
A DBMS Prototype to Support Extended NF* Relations:
An Integrated View on Flat Tables and Hierarchies

P Dadam, K Kuespert, F Andersen, H Blanken, R Erbe,
J Guenauer, V Lum*, P Pistor, G Walch

IBM Heidelberg Sclentlfic Center
Tlergartenstr 15

D-6900 Heidelberg, West Germany

Abstract
Recently, extensions for relatlonal database management systems

(DBMS) have been proposed to support also herarch& structures
(complex objects) These extensions have been mamly unplemented

on top of an exlstmg DBMS Such an approach leads to many dlsad-
vantages not only from the conceptual pomt of view but also from

performance aspects Thus paper reports on a 3-year effort to design

and prototype a DBMS to support a generahzed relatlonal data model,

called extended NFZ (Non Fist Normal Form) data model which

treats flat relations, hyts, and hlerarctical structures m a umform way

The log& data model, a language for thts model, and altematlves for

storage structures to unplement generabzed relations are presented and
discussed

1 Introduction

Due to growmg demands m unproved product quahty, mcreased pro-
ductlvlty, and faster reaction on market demands, the number of m-

stalled systems for computer ruded design (CAD) and computer aded

manufacturmg (CAM has grown very fast durmg the last years To

manage then data, these systems generally use only the file system

provided by the underlymg operatmg system However, as both the

number of mstalled systems m a company and the number of people
m CAD/CAM projects mcrease and the demand for mteractlon

among systems and among people grows, these systems begm to run
mto problems hke lack of data mdependence, msufticlent recovery, and
nussmg or madequate concurrency control, problems with whrch one

was faced more than two decades ago m busmess or commercml data

management and related areas Searchmg for solutions to these prob
lems has led to the development of database management systems

(DBMS), which today are mstalled m practically all commercial and

busmess data processmg envltonments Currently there 1s a strong
mterest m movmg towards computer mtegrated manufactunng

(CIM), meamng the mtegratlon of CAD, CAM, and buqmess admm-
lstratlon CIM requues, however, that all kmds of data - at least all

(*) Current address Naval Postgraduate School, Dept of Computer
Science, Monterey, CA 93943, USA

Permlsslon to copy without fee all or part of this matenal IS granted
provided that the copies are not made or dlstrlbuted for direct
commercial advantage, the ACM copyrlght notlce and the title of the
pubhcatlon and its date appear, and notice IS given that copymg IS by
permlsslon of the Association for Computmg Machmery To copy
otherwlse, or to republish, requires a fee and/or specific permlsslon

@ 1986 ACM 0-89791-191-l/86/0500/0356 $00 75

commonly relevant kmds of data - are accessible m an integrated
fashon w&m one (not necessanly physrcally one) system It IS rather

obvious that this problem can only be solved by applymg advanced
database technology

For the busmess admuustratlon area, such advanced database tech-
nology IS - at least partially - already avadable today, namely relatronal
database systems Systems l&e SQL/DS /IBMl/, DB2 /IBMZ/, and
INGRES /St76/ provide a h& degree of data mdependence for ap-

phcatlon programs, can combme the stored data m a very flexible way,
and offer query languages wluch are relatively easy to learn and to use

However, the fachtles the relational data model offers to descnbe the

logical structure of data and dependencies between data are rather

poor, too poor for CAD/CAM/CIM envnonments Espenally CAD
objects very often require deeply nested hterarchlcal structures and a
lot of dflerent tuple types (relations) to represent all the necessary m-
formation (see /LP83, Ka85/, for example) For semantlcal (concep-
tual) as well as for performance reasons (data clustermg, avoidance of

unnecessary JOJIW.) such com$ex objects /HL82/ cannot simply be
“flattened” and stored lust as ordmary relations That IS, a DBMS

should provide a facthty to duectly support hlerarchrcal structures

In /HL82, LP83/ it has been reported how one can extend a relatronal

database system to support herarchcal structures more eflinently

This has been done by addmg some new predefmed attnbute types and

system generated keys (to express herarclucal relatlonshrps and to
speed up lams), and by provldmg a special interface with appropnate
new operators (to msert, retneve, update, and delete complex objects)
The advantage of this approach IS that only few parts of the exlstmg

DBMS have to be changed m order to support complex objects The

disadvantage IS, however, that usmg ths approach, complex objects

are a “special ammal” for the underlymg DBMS which cannot be

treated m the same way as the usual (flat) objects That is, proJecttons,
selections (partial retneval), and clustermg of complex objects are not

supported m the same way as for flat objects To avoid this dtsad-
vantage and to enable a really rntegrated VIEW on flat and complex

objects, a common data model whch covers (uties) both types of

data 1s mandatory

An elegant way to mtegrate flat relations and luerarchlcal structures

wlthm one data model wlthout gvmg up the elegancy and expressive
power of high level relational query languages IS to generalize the re-
IattonaI data model The key idea IS to allow relations to occur as at-

tnbute values of tuples m relations As this means to gve up the first
normal form reqmrement, we have called relations of that kmd Non
Frst Normal Form (NF’) relations /JS82, PHH83, SP82, Sch85/
(sometunes they are also called “relations with relation valued attn-

butes” /Jae85a, Jae85b, SS86/)

356

Proc. ACM-Sigmod Conf., Washington, D.C., May 1986

The mam Issue of thn paper IS to explam the concept of NF2 relations

from a user’s pomt of view as well as under nnplementatlon aspects
We wtll gwe an outhne of a generaked relatzonal query language de-

sIgned to support NF’ relations, and we wdl report on the underlymg
DBMS prototype which has been unplemented wrthm the Advanced
InformatIon Management II (AIM-II) project at the IBM Heidelberg
Sclentlfc Center As an extension of the “pure” NFZ data model, the

AIM-II prototype also supports ordered tables (Us) which are con-

sidered very useful for mstance m CAD/CAM apphcatlons /I&2/
We therefore call our data model extended NF* data model

With the completion of the frst runnmg version of our prototype after
3 years of work, the AIM-II project has come to a stage where a ret-

rospe&on on design and unplementatlon of the system seems to be
appropnate Smce tbs paper, however, cannot dtscuss m detad all as-
pects of the DBMS prototype, we have mcluded quite a number of

references to papers which descnbe certam topics m the reqmred

depth

The remamder of this paper 1s orgamzed as follows In Sectron 2 ex-
tended NF2 relations are explamed from a user’s pomt of view A
powerful query language for the extended NF’ data model 1s described
m Sectzon 3 In Sectton 4 aspects of complex object unplementatlon
(storage structures, addressmg concepts, etc) are dlscussed Sectzon 5
provides some final remarks on the maul issues of this paper and on

future dmztlons m the AIM-II project

2 User’s View of NF2 Tables
Let us first make some remarks on our ternunologV Throughout thn
paper, the term “table” wdl be used as a generahzation of “relation”
(+ unordered table) and “hst” (+ ordered table) - In the followmg,

we wdl only consider complex objects with hlerarchzcal structure

Therefore, we need not dlstmgmsh between “complex”, “hlerarclcal”,

and “NF”’ tables (Note Our tuple name concept (see Section 4 3)

also allows network structures m complex objects) - Fmally, the

terms “flat” table and “INF” table (1 e table m first normal form) wdl

be used as synonyms

Although the (extended) NF* data model has been mtroduced m

Section 1 pnmanly as a tool to support advanced apphcatlons (some-

tunes called non-standard applrcatlons /HR83/) m CAD/CAM/CIM

envuonments, this data model can also bc extremely useful 111 the area

of ofice automatron Assummg that the reader 1s probably more fa-

nuhar with o&e automatlon than with CAD/CAM/CIM, we decided

to take all our examples from this area

Assume now that one wants to model a hlerarchlcal structure, say
DEPARTMENTS, urlth department number (DNO), manager num-

ber (MGRNO), projects (PROJECTS), budget (BUDGET), and
eqmpment (EQUIP) at the top level, and with EQUIP telhng quantity

(QU) and type (TYPE) for every Item PROJECTS m turn represents

all prolects m a department, with project number (PNO), project

name (PNAME), and project members (MEMBERS) For every

member the employee number (EMPNO) and the function (FUNC-

TION) shall be shown In an IMS database this could be modelled

by definmg the segment types and parent chid relations as shown m

Fig 1 To retneve an ob]ect of this type “navigational” language con-

structs hke “get next” (GN) and “get next wlthm parent” (GNP) etc

/Da81/ have usually to be used which are completely ddferent from

the high level language constructs used m relational database systems

To represent the mformatlon of Fzg 1 m fust normal form (INF) ta-

bles would reqmre at least 4 tables (as an example see Tables 1 to 4)

As already mentioned m the mtroductlon, the NF* data model IS a

generabzzd relatlonal data model which allows relations to have re-

lations as attnbute values Usmg the NF’ approach one can model the

DEPARTMENTS herarchy as shown m Table 5 (A very sumlar
graphlcal representation IS also used III /Sh84, SLTC82/) Table 5

reads as follows DEPARTMENTS IS an unordered table (I e a re-
lation) havmg 5 “top-level” attnbutes, namely DNO, MGRNO,

PROJECTS, BUDGET, and EQUIP (In our figures unordered ta-
bles (relations) are marked by puttmg theu names mto curly brackets
([)) whde ordered tables (hsts) are marked by < >) The attn-
butes DNO, MGRNO, and BUDGET are atormc whde the two other
attnbutes are agam relations (1 e non-atonuc) PROJECTS 1s an
NF” relation havmg 3 top-level attnbutes PNO, PNAME, and
MEMBERS Whde PNO and PNAME are atonuc, MEMBERS 1s

not, etc Note, that the attnbute values of BUDGET are bound to a

department - not to a project The same holds for EQUIP EQUIP IS

a flat (INF) relation descnbmg quantity (QU) and type (TYPE) of

equipment used m a specfic department PROJECTS, MEMBERS,

and EQUIP are all unordered tables (1 e relations) There IS neither

an unphat nor an exphclt correspondence between a prolect or one
of ds members and some kmd of equipment m tlus table We assume
that employee numbers m the DEPARTMENTS table are always
umque, whereas project numbers need not be unique (mcldentally, m
Table 5 they are)

Another example of an NF* table, which shows an “mner” table AU-

THORS, 1s Table 6 (REPORTS) AUTHORS IS an ordered table (I e

a hst) havmg lust one attnbute (NAME) The attnbute DESCRIP-
TORS IS also an “mner” table but unordered As a matter of fact,
every table can be defined to be either ordered or unordered, depend-
mg on the users’ needs it 1s easy to see that “normal” tables, 1 e tables
m fust normal form hke Tables 1 to 4, are Just special cases of NFZ

tables

3. Query Language for NF2 Tables
In deslgnmg an appropnate query language for NF’ tables we have
taken the same approach as mth the relations themselves We have
used the concept of an exlstmg relational query language

(SEQUEL/SQL /Ch76, IBMl/ with Its SELECT-FROM-WHERE
constructs) and have generahzed It analogously to our generalved re-
lations In the case of NF2 tables where attnbute values may agam be

tables (relations or hsts) one needs a mechamsm (m the SELECT

clause) to descnbe the result structure of a query Another mechamsm

(m the FROM clause) 1s needed to descnbe from which attnbute(s)

on which nestmg level(s) the Source data shall come from

Due to lack of space we can gave here no detatled discussion of our
NFZ query language Instead, we try to dlustrate how It works and

how it looks hke, usmg some selected examples (a more detaded de-
scnptlon of the NF’ language can be found m /PT85/ and /PA86/)

Example 1
%s example shows how to retneve all tuples of an NF’ table and

to mpbcrt!y overtake the result structure from the structure of the
source table Assummg Table 5 bemg a stored table, we can simply
wnte

SELECT x DNO, x MGRNO x PROJECTS, x BUDGET, x EQUIP
FROM x IN DEPARTMENTS

or by usmg the usual shorthand notation

SELECT ’
FROM DEPARTMENTS

Example 2
Tlus example shows how to retneve all tuples of an NF’ table and

to explzclt& define the result structure Assume agam that rable 5 1s
a stored table and that we want to pose a query which Just shows the
same structure also for the result table When exphcltly definmg ths

357

structure our query would look hke the one shown m Fig 2 A good

mental model to understand the bmdmgs of tuple vanables (range

vanables) IS to associate them wrth a loop which runs over all tuples

of the relation they are bound to In the query shown III Flg 2, “xx

IS bound to DEPARTMENTS That IS, “x” 1s one tune bound to the

tuple descnbmg department number 314, one tnne to the tuple de-

scnbmg department number 218, etc For a gven bmdmg of “x”, the

bmdmgs of the tuple vanables “y’ and “v” are known as well, namely

“y” IS associated mth the attnbute value of x PROJECTS (wluch IS

agam a table), and “v” 1s associated Hrlth xEQUIP (wluch 1s also a

table) If ‘x” IS bound to the tuple descnbmg department 314 then “y”

ti be bound at one tune to the tuple of the “iier” table whch de-

scribes protect number 17, at another tune to the tuple descnbmg

protect number 23 (Remark As there are only two projects m de-

partment 314 the “mner” loop assoctated Hrlth “y” wdl temunate after

havmg processed prolects 17 and 23) For a Bven bmdmg of Ix* (say

to department 314) and a gwen bmdmg of “y” (say to project 23) the

bmdmg of the tuple vanable “z” IS known, too, etc

Example 3

Here we show how to create a complex table structure based on flat

source tables (xnestx operation /Jae85a, Jae85b/) Assume Tables 1 to

4 are stored tables and that we want to get a result structure bke Table

5 The resultmg query IS shown m Fig 3

Example 4

Tlus example demonstrates how to create a flat result table based

on a complex source table (“unnest” operation /Jae85a, Jae8Sb/) It

ah shows the use of a proJectton, smce the attnbutes BUDGET and

EQUIP of the source table are not used for the construction of the

result table (cf Table 7)

SELECT x DNO x MGRNO, y PNO, y PNAME, z EMPNO z FUNCl ION

I-ROM x IN DEPARTMENTS y IN x PROJECTS, z IN y MEMBERS

For comparison The same query agamst Tables 1 to 3 would appear

as follows

SELECT x DNO, x MGRNO, y PNO y PNAME, z EMPNO z FUNCTION

FROM x IN DEPARTMENTS INF y IN PROJECTS INF

z IN MEMBERS-INF

WHERE x DNO = y DNO AND y PNO = z PNO

AND y DNO = .z DNO

As you can see., the “flat table query” IS more ddlicult to formulate

than the query agamst the herarchcal table The example also shows

that hterarchcal tables can be used to store pre-computed (matenal-

mxi) moms /SSSl/ as well

Example 5

Consider the followmg query posed agamst I’able 5 “hst DNO,

MGRNO, and BUDGET of all departments wbch use a PC/AT ”

This query - whch shows the use of an EXISTS clause - can be ex-

pressed as follows

SELECT x DNO x MGRNO, x BUDGET

FROM x IN DEPARTMENTS

WHERE EXISTS y IN x EQUIP y TYPE = PC/AT

The output would be a flat table with 3 atonuc attnbutes

Example 6

To demonstrate the use of an ALL clause m a query, we look at the

followmg problem “hst DNO, MGRNO, and BUDGET of all de-

partments m Table 5 which have only consultants as employees ” Tlus

can be expressed as follows

SELECT x DNO x MGRNO, x BUDGET
FROM x IN DEPARTMENTS

WHERE ALL y IN x PROJECTS

ALL z IN y MEMBERS FUNCTION=‘Consultant’

Smce MEMBERS IS a subtable of PROJECTS, and PROJECTS m

turn IS a subtable of DEPARTMENTS, two ALL clauses are needed,
one for PROJECTS and one for MEMBERS For the contents of

the DEPARTMENTS table as shown m Table 5, the result set of tlus
query IS empty, smce there IS no department whch fulfiis the con&-
tlon m the WHERE clause

Example 7

Assume now that we have a flat table EMPLOYEES-INF (cf Ta-

ble 8) wth employee number (EMPNO), last name (LNAME), first

name (FNAME), and sex (SEX) as attnbutes The
EMPLOYEES-INF table shall contam one tuple for each project
member and manager stored m Table 5 Usmg Table 5 and

EMPLOYEES-INF as mput tables, the followmg query shall be for-
mulated ‘List all employees with employee number (EMPNO), last

name (LNAME), fust name (FNAME), sex (SEX), and function
(FUNCTION) grouped by department On department level show
department number (DNO) and manager number (MGRNO) ”

To answer tlus query one has to compute ajorn between MEMBERS

(m the DEPARTMENTS table) and EMPLOYEES-1NF The re-

sultmg query IS shown m Fig 4 (Note Thts example shows also that

JOIII attnbutes need not be on the same level m the hierarchy of the
affected source tables)

One can also express more than one JOUI con&tion withm a query

expression For example, one could formulate the above query such

that the manager’s name and sex are retneved mstead of MGRNO

Thu IS shown m Fig 5

Example 8

Consider now Table 6 Assume one wants to see the hst of authors,

and the titles of all reports where ‘Jones’ appears as the fust author
As the AUTHORS attnbute IS an ordered table (1 e a Itst), the query
can be expressed as follows

SELECT .x AUTHORS, x TITLE

FROM x IN REPORTS
WHERE x AUTHORS[I] = Jones’

Note that the resultmg table IS not flat because AUTHORS IS a non-

atormc attnbute

Besides a query language, one also needs factities to msert, update,
and delete (complex) ob]ects as well as DDL support to defme the
st~cture of new tables Because of space htations m tlus paper we

refer to /PT85/ and /PA86/ where these topics are explamed m detad

The language presented m tis se&on IS Just one way to deal with the

extended NF’ data model It IS not our mtentlon to claun that it 1s the

best language for ths data model one could thmk of Especially for end

users one would bke to have an easier language, maybe m the style of

Query-by-Example (QBE /IBM4, Zl77/) However, the kmd of lan-

guage we have presented here allows to ut&z.e the full power of the
extended NF2 data model and allows also to specify the structure of

the result table totally mdependent from the structure of the source
table(s) Other, more smple languages, would have to show this ex-

presswe power first d they would chum to be titter” under all aspects

Especially for handhng large complex ob]ects m the CAD/CAM/CIM

arca, a smtable uppltcutzon progmmmg tnterface (API) 1s required
We are currently unplementmg such an API which IS sun&r to Lone’s

approach /Lo84/ It nnbeds both DDL and DML statements of the

358

extended NF’ data model mto a high level progr ammmg language A
DDL/DML pre-compder IS under constructton which translates the

nnbedded NF’ statements mto subroutme calls These subroutme calls

fmally mvoke the AIM-II run&me system for execution

4. Implementation of NF* Tables

4 1 Storage Structures for NF* Objects

There are, of course, many tierent ways to store hlerarchlcally
structured objects Some of them, we&known smce more than a dec-

ade, are used m exlstmg database management systems

l IMS storage structures IMS provides four different storage

structures for hlerarch~al database oblects, known as HSAM,

HISAM, HDAM, and HIDAM /Da811
. CODASYL/DBTG storage structures Smce any herarchcal ob-

sect can be seen as a composition of (possibly many) 1 n re-

latlonshps, the nnplementatlon techmques for COSETs /Sch74/
can be used for NF2 objects as well Therefore, hsts, chams, and

pomter arrays together with additional optlons (attached/detached
where appropnate) are also can&dates for the nnplementatlon of

objects m NF’ tables

In Lone’s proposal “a complex object IS nnplemented as a senes of
tuples logically hnked together” /LP83, p 116/ The tuples are stored

as part of normal, flat tables with additional attnbutes not seen by the

user These attnbutes (entirely managed by the system) contam the
pomter values used for chauung between tuples mslde a complex ob-

ject Cluld, slblmg, father, and root pomters are used for that purpose
The mam advantage of this approach IS that rt can quite easdy be nn-

plemented on top of an exlstmg DBMS (m Lone’s case System R)
wtthout havmg to do major changes m that system (cf Sectlon 1)

In the AIM-II project we had the opportumty to budd a totally new
DBMS from scratch Therefore, much more emphasis could be put

on the infegratlon of complex object management mto deeper, more

appropriate layers of the system This was done m particular to gam

performance compared to an “on top” solution The followmg de-

mands mamly gmded our nnplementation of hlerarchcal objects
. Data clustenng should be supported on the complex object level

Smce a complex object IS often processed as a whole (for mstance

deleted, copled, or sent to a workstatIon) It IS rather nnportant

that all Its data are stored on a relatively small page set and not

dlstnbuted among too many database pages or even ddferent da-
tabase segments

. Data on the one hand and structural mformation (such as pomter

hsts) on the other hand should be separated If ths rule 1s stnctly
observed, “navigation” m a complex object (e g to retrieve a cer-

tam element of a list) can be done on the structural mformation

without havmg to access the data at all

l Fast processmg (msertlon, retneval, update, and deletion) should

not only be supported for complex objects as a whole but for ar-

bitrary parts of these objects as well It should not be necessary,
for mstance, to scan a complex object more or less entvely lfonly
one ~W.X of data m that oblect 1s needed for further processmg

by the user

Before gomg mto the detads of storage structure alternatives and es-

peclally explammg the nnplementatlon that we have chosen for

AIM-II, some more remarks on the terrmnology are necessary In the

extended NF* data model we would hke to dstmgulsh between

l (NF” or INF) tables (unordered tables + relations, ordered ta-

bles + h&s),

l (complex or flat) objecls,

l (NF’ or INF) subtables,

l (complex or flat) subobJects

If we look at Table 5 agam, these terms can be explamed by the fol-

lowmg examples

l DEPARTMENTS as a whole IS an NV table (or a relation smce

there IS no ordermg of tuples)
. Departments 314, 218, and 417 are complex objects (projects,

members, and equrpment mcluded)
l There are two subtables (subrelatlons) m each of these complex

objects PROJECTS, whch IS herarchlcally structured (NF’),

and EQUIP, whch IS flat (INF)
l The PROJECTS subtable (subrelation) m department 314 con-

tams two complex subobJects, projects 17 and 23 The EQUIP
subtable (subrelation) m department 314 contams three jlat sub-

objects, items 3278, PC/AT, and PC
l The MEMBERS subtable (subrelatlon) m project 17 contams

threeflat subobJects, employees 39582, 56019, and 69011

As mentioned above, an essentral demand for the nnplementatlon of

complex objects m AIM-II was to separate structural mformation
from data Therefore, we decided to unplement a so-called Mou DC

recfory (MD) for each complex object The Mltll IXrectory IS a tree
whch contams all the structural mfonnatlon of a complex object but
not its data The MD layout corresponds exactly to the luerarctical
structure of the complex object The MD IS composed of MD

subruples (nodes m the MD tree) which are lmked via pomters A
subtuple IS the basic storage umt, hke a tuple or a record m “trade-
tlonal” database systems Besides MD subtuples, we also need data

subtuples to store the data of a complex object In fact, all “first level”

atonuc attnbute values of a complex object/subobJect and all atonuc

attnbute values of a flat obJect/subobJect are stored m one data

subtuple (For example (cf Table 5) The data subtuple ‘314 56194

320,000’ contams all “first level” atonuc attnbute values of department
314 (+ complex object), and the data subtuple ‘17 CGA’ contams
all “first level” atonuc attnbute values of project 17 (-+ complex sub-
object) ‘39582 Leader’ and ‘2 3278 are also data subtuples (of flat

subobjects m MEMBERS and EQUIP, respectively)) Obviously, d
an object or subobject IS flat, it IS completely stored m one data

subtuple Hence, a flat (INF) table does not have Mnu Duectones for

its objects at all It 1s unportant to see that data subtuples do not

contam any structural mformatlon about the complex objects they

belong to

There are several alternatives (see SSI to SS3 m Fig 6) how to nn-

plement the Mnu Duectones for complex objects Common to all
these alternatives IS that they always use a “special” MD subtuple
(called root MD subtuple) as the root of the MD tree Bendes pomters,

It contams some addtlonal mformatlon (see below) about the complex
object as a whole For the other levels of the MD tree, one must come

to a declslon whether

1 to use MD subtuples both for subtables and for complex subob-
Jeers (-+ SSl, Fig 6a),

2 to use MD subtuples only for complex subobjects (-, SS2, Fig

6bh
3 to use MD subtuples only for subtables (4 SS3, Fig 6c)

Note, that we did not mention flat subobjects m this list Of course,

we need some structural mformation about flat subobjects, too (e g

them length), but tlus mfonnatlon can easdy be stored m the respective

data subtuples

In Fig 6, MD subtuples are drawn as rectangles whereas data
subtuples are ovals For our examples, we always use department 314

of Table 5

Fig 6a shows storage alternative SSI Besides the root MD subtuple,

there IS one MD subtuple per subtabte and one MD subtuple per

complex subobJect The “D” and %” values m the MD subtuples stand

359

for pomters, \nth “D” as a data pomter (MD subtuple -+ data
subtuple) and “C” as a chdd pomter (MD subtuple --t MD subtuple)
At the root level of tlus MD tree, there IS one “D” pomter refemng to
that data subtuple which contams all “fmt level” atonuc attnbute val-
ues of department 314 (DNO = 314, MGRNO = 56194,

BUDGET= 320,000), and there are two “C” pomters refernng to the
MD subtuples of subtables PROJECTS and EQUIP, respectively

“DCC” 1s the only entry m the root MD subtuple As a consequence,
the root MD subtuple IS of fixed length (regardmg the number of

pomters) as long as there are no structural changes m the NF2 table
(e g atIon of new non-atonuc attnbutes) The MD subtuples for

PROJECTS and EQUIP at the level below the root are of vanable
length They contam one pomter for each prolect and eqmpment, re-

spetively Clearly, the number of protects m a department as well as

the amount of equipment can change over tnne At the next lower

level of the MD tree, the MD subtuples are of fixed length agam (un-

der the above assumption concermng the absence of structural

changes) Fmslly, at the lowest level of the MD tree m Rg 6a, vanable

length MD subtuples represent the mstances of the MEMBERS sub-
table which 1s m fust normal form

Obviously, the layout of storage structure SSl 1s really symmefrrc,
smce neither subtables nor complex s&objects are preferred or d~s-

crmunated regardmg the allocation of MD subtuples One &sadvan-

tage m tis proposal IS, however, that It results m a comparatively

large Mim &rectory tree Hnth many small nodes %s IS because MD

subtuples for complex subobjects are usually short compared to MD

subtuples for subtables In real-world apphcatlons (m the CAD/CAM

area, for mstance), a complex object or subobJect wdl usually have lust
a few non-atomtc attnbutes (say up to 10) whereas a subtable may
conast of thousands of tuples In tlus case, MD subtuples of complex
s&objects wdl contam up to 10 pomters wtie MD subtuples of
subtables wdl contam up to several thousand pomters To avoid thts

drawback the two other storage structures shown m Fig 6, SS2 and

SS3, rntegrate fixed length and vanable length MD subtuples so that

all (short) fixed length MD subtuples (except the root MD subtuple
m the SS3 proposal, whch IS stall of fixed length, regardmg the number

of pomters) disappear

Figs 6b and 6c can now be mterpreted as follows
. In Fig 6b all (vanable length) MD subtuples which belong to

subtables (m Rg 6a) have been moved upward and mtegrated

mto the (formerly fixed length) MD subtuples of complex sub-

objects On the h&est level of the MD tree, this mtegratlon has

been done mto the root MD subtuple As a consequence, SS2
contams - besides the root MD subtuple - one (vanable length)

MD subtuple per complex subobject

l In Frg 6c all (fixed length) MD subtuples whch belong to com-
plex SubobJects (m Rg 6a) have been moved upward and mte-

grated mto the MD subtuples of subtables As a consequence,

SS3 contams - besides the root MD subtuple - one (vanable

length) MD subtuple per subtabIe

It IS quite easy to show that there are always more MD subtuples m

SS3 than m SS2 Therefore, an order SSl > SS3 > SS2 can be es-

tabhshed concernmg the number of MD subtuples required For the

selectton of an Implementation, however, It cannot be the only goal

Just to mm-e the number of nodes (MD subtuples) m the MD tree

smce other cntena hke storage space, access tune, etc have to be

consldered as well /DGWBS/ In AIM-II, storage structure SS3 has

been chosen for the nnplementatlon of complex objects smce It seems
to be a fauly good compronuse between SSl and SS2, not only con-

cermng the sze of the MD tree In the current state of the nnplemen-

tatlon of our system, however, It cannot be s;ud whether SS3 was

really the best choice under all possible cucumstances (see also

/Kue86/) For all three storage structures (SSl to SS3), the mtegratlon

of ordered subtables (fz&) can be done easdy Just by usmg the se-

quence of entnes m the MD subtuples to represent the sortmg order
m a hst

The reader should note now that our demands concemmg
. separation of structural mformatlon and data,
. support for fast processmg of arbitrary parts (subtables, subob-

]ects, etc) of a complex object

are fulfilled by all of our proposals The fmt demand mentioned at the

begmmng of this section (data chlermg on the complex oblect level),
however, has not been discussed yet ms vnll be done m the follow-

mg All what IS sad below does not only work m the context of stor-

age structure SS3 (chosen for AIM-II), but for the two other
alternatives (SS 1 and SS2) as well

Each complex object gets Its own local address space The local ad-
dress space of a complex object 1s represented by a page ZISC stored m

the root MD subtuple (not shown m Fig 6) Thts page hst contams
the page numbers of all pages where (data or MD) subtuples of the
complex object are currently stored Whenever new subtuples m a

complex object have to be stored (or exlstmg subtuples have to be

extended), the page hst m the root MD subtuple 1s scanned to find a

page urlth enough free space for the new data Only d tis search op-

eration fa& (not enough free space avadable m the local address

space), a page outside the complex object’s local address space IS used
to store the data, then, the number of the newly selected page IS added
to the page hst This strategy duectly supports data cfuttermg m a

complex object smce new data are usually stored m pages which al-

ready contam data of this complex oblect

The term “local address space” wdl become clearer when we look at

the nnplementatlon of “D” and “C” pomters Smce “D” and “C”

pomters need only be vahd mslde a complex ob&?.ct (localpomlers), it

1s qmte obvious to use the page hst m the root MD subtuple also for
addressmg purposes So-called Mmr TIDs are used as “D” and %”
pomters m our nnplementatlon tie the well-known TIDs /As76/,

Mnu TIDs consist of two parts a page number and a slot number In
a TID the page number IS mterpreted relatively to the begmmng of the
database segment so that arbitrary pages m that segment can be ad-

dressed However, ths IS not necessary for Muu TIDs m a complex

object The page number m a Mnu TID 1s always mterpreted rela-

twely to the begmnmg of the complex oblect’s Iocal address space

Thus, for an access via Mnu TID I 1 (I 1s the page number, J IS the slot
number) the local” page number I must be translated mto a “real”
(“global”) page number I’ This number IS taken from position I m the
page hst Subsequently, the respective data or MD subtuple can be

accessed via slot J m page I’ of the database segment

To keep the pomters m the Mnu -ones stable durmg DB proc-

essmg, exlstmg Mnu TIDs must not be changed when pages are added

to or removed from a complex object’s local address space When a
page number IS removed from the page hst, the “gap” m the hst caused

by the deletion IS not closed munedlately When a page number 1s

added to the page hst, ather a “gap” (created by a deletion) IS used or

- d there IS no “gap” - the page hst 1s extended at its end Due to this

strategy, other page numbers do not change their posrtron m the page

hst and exlstmg Muu TIDs are not affected at all

Addressmg via Mm! TIDs mstead of TlDs has two advantages

l First, Muu TIDs can be somewhat smaller than TIDs Ths saves

storage space m the Mnu Duectoty and thus speeds up complex

object processmg (“navigation” m the MD tree, etc)

l When a complex oblect has to be moved to another place m the
database or sent to a workstation (checked-out), ths can easdy

be done at the page level, 1 e urlthout havmg to look at the

subtuples mdlvldually No changes are reqmred for “D” and “C”

360

pomters smce Mm TIDs refer to positIons m the page hst and
not m the database segment As a consequence, only the page hst

must be updated to reflect the complex object’s new page set

4 2 Access Paths for NF2 Objects

Obviously, query optmuzatton and access path selectton for NF’ tables
IS wnslderably more complex than for INF tables /Se79, JK84,
OHES/
l Large. herarchcal objects have to be processed mstead of small

flat ones

l Non-tnwal operations have to be performed to transform flat
objects mto luerarc~cal ones and vice versa, to evaluate EXISTS
and ALL clauses m query statements, etc (cf Se&on 3)

l Joms between d&rent levels m dflerent NF2 tables have to be
handled properly (cf Se&on 3, too)

Altogether, the mcreased complexity comes from the fact that the ex-
tended NF’ data model and rts query language are far more powerful

than “tr&tional” relational data models and query languages In thrs
paper we wdl not discuss query optumzatlon and access path selection

for NF’ tables Instead, we want to show the effects of ddlerent kmds
of address injkmatton on query opttrmzatlon

Conceptually, an mdex entry 1s an ordered pau <key, address hst >
where the components of the address hst (addrl, , addr) refer to

those oblects which contam the ?cey’ as an attnbute value In System

R, for mstance, addresses are sunply TIDs, 1 e the structure of an m-

&x entry 1s <key, TIDI, , TID, > - In the followmg, we refer

agam to Table 5 and Fig 6c (storage structure SS3) Let us assume

that an mdex for FUNCTION IS reqmred The question 1s how ad-

dnxses addrl m this mdex should really look hke

A first approach could be to use TIDs of data subtuples as addresses

addr, m the mdex Then, addresses m the mdex for FUNCTION are

TIDs of data subtuples 10. the MEMBERS subtable As an example,

one mdex entry IS < ‘Consultant’, TID of data subtuple ‘56019 Con-

sultant’, TID of data subtuple ‘89921 Consultant’, TID of data

subtuple ‘44512 Consultant’> For an assessment of tlus approach,

let us look at the followmg query

SELECT x DNO
FROM x IN DEPARTMENTS
WHERE EXISTS y IN x PROJECTS

EXISTS z IN y MEMBERS z FUNCTION = Consulronr

Tlus query retneves the department numbers of all departments with

at least one consultant (two EXISTS clauses are needed smce MEM-

BERS 1s a subtable of PROJECI’S, and PROJECTS m turn IS a

subtable of DEPARTMENTS) For Table 5, the final result contams

DNOs 314 and 218 Usmg the mdex for FUNCTION and ‘Consult-

ant’ as a key value, the TIDs of the data subtuples ‘56019 Consultant’,

‘89921 Consultant’, and ‘44512 Consultant’ can be retneved With

these addresses of data subtuples, however, access to the respectwe

department numbers (314 and 218) cannot be done smce - accordmg

to Section 4 1 - there 1s no structural mformatlon about the MD tree

(root pomters, father pomters, etc) m the data subtuples Neverthe-

less, would It really solve our problems If we had these pomters m the

data subtuples? - Usually, there IS more than one consultant m a

department (cf department 218 m Table 5) Via the mdex for

FUNCTION, one TID for each consultant can be retneved From
those TIDs It cannot be seen, however, whether they refer to data

subtuples ’ Consultant’ m the same department or m dflerent ones

Therefore, some complex objects of the DEPARTMENTS table (de-

partment 218 m Table 5) have to be (unnecessardy) accessed more

than once durmg query execution only to fmd out that their DNO IS

already known This shows that the straightforward idea of havmg

TIDs of data subtuples as addresses addr, m mdexes IS not really suf-

fiaent for query optumzatlon

Another approach for address unplementatlon could be to store TIDs
of root MD subtuples (mstead of TIDs of data subtuples) as addresses
ad4 m the mdexes %s, at least, IS an appropnate solution for the
above query
. Startmg from the mot MD subtuple of a complex object m the

DEPARTMENTS table, the department number DNO can be
retneved easdy

l It can be seen from the addresses m the mdex that department 218

IS referenced tHrlce Therefore, multlple access to the same com-
plex object can be avolded

The followmg query, however, shows that tis kmd of address mfor-
mation 1s not always sufliaent

SELECT y PNO
FROM x IN DEPARTMENTS, y IN x PROJECTS
WHERE EXISTS y IN x PROJECTS

EXISTS .z INy MEMBERS z FUNCTION=‘Consultant

This query retneves the project numbers (not the department num-
bers’) of all prolects wth at least one consultant (PNOs 17 and 25 m

Table 5) From a pomter to the root MD subtuple of department 314

(1 e a TID m the mdex for FUNCTION), for mstance, it cannot be
seen whether a consultant IS workmg m project 17 or m pmject 23
Therefore, all prolects of thts department have to be scanned to find
the r&t one (project 17)

In real-world apphcations complex objects are usuaJly large, and scans
m those objects to retneve certam data should be avolded whenever

possible Therefore, addresses m mdexes should contam enough m-

formation to locate a certam ptece of data dzrectly

From the above observations tt can be concluded that kerarchcal

addresses are needed, smce neither data subtuple addressmg (fust ap-
proach) nor root MD subtuple addressmg (second approach) alone IS
really sufflaent Therefore, an address ad4 m an mdex must represent

the path from a root MD subtuple down to a data subtuple, m our
case (mdex for FUNCTION) from the root MD subtuple of a com-

plex object m the DEPARTMENTS table down to a data subtuple

m the MEMBERS subtable - The above statement about ~erarch.tcal

addresses 1s stdl a bit “fuzzy” smce It doesn’t say how these addresses

should really look hke Agam, we fast want to show that a stra&-

forward unplementatlon of hterarchcal addresses does not help

Let us assume now that we have mdexes for FUNCTION and for
PNO m the DEPARTMENTS table (Table 5) As an example we

look at the followmg query

SELECT x DNO
FROM x IN DEPARTMENTS
WHERE EXISTS y IN x PROJECTS

y PNO= 17 AND
EXISTS z IN y MEMBERS z FUNCTION= Cortsdtant’

Compared to the frst query mentloned above, there IS now an addi-

tlonal restnctlon for the project number (PNO = 17) Fig 7a shows
storage structure SS3 for department 314 (cf Fig fit) P= Pl P2 P3
shall be a herarchcal address for PNO = 17, F = F 1 F2 F3 F4 a hl-

erarchlcal address for FUNCTION = ‘Consultant’ Each of these ad-

dresses represents a path from the root MD subtuple down to a data
subtuple Although we have mdexes for both PNO and FUNCTION,
it can stdl not be seen from the index mformatron that P and F refer

to the same project Obviously they do smce there IS a consultant m
prolect 17 of department 314 Unfortunately, the fact that P2 and F2
are equal does not help at all smce these pomters refer to an MD
subtuple of a subtable (PROJECTS) and not to an MD subtuple of

361

a complex subobject (m fact, such an MD subtuple does not exist m

storage structure SS3 - see Section 4 1) Wtth this kmd of mdex m-

formatlon there are two reasonable ways for query execution

l The mdex for PNO IS used to find all prolects wth prolect num-

ber 17 (m our example this IS Just one project but m general more

than one wdl be found smce project numbers need not necessardy

be. umque) In each of these projects the MEMBERS subtable IS
scanned to check whether there 1s a consultant or not

l The mdex for FUNCTION IS used to find all consultants For

each consultant It IS checked whether he/she works m a project

with project number 17 or not

In both cases, the mdex mformatlon can only be used to determme a

superset of the fmal result set, and this superset must be scanned to

filter out those tuples which are not m the final result set It would be

much better here, of course, d one could determme the fmal result set

drrectly from the Index rnformatron wtthout havmg to scan the data

Rg 7b shows once agam SS3 for department 314, now with a new

lmplementatlon of hterarclucal addresses The fast part of a hlerarchl-

cal address refers to a root MD subtuple (as usual) The rest, however,

refers to dufa subtuples on a path from this root MD subtuple down

to a certam data subtuple /Kue86/

The above query can now be executed wthout havmg to scan an

mtermemate result set From P2 = F2 tt can already be seen that P and

F refer to the same project so that department 314 must be m the final

result set

Generally speakmg (cf /BMIS, Kue86/), the followmg rules must be

observed m the unplementatlon of mdexes for NF2 tables

1 Indexes must contam hrerarchrcal addresses

2 Address components must ldentlfy complex subobjects (repres-

ented by data subtuples, m our proposal), not subtables

In AIM-II, the fast component of an address (e g Pl and Fl m Rg

7b) IS always a TID whereas all other components are Mmt TIDs

4 3 On the Implementation of Tuple Names
Sometnnes system supported references across tables are very useful

to either express dependencies between data items or to allow what

we call “subtuple or data sharmg” between dflerent luerarctical struc-

tures In other cases It may be necessary to commumcate references
to database objects to appbcatlon programs for later duect access To

support such reqmrements as well, we have extended the NF” data

model agam to support - m addition to user defmed (foreign) keys -

also system generated keys, called tupZe names Tuple names are not

yet unplemented m the current version of the AIM-II prototype but,

as they are part of our data model and language defmtlon, we mtend

to start their unplementatlon m the very near future In the foflowmg

we want to summanze some ideas how thts tmplementatlon IS

planned

The tmplementatlon of tuple names (shortly t-names) wdl be very

surnlar to the nnplementatlon of addresses m mdex entnes (shortly i-
addresses), I e ~erarchtcal addresses wdl also be used for that purpose

There are at least two reasons for this declnon

l Handlmg of t-addresses and t-names can be done by the same

system routmes
l Query optunuatlon techmques can be apphed, especaally when a

large set of t-names has to be processed at a time

It Hrlll be shown below, however, that there 1s a (mmor) ddference

between t-names and I-addresses

As explamed m the previous section, each t-address refers to a daru

subtuple, I e It represents a path from the root MD subtuple of a

complex object down to that data subtuple Therefore, a t-name for a
flat suboblecf looks exactly bke an l-address for an attnbute value m
that subobject T= Tl T2 T3 m Fig 8, for mstance, IS the t-name for
the (flat) ‘56019 Consultant’ tuple m the MEMBERS subtable of
protect 17 (cf F= Fl F2 F3 m Fig 7b) The t-name for a complex
object as a whole 1s snnply the address of the root MD subtuple of that

oblect In Fig 8, U is the t-name for department 314 as a whole

Another question IS how to unplement t-names for complex

SubobJects, e g for project 17 m department 314 We plan to use the
data subtuple which contams all %st level” atonuc attnbute values (cf

Section 4 1) of a complex subobject for representmg the complex
subobject as a whole In Fig 8, tlus means that the ‘17 CGA’ data

subtuple represents project 17, and V= Vl V2 IS the t-name for that
complex subobject (A shghtly moddied Implementation is needed for

complex subobjects mthout atonuc attnbute values /Kue86/)

Tdl now, only the unplementatlon of t-names for (complex)

objects/subobJects has been explamed We also want to have t-names,
however, for subtables Each subtable corresponds to a MD subtuple

which can be used for addressmg purposes Therefore, the t-name for
the PROJECTS subtable m Fig 8 IS W = W 1 W2, and X = X 1 X2 X3

IS the t-name for the MEMBERS subtable m project 17 Obviously,

these %peaalx t-names are not allowed as t-addresses so that there IS

a tierence between l-addresses and t-names

5 Conclusions, Outlook, and Future Plans
The extended NF’ data model as outlmed m this paper 1s able to m-
tegrate flat and hlerarch& tables (tables contammg *complex ob-
jects”) m a natural way By domg so, herarctical tables are an integral
part of the data model and riced not be treated as “spenal anunalsx
As a consequence, all operations on flat (INF) tables hke msert, re

tneve, update, and delete are apphcable to luerarchcal (NF’) tables

as well The same holds for projtions and selections We have
shown how a powerful SQL-hke htgh level query language can be used

for retneval purposes Smce our data model IS not bound to the em-
plementation of hlerarc~cal structures as described m Section 4, it

could, m prmclple, also be mapped onto an IMS-l&e system Hence,

the extended NF’ data model could also serve as a possible mtgration
path for both relatronal and hterarchrcal databases to JOUI m a common

data model

We mtentlonally concentrated on the most unportant features of our

data model and rts unplementatton Thus, we completely neglected the

text support provided m our system which - optionally based on a text

index - supports masked search operattons m a qmte powerful way

For mstance, to look for all reports (REPNO, AUTHORS, TITLE)
m Table 6 which are co-authored by ‘Jones” and whtch have words

hke %omputatlonal”, “numcomputer”, %omputer”, etc m the title, the

followmg query can be posed (and wdl be supported by the text mdex

m case that one has been created on TITLE)

SELECT x REPNO, x AUTHORS, x TITLE
FROM x IN REPORTS
WHERE x TITLE CONTAINS ‘*compw*’

AND EXISTS y IN x AUTHORS y NAME - Jones

More detds on this text mdexmg techmque can be found m /Sch78,

KSW79, KW81/ Mamtenance and concurrency control related issues
are discussed m /DPS82, DPS83, DLPS85/

Another very important feature of our system is the mtegrated

temporal support, also called 11me version srqport In fact, we have put

a lot of emphasis on performance issues, storage space requuwnents,

and related toprcs commg along wth denvmg and mamtammg Astor-

362

lcal data as an mtegral - but opt1ona.l - part of a DBMS (see /DLW84,
LAM/) Currently we are able to support ASOF (As-of) qtwtes where
one wants to see a (complex or INF) table or subtable as It looked l&e
at a fixed pomt m tune m the past If Table 5 had been declared as a
“vemoned table”, the followmg query would dehver all protects whd
department 314 has had on January lSth, 1984

SELECT y PNO y PNAME
FROM x IN DEPARTMENTS ASOF Jamary l&h 1984,

y IN x PROJECTS
WHERE x DNO = 314

Cunently we have completed a fmt version of the DBMS prototype
A descnption of Its archttecture can be found m /Lu85/ It completely

supports the extended NF’ data model That IS, one can msert, re-
tneve, update, and delete complex tuples ather as a whole or only
parts of them In &tion, all kmds of JOIIIS between NF* tables ate
possible Also text support has become an mtegral part of the DBMS
Hutory data support IS av&able but restncted to the above-mentloned
ASOF quenes Walk-thmugh-time’ quenes which work on tune m-
tervals are supported at lower system levels (subtuple manager) but
have not been brought up to the language mterfacc The reaSOn for
thm IS that there IS stdl some ongomg research on how to support
walk-through-tune quenes on luerarches m the best way (We wdl
report on Uus m a separate paper /B186/) The current prototype w
stdl a smgle-user system although d has been deslgned as a multi-user
DBMS One reason 1s that we fmt concentrated on gcttmg a stable
smgle-user version and on leammg about ds apphcabhty and mherent
performance issues Another reason IS that we are stdl mvestlgatmg
advanced concurrency control and update processmg techmques (see
e g /DLPSES/) and we want to fresh this fast before decldmg whch
tf&mque to use m our system

Currently we are workmg to make the prototype more complete by
addmg mmsmg fimctlons and by “streamhnmg” It where necessary The
prototype wdl be extenswely used m a collaboration with partners at
the Umverslty of Karlsruhe, West Germany, to explore abstract data
type concepts m a robotics apphcatlon arca This wdl also mclude the
issue of extenstble DBMS Further research issues for the near future
wdl be symbobc query transformation and opt-tion, workstation
support, access path .&&on, and handlmg of schema changes

Acknowledgements
We wish to thank H -J Schek (now Tech Umverslty of Darmstadt)
who uutited and led thrs project (AIM-I) untd the end of 1982 and
who IS the ongmator of the NF2 data model We also want to thank
B Hansen, M Hansen, H -D Werner, and J Woodfdl who, as vlslt-
mg sclentlsts, contnbuted to the development of the AIM-II proto-
type Thanks are also due to U Deppnch, R Ha&m, R Lone, V
Obermelt, and K Shoens for helpful dlscusstons on the design and
unplementatton of our system Last but not least we want to thank
our management, es-y A Blaser, for their support of our work

References
As76

IN86

BM85

Astrahan, M M et al System R Relational Approach to
Database Management ACM Tram on Database Sys-
tems, Vol 1, No 2, June 1976, pp 97-137
Blanken, H et al Storage Structures and Query Ilandhng
for Tune Verstons m an Advanced Information Manage-
ment System (m preparation)
Btiels, R , Moeller, J Entwurf und Implementierung
emer regelbaslerenden Planungskomponente fuer dte
Optlrmerung von Datenbankanfragen m emer
SEQUELartlgen Sprache (Design and Implementation of
a Rule-Based Planmng Component for the Optmuzation
of SEQUEL-tie Database Queries) Master’s Thesis,

Ch76

Da81

DGW85

DLPS85

DLW84

DPS82

DPS83

HLS2

HR83

IBM1

IBM2

IBM3

IBM4

Jae85a

Ja&%

JK84

JS82

Ka85

KSW79

Tech Umverslty of Darmstadt and IBM Heldelbcrg Scl-
entfic Center, Nov 1985 (m German)
Chamberlm, D D et al SEQUEL 2 A Utied Approach
to Data Dcfimtlon, Mampulatlon, and Control IBM
Journal of Research and Development, Vol 20, No 6,
1976, pp 560-575
Date, C J An Introduction to Database Systems (3rd ed)
A-n-Wesley Pub1 Camp, Rcadmg, Mass, March
1981
Deppmh, u, Guenauer, J , Walch, G
Spe~cherungsstrukturcn und Adress~ngstechmkcn fuer
komplexe Oblekte des NF’-Relatlonenmodells (Storage
Structures and Addressmg Techmques for Complex Ob-
JeCtS of the NF* Data Model) Proc Conf
“Datenbanksvsteme fuc~ Buero, Techmk und
W-s&aft’ (A Blase;: P Rstor, eds), Karlsruhe, West
Germany, March 1985, Informat&-Fachbenchte 94,
Spnnger-Verlag, Berhn He&lberg New York Tokyo, pp
441-459 (m German)
Dadam, P , Lum, V , Praedel, U , Schlageter, G Selectwe
Deferred Index Mamtenance and Concurrency Control m
Integrated Information Systems Proc VLDB 85,
Stockholm, Sept 1985, pp 142-150
Dadam, P , Lum, V , Werner, H -D Integration of Tune
Versions mto a RelatIonal Database System Proc VLDB
84, Smgapore, Aug 1984, pp 509-522
Dadam, P, Rstor, P , Schek, H-J P&t-Sperren
rmttels Textfragmenten (Predicate L.ockmg Based on Text
Fragments) Proc 12 GI-Jahrestagung (J Nehmer, ed),
Kaserslautem, West Germany, Ott 1982, Informatlk-
Fachbenchte 57, Sprmger-Verlag, Berhn Hadelberg, New
York Tokyo, pp 648-668 (m German)
Dadam, P , Pastor, P , Schek, H -J A P&&e Onented
Lockmg Approach for Integrated Information Systems
Pmc IFIP Congress, Pans, France, Sept 1983, pp
763-768
Ha&n, R L , Lone, R A On Extendmg the Functions
of a Relational Database System Proc SIGMOD 82,
Orlando, Florida, June 1982, pp 207-212
Haerder, T , Reuter, A Database Systems for Non-
Standard Apphcations Proc Int Computmg Sympoaum
(H.J Schnetder, ed), Erlangen, West Germany, March
1983, Teubner-Verlag, Stuttgart, pp 452-466
SQL/Data System, Concepts and F&ties IBM Corp ,
GH24-5013
IBM Systems Journal (Special Issue on DBZ), Vol 23,
No 2, 1984
IBM Systems Journal (Special Issue on IMS), Vol 16,
No 2, 1977
Query-by-Example, Termmal User’s Gmde, IBM Corp ,
SH2tiZd78 -
Jaeschke, G Nonrecursive Algebra for Relations with
Relation Valued Attnbutes Techmcal Report TR
85 03 001, IBM Sclentlfic Center, Heidelberg, West
Germany, March 1985
Jaeschke, G Recursive Algebra for Relations Hrlth Re-
lation Valued Attnbutes Techmcal Report TR 85 03 002,
IBM Snentlfic Center, Heidelberg, West Germany, March
1985
Jarke, M, Koch, J Query Optmuzatlon m Database
Systems ACM Computmg Surveys, Vol 16, No 2, June
1984, pp 111-152
Jaeschke, G, Schek, H-J Remarks on the Algebra of
Non Fust Normal Form Relations Proc ACM
SIGACT-SIGMOD Symp on Pnnclples of Data Base.
Systems, Los Angeles, Cal, March 1982, pp 124-138
Katz, R H Informatton Management for Engmeenng
Design Sprmger-Verlag, Berlm Heidelberg New York
Tokyo, 1985
Kropp, D , Schek, H -J , Walch, G Text Field Indexmg
Proc Meetmg of the German Chapter of the ACM on

363

KW8l

L&2

La84

LP83

Lu84

Lu85

PA86

PHH83

PT85

SdI74

seh78

seh85

se79

sh84

SLTC82

Data Base Technology (J Nledere&holz, ed), Bad
Nauheun, West Germany, Sept 1979, Teubner-Verlag,
stuttgalt, pp 101-115
Kuespert, K et al Storage Structures and Addressmg
Concepts for Complex Objects of the NF’ Data Mode1 (m
preparation)
Kropp, D , Walch, G A Graph Structured Text Field
Index Based on Word Fragments Information Processmg
and Management, Vol 17, No 6, 1981, pp 363-376
Lone, R A Issues m Databases for Desqn Appbcatlons
Fde Structures and Databases for CAD (J Encamacao,
F L Krause, eds 1, North-Holland Pub1 Como . 1982
Lone, R A et al ‘. User Interfaces and Access *Tkchmques
for Engmeenng Databases Research Report RJ4155, IBM
Research Lab, San Jose, Cal, Jan 1984
Lone, R A, Plouffe, W Complex Objects and Their Use
m Design Transactions Proc Annual Meetmg - Database
Week Engmeermg Design Appbcations (IEEE), San Jose,
Cal, May 1983, pp 115-121
Lum, V et al Deslgnmg DBMS Support for the
Temporal Dunenslon Proc SIGMOD 84, Boston, Mass,
June 1984, pp 115-130
Lum, V et al Desqq of an Integrated DBMS to Support
Advanced Appbcations Proc Int Conf on Foundations
of Data Orgamzat~on (Invited Talk), Kyoto, Japan, May
1985, pp 21-31 (a very smular version of this paper has
also been pubhshed m Proc Conf “Datenbanksysteme
fuer Buero, Techmk und Wlssenschaft” (A Blaser, P
Rstor, eds), Karlsruhe, West Germany, March 1985,
Informati-Fachbenchte 94, Sprmger-Verlag, Berlm
Hadelberg New York Tokyo, pp 362-381)
Ott, N , Horlaender, K Removmg Redundant Jom Op-
erations m Quenes Involvmg Views Information Systems,
Vol 10, No 3, 1985, pp 279-288
Pastor, P , Andersen, F Prmclples for Deslgmng a Gen-
erahzed NF’ Data Model Hrlth an SQL-type Language
Interface IBM Saentlfic Center, Heidelberg, West
Germany, Jan 1986 (subnutted for pubbcatlon)
Pastor, P, Hansen, B, Hansen, M Eme sequeltine
Sprachschmttstelle fuer das NF’-Modell (A SEQUEL-l&e
Interface for the NF2 Model) Proc 13 GI-Jahrestaaunn.
Sprachen Faber Datenb&en (J W Schnudt, y$y;
Hamburg, West Germany, Ott 1983, Informat&-
Fachbenchte 72, Sprmger-Verlag, Berhn Heidelberg New
York Tokyo, pp 134-147 (m German)
Rstor, P , Traunmueller, R A Data Base Language for
Sets, Lrsts, and Tables Techmcal Report TR 85 10 004,
IBM Scientific Center, Heidelberg, West Germany, Ott
1985
Schenk, H Implementational Aspects of the CODASYL
DBTG Proposal Proc IFIP Workmg Conf on Data
Base Management (J W Khmble, K L Koffeman, eds),
Cargese, Italy, Aprd 1974, North-Holland Pub1 Comp ,
pp 399-411
Schek, H-J The Reference Strmg Indexmg Method
Proc Information Systems Methodology (G Bra&u,

P C Lockemann, eds), Vemce, Italy, 1978, Lecture Notes
m Computer Snence 65, Sprmger-Verlag, Berlm
Heidelberg New York Tokyo, pp 432-459
Schek, H-J Towards a Basic Relational NFZ Algebra
Processor Proc Int Conf on Foundations of Data Or-
gamzatlon, Kyoto, Japan, May 1985
Sehnger, P et al Access Path Selection m a Relational
Database Management System Proc SIGMOD 79,
Boston, Mass, May 1979, pp 23-34
Shu, N C A Forms-Onented and Visual-Dmzted Apph-
cation Development System for Non-Programmers Proc
IEEE Workshop on Visual Languages, Hlroshuna, Japan,
Dee 1984,~~ 162-170
Shu, N C , Lum, V Y , Tung, F C , Chang, C L Speclfi-
cation of Forms Processmg and Busmess Procedures for

SP82

Office Automation IEEE Tram on Software Eng , Vol
SE-8, No 5, Sept 1982, pp 499-512
Schek, H -J , Pastor, P Data Structures for an Integrated
Data Base Management and Information Retnevd Sys-
tem Proc VLDB 82. Mextco Cltv. Scot 1982. DO

SS81

ss86

St76

2177

-. _ -.
197-207
Schkolmck, M , Sorenson, P The Effects of Denormal-
nz&on on Database Performance Research Report
RJ3082, IBM Research Lab, San Jose, Cal, March 1981
Schek, H -J , Scholl, M An Algebra for the Relational
Model urlth Relation-Valued Attnbutes To appear m
Information Systems, Vol 11, No 2, 1986 (also avadable
as Techmcal Report DVSI-1984-Tl, Tech Umverstty of
Darmstadt, West Germany)
Stonebraker, M et al The Deqn and Implementation
of INGRES ACM Tram on Database Systems, Vol 1,
No 3, Sept 1976, pp 189-222
Zloof, M M Query-by-Example A Data Base Language
IBM Systems Journal, Vol 16, No 4, 1977, pp 324-343

364

Ta
bl

e
1

D
E

P
A

R
TM

E
N

TS

IN
FT

ab
lo

Ta
bl

e
2

P
R

O
JE

C
TS

-IN
F

Ta
bl

e

f
D

E
P

A
R

TM
E

N
TS

I

-I-

fG
R

N
0

56
19

4

71
34

9

91
09

3

I
E

Q

- Q
U

 I

-

2 3 1

-

2 2 1 1

-

I I I 2 1 1

-!

32
78

P

C
/A

T
P

C

32
70

P

C
/A

T
31

79

P
C

/G
A

43
61

P
C

/X
T

P
C

/A
T

32
78

32

70

31
79

P

C
/G

A

L
I

P
R

O
JE

C
T

S

) M
B

E
R

S

I
P

N
A

M
E

IM

I

E
M

P
N

O

--
-I

=

C
G

A

39
S

82

56
01

9

I P
N

O

I’ +

- D
N

C

-

31
4

31
4

31
4

31
4

31
4

31
4

- 21
0

- 41
7

17

<

32
O

C
C

O

69
01

1

H
P

A
R

58

91
2

--
I-

- 90
01

1
78

21
8

98
90

2

M
E

M
B

E
R

S

IN
F

D
N

O

P
N

G

E
M

P
N

O

F”
N

C
T,

O
N

31
4

17

39
58

2
Le

ad
er

31

4
17

56

01
9

C
aU

U
ltW

A

31
4

17

69
01

1
--Y

31

4
23

58

91
2

S
ta

ff
31

4
23

90

01
1

Le
ad

er

31
4

23

78
21

8
S

ec
re

ta
ry

31

4
23

98

90
2

st
ar

1
21

8
25

72

22
7

S
ta

ff
21

8
25

89

21
1

S
ta

ff
21

8
25

92

10
0

Le
ad

er

21
8

25

89
92

1
C

0M
dt

an
t

21
8

25

99
02

5
S

ec
re

ta
ry

21

8
25

44

51
2

C
O

M
dt

al
lt

41
7

37

87
71

0
--

ry

41
7

37

81
19

3
Le

ad
er

4*

7
37

75

91
3

S
ta

ff
41

7
37

96

ca

S
U

ff

Ta
bl

e
3

M
E

M
B

E
R

S

,N
F

T.
b,

e

25

21
8

LE
X

I
72

22
1

89
21

1
92

10
0

89
92

1
99

02
5

44
51

2

71
34

9
25

LE

X
f

92
10

0
Le

ad
er

91
09

3
37

N

D
f3

.5

96
00

1
S

W
.1

1
41

7
- Ta

bl
e

7
R

au
ll

Ta
bl

e
of

 E
xa

m
pl

o
4

(’
U

nn
a

*
O

pr
at

vm
)

E
M

P
LO

Y
E

E
S

-IN
F

E
M

P
N

O

LN
A

M
B

FN

A
M

E

S
E

X

56
19

4
S

ch
m

id
t

H
LV

S
l

m
ak

39

58
2

M
ud

ls
r

K
la

ur

m
lk

se

x9

by
cr

R

ol
f

m
al

e
69

01
 I

M

M

A
nd

m
a

fe
m

al
e

96
00

1
P

au
ls

m

H
el

p
fs

m
al

e

Ta
bl

e
8

E
xa

m
pk

of

 a
 T

ab
le

m

 F
nr

st
 N

or
m

al

Fo
rm

(IN

F
Ta

bl
e)

Ta
bl

e
5

E
xa

m
pl

e
of

 a
n

N
F2

Ta

bl
e

K
E

Y
W

O
R

D

02
92

P

m
A

Ta

ck
er

J

B
ra

nc
h

m
xd

 B
ou

nd

Ta
bl

e
6

U
no

rd
er

ed

N
F2

Ta

bl
e

R
E

P
O

R
T

S

w
th

3

O
rd

er
ed

“ln

no
r

T&
lw

(L

N
)

A
U

TH
O

R
S

Ta
bl

e
4

E
Q

U
IP

-1
N

F
T

ab
fe

D
E

P
A

R
TM

E
N

TS

D
N

O

M
G

R
N

O

B
U

D
G

E
T

I

I
P

R
O

JE
C

T
S

I

E
Q

U
IP

P
N

O

P
N

A
M

E

Q
U

1

TY
P

E

M
E

M
B

E
R

S

E
M

P
N

O

FU
N

C
TI

O
N

F
ig

l

D
E

P
A

R
TM

E
N

TS

H
m

ar
ch

y
I”

IM

S
-L

tk
e

R
q,

re
rc

n,
at

,o
n

S
E

LE
C

T

x
D

N
O

x

M
G

R
N

O

P
R

O
JE

C
T

S

=
(S

E
LE

C
T

y

P
N

O

y
P

N
A

M
E

M

E
M

B
E

R
S

=

(S
E

LE
C

T

zE
M

P
N

0
I

FU
N

C
TI

O
N

FR

O
M

z

IN

y
M

E
M

B
E

R
S

)
FR

O
M

y

IN

x
I’R

O
JE

C
T

S

)
x

B
U

D
G

E
T

E
O

U
lP

=

(S
E

LE
C

T

v
O

U

Y
 T

Y
P

E

FR
O

M

v
IN

x

E
Q

U
IP

)
FR

O
M

x

IN

D
E

P
A

R
TM

E
N

TS

R
g

2
C

m
st

ru
ct

m
g

T
sb

k
5

fr
om

Ta

bl
e

5

S
E

LE
C

T

x
D

N
O

x

M
G

R
N

O

P
R

O
JE

C
T

S

=
(S

E
LE

C
T

yP

N
0

y
P

N
A

M
E

M

E
M

B
E

R
S

=

(S
E

LE
C

T

zE
M

P
N

0
z

FU
N

C
TI

O
N

FR

O
M

,.

IN

M
E

M
B

E
R

S

IN
F

W
H

E
R

E

z
P

N
O

=

y
P

N
O

A

N
D

z

D
N

O

=
y

D
N

O

)
FR

O
M

y

IN

P
R

O
JE

C
T

S

IN
F

W
H

E
R

E

y
D

N
O

=

x
D

N
O

)
x

B
U

D
G

E
T

E
Q

U
IP

=

(S
E

LE
C

T

v
Q

U

“T
Y

P
E

FR

O
M

Y

IN

E

Q
U

IP

IN
F

W
H

E
R

E

vD
N

0
=

xD
N

0

1
FR

O
M

x

IN

D
E

P
A

R
TM

E
N

TS

IN
F

S
E

LE
C

T

xD
N

0
x

M
G

R
N

O

E
M

P
LO

Y
E

E
S

=

(S
E

LE
C

T

z
E

M
P

N
O

u
LN

A
M

E

u
FN

A
M

E

”
S

E
X

z

FU
N

C
TI

O
N

FR

O
M

t

IN

xP
R

O
,E

C
lS

F
,(I

4

E
xs

m
pl

c
,o

r
a

Jo
,”

(b
et

w
ee

n
M

E
M

B
E

R
S

(m

D

E
P

A
R

TM
E

N
TS

)
m

d
E

M
P

LO
Y

E
E

S
IN

F)

S
E

LE
C

T

x
D

N
O

y

LN
A

M
E

y

FN
A

M
E

y
S

E
X

E

M
P

LO
Y

E
E

S

=
(S

E
LE

C
T

rE

M
P

N
0

u
LN

A
M

E

Y
 F

N
A

M
E

u
S

E
X

z

FU
N

C
Tl

O
N

FR

O
M

t

IN

x
F

R
O

JE
C

T
S

z

IN

t
M

E
M

B
E

R
S

Y
 I

N

E
M

P
LO

Y
E

E
S

IN

F
W

H
E

R
E

I

E
M

P
N

O

=
u

E
M

P
N

O

1
FR

O
M

x

IN

D
E

P
A

R
TM

E
N

TS

y
IN

E

M
P

LO
Y

E
E

S

IN
F

W
H

E
R

E

x
M

G
R

N
O

=

y
E

M
P

N
O

F
ig

5

Q
ue

ry

w
tth

Tw

o
Ja

m

