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A DC PIECEWISE AFFINE MODEL AND A BUNDLING

TECHNIQUE IN NONCONVEX NONSMOOTH MINIMIZATION

A. FUDULI∗, M. GAUDIOSO§ , AND G. GIALLOMBARDO§

Abstract. We introduce an algorithm to minimize a function of several variables with no
convexity nor smoothness assumptions.
The main peculiarity of our approach is the use of an the objective function model which is the
difference of two piecewise affine convex functions.
Bundling and trust region concepts are embedded into the algorithm.
Convergence of the algorithm to a stationary point is proved.

Key words. Nonsmooth optimization, cutting planes, bundle methods, DC functions.
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1. Introduction. The methods currently available to find the unconstrained
minima of nonconvex and not necessarily smooth functions appear in general to be an
adaptation of methods originally designed for dealing with the corresponding convex
problem.

Among such methods we mention here those due to Kiwiel, Makëla and Neit-
taanmäki, Schramm and Zowe [6, 7, 10].

They, according to the terminology used by Schramm and Zowe, combine the
bundling idea, due to Lemarechal, and the trust region approach. Bundling is in turn
derived from cutting plane approximation, where a piecewise affine approximation
(the model) of the objective function is minimized in order to obtain an approximate
solution to the original minimization problem. The quality of the model is improved
at each iteration and this is the key argument to guarantee convergence.

The model is defined as the pointwise maximum of a set of affine functions. The
original function, if convex, is interpolated by the model at a set of points, which is
constituted by at least one point, normally the best one available, which we will refer
to as to the stability center.

If the function to be minimized is nonconvex, the interpolation property of the
model can be lost. Thus in [6, 7, 10], in order to keep on working with a model
defined as the pointwise maximum of affine functions, some of the affine pieces are
vertically translated, whenever necessary, in order to retain interpolation at least at
the stability center.
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In [4] a different approach has been introduced, where the model takes into ac-
count explicitly the nonconvex behavior of the objective function.

Here we extend such approach by defining a piecewise affine type model which
can be put in a DC form, i.e. it is the sum of a piecewise affine convex function and
a piecewise affine concave function. Thus our approach benefits of some ideas coming
from the theory of quasidifferentiable functions (see [3]).

In connection with our model, we adopt all the machinery coming from the
bundle-trust philosophy.

The paper is organized as follows. In section 2 we describe our model and its
main characteristics. The algorithm is presented in section 3 and the convergence
properties are proved in section 4, while some conclusions are drawn in section 5.
Some properties of the DC subproblem are introduced in the appendix.

The following notations are adopted throughout the paper. We denote by ‖ · ‖
the euclidean norm in R

n, by aT b the inner product of the vectors a and b, and by
e a vector of ones of appropriate dimension. The generalized gradient of a Lipschitz
function f : R

n 7→ R at any point x is denoted by ∂f(x).

2. The model. Consider the minimization problem

min
x∈Rn

f(x) ,

where f : R
n 7→ R is not necessarily convex nor differentiable.

We assume that f is locally Lipschitz, i.e. it is Lipschitz on every bounded set,
then it is differentiable almost everywhere. Under the above hypothesis, it is defined
at each point x the generalized gradient [2] (or Clarke’s gradient or subdifferential)

∂f(x) = conv{g |g ∈ R
n,∇f(xk) → g, xk → x, xk 6∈ Ωf} ,

where Ωf is the set (of zero measure) where f is not differentiable. An extension of
the generalized gradient is the Goldstein ǫ-subdifferential ∂G

ǫ f(x) defined as

∂G
ǫ f(x) = conv{∂f(y) |‖y − x‖ ≤ ǫ} .

We assume also that we are able to calculate at each point x both the objective
function value and a subgradient g ∈ ∂f(x), i.e. an element of the generalized gradient
and that, for any point x0, the set

F0 = {x ∈ R
n | f(x) ≤ f(x0)}

is compact.
Now we describe the model adopted in our method, focusing on the differences

with respect to the methods tailored on the convex case. We denote by xj the current
estimate of the minimum in an iterative procedure (coinciding with the stability
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center) and by gj any subgradient of f at xj . The bundle of available information is
the set of elements

(xi, f(xi), gi, αi, ai) i ∈ I ,

where xi , i ∈ I, are the points touched in the procedure, gi is a subgradient of f at
xi, αi is the linearization error between the actual value of the objective function at
xj and the linear expansion generated at xi and evaluated at xj , i.e.

αi
△
= f(xj) − f(xi) − gT

i (xj − xi)

and

ai
△
= ‖xj − xi‖ .

The classical cutting plane method [1, 5] minimizes at each iteration the cutting
plane function fj(x) defined as

fj(x) = max
i∈I

{

f(xi) + gT
i (x − xi)

}

.

The minimization of fj(x) can be put in the form of a linear program as

{

min
θ,x

θ

θ ≥ f(xi) + gT
i (x − xi) i ∈ I ,

(2.1)

which is equivalent to solve

{

min
v,d

v

v ≥ gT
i d − αi i ∈ I ,

(2.2)

where d is the “displacement” from xj , i.e. d
△
= x − xj .

It is worth noting that in the nonconvex case αi may be negative, since the first
order expansion at any point does not necessarily support from below the epigraph
of the function.

Thus we partition the set I in two sets I+ and I− defined as follows

I+
△
= {i|αi ≥ 0} I−

△
= {i|αi ≤ 0} .(2.3)

We remark that the two index sets I+ and I− do not have empty intersec-
tion since, by definition, at least the index corresponding to the bundle element
(xj , f(xj), gj , 0, 0) belongs to both I+ and I−.
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The bundles defined by the index sets I+ and I− are characterized by points that
somehow exhibit respectively a “convex behavior” and a “concave behavior” relatively
to xj .

The basic idea of our approach is to treat differently the two bundles in the
construction of a piecewise affine model.

We define the following piecewise affine functions:

∆+(d)
△
= max

i∈I+

{

gT
i d − αi

}

and

∆−(d)
△
= min

i∈I
−

{

gT
i d − αi

}

.

We remark that ∆+(d) is convex, while ∆−(d) is concave. Moreover we have

∆+(d) ≥ ∆−(d) ∀d(2.4)

since I+ ∩ I− 6= ∅ .
Now, for any choice of the scalar p ∈ (0, 1), we can define the function

∆p(d)
△
= p∆+(d) + (1 − p)∆−(d) ,

which can be interpreted as an approximation to the difference function

h(d)
△
= f(xj + d) − f(xj)

obtained through a weighted average of the two approximations ∆+(d) and ∆−(d)
that both interpolate h(d) at d = 0.

Function ∆p(d) is the model function that we adopt to find a descent step for f .
It is a DC (Difference of two Convex) function and it is piecewise affine.

We introduce into our approach proximity control, aimed at defining implicitly
a kind of trust region, by adding to the suitably weighted model function ∆p(d) a
quadratic penalty term. Thus we come out with the complete model function

fpγ(d)
△
= γ∆p(d) +

1

2
‖d‖2 ,

where γ (the proximity control parameter) is any positive scalar. We emphasize in
the notation the fact that the complete model depends, ceteris paribus, on the two
scalar parameters p and γ.

The function fpγ(d) is quasidifferentiable (see [3]). A necessary and sufficient
condition for dpγ to be a local minimum for fpγ(d) is derived in the appendix. We
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note in passing that fpγ(d) is coercive and, in general, it may admit several local
minima.

The following lemma provides a bound on the norm of dpγ .
Lemma 2.1. For any γ > 0 it holds:

‖dpγ‖ ≤ 2γ‖gI
−

‖ ,

where ‖gI
−

‖
△
= max

i∈I
−

{‖gi‖}.

Proof. From the definition of ∆p(d), taking into account (2.4) and noting that
αi ≤ 0, ∀i ∈ I−, we have

∆p(d) ≥ ∆−(d) ≥ min
i∈I

−

gT
i d ≥ −‖gI

−

‖‖d‖ .

Thus

fpγ(d) ≥ −γ‖gI
−

‖‖d‖ +
1

2
‖d‖2

and the thesis follows from the fact that fpγ(dpγ) ≤ 0.
In our method a significant role is played by the strictly convex program

min
d

γ∆+(d) +
1

2
‖d‖2 ,(2.5)

which, by introducing the scalar variable v, can be rewritten as a quadratic program
of the form:

QP (γ)











min
v,d

γv +
1

2
‖d‖2

v ≥ gT
i d − αi i ∈ I+ .

The dual of QP (γ) can be written in the form:

DP (γ)











min
λ≥0

1

2
‖G+λ‖2 + αT

+λ

eT λ = γ ,

where G+ is the matrix whose columns are the vectors gi, i ∈ I+. Analogously, the
scalars αi, i ∈ I+ are grouped in the vector α+, while λ is the nonnegative multiplier
vector of appropriate dimension.

The optimal primal solution (dγ ,∆+(dγ)) of (2.5) is related to the optimal dual
solution λγ of DP (γ) by the following formulae:



6 A. Fuduli, M. Gaudioso, G. Giallombardo

dγ = −G+λγ(2.6a)

∆+(dγ) = −
1

γ

(

‖dγ‖
2 + αT

+λγ

)

.(2.6b)

3. The algorithm. We describe now our algorithm, which is based on the iter-
ative solution of problem

min
d∈Rn

fpγ(d).

As the function fpγ(d) is nonconvex, by “solving” we mean here to find a global
optimal solution. See the appendix for a discussion on how to find such a solution.

In the sequel we will indicate the stability center xj by y in order to emphasize
its peculiar role with respect to the other available points.

Moreover, in the algorithm we refer to the “main iteration” as to the set of
steps where the stability center remains unchanged. We can exit from the “main
iteration” either because the whole algorithm terminates, due to the satisfaction of
an approximate stationarity condition, or because the stability center is updated, due
to the satisfaction of a sufficient decrease condition.

The initialization of the algorithm requires a starting point x0 ∈ R
n. The initial

stability center y0 is set equal to x0. We have initially just one bundle element
(y0, f(y0), g(y0), 0, 0), where g(y0) ∈ ∂f(y0). The corresponding index is put in both
I+ and I− which are consequently both a singleton. The following global parameters
are to be set:

• the stationarity tolerance δ > 0 and the proximity measure ǫ > 0;
• the descent parameter m ∈ (0, 1) ;
• the reduction parameter r ∈ (0, 1) and the increase parameter R > 1;
• the balance parameter p0 ∈ (0, 1).

A short description of the algorithm is the following:

Algorithm Outline
1. Initialization.
2. Execute the “main iteration”.
3. Update the bundle of information with respect to the new stability center

and return to 2.

In the following description we do not index the “main iteration” for sake of notation
simplicity. Thus the stability center y is to be intended as the current stability center.
The following local parameters are set each time the “main iteration” is entered (they
are subject to possible modifications during the execution):
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• the safeguard parameters 0 < γmin < γmax;
• the descent threshold parameter σ > 0, the bundle insertion threshold pa-

rameter φ > 0 and the approximation parameter η > 0;
• the balance parameter p = p0.

The following conditions on the parameters are imposed during the “main iteration”:

γmin <
ǫ

2‖gI
−

‖
(3.1)

δ ≥

√

(σ + η)

γmin

.(3.2)

In particular, we set initially γmin =
rǫ

2‖gI
−

‖
, so that condition (3.1) is satisfied

(gI
−

= g(y0) at the beginning of the first “main iteration”) and we set also γmax =
Rγmin.

The remaining local parameters are set so that conditions (3.2) is satisfied; in

particular we set σ satisfying the condition δ =

√

2σ

γmin

(i.e. σ =
γminδ2

2
) and then

we set η = σ. Finally we set φ = η = σ.
We remark that in general the “main iteration” maintains the (updated) bundle

of information from previous iterations ( the quantities αi and ai are in fact dependent
on the stability center). Note also that the assignment of any bundle element index
to I+ or to I− or to both depends also on the current stability center.

Algorithm 3.1 (Main Iteration).

0. If ‖g(y)‖ ≤ δ then STOP (stationarity achieved).

1. Set γmin = min{γmin,
rǫ

2‖gI
−

‖
}, set σ =

γminδ2

2
and φ = η = σ.

Select γ ∈ (γmin, γmax) and calculate dpγ , a global minimizer of fpγ(d), and dγ , the
minimizer of QP (γ).

2. Calculate ∆+(dpγ).
If ∆+(dpγ) ≤ −σ go to 3. If ∆+(dpγ) − ∆+(dγ) > η then set p = p + r(1 − p) and
return to 1. Else go to 5.

3. Set x̂ := y + dpγ and calculate f(x̂). If

f(x̂) ≤ f(y) + m∆+(dpγ)(3.3)

set the new stability center y := x̂ and EXIT from the main iteration.
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4. Calculate ĝ ∈ ∂f(x̂) and set

α̂ := f(y) − f(x̂) + ĝT dpγ .

If α̂ ≤ −φ and ‖dpγ‖ > ǫ then set γ := γ − r(γ − γmin) and return to 1.
If α̂ ≥ φ then insert the element (x̂, f(x̂), ĝ, α̂, ‖dpγ‖) into the bundle for an appropri-
ate value of i ∈ I+ and return to 1.
If α̂ ≥ 0 insert the element (x̂, f(x̂), ĝ, 0, ‖dpγ‖) into the bundle twice, for two appro-
priate values of the indices one belonging to I+ and the other to I− and return to
1.
Else find a scalar t ∈ (0, 1) such that g(t) ∈ ∂f(y + tdpγ) satisfies the condition

g(t)T dpγ ≥ m∆+(dpγ),(3.4)

insert the element (y + tdpγ , f(y + tdpγ), g(t), 0, t‖dpγ‖) into the bundle twice, for two
appropriate values of the indices one belonging to I+ and the other to I− and return
to 1.

5. Set

I+ := I+ \ {i ∈ I+ | ai > ǫ}

and

I− := I− \ {i ∈ I− | ai > ǫ} .

Calculate

‖g∗‖ = min
g∈conv{gi|i∈I+∪I

−
}
‖g‖.

If ‖g∗‖ ≤ δ then STOP (stationarity achieved).
Else set:

γmax := γmax − r(γmax − γmin)(3.5)

and go to 1.

On exit from the main iteration, once the stability center has been updated, the
bundle is updated too, according to the following procedure:

Algorithm 3.2 (Bundle update).

1. Calculate the linearization errors αi and the distances ai with respect to the
new stability center ∀i ∈ I+ ∪ I−.
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2. If |αi| ≤ φ then insert the element (xi, f(xi), gi, 0, ai) into the bundle twice,
for two appropriate values of the indices, one belonging to I+ and the other to I−.

3. If αi < −φ then insert the element (xi, f(xi), gi, αi, ai) into the bundle for
an appropriate value of the index i ∈ I−.

4. If αi > φ then insert the element (xi, f(xi), gi, αi, ai) into the bundle for an
appropriate value of the index i ∈ I+.

5. Delete from the bundle all the elements such that:

i ∈ I− and xi /∈ F0.(3.6)

Remark. The local parameters γmin, σ, φ and η are subject to possible modifi-
cation during the execution of the “main iteration”, since γmin depends on ‖gI

−

‖.
The parameter γmin is however bounded away from zero. In fact the bundle

insertion rules at step 4 of the main iteration and the bundle deletion condition
(3.6) ensure that ‖gI

−

‖ ≤ Lf where Lf is the Lipschitz constant of f on the set of
points whose distance from F0 is not greater than ǫ. Thus throughout the algorithm

γmin ≥ γ̄
△
=

rǫ

2Lf

and consequently σ = φ = η ≥ ρ̄
△
=

γ̄δ2

2
.

The value of the parameter φ used in the “bundle update” procedure is that one
available on exit from the “main iteration”.

4. Convergence. Throughout the section we make the following assumptions:
A1 f is locally Lipschitz;
A2 f is weakly semismooth (see [8, 10]).
In particular A2 is a technical assumption (see [9]) which ensures that at the step 4
the problem of finding the scalar t satisfying the condition (3.4) is well posed.

Before proving convergence, we state the following lemma which ensures that, by
setting the parameter p sufficiently close to 1, the value assumed by function ∆+ at
the minimum of fpγ(d) is close to that assumed by the same function at the minimum
of problem QP (γ).

Lemma 4.1. Given any positive γ, for any positive scalar η there exists a positive
threshold pmax < 1 such that ∀p ≥ pmax the following relation holds :

∆+(dpγ) ≤ ∆+(dγ) + η,

where dγ is the optimal solution to problem (2.5).
Proof. From the definition of dpγ the following inequality holds ∀p ∈ (0, 1):

γ{p∆+(dpγ) + (1 − p)∆−(dpγ)} +
1

2
‖dpγ‖

2 ≤(4.1)

γ{p∆+(dγ) + (1 − p)∆−(dγ)} +
1

2
‖dγ‖

2.
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Moreover convexity of ∆+(d) implies ∀p ∈ (0, 1) and ∀u ∈ ∂∆+(dγ):

γp∆+(dpγ) +
1

2
‖dpγ‖

2 ≥(4.2)

γp∆+(dγ) +
1

2
‖dγ‖

2 + (γpu + dγ)T (dpγ − dγ) +
1

2
‖dpγ − dγ‖

2 .

Now let w(d)
△
= γ∆+(d) + 1

2‖d‖
2 be the objective function of problem QP (γ)

and let w′(dγ , dpγ − dγ) be the directional derivative of w evaluated at dγ along the
direction (dpγ−dγ). The optimality of dγ implies that w′(dγ , dpγ−dγ) ≥ 0. Moreover,
since

w′(dγ , dpγ − dγ) = max
u∈∂∆+(dγ)

(γu + dγ)T (dpγ − dγ),

there exists a subgradient, say u∗ ∈ ∂∆+(dγ), such that

(γu∗ + dγ)T (dpγ − dγ) ≥ 0 .(4.3)

From (4.1), taking into account that (4.2) holds for u = u∗, we obtain

γp∆+(dγ) +
1

2
‖dγ‖

2 + (γpu∗ + dγ)T (dpγ − dγ) +
1

2
‖(dpγ − dγ)‖2 + γ(1− p)∆−(dpγ) ≤

γp∆+(dpγ) +
1

2
‖dpγ‖

2 + γ(1 − p)∆−(dpγ) ≤

γp∆+(dγ) + γ(1 − p)∆−(dγ) +
1

2
‖dγ‖

2.

Thus we have

(γpu∗ + dγ)T (dpγ − dγ) +
1

2
‖(dpγ − dγ)‖2 ≤ γ(1 − p)(∆−(dγ) − ∆−(dpγ)),

which can be rewritten as:

(γu∗+dγ)T (dpγ−dγ)−(1−p)(γu∗+dγ)T (dpγ−dγ)+(1−p)dT
γ (dpγ−dγ)+

1

2
‖(dpγ−dγ)‖2

≤ γ(1 − p)(∆−(dγ) − ∆−(dpγ)).

Consequently, taking into account (4.3), we have

‖dpγ−dγ‖
2 ≤ 2(1−p){(γu∗+dγ)T (dpγ−dγ)+γ(∆−(dγ)−∆−(dpγ))−dT

γ (dpγ−dγ)} ≤
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4(1 − p)(γL + D) ,

where L is the biggest between the Lipschitz constants of ∆+ and ∆− and D is the
diameter of the set where the points dpγ and dγ are located (boundedness of both dpγ

and dγ is ensured by boundedness of γmax).
Finally, since:

|∆+(dpγ) − ∆+(dγ)| ≤ L‖dpγ − dγ‖ ≤
√

4(1 − p)L(γL + D),

the thesis follows provided that 4(1 − p)L(γL + D) ≤ η, i.e. whenever p ≥ 1 −
η2

4L(γL + D)
.

Now we prove that the “main iteration” terminates.

Lemma 4.2. The “main iteration” terminates after a finite number of steps.
Proof. We observe first that, as consequence of Lemma 4.1 and of the rule for

updating p in case ∆+(dpγ) − ∆+(dγ) > η at step 2, the algorithm cannot loop
infinitely many times between step 1 and step 2.

Thus, to prove finiteness, we need to show that the algorithm cannot pass in-
finitely many times through step 3 nor through step 5, where respectively an exit test
and a stopping test are executed.

We prove first that the algorithm cannot pass infinitely times through step 3.
Assume by contradiction that this is the case and that the descent condition (3.3)

is never satisfied. Thus the step 4 is executed infinitely many times as well and let us
index by k all the quantities referred to the k-th passage.

It is easy to verify that the insertion rules at step 4 imply that there exists an
index k̄ such that ∀k ≥ k̄ all the newly generated bundle elements are assigned an
index belonging to I+ (and possibly also an index belonging to I−); moreover in the
stored bundle element we set:

α̂k = max(0, α̂k) .

In addition the insertion rules at step 4, together with the deletion rule at step
5 of the bundle update procedure, ensure also that dk

pγ is bounded in norm, and,

consequently there exists a subsequence, say {dk
pγ}k∈K, converging to a limit d̂.

The corresponding subsequence {∆+(dk
pγ)}k∈K is bounded and hence admits in

turn a subsequence converging for k ∈ K′ ⊆ K, say, to ∆̂+ ≤ −σ̂ where σ̂
△
= lim

k→∞
σk >

0.
Now let s and t be two successive indices in K′. We have

∆+(dt
pγ) ≥ ĝ(s)T

dt
pγ − max(0, α̂s) ,(4.4)
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and

m∆+(ds
pγ) ≤ ĝ(s)T

ds
pγ − max(0, α̂s) ,

the latter being consequence of both the definition of α̂s and of (3.4). The above
relations, passing to the limit, imply

(1 − m)∆̂+ ≥ 0

which contradicts ∆̂+ ≤ −σ̂.
To complete the proof we need to show that the algorithm cannot pass infinitely

many times through step 5.
We assume by contradiction that this is the case and we index by k ∈ K all the

quantities referred to the k-th passage.
We observe that ∀k we have:

∆+(dk
γ) ≥ ∆+(dk

pγ) − ηk > −(σk + ηk) .(4.5)

Moreover every time the step 5 is executed γmax is reduced according to (3.5). Thus,
taking into account that γk

min is monotonically nonincreasing and bounded, γk
max

becomes arbitrarily close to γk
min. Consequently from Lemma 2.1 and since γk

min <
ǫ

2‖gk
I
−

‖
, we have asintotically

‖dk
pγ‖ ≤ ǫ ,

which in turn implies that the bundle elements are definitely assigned an index be-
longing to I+ (and possibly also an index in I−). Moreover in the stored bundle
element we set:

α̂k = max(0, α̂k) .

Note also that, as consequence of the bundle deletion criterion at step 5 of the “main
iteration”, it is ai ≤ ǫ, ∀i ∈ I+.

Now, from (4.5) and recalling (2.6) we have

‖dk
γ‖ ≤

√

(σk + ηk)γk

and

−
1

γk

dk
γ ∈ conv{gi | i ∈ I

(k)
+ } ,

which imply

‖gk
∗‖ ≤

√

(σk + ηk)

γk

≤

√

(σk + ηk)

γk
min
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that, taking into account δ ≥

√

(σk + ηk)

γk
min

, contradicts the fact that the algorithm

does not stop.

Now we prove the overall finiteness of the algorithm.

Theorem 4.3. For any ǫ > 0 and δ > 0, the algorithm stops in a finite number
of “main iterations” at a point y satisfying the approximate stationarity condition

‖g∗‖ ≤ δ with g∗ ∈ ∂G
ǫ f(y) .(4.6)

Proof. We need to prove that the stopping condition tested both at step 0 and
at step 5 is verified in a finite number of executions of the “main iteration”.

Suppose by contradiction that this is not the case. From Lemma 4.2 it follows
that the descent condition (3.3) at step 3 is satisfied infinitely many times. Let y(k)

be the stability center at the k-th “main iteration” and let us index by k ∈ K all the
quantities referred to the k-th passage.

From

f(y(k+1)) ≤ f(y(k)) + m∆+(d(k)
pγ )

we would have:

f(y(k+1)) − f(y(0)) ≤ m
k

∑

i=0

∆+(d(i)
pγ ) ,

and, consequently, taking into account ∆+(d
(i)
pγ ) ≤ −σk and σk is bounded away from

zero, we would obtain:

lim
k→∞

f(y(k+1)) − f(y(0)) ≤ −∞,

which is impossible, since f is bounded from below by hypothesis.

5. Conclusions. We have described a model algorithm for the minimization
of nonconvex and nonsmooth functions based on the simultaneous construction of
two piecewise affine approximations and we have proved that the algorithmic scheme
converges to a stationary point.

However, to have a practically implementable algorithm, a number of issues are
still to be treated.

We mention in particular the problem of finding an appropriate subgradient ag-
gregation technique to cope with bounded storage availability, the problem of effective
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selection of the parameter γ at step 1 of the “main iteration” and, finally, that of the
efficient implementation of the line search at step 4.

Appendix. We discuss the problem of finding a global minimum of the problem

min
d

fpγ(d)
△
= min

d
γ∆p(d) +

1

2
‖d‖2 ,

which, according to the definitions given in section 2, can be written as

min
d

γ[p max
i∈I+

{

gT
i d − αi

}

+ (1 − p) min
i∈I

−

{

gT
i d − αi

}

] +
1

2
‖d‖2.(5.1)

The problem above consists of minimizing an objective function which is the sum of
a strictly convex (nonsmooth) function and of a piecewise affine concave function.

We can define for any k ∈ I− the following strictly convex nonsmooth optimization
problem P (k):

min
d

fk
pγ(d)

△
= min

d
γ[p max

i∈I+

{

gT
i d − αi

}

+ (1 − p)
{

gT
k d − αk

}

] +
1

2
‖d‖2.

It is obvious that

fpγ(d) ≤ fk
pγ(d) ∀d ∈ R

n and ∀k ∈ I−

and that for any d ∈ R
n there exists k ∈ I− such that

fpγ(d) = fk
pγ(d).

Hence it follows that a global minimizer dpγ of fpγ(d) can be located by finding the
“best” from among all the minimizers of the functions fk

pγ(d), k ∈ I−. Finding the

(global) minimizer of any function fk
pγ(d) requires in turn to solve a convex quadratic

programming of the type usually solved in bundle type methods.
In conclusion, the global minimization of fpγ(d) requires solution to |I−| quadratic

programming problems.

The (necessary and sufficient) condition for point d
(k)
pγ to be optimal for problem

P (k) is:

0 ∈ d(k)
pγ + γp∂∆+(dpγ) + (1 − p)gk.(5.2)

Thus, by letting K− ⊆ I− be the subset of indices such that dpγ = d
(k)
pγ , condition

(5.2) becomes

0 ∈ dpγ + γp∂∆+(dpγ) + (1 − p)gk ∀k ∈ K−

which can be easily recognized to be the local optimality condition for quasidifferential
functions (see [3]). It is worth noting that, due to the particular structure of function
fpγ(d), such condition is both necessary and sufficient.



A DC piecewise affine model and a bundling technique in nonconvex nonsmooth minimization 15

REFERENCES

[1] E. W. Cheney and A. A. Goldstein, Newton’s method for convex programming and Tcheby-

cheff approximation, Numerische Mathematik, 1 (1959), pp. 253–268.
[2] F. Clarke, Optimization and nonsmooth analysis, John Wiley and Sons, 1983.
[3] V. F. Demyanov and A. Rubinov, Constructive nonsmooth analysis, Verlag Peter Lang, 1995.
[4] A. Fuduli, M. Gaudioso, and G. Giallombardo, Minimizing nonconvex nonsmooth func-

tions via cutting planes and proximity controls. Submitted for publication, 2002.
[5] J. E. Kelley, The cutting-plane method for solving convex programs, Journal of SIAM, 8

(1960), pp. 703–712.
[6] K. C. Kiwiel, Restricted step and Levenberg-Marquardt techniques in proximal bundle methods

for nonconvex nondifferentiable optimization, Siam Journal on Optimization, 6 (1996),
pp. 227–249.
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