
lying knowledge representation for the data characteristics, we
can build a generation model for subgroup patterns quite eas-
ily. For a given subgroup pattern we define the target share and
the subgroup size as parameters. Similarly to the specification of
association rules we create a Bayesian network that contains sev-
eral subnetworks for each subgroup. In this example we want to
specify some subgroup patterns for a simple insurance domain at
which we focus on insurance rate as the main target variable.

Sex

CarType

Income Age

Insurance Rate

Location Parking

Figure 6: A Bayesian network describing subgroup patterns.

We use attributes like Age, Sex, Income and CarType to describe
interesting subgroup patterns, for example: Sex=m ∧ Age=16-
25 ∧ CarType=Sportscar ⇒ InsuranceRate=high (90%), and

subgroup description p0 p size
Sex=m ∧ Income=high ∧ Age=25-40 0.1 0.5 0.05
Sex=m ∧ Income=very high ∧ Age=25-40 0.1 0.8 0.05
Sex=w ∧ Age=> 60 0.1 0.05 0.1

Table 1: Exemplary subgroup patterns for the target variable
CarType = Sportscar

Sex=m ∧ Income=high ∧ Age=25-40 ⇒ CarType=Sportscar
(80%), as shown in Table 1 in more detail.

If a selector of one subgroup also occurs as a target variable
in another subgroup, then we need to merge these two networks.
In Figure 6 we show such a structure where the attribute CarType
is a selector and also a target variable.

5.4 Evaluation

We tested different versions of the model and the generated
data, respectively, using the data mining toolkit WEKA [11]
for the decision tree and association rule data. The subgroup
patterns were tested using the VIKAMINE toolkit. For each
case study we were able to discover the modeled patterns in our
experiments. Using the association rule and the subgroup data
we measured minor deviations from the specified parameters that
can be explained by the sampling algorithm. In Figure 7 a part
of the decision tree is shown, that was learned by WEKA using
the generated data.

Figure 7: A part of the restaurant decision tree learned by
WEKA based on the generated data.

In Table 2 we show the parameters of the discovered sub-
groups of the generated data, for an example dataset with 5000
instances. Compared to the patterns shown in Table 1 there are
only minor deviations, due to the sampling-based data genera-
tion approach.

subgroup description p0 p size
Sex=m ∧ Income=high ∧ Age=25-40 0.09 0.47 0.04
Sex=m ∧ Income=very high ∧ Age=25-40 0.09 0.79 0.03
Sex=w ∧ Age=> 60 0.09 0.05 0.1

Table 2: Examples of discovered subgroup patterns for the target
variable CarType = Sportscar

Furthermore, we applied the presented method in more ex-
tensive tests and we were able to generate multiple sets of valid
evaluation data. The modeled patterns of interest were always
correctly included in the generated data sets.

Page 6

6 Discussion and Summary

In this paper, we presented a novel approach for the generation of
synthetic data to be used for the evaluation of machine learning
methods. We motivated that the availability of synthetic data
sets with controllable characteristics and sizes is very important
for a careful evaluation and comparison of new methods. The
presented approach allows for a precise definition of the patterns
included in the data sets to be generated and is therefore suitable
to generate data sets at different levels of complexity. However,
the concise specification of the data generation model is a diffi-
cult task using Bayesian networks as the underlying knowledge
representation. For this reason, we introduced a process model
in which the user first specifies simple subgroup patterns that
are later mapped to a Bayesian network. Constraints are applied
to guide the adjustment of the network that is finally applied for
the data generation. This step can be performed interactively
and full tool support is given.

With respect to related approaches, Salzberg [10] provides
a detailed discussion of the use of synthetic data for the evalua-
tion of machine learning methods: In order to reliably evaluate
a (new) machine learning method in comparison with existing
algorithms the characteristics of the data sets need to be consid-
ered. The UCI website [7] lists three simple data generators, i.e.,
the quadruped animals data generator, the DGP/2 generator,
and the waveform data generator. These generate data consist-
ing of continuous attributes having randomly assigned values.
So, the data generators provide no real control of the data gen-
eration process. Agrawal and Srikant [1] also describe a data
generator to create synthetic transaction data. The generator is
a special-purpose tool, and can only be used to generate data
with specific parameters, e.g., by specifying the maximal size or
the average size of the transactions. The SCDS/DATGEN [6]
generator uses a limited domain representation to generate the
data, including attribute types and additional constraints. How-
ever, no fine-grained specification of the relations between the
attributes is possible. Of course, as a general data generator
the HUGIN [2] system may be used. This system uses Bayesian
networks, but no approximate specification of the network is
possible as described in our approach. In consequence, the user
is left with high knowledge acquisition costs.

In contrast to the approaches for generating synthetic data
mentioned above the presented approach combines two central
ideas from the SCDS and HUGIN systems: We can use simple
patterns to develop the data generation model, but we can also
use the advanced representation of Bayesian networks with in-
stant consistency tests. The mentioned systems only use one
of these mechanisms, i.e., rules (SCDS) or Bayesian networks
(HUGIN). We combine both representations and provide the op-
portunity of an interactive adaptation of the data specification.

The presented approach was implemented within the data
mining toolkit VIKAMINE [3]. We demonstrated the feasi-
bility of the approach by three case studies that described the
process for generating synthetic data for association rule learn-
ers, for decision tree learning, and for subgroup discovery. In our
opinion, the presented approach is a promising step for improv-
ing the general quality of evaluating machine learning methods
aiming for a standardized and transparent setting of test data.
Furthermore the generation process can be used for complement-
ing existing evaluation methodologies using real data sets.

References

[1] R. Agrawal and R. Srikant. Fast Algorithms for Mining
Association Rules in Large Databases. In Proc. 20th Intl.
Conf. on Very Large Data Bases, pages 487–499, Los Altos,
CA 94022, USA, 1994. Morgan Kaufmann.

[2] S. K. Andersen, K. G. Olesen, F. V. Jensen, and F. Jensen.
HUGIN: A Shell for Building Bayesian Belief Universes for
Expert Systems. In Readings in Uncertain Reasoning, pages
332–337. Kaufmann, San Mateo, CA, 1990.

[3] Martin Atzmueller and Frank Puppe. Semi-Automatic Vi-
sual Subgroup Mining using VIKAMINE. Journal of Uni-
versal Computer Science (JUCS), Special Issue on Visual
Data Mining, 11(11):1752–1765, 2005.

[4] Finn Verner Jensen. An Introduction to Bayesian Networks.
UCL Press, London, England, 1996.

[5] Willi Klösgen. Handbook of Data Mining and Knowledge
Discovery, chapter 16.3: Subgroup Discovery. Oxford Uni-
versity Press, New York, 2002.

[6] Gabor Melli. SCDS/DATGEN Data Set Generator.
www.datasetgenerator.com (currently unavailable - avail-
able via www.archive.org), 1995.

[7] D.J. Newman, S. Hettich, C.L. Blake, and C.J.
Merz. UCI Repository of Machine Learning Databases,
http://www.ics.uci.edu/∼mlearn/mlrepository.html, 1998.

[8] J. R. Quinlan. Induction of Decision Trees. Machine Learn-
ing, 1(1):81–106, 1986.

[9] Stuart Russell and Peter Norvig. Artificial Intelligence: A
Modern Approach. Prentice-Hall, Englewood Cliffs, NJ,
2nd edition, 2002.

[10] Steven L. Salzberg. On Comparing Classifiers: A Critique
of Current Research and Methods. Data Mining and Knowl-
edge Discovery, 1:1 – 12, 1999.

[11] Ian H. Witten and Eibe Frank. Data Mining: Practical Ma-
chine Learning Tools with Java Implementations. Morgan
Kaufmann, 2000.

Contact

Martin Atzmueller
Department of Computer Science 6
(Applied Computer Science and Artificial Intelligence) Univer-
sity of Würzburg
e-mail: atzmueller@informatik.uni-wuerzburg.de

Bild Martin Atzmueller studied computer sci-
ence at the University of Würzburg and re-
ceived his diploma in 2002. At present he is a
research assistant at the Department of Arti-
ficial Intelligence and Applied Computer Sci-
ence at the University of Würzburg. His re-
search interests include knowledge-intensive
data mining, text mining, visualization, and
case-based reasoning.

Page 7

Bild Joachim Baumeister is a research assistant
at the University of Würzburg since 1999.
His research focuses on practical knowledge
engineering techniques including validation,
restructuring and semi-automatic learning of
diagnostic knowledge.

Bild Mario Goller studied computer science at
the University of Würzburg and received
his diploma in 2005. Currently, he works
as a software-developer at Innovations Soft-
waretechnologie GmbH.

Bild Frank Puppe is a full professor at the Uni-
versity of Würzburg since 1992. His research
interests comprise all aspects of knowledge-
based systems and their practical use. He
has authored and co-authored 5 books and
more than 100 articles on the topic.

Page 8

