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Abstract

The paper presents the first dataset that aims to

serve interdisciplinary purposes for the utility

of computer vision community and sign lan-

guage linguistics. To date, a majority of Sign

Language Recognition (SLR) approaches fo-

cus on recognising sign language as a manual

gesture recognition problem. However, sign-

ers use other articulators: facial expressions,

head and body position and movement to con-

vey linguistic information. Given the impor-

tant role of non-manual markers, this paper

proposes a dataset and presents a use case to

stress the importance of including non-manual

features to improve the recognition accuracy

of signs. To the best of our knowledge no

prior publicly available dataset exists that ex-

plicitly focuses on non-manual components re-

sponsible for the grammar of sign languages.

To this end, the proposed dataset contains

28250 videos of signs of high resolution and

quality, with annotation of manual and non-

manual components. We conducted a series

of evaluations in order to investigate whether

non-manual components would improve signs’

recognition accuracy. We release the dataset

to encourage SLR researchers and help ad-

vance current progress in this area toward real-

time sign language interpretation. Our dataset

will be made publicly available at https://

krslproject.github.io/krsl-corpus

1 Introduction

There exist over 300 sign languages around the

world that are native to 70 million deaf people

(Bragg et al., 2019). Sign languages are com-

prised of hand gestures, arms and body movements,

head position, facial expressions, and lip patterns

(Sandler and Lillo-Martin, 2006). While auto-

matic speech recognition has progressed to being

commercially available, automatic Sign Language

Recognition (SLR) is still in its infancy (Cooper

et al., 2011).

To date, more than half of published vision-

based research utilizes isolated sign language data

with a vocabulary size of less than 50 signs (Koller,

2020). But the real-world utility of SLR solutions

requires continuous recognition, which is signifi-

cantly more challenging than recognising individ-

ual signs due to co-articulation (the ending of one

sign affecting the start of the next), depiction (visu-

ally representing or enacting content), epenthesis

effects (insertion of extra features into signs), gen-

eralization, and so on (Bragg et al., 2019). As a

result, realistic, generalisable, and large datasets

are necessary to advance SLR.

Current efforts in SLR do not address the com-

plexities of sign language linguistics, and thus have

a limited real-world value (Bragg et al., 2019).

Chatzis et al. (2020) highlight the importance of

non-manual components of sign languages. For

example, they can change meaning of a verb, or

differentiate between objects and people. Accord-

ing to Koller (2020), there is an overall lack of non-

manual parameters that are included in medium

and larger vocabulary recognition systems. For ex-

ample, many computer vision approaches focus on

the signers’ hands only and tend to ignore the rich

channel of information conveyed by non-manual

articulators: facial expressions, mouthing, move-

ment and position of the head and body convey-

ing important grammatical and lexical information.

In addition, many datasets allowed novice or non-

native contributions (i.e. students) in addition to

slower signing and simplifying the style and the

vocabulary to make the computer vision problem

easier but of no real value (Bragg et al., 2019). For

the progress in SLR, interdisciplinary efforts are

required with an involvement of native signers and

sign language linguists.

Beyond targeting the local need of creating the

first corpus within CIS (Commonwealth of Inde-

pendent States) region suitable for machine learn-

https://krslproject.github.io/krsl-corpus
https://krslproject.github.io/krsl-corpus
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Datasets Signers Vocabulary Videos

Purdue RVL-SLLL ASL (2002) (Martı́nez et al., 2002) 14 104 2,576

GSL Lemmas (2007) (Efthimiou and Fotinea, 2007) 2 1046 2,100

RWTH-BOSTON (2008) (Athitsos et al., 2008) 5 483 7,768

SIGNUM (2008) (Von Agris et al., 2008) 25 780 3,703

Finish S-pot (2014) (Viitaniemi et al., 2014) 5 1211 4,328

RWTH-PHOENIX-Weather 2014 T(Cihan Camgoz et al., 2018) 9 1231 45,760

Video-Based CSL (2018) (Huang et al., 2018) 50 178 25,000

KETI (2019) (Ko et al., 2019) 12 419 11,578

GSL SI (2019) (Chatzis et al., 2020) 7 310 10,290

K-RSL 10 600 28,250

Table 1: Datasets used for sign language recognition

ing, the motivation behind the proposed dataset is

in the need to stress the importance of non-manual

components present in many signs. The proposed

dataset contains continuous sign language data with

a focus on specifically selected cases where non-

manual markers play a vital role in differentiating

between similar signs or sentences. This approach

of corpus creation allows researchers from different

fields to conduct experiments utilising this dataset.

To date, SL linguists and ML researchers were

rarely able to utilize the same datasets due to limi-

tations of both kinds. Thus, we make the following

contributions:

• we release the first Kazakh-Russian Sign Lan-

guage (KRSL) corpus consisting of 10 signers,

28250 continuous sentences, and vocabulary

size 600 signs appropriate for ML research;

• we release raw videos appropriate for linguists

and general population;

• we release isolated signs, extracted frames and

features for easy and fast experiments aiming

at compatibility with the formats of other SL

datasets;

• we evaluate pose estimation and action recog-

nition approaches to setup baselines on the

K-RSL dataset.

Section 2 presents the background on sign lan-

guages and non-manual components followed by

a brief description of other SL datasets. Section 3

outlines the proposed dataset. Section 4 details a

series of baseline evaluations conducted in order to

investigate whether non-manual components would

improve recognition accuracy. Section 5 details our

use case evaluation. Section 6 concludes the paper.

2 Related work

This section discusses related work on sign lan-

guage datasets, state of the art in SLR, and the

importance of non-manual features for sign lan-

guages.

2.1 Sign Language Datasets

Sign language datasets consist of videos of ei-

ther isolated or continuous signing. Table 1

presents a comparison of the continuous sign lan-

guage datasets commonly utilized for sign lan-

guage recognition with an inclusion of the proposed

K-RSL ordered by date. Bragg et al. (2019) specify

that the size of the datasets, continuous signing,

involvement of native signers, and signers’ variety

are the main concerns related to current datasets.

These challenges put a limitation on the accuracy

and robustness of the models developed for SLR to

be deployed in the real-world applications.

2.2 Sign Language Recognition

Latest works in the area of SLR are focused on

vision-based continuous sign language recognition.

All the evaluations are performed on the RWTH-

PHOENIX-Weather 2014 dataset (Cihan Camgoz

et al., 2018). There are various approaches offer-

ing recognition frameworks utilizing deep neural

networks, reinforcement learning or recurrent neu-

ral networks. For example, Zhang et al. (2019)

proposed an approach that apply encoder-decoder

structure to the reinforcement learning. Their

method achieved competitive results when com-

pared with other methods and has a Word Error

Rate (WER) of 38.3%. Temporal segmentation cre-

ates additional challenges for continuous SLR. To

address this issue, Huang et al. (2018) proposed

the Hierarchical Attention Network with Latent
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Phrases type Signers Phrases Repetitions Videos Glosses

Question-Statement 5 200 10 10000 150

Emotions 5 60 10 3000 140

Emotional Question-Statement 10 30 10 9000 20

Minimal pairs 5 125 10 6250 360

K-RSL total 10 415 10 28250 600

Table 2: Kazakh-Russian Sign Language dataset

Space (LS-HAN). This proposed framework elimi-

nated the preprocessing of temporal segmentation

and achieved the accuracy of 0.617. Zhou et al.

(2019) proposed I3D-TEM-CTC framework with

iterative optimization for continuous sign language

recognition. By increasing the quality of pseudo

labels, the final performance of the system was im-

proved and achieved a WER of 34.5%. However,

the most promising results were achieved by com-

bining different modalities. Cui et al. (2019) pro-

posed recurrent convolutional neural network on

the multi-modal fusion data of RGB images along

with the optical flow data and achieved WER of

22.86%. Koller et al. (2019) presented approaches

where they focused on the sequential parallelism to

learn a sign language, mouth shape and handshape

classifier. They have improved the WER to 26.0%.

This clearly shows that combination of manual and

non-manual features such as mouth shape could sig-

nificantly improve performance of the recognition

systems.

2.3 Importance of Non-manual Features

Sign languages are natural languages existing in the

visual modality (Sandler and Lillo-Martin, 2006).

Signs in sign languages are produced not only by

using the manual articulators (the hands), but also

by non-manual articulators (the body, head, facial

features). The importance of the non-manual fea-

tures is evidenced e.g. by the fact that signers focus

their attention not on the hands of the interlocutor,

but on the face (Pfau and Quer, 2010).

It has been shown that non-manual markers func-

tion at different levels in sign languages (Pfau and

Quer, 2010). On the lexical level, signs which

are manually identical can be distinguished by fa-

cial expression or specifically by mouthing (silent

articulation of a word from a spoken language)

(Crasborn et al., 2008). Signs referring to emo-

tions are obligatorily accompanied by lexicalized

facial expressions related to the corresponding emo-

tion. Non-manual markers are especially important

on the level of sentence and beyond. Specifically,

negation in many sign languages is expressed by

head movements (Zeshan, 2004a), and questions

are distinguished from statements by eyebrow and

head position almost universally (Zeshan, 2004b).

Of course, signers also use the face to express their

emotions, so emotional and linguistic non-manual

markers can interact in complex ways (De Vos et al.,

2009).

Antonakos et al. (2015) presented an overview

of non-manual parameter employment for SLR

and conclude that a limited number of works fo-

cused on employing non-manual features in SLR.

There have been works that focused on combin-

ing both manual and non-manual features (Freitas

et al., 2017; Liu et al., 2014; Yang and Lee, 2013;

Mukushev et al., 2020) or non-manual features only

(Kumar et al., 2017). While the importance of non-

manual markers has been thoroughly demonstrated

in linguistic research, their role in sign language

recognition has not been investigated in detail yet.

3 The Proposed K-RSL Corpus

Given the important role of non-manual markers, in

this paper we present a corpus which is motivated

by the importance of both manual and non-manual

features. We focus on specific cases where non-

manual markers play a vital role in differentiating

between similar signs or similar sentences.

3.1 Kazakh-Russian Sign Language (KRSL)

KRSL is the sign language used in the Republic of

Kazakhstan. KRSL is closely related to Russian

Sign Language (RSL) as centralized language pol-

icy of Soviet Union led to the spread of RSL in the

Soviet republics. According to Kimmelman et al.

(2020) both KRSL and RSL show a substantial

lexical overlap, and are completely mutually intel-

ligible. At the same time, it cannot be concluded

that the same applies to the grammar of the two

languages.
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Figure 1: Examples of each sign from our dataset: A) “which one” statement, B) “which one” question, C)

“which” statement, D) “which” question, E) “how” statement, F) “how” question, G) “what” statement, H) “what”

question, I) “who” statement, J) “who” question, K) “when” statement, L) “when” question, M) “where(location)”

statement, N) “where(location)” question, O) “where(direction)” statement, P) “where(direction)” question, Q)

“where(direction)” statement, R) “where(direction)” question, S) “how much” statement, T) “how much” question.

Figure 2: Emotions: A) “happy”, B) “sad”, C) “anger”, D) “scared”, E) “pity”, F) “surprised”.

3.2 The Data

K-RSL dataset consists of videos of phrases,

recorded by five professional sign language inter-

preters and one subset was additionally recorded by

five deaf participants who are also native signers.

Dataset can be divided into four subsets from the

linguistic point of view: question-statement pairs,

signs of emotion, emotional question-statement

pairs, and phonologically similar signs (minimal

pairs). They have been asked to sign 200 phrases

for the first subset, 60 phrases for the second subset,

30 phrase with 3 emotional characteristics for the

third subset, and 125 phrases for the fourth subset

accordingly. Each phrase was repeated at least ten

times in a row by each signer.

The five hearing participants are hearing native

signers of KRSL, as they grew up with parents us-

ing KRSL at home. Four of them are employed

as news interpreters at the national television. The

setup had a green background and a LOGITECH

C920 HD PRO WEBCAM. The shooting was per-

formed in an office space without professional light-

ing sources. The summary of the K-RSL dataset is

presented in Table 2.

3.2.1 Question vs Statement

Similar to question words in many spoken lan-

guages, question signs in KRSL can be used not

only in questions (Who came?) but also in state-

ments (I know who came). Thus, each question sign

can occur either with non-manual question marking

(eyebrow raise, sideward or backward head tilt), or

without it. In addition, question signs are usually

accompanied by mouthing of the corresponding

Russian/Kazakh word (e.g. kto/kim for ‘who’, and

chto/ne for ‘what’). While question signs are also

distinguished from each other by manual features,

mouthing provides extra information, which can

be used in recognition. Thus, the two types of

non-manual markers (eyebrow and head position

vs. mouthing) can play a different role in recogni-

tion: the former can be used to distinguish state-

ments from questions, and the latter can be used

to help distinguish different question signs from

each other. To this end, we selected ten words and

composed twenty phrases with each word (ten state-

ments and ten questions): ‘what’, ‘who’, ‘which’,

‘which one’, ‘when’, ‘where (direction)’, ‘where

(location)’, ‘why’, ‘how’, and ‘how much’. We

distinguish them to twenty classes (as ten words

have a pair in both statement and question form).
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Figure 3: Examples of facial expressions in neutral, surprised and angry state of mind: A) neutral statements, B)

neutral question, C) surprised statement, D) surprised question, E) angry statement, E) angry question.

Figure 4: Examples of three phonological minimal pairs: A) “tea”, B) “Thursday”, C) “orange”, D) “October”, E)

“Moscow” F) “old”.

3.2.2 Emotion signs

In KRSL, as in other sign languages, the signs

for emotions, such as ANGRY, SAD, SURPRISED,

SCARED, PITY, HAPPY are accompanied with

facial expressions corresponding to the emotion

named by the sign. Therefore, we collected phrases

containing the six signs for basic emotions. We

hypothesized that, since facial expressions in this

signs are lexically associated with them, inclusion

of non-manual components can improve recogni-

tion of these signs.

3.2.3 Emotional questions vs. emotional

statements

De Vos et al. (2009) analyzed interaction of emo-

tional facial expressions and grammatical non-

manual markers in Sign Language of the Nether-

lands (NGT). They elicited polar and content ques-

tions in NGT, as well as sentences with topic mark-

ing signed neutrally, with anger, or with surprise.

Polar questions and topics are normally accom-

panied with raised eyebrows, while content ques-

tions with furrowed eyebrows; the emotion of anger

causes eyebrow furrowing, and the emotion of sur-

prise causes eyebrow raise. Therefore, in some of

the contexts emotions and grammar were in agree-

ment (e.g. surprised polar questions), while in oth-

ers in competition (e.g. angry polar questions). The

researchers found that emotional and grammatical

non-manuals interact in complex ways.

We created a similar dataset for KRSL. The sign-

ers were asked to sign ten sentences as either a state-

ment (no eyebrow movement expected), a polar

questions (eyebrow raise expected) or wh-questions

(adding single question sing), and with three differ-

ent emotions: neutral, surprise (eyebrow raise ex-

pected), and anger (eyebrow furrowing expected).

We hypothesized that emotions and grammatical

markers would interact in complex ways, and that

these interactions might negatively influence recog-

nition accuracy when recognizing sentence types

(questions vs statements).

3.2.4 Minimal pairs

Similar to words in spoken languages, signs can

form minimal pairs: one can find signs that are min-

imally different in their manual component (San-

dler and Lillo-Martin, 2006). For instance, the

KRSL signs “Moscow”, “old”, and “grandmother”

all have the same handshape (the fist) and location

(the cheek), but different movements. It is possible

to find signs which are distinguished by handshape

only or by location only as well.

We hypothesized that minimal pairs of signs

are potentially difficult for recognition, as they are

quite similar in shape. However, these signs are

additionally distinguished by mouthing (see above).

Therefore, including non-manual components can

improve sign recognition for such pairs of signs.

We thus created a dataset with 15 minimal pairs of



636

signs signed as parts of phrases.

3.3 Openpose Feature Extraction

We utilized OpenPose library (Cao et al., 2017;

Wei et al., 2016) in order to extract the keypoints

of the person in the videos. OpenPose is the real-

time multi-person keypoint detection library for

body, face, hands, and foot estimation provided by

Carnegie Mellon University (Simon et al., 2017). It

detects 2D information of 25 keypoints (joints) on

the body and feet, 2x21 keypoints on both hands

and 70 keypoints on the face. It also provides a

3D single-person keypoint detection in real time

on multi-camera videos. OpenPose provides the

values for each keyframe as an output in JSON

format. Since the dataset we use consists of RGB

videos, we only consider 2D keypoints in this work.

4 Baseline methods

Signing recognition can be considered as a varia-

tion of action recognition or human pose estima-

tion tasks. Keypoint detection library OpenPose

(Cao et al., 2017; Wei et al., 2016) enables us to

evaluate both manual (hand keypoints) and non-

manual features (face and pose keypoints). One of

the latest works in action recognition (Tran et al.,

2018) introduces a new spatiotemporal convolu-

tional block R(2+1)D that achieves state-of-the-art

results. In order to analyze and classify collected

dataset we employ both approaches as a baseline

models for isolated sign recognition. We have ex-

tracted isolated clips from the statement-question

subset of following signs: ‘what’, ‘who’, ‘which’,

‘which one’, ‘when’, ‘where (direction)’, ‘where

(location)’, ‘why’, ‘how’, and ‘how much’. We

distinguish them to twenty classes (as ten words

have a pair in both statement and question form).

4.1 Pose estimation baseline

Our subsets mainly imply classification problems

and have sequential features. Generally, we extract

features in each frame of videos using OpenPose

(Cao et al., 2017; Wei et al., 2016) library and then

feed it to the classification algorithm. Therefore,

we exploit classical machine learning techniques,

namely Logistic regression by concatenating se-

quences of keypoints into one sample. The se-

quence of keyframes holds the frames of each sign

video. Since we aim to compare performances of

non-manual features, we prepared two conditions:

manual only and manual and non-manual fea-

tures combined. Consequentially, in the first case,

one datapoint consists of concatenated keypoints

of each video and has a maximum of 30 frames *

84 keypoints = 2520 manual only features, while

in the second case, one datapoint consists of 30

frames * 274 keypoints = 8220 manual and non-

manual features for each of the twenty classes.

We used the scikit-learn library for Python as the

keypoints classification method for the experiments

presented in this paper.

4.2 Action recognition baseline

Latest works in action recognition either employ

Two-Stream Inflated 3D ConvNet (I3D) (Carreira

and Zisserman, 2017) or spatiotemporal convolu-

tional block R(2+1)D (Tran et al., 2018). Both

architectures are usually trained on ImageNet (Rus-

sakovsky et al., 2015) and fine-tuned on Kinetics

dataset (Kay et al., 2017).

In this paper, we employ R(2+1)D (Ghadiyaram

et al., 2019) model which is highly accurate and

significantly faster than other approaches. It is

additionally pre-trained on over 65 million videos.

Also, it uses as input only video frames, which

makes it faster comparing to other approached that

require optical flow fields as additional input. In

order to recognize signs from our dataset we fine-

tuned R(2+1)D on the statement-questions subset.

Since we have a different number of classes in our

subset, only the last fully connected of the model

is re-trained.

4.3 Implementation details

The action recognition baseline is implemented

in PyTorch (Paszke et al., 2019) and uses a

R(2+1)D pre-trained model (Ghadiyaram et al.,

2019). Model input size (number of consecutive

frames) is set to 8 and batch size is 16. We train the

model for 20 epochs with a starting learning rate

of 0.0001. All frames are scaled to a resolution of

112 112 and keeping original ratio. Also, during

the training process frames are randomly cropped

with scale between 0.6 and 1. The pose estimation

baseline is implemented using scikit-learn library

(Pedregosa et al., 2011) and takes as an input se-

quence of keypoints extracted using the OpenPose

library (Cao et al., 2017; Wei et al., 2016). We

train Logistic Regression classifier using the ‘lbfgs’

solver and L2 penalty.
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4.4 Suggested Train-Test Splits

As stated in Table 2, each subset has 5 signers,

which were assigned an approximately equal num-

ber of videos. The only exception is the Emotional

Question-Statement subset which has 10 signers.

We assign all videos performed by 4 signers in the

train set and videos with the remaining signer into

the test set. In addition, we choose the remaining

signer for each class randomly, to diversify train

and test data. Validation set is randomly chosen

from the train set and has 20% length of the train

set.

4.5 Data augmentation

The main problem of developing sign language

recognition algorithm is that data is usually not big

and/or diverse enough for generalization. Thus,

we suggest a simple method to augment image

sequences of fixed length from videos with a

variable amount of frames. The only constraint is

that a video has to be longer than a chosen fixed

length.

Given a sign video V = (f1, f2, ..., fm) that

contains m frames, which satisfies condition

m ≥ n, where n is the chosen fixed sequence

length, we pick equally distanced frames from

videos with a random initial frame. By distance

between the frames, we mean the difference

between their indexes, let’s call it s.

s =
⌊m

n

⌋

The initial frame is picked among all possible

candidates which are first s frames with k left-

over frames after them. Here, k = m mod n.

Therefore, the augmented fixed sized sequence is

S = (fi, fi+s, fi+2s, ..., fi+ns), where i is a ran-

dom integer from 1 to s+ k.

5 Experimental Results

A series of experiments was conducted in order

to investigate whether non-manual features would

improve recognition accuracy. All experiments

were performed on isolated signs extracted from

the Question-Statement subset and divided into 20

classes (10 signs as statement and questions). The

first experiment was the classification of 20 classes.

For this reason we trained two baseline models: a

logistic regression model using only manual fea-

tures and with non-manual features as an input, and

a R(2+1)D model on full frames as an input. Evalu-

ation of each model was repeated 10 times with ran-

dom train/test splits to avoid extreme cases. Table

3 presents the mean scores and standard deviations

for the first experiment. The second experiment

used the same dataset with 20 classes to compare

and contrast the accuracy in terms of its improve-

ment with different combinations of non-manual

components. Table 4 presents the accuracy scores

for each combination of features.

R(2+1)D Logistic regression

Features Full frame Manual Non-manual

Mean 86% 73.4% 77%

Std Dev 1 0.45 0.57

Table 3: Mean scores of accuracy for the question-

statement subset after 10 iterations with random

train/test splits

5.1 Question vs. Statement

Our first experiment used the Question-Statement

subset divided into 20 classes (10 signs used in

statements and questions). We have extracted man-

ual and non-manual features for the isolated signs

of the Question-Statement subset. The highest ac-

curacy was achieved by the R(2+1)D model and

was 86%, which is 9% higher comparing to the

Logistic regression model. For the Logistic re-

gression model trained on sequence of keypoints

testing mean accuracy scores are 73.4% and 77%

on manual-only and both manual and non-manual

features respectively. As expected, non-manual

features improved the results by 3.6% on average

(from 73.4% accuracy to 77% accuracy). At the

same time, improvement was not very high. The

reason for that could be that the number of non-

manual features is bigger than the number of man-

ual features.

5.2 A case of combining different modalities

In this experiment different combinations of non-

manual markers (eyebrow and head position vs.

mouthing) were compared and their role in recog-

nition was analyzed.

The lowest testing accuracy was 73.25% for the

combination of manual features and eyebrows key-

points. Eyebrows without any other non-manual

feature did not provide valuable information for

recognition. Only when they were used in com-

bination with other features, the accuracy was im-
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proved. The highest testing accuracy was 78.2% for

the combination of manual features and faceline,

eyebrows, and mouth keypoints. When only mouth

keypoints were used in combination with the man-

ual features, the accuracy also increased by 0.5%

compared to the baseline of 77%. Thus, we see

that mouthing provides extra information, which

can be used in recognition, because signers usually

articulate words while performing corresponding

signs. Eyebrows and head position provide addi-

tional grammatical markers to differentiate state-

ments from questions.

Features combination Accuracy

Manual only 73.4%

Manual & Non-manual all 77%

Manual & Face, eyebrows, mouth 78.2%

Manual & Eyebrows, mouth 77.2%

Manual & Only mouth 77.5%

Manual & Only eyebrows 73.25%

Table 4: Comparison of results of features combina-

tions

6 Conclusion

This paper presents the K-RSL dataset motivated by

the need to create SL datasets for interdisciplinary

purposes e.g. for computer vision and computa-

tional linguistics research. Due to the challeng-

ing nature of SLR, the proposed dataset aims to

attract the attention of the computer vision com-

munity with the K-RSL dataset being linguistically

rich. The data was carefully selected to find various

cases when manual gestures will not provide good

performance and will stress the need to include non-

manual components into consideration. In addition

to computer vision community, this dataset can be

utilized by the linguistics community to explore

research questions and computationally prove their

hypotheses. Future work will include expanding

the vocabulary of the corpus in addition to diversify-

ing and increasing the number of signers recorded

in noisy environmental conditions (e.g. outside of

the office environment).
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