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Standardized benchmarks in Computer Vision have greatly contributed to the advance

of approaches to many problems in the field. If we want to enhance the visibility

of event-driven vision and increase its impact, we will need benchmarks that allow

comparison among different neuromorphic methods as well as comparison to Computer

Vision conventional approaches. We present datasets to evaluate the accuracy of

frame-free and frame-based approaches for tasks of visual navigation. Similar to

conventional Computer Vision datasets, we provide synthetic and real scenes, with the

synthetic data created with graphics packages, and the real data recorded using a

mobile robotic platform carrying a dynamic and active pixel vision sensor (DAVIS) and

an RGB+Depth sensor. For both datasets the cameras move with a rigid motion in a

static scene, and the data includes the images, events, optic flow, 3D camera motion,

and the depth of the scene, along with calibration procedures. Finally, we also provide

simulated event data generated synthetically from well-known frame-based optical flow

datasets.

Keywords: event-driven methods, frame-free sensors, visual navigation, dataset, calibration

1. INTRODUCTION

Asynchronous frame-free vision sensors have gained popularity among vision researchers in recent
years. The most prominent of these sensors are the temporal change threshold imager (Mallik
et al., 2005), the DVS (Lichtsteiner et al., 2008), the ATIS (Posch et al., 2011), and the DAVIS
(Brandli et al., 2014). Inspiration for their design comes from the transient pathway of primate
vision, which processes information due to luminance changes in the scene (Lichtsteiner et al.,
2008; Liu et al., 2015). Their properties, such as the high temporal resolution (triggering temporal
contrast events with a resolution of a few microseconds), low-bandwidth, low-computational
resource requirements, low-latency, and real-time performance, make them interesting for many
applications of motion perception. While conventional cameras record image luminance at fixed
time intervals, frame-free vision sensors record asynchronously the time and location, where
changes in the luminance occur.

Visual motion analysis for navigation is about relating the observed intensity changes on the
imaging device to the 3D scene geometry and the 3D motion of the observer (or imaging device)
relative to the scene. The computational analysis involves two distinct processes: the estimation
of observed image motion on the imaging surface due to the movement of scene points, in
Computer Vision usually called optical flow, and the estimation of the geometry and dynamics
of the scene on the basis of image motion. Visual navigation, in general, involves moving cameras
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in environments that can be dynamic as well, and it refers
to a set of tasks ranging from obstacle avoidance, over object
tracking, 3D motion estimation and scene segmentation, to map
making. Currently, however, our dataset has static scenes only.
We provide the raw data along with the 3D motion and the
scene geometry, and this data allows for evaluating algorithms
concerned with the classic structure from motion problems of
image motion estimation, 3D motion estimation, reconstruction,
and segmentation by depth.

Evaluation datasets drive applications and challenge
researchers to develop techniques that are widely applicable,
consider diverse scenarios, and have high accuracy. The
Computer Vision community has realized their importance for
many years, and has provided datasets for many applications,
including visual navigation. Among the best known datasets
for image motion one can find Middlebury (Baker et al., 2011),
MPI Sintel (Butler et al., 2012), and KITTI (Geiger et al., 2012).
Middlebury, a benchmark that also provides a creative ranking
of methods, has been the standard until the last few years. The
more recent MPI Sintel and KITTI datasets include scenarios of
greater complexity and much larger image motion. The former
consists of synthetic sequences and has many challenging cases
such as transparencies, blurring, or variations in illumination.
The latter has sequences from real-world driving scenarios, and
provides besides optical flow also ground-truth for 3D motion,
structure, and the tracking of objects. Other well-known data sets
for 3D motion and structure include the CMU dataset (Badino
et al., 2015), the TUM dataset (Sturm et al., 2012), as well as the
KITTI dataset (Geiger et al., 2012). These datasets were designed
for evaluation of navigation and localization algorithms.

Along with datasets, we also need metrics to evaluate the
techniques. The metrics of Computer Vision focused mostly
on accuracy. Image motion is usually evaluated by the average
error of either the flow vectors (Otte and Nagel, 1994), or
their directions (Fleet and Jepson, 1990). 3D camera motion is
evaluated by the average error in the direction of the rotation
axis, the angular velocity, and the direction of translation (see
Raudies and Neumann, 2012). Clearly, the average error does not
capture fully the quality of a method, given the heterogeneity of
sequences in the different datasets. In Sun et al. (2014), statistical
significance tests provide a way to cope with this problem.

A few of the methods published in the event-based literature
included evaluations. Several methods evaluated the accuracy of
image motion estimation methods, e.g., (Barranco et al., 2014;
Benosman et al., 2014; Censi and Scaramuzza, 2014; Orchard
and Etienne-Cummings, 2014; Tschechne et al., 2014) evaluated
odometry estimation. However, all these methods used their own
datasets. Therefore, so far there is a lack of comparisons between
different event-based methods and comparisons to Computer
Vision methods. Another paper, which is part of this special issue
(Ruckauer and Delbruck, in review) provides a dataset for the
evaluation of event-based flow methods and also releases codes
for the evaluated methods. However, this work is the first to
present a dataset that facilitates comparison of event-based and
frame-based methods for 2D and 3D visual navigation tasks.

Our real-time dataset was collected with a mobile platform
carrying a DAVIS sensor (Brandli et al., 2014) and an

RGB-D sensor (RGB + Depth sensor). The DAVIS sensor
provides asynchronous streams of events called DVS events,
and synchronous sequences of image frames called APS frames.
From the RGB-D sensor we obtain the depth maps of the
scene and from the odometry of the platform we obtain the 3D
motion. Using the 3D motion and depth, we compute the image
motion. In addition to the data, we also provide the code for the
calibration of the DAVIS sensor with respect to the RGB-D sensor
(using the synchronous frames of the DAVIS), and the calibration
between the robotic platform and the DAVIS sensor. We use the
samemetrics as in conventional methods to evaluate the accuracy
of event-driven methods. To account for the sparseness of the
event data, we also include a measure of the data density.

The paper is structured as follows: Section 2 describes current
datasets of visual navigation from Computer Vision. Next,
Section 3 describes how we created the event-based dataset.
Section 4 reviews different metrics for evaluation and Section 5
presents some of the sequences of our dataset. Finally, Section 6
concludes the work.

2. DATASETS IN COMPUTER VISION

Benchmarks, datasets and quantifiable metrics to estimate
accuracy are very common in the Computer Vision literature.
They have greatly influenced the development of Computer
Vision techniques for different applications, and contributed to
market solutions in demanding fields such as medical image
analysis, autonomous driving, and robotics.

There are a number of benchmarks for visual navigation.
Barron et al. (1994) were the first to propose a benchmark and
quantitative evaluation of optical flow methods. This dataset of
synthetic scenes was then replaced by the Middlebury database
(Baker et al., 2011), which contains much more challenging
datasets of synthetic and real scenes with objects at different
depth causing motion discontinuities. The success of Middlebury
may be partly due to its evaluation platform: through a web
interface one can upload the results of a motion estimation
method for comparison with the state-of-the-art methods. Half
of the example sequences are provided with the ground-truth
as training set to allow users to tune their methods. For
evaluation, authors are instructed to estimate the motion for
the remainder of the sequences (the test set) whose ground-
truths are not provided, and to submit them through the web
application. Then, the methods are ranked according to different
error metrics: endpoint error, angular error, interpolation error,
and normalized interpolation error. The most recent prominent
datasets, MPI Sintel (Butler et al., 2012) and KITTI (Geiger
et al., 2012) are much more challenging. They provide long
video sequences at high spatial resolution, and the image
motion between frames spans a large range of values (even
exceeding 100 pixels). Actually, such large displacements between
video frames are not amenable to a continuous modeling of
the intensity function, but require discrete approaches similar
as used for stereo correspondence. The sequences include
deformable objects and introduce very complex problems such as
transparencies, shadows, smoke, and lighting variations. Masks
for motion boundaries and for unmatched pixels are included,
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and new metrics are described to measure the image motion
accuracy in these areas. MPI Sintel, which is generated with
a computer graphic model, provides different variations of its
sequence, such as with and without motion blur.

Several other datasets provide benchmarks for 3D position
and pose estimation. Usually they include sequences of image
frames and the corresponding six parameters of the camera
motion defined by the rotation and the translation. Some of
these datasets also provide corresponding sequences of depth
maps and image motion fields. (Raudies and Neumann, 2009)
used the earlier created Yosemite sequence, a synthetic fly-
through sequence over the so-named valley, and created the
synthetic Fountain sequence with a curvilinear motion for a patio
sequence. KITTI (Geiger et al., 2012) provides a dataset for 3D
visual navigation, specifically created for autonomous driving.
It includes data from a stereo camera rig, a laser scanner, and
GPS/IMU signals. The CMU dataset, available at (Badino et al.,
2015), uses the same sensors also mounted on a car. The data
of the TUM dataset (Sturm et al., 2012) includes images and
depth frames captured with an RGB-D sensor (Microsoft Kinect).
The ground-truth odometry was estimated from the external
camera-based tracking system and the RGB-D sensor data.

3. DATASET DESIGN

Event-based sensors and frame-based cameras record very
different kinds of data streams, and thus to create a benchmark
for their comparison is quite challenging. While conventional
frame-based sensors record scene luminance, which is static
scene information, event-based sensors record changes in the
luminance, which is dynamic scene information. Conventional
cameras have a higher spatial resolution than event-based
sensors, but their temporal resolution is fixed, usually up to
∼60 fps (frames per second). In contrast, for frame-free sensors
there is no fixed sampling period, which can be as small as a
few microseconds. To compare static images to events, a few
works (such as Pérez-Carrasco et al., 2013) shook the sensor. This
technique, however, is not applicable for visual navigation, as it
would introduce too much additional noise. Indeed, we require
a conventional sensor and a frame-free sensor collecting data
of the same scene. For our dataset we used the DAVIS sensor,
which collects both asynchronous brightness-change events and
synchronous frames.

The synthetic data in our benchmark was created from
existing Computer Vision datasets (Section 3.1), and includes two
sets. First, we generated events (Barranco et al., 2014) for the
optic flow sequences provided in Baker et al. (2011) and Barron
et al. (1994). The such created dataset allows comparison to the
large number of existing optic flow techniques in the Computer
Vision literature, but it is not accurate due to the lack of ground-
truth information (in the original optical flow sequences) in areas
occluded between consecutive frames and ambiguities in the
depth discontinuities. This problem was overcome in a second
dataset which was built from a graphics-generated 3D scene
model (Barranco et al., 2015). The real data in our benchmarkwas
collected with amobile robot carrying a rig on which wemounted
a DAVIS sensor and an RGB-D sensor (RGB images plus Depth;

Section 3.2). By calibrating the DAVIS sensor with the depth
sensor, we obtained the data required for reconstructing the
3D scene model. The simple odometry system, consisting of
a gyroscope and an accelerometer, provided the 3D motion
ground-truth.

Note, that we computed the motion of the sensor using the
odometry of our platform. An alternative, much easier approach
to obtain 3D sensor estimates, would be to use an external motion
capture system (Voigt et al., 2011). However, motion capture
systems are expensive and cannot be used for outdoor scenarios.

Our dataset is available at http://atcproyectos.ugr.es/
realtimeasoc/protected/evbench.html. It includes the DAVIS
sequences (DVS events and APS frames), the Kinect data (RGB
images and depth maps), the generated motion flow fields, and
the 3D camera motion (translation and rotation). The code
for the different calibration procedures, registrations, and for
computing the evaluation metrics, described in the next sections,
are available at the software repository https://github.com/
fbarranco/eventVision-evbench.

3.1. Simulated Events from Current
Computer Vision Datasets
The first dataset was created from the sequences in Middlebury
(Baker et al., 2011) by simulating the events on the basis of
the ground truth optic flow (Barranco et al., 2014, 2015). Real
frame-free sensors trigger an event when the intensity difference
at a point exceeds a predetermined value (more exactly when
the change in log intensity exceeds a threshold). To simulate
this, we first interpolate image frames in time using the optic
flow information. Assuming a frame rate of 20 fps the optic
flow sequences, we interpolate 50,000 samples between pairs of
consecutive frames to achieve a simulated temporal resolution
of 1 µs in the DVS. Then events (with exact timestamp) are
created, by checking at every position for changes greater than
the threshold. However, this simulation only works at image
regions due to smooth surfaces, but not at occlusion regions,
where usually ground-truth flow is not provided. To perform
reconstruction, a 3Dmodel of the scene is required. In its absence
we generated our data using the following approximation: we
differentiate between occluded regions, which are pixels visible in
the previous frame but not the current, and dis-occluded regions,
which are pixels not visible in the previous frame, but uncovered
in the current frame. Intensity values of occluded regions are
obtained from the previous frame and those of dis-occlusions
from the subsequent frame. For non-static regions, we assume the
same motion for the background and the region. More complex
scenarios, including non-regular motion patterns or occluded
objects with different motions, are discarded.

The second dataset was created in a way similar to the MPI
Sintel dataset (Butler et al., 2012). Using a 3D graphics model
of the scene and information on the 3D motion and 3D pose of
the camera, we reconstructed the motion flow field and stream
of events (Barranco et al., 2015). Specifically, we used the 3D
model, the textures, and the 3D motion ground-truth provided
by Mac Aodha et al. (2013), which were created using the 3D
software andmodeling toolMaya (see http://www.autodesk.com/
products/maya). We note that for a more realistic simulation,
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one could additionally add simulated noise on the events using
appropriate probability distributions.

3.2. DAVIS Mounted on a Mobile Platform
The DAVIS sensor (Brandli et al., 2014) and a Microsoft Kinect
Sensor (providing an RGB image and depth map) are mounted
on a stereo rig and the stereo rig is mounted on a Pan Tilt Unit
(PTU-46-17P70T by FLIR Motion Control Systems) on-board a
Pioneer 3DX Mobile Robot. The motion is due to the rotation
of the PTU defined by pan and tilt angles and angular velocities,
and the translation of the Pioneer 3DX Mobile Robot defined by
the direction of translation and the speed. ROS (Robot Operating
System) packages are available for both the PTU and the Pioneer
3DX mobile robot. Figure 1 shows the Pan Tilt Unit on the left,
the Pioneer 3DX mobile robot in the center, and the DAVIS
sensor (a DAVIS240b by Inilabs) on the right.

Our dataset provides the following:

• The 3D motion parameters: 3D translation and 3D pose of
the camera. These are provided by the PTU and the Pioneer
Mobile Robot. Calibration of the PTU with respect to the
platform, and calibration of the DAVIS with respect to the
PTU are required.

• The image depth in the coordinate system of the DAVIS. Depth
is obtained by the Microsoft Kinect Sensor (RGB-D sensor). A
stereo calibration registering the Kinect depth to the DAVIS
camera coordinates is required.

• The 2D motion flow field. Using the 3D motion and depth,
the 2D motion flow field in the DAVIS coordinate system is
computed.

3.3. DAVIS and RGB-D Sensor Calibration
The RGB-D sensor provides the depth of the scene. This depth
needs to be transformed to the coordinate system of the DAVIS.
In our procedure, we first calibrate the two cameras individually,
both for intrinsic and extrinsic parameters. Next, since the spatial
resolutions of the two cameras are very different, we compute
the transformation of the depth by creating an intermediate 3D
model from the Kinect data, which subsequently is projected to
the DAVIS coordinate system.

In the very first step the RGB data and the Depth of the
Kinect, which internally are captured by two separate sensors,
are aligned to each other using the Kinect SDK. Next, the Kinect
intrinsic and extrinsic sensor camera parameters are obtained
using conventional image camera calibration on RGB data.

FIGURE 1 | Left: Pan-Tilt Unit FLIR PTU-46-17P70T at

http://www.flir.com/mcs/view/?id=53707. Center: Pioneer 3DX Mobile Robot

at http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx. Right:

DAVIS240b sensor at http://inilabs.com

Similarly, the DAVIS intrinsic and extrinsic camera parameters
are obtained using conventional image camera calibration on the
APS frames of the DAVIS (the APS frames and the DVS events in
the DAVIS are geometrically calibrated). However, we note that
the DVS event signal of the DAVIS, may also be calibrated by
itself using a calibration grid of flashing LEDs (Mueggler et al.,
2015). Such a procedure can be used if only a DVS (but not a
DAVIS) is available. We can use the procedure of Mueggler et al.
(2015), which consists of two steps: first it adjusts the focus, then
is computes the intrinsic parameters. The code is based on ROS,
and the calibration uses OpenCV functions.

The second step involves first a stereo calibration between
the RGB-D sensor and the DAVIS, which provides the rotation
and translation of the two sensors with respect to each other.
Then the depth between the two cameras is registered via a
3D world model. In detail, the procedure involves the following
transformations.

First, the Kinect 2D image coordinates are compensated for
radial distortion as:

x’ = x(1+ k1r
2 + k2r

4 + k3r
6) (1)

where k1, k2, k3 are the radial distortion coefficients, x and x’ are
the distorted and undistorted image coordinates respectively, and
r = ‖x‖.

Next the 3D world coordinates Xw = (xw, zw) are obtained
from the 2D image coordinates, x’, as:

[

Xw

zw

]

=

[

−(x’− c)z 1f
z

]

(2)

where c denotes the principal point, f the focal length of the
Kinect camera, and z the depth.

The 3D point cloud is then transformed using the geometric
transformation between the sensors, given by the 3×1 translation
t and 3 × 3 rotation R obtained by the stereo calibration. The
transformation is formulated as X’w = RXw + T, where X’w is
the new point cloud model in the 3D world.

Lastly, the point cloud X’w is projected onto the 2D sensor
plane of the DAVIS to obtain the sensor coordinates xD as:

xD = xw
fD

zw
+ cD (3)

where cD denotes the principal point and fD the focal length of
the DAVIS sensor. The depth for each image coordinate in the
DAVIS image plane is registered using the Z-buffer. Any holes
or ambiguities in the new registered depth are filled in using the
inpainting method in Janoch et al. (2013), which assumes second
order smoothness, minimizing the curvature in a least-squares
manner. An example of the result of this calibration is shown in
Figure 2.

3.4. DAVIS Sensor and PTU Calibration
This section explains how to obtain an analytic expression for
the rotation Rα and translation Tα of the DAVIS sensor (in its
coordinate system) corresponding to a pan or tilt angle α of the
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PTU. This is a non-trivial task. The procedure is as follows: We
first derive the translation and rotation for a number of pan-tilt
combinations with respect to a base pose (pan = 0◦, tilt = 0◦) in
the DAVIS camera. Then, we use these derived values to compute
the (fixed) transformation between the DAVIS coordinate system
and the PTU coordinate system. The parameters involved are the
translation u between the coordinate systems, the rotation axis
r of the pan-tilt unit, and the rotation axis s of the camera (see
Figure 3).

First, we derive the translation and rotation of the DAVIS
corresponding to various pan (rotation in the horizontal plane)
and tilt (rotation in the vertical plane) combinations. In order
to do that, we capture APS images with the DAVIS sensor
for a number of pan tilt combinations, and perform a stereo
calibration for each set of images with respect to the baseline
(pan= 0◦ and tilt= 0◦).We use as angle rotations for pan and tilt
the values [−5◦,−4◦,−3◦,−2◦,−1◦, 0◦, 1◦, 2◦, 3◦, 4◦, 5◦]. Since

FIGURE 2 | Depth registration from RGB-D sensor (top row) to DAVIS

sensor (bottom row).

the transformation for pan and tilt can be applied independently,
we do not need different combinations of pan and tilt. Thus,
we have 11 pan combinations (0◦ tilt, including the base-pose,
pan = 0◦ and tilt = 0◦) and 10 tilt combinations (0◦ pan). For
every combination, we take 10 images for the calibration, each
with a different pose and position of the calibration pattern. The
calibration provides the extrinsic rotation and translations of the
DAVIS coordinate system with respect to the base-pose.

Let us now compute the translation of the DAVIS sensor
center with respect to the PTU center. Consider the center of the
coordinate system of the DAVIS for the baseline positionOD. The
position of the coordinate center for a combination of pan and

tilt ODrt
is described by a translation t with respect to the center

of coordinates of the baseline OD. This translation t corresponds
to the extrinsic translation estimated in the calibration of a pan-
tilt-combination with respect to the baseline (explained in the
previous paragraph). The camera center OD is described by a
translation u with respect to the PTU coordinate center, and a

rotation Rmoves it to positionODrt
(see Figure 3). Thus, we have

in the coordinate system of the PTU that:

ODrt
= R · u

ODrt
= u+ t (4)

Note that there are multiple combinations of pan and tilt
rotations (for different angles θ), and thus multiple R and t. The
R for a specific angle θ can be re-written with respect to its axis r
(in this case, only two variables), using the Rodrigues formula as:

R = (1− cos(θ))K2 + sin(θ)K + I (5)

where K2 = r · rT − I. Now, substituting R from Equation (5)
into the equality resulting by combining the two constraints of
Equation (4), and taking into account that the system has a total
of N combination angles, the following minimization problem is
formulated:

argmin
r,u

∑

i∈[1,...,N]

‖((1− cos(θi))(r · r
t− I)+ sin(θi)K) ·u− ti‖ (6)

FIGURE 3 | Left: Translation vector u of the DAVIS coordinate system with respect to the PTU, and r, the PTU rotation axis. The pose of the DAVIS sensor is

represented by its axis s. Right: DAVIS coordinate system OD and PTU coordinate system OPTU. OD
rt
represents the DAVIS coordinate system after a pan-tilt

rotation of the PTU, characterized by a translation t and the rotation R around its axis r. Image adapted from Bitsakos (2010).
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where the rotation axis is a unit vector, i.e., ‖r‖ = 1.
The minimization with respect to the rotation axis r and the

translation u is non-convex. However, the problem can be solved
searching for the rotation axis and solving for the translation,
using the interior-point method. Since the rotation axis has only
2◦ of freedom, we use a change of variables to search over
spherical coordinates as in Bitsakos (2010). The minimization
cost for our stereo rig is shown in Figure 4 where the minimum
is marked on the sphere with a red star.

The second part computes the rotation axis s of the DAVIS
sensor coordinate system. Since the rotation vectors derived for
positive and negative angles of pan and tilt were found of nearly
same value (but different sign), we did not formulate another
minimization, but estimated the axis by taking the average of the
values for the first two components. Using the fact that s is a unit
vector provides the third value.

Finally, we obtain the following expression to compute for
a given pan or tilt angle α the corresponding rotation Rα and
translation Tα in the DAVIS sensor coordinates:

Tα = ((1− cos(α))(r · rt − I)+ sin(α)K) · u (7)

Rα = (1− cos(α))L2 + sin(α)L+ I (8)

where L2 = s · st− I. Please note that the rotation and translation
of the DAVIS coordinate system is applied independently to
pan and tilt rotations, and we have two different rotations and
translations for pan and tilt angles, respectively (denoted as θ and
φ in Figure 3).

Finally, the motion of the Pioneer 3DX Mobile Platform is
always a translation in the horizontal plane in the direction of Z.
For our case, we considered the coordinate centers of the Pioneer
and the PTU to be aligned. Thus, the translation of the mobile
platform can be directly applied to the DAVIS sensor.

The code for the extrinsic and intrinsic calibration of the
DAVIS and the RGB-D sensors, their stereo calibration, and the
calibration between the DAVIS and the Pan-Tilt Unit is provided
along with the dataset.

3.5. Generation of Motion Flow Fields
The image motion flow field is the projection of the velocities of
3D scene points onto the image plane. Assuming a rigid motion

FIGURE 4 | Visualization of the error function from the minimization for

pan (left) and tilt (right). The minimum error is marked on the sphere with a

red star. The search is done in spherical coordinates over the rotation axis r,

which has 2◦ of freedom. For each rotation we solve for the (best) translation.

[with translational velocity t = (t1, t2, t3) and rotational velocity
w = (w1,w2,w3)] , the 3D instantaneous motion Ṗ of scene
points P = (X,Y,Z) is given as Ṗ = −t − w × P (Longuet-
Higgins and Prazdny, 1980). Then the equations relating the
velocity (u, v) at 2D image points (x, y) to the 3D translation and
rotation and the depth Z amounts to:

u(x, y) = 1
Z (−t1f + xt3)+ w1

xy
f
− w2

(

x2

f
+ f

)

+ w3y (9)

v(x, y) = 1
Z (−t2f + yt3)+ w1

(

y2

f
+ f

)

− w2
xy
f
− w3x (10)

4. EVALUATION METHODOLOGY

The metrics we use to evaluate event-driven methods are similar
to the ones previously used for frame-based techniques. Image
motion flow fields will be evaluated using the average endpoint
error (Otte and Nagel, 1994; Baker et al., 2011), which is defined
as the average value of the vector distance between the estimated
motion u and the ground-truth û, and is derived for N motion
flow values as:

AEPE =
1

N

N
∑

i=1

‖ui − ûi‖. (11)

Another representative metric, the average angular error (AAE),
measures the average angular distance as:

AAE =
1

N

N
∑

i=1

arccos

(

ûtiui

‖ûi‖‖ui‖

)

. (12)

We provide the code for computing the AEPE and AAE of
a motion flow field. Similarly, we evaluate 3D camera motion
(given by 3D rotation and translation vectors) as averages
using the same measures, but in this case averaging over
time.

In order to evaluate the robustness of motion flow field
estimation, we provide the RX value (Scharstein and Szeliski,
2002), which measures the percentage of estimates with an error
above X. So the larger the value, the worse the motion estimation.
In the Middlebury (Baker et al., 2011) evaluation, this measure
is used with the endpoint error for R 0.5, R 1.0, and R 2.0.
To evaluate the significance of the computed measure, we also
provide a statistical significance test. We use theWilcoxon signed
rank test (Wilcoxon, 1992), for which a p < 0.05 shows statistical
significance (see also Roth and Black, 2005; Sun et al., 2014).

Different from frame-based flow, the flow from event-driven
techniques is sparse.We also provide ameasure for the sparseness
of the estimation. The so-called density value expresses the
percentage of motion estimates within a fixed time interval. In
Computer Vision, although not common, optical flow density is
considered in some works (see e.g., Barron et al., 1994; Brandt,
1997; Barranco et al., 2012).
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5. DATASET EXAMPLES FOR DAVIS
SENSOR MOUNTED ON THE ROBOTIC
PLATFORM

We recorded more than 40 sequences of diverse scenarios, with
the camera mounted on a Pan-Tilt unit on-board the Pioneer
3DX Mobile Platform. All the sequences are due to rigid 3D
motions: pure pan or tilt motion, combined pan and tilt motion,
translation of the robotic platform only (forward or backward
translation), and combinations of pan, tilt, and translation. The
scenes are from an an office and have a variety of objects of
different sizes and shapes, such as chairs, tables, books, and
trash bins. Texture was added to some of the objects to obtain
a higher DVS event density. The depth is in the range of ∼0.8–
4.5m (also constrained by the use of Kinect), and the motion
flow between frames (at about 50 ms apart) is up to 5–10
pixels. There are a variety of rigid motions, including sequences
that are mostly due to rotation, sequences that are mostly

due to translation, and sequences with balanced rotation and
translation.

Figure 5 shows a few of the sequences. The first row shows
the DAVIS images, the second the depth maps, and the third the
motion flow fields (using the color-coding of Baker et al., 2011).
The first group of five images is from a pan and tilt motion, the
last image on the top right and the first at the bottom left are
from a pure zoom in and zoom out motion, respectively. The last
group at the bottom are from combined pan tilt and zoom in or
zoom out motions, and the scenes are cluttered with objects of
different shapes and at different depth ranges. The six parameters
for the rotation and translation are shown below the figures. The
complete dataset is available at the website.

6. CONCLUSIONS

We presented the first datasets for evaluating techniques of
visual navigation with neuromorphic sensors. These datasets

FIGURE 5 | Example sequences from the dataset. For each sequence we show: DAVIS APS frame (first row), depth map (second row), motion flow field (third

row), and the rotation and translation values (in 10−2 rad/frame and 10−2 pix/frame). The color coding for the depth map uses cold colors for near and warm colors

for far points. The motion flow fields are color-coded as in Baker et al. (2011), with the hue representing the direction of motion vectors and the saturation their value.
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contain synthetic and real sequences of rigidly moving sensors
in static environments. The data, which we provide, includes
the images, the event streams, the 3D depth maps, and the
3D rigid motion of the sensor. Using these datasets one can
evaluate and compare event-based and classic frame-based
techniques of image motion estimation, 3D motion estimation,
scene reconstruction, and segmentation by depth. We also
provide the code for the various calibration procedures used
in order to facilitate future data collection and code for
evaluation.

We plan to maintain the website, and add new more
challenging sequences including a larger variation of scenes and
dynamic scenes in the future. We also plan to evaluate and
publish the results of different methods. So far we used the
same evaluation metrics as in Computer Vision, which only
address the accuracy of estimation. Since currently there are
very few techniques available, the efficiency of computation
on events has not been addressed yet. However, as new
neuromorphic methods will be developed, and it becomes
useful to evaluate and compare algorithms, we will also need
to develop evaluation criteria aimed at the complexity of
computation.
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