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We introduce a de Rham model for stratified spaces arising from symplectic
reduction. It turns out that the reduced symplectic form and its powers
give rise to well-defined cohomology classes, even on a singular symplectic
quotient.

1. Introduction

Let G be a compact Lie group and let M be a smooth G-manifold. Let �(M)

be the de Rham complex of differential forms on M and �bas(M) the subcomplex
of basic forms. It was proved by Koszul [1953] that the cohomology of �bas(M)

is isomorphic to the cohomology with real coefficients of the orbit space M/G
(which is usually not a manifold, unless G acts freely).

Now suppose that M is equipped with a symplectic form ω and that the G-action
is Hamiltonian with equivariant moment map 8 : M → g∗, where g = Lie G. The
appropriate quotient in this category is the Marsden–Meyer–Weinstein symplectic
quotient X =8−1(0)/G. It is usually not a manifold either, unless G acts freely on
the fiber 8−1(0), but it always has a natural stratification into symplectic manifolds.

Much work has been done on the intersection cohomology of symplectic quo-
tients; see, for example, [Kirwan 1985; Lerman and Tolman 2000]. The purpose
of this note is rather more modest. We introduce a de Rham model for the ordinary
cohomology of the symplectic quotient X , which is a straightforward adaptation
of Koszul’s complex of basic forms. It relies on a notion of a differential form on
X that extends the concept of a smooth function developed in [Arms et al. 1991].
Relevant examples are the reduced symplectic form and its powers, which define
cohomology classes of even degree. These classes are nonzero if the quotient
is compact. Thus the symplectic quotient, even when singular, carries a suitable
analogue of a symplectic form and a Liouville volume form.
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2. Review

Let (M, ω) be a connected symplectic manifold and let G be a compact Lie group
acting on M in a Hamiltonian fashion with moment map 8 : M → g∗, where
g = Lie G. This means d8ξ

= i(ξM)ω, where ξM denotes the vector field on M
induced by ξ ∈ g and 8ξ

= 〈8, ξ〉 denotes the component of the moment map
along ξ . Also 8 is required to be equivariant with respect to the given action
on M and the coadjoint action on g∗. The symplectic quotient of M by G is the
space X = Z/G, where Z = 8−1(0) is the zero fiber of the moment map. It was
proved in [Marsden and Weinstein 1974] that if G acts freely on Z , then Z and X
are smooth manifolds and X carries a natural symplectic form. If G does not act
freely on Z , often neither Z nor X are manifolds. In this case we proceed as in
[Sjamaar and Lerman 1991], the relevant results of which we recall now. For any
closed subgroup H of G let

M(H) = {m ∈ M | Gm is conjugate to H }

be the stratum of orbit type (H) in the G-manifold M . Here Gm denotes the
stabilizer of m with respect to the G-action. Put

Z(H) = Z ∩ M(H).

Then Z(H) is a smooth G-stable submanifold of M . Let { Za | a ∈ A} be the
collection of connected components of all manifolds of the form Z(H), where (H)

ranges over all conjugacy classes of subgroups of G. The decomposition

(2.1) Z =

∐
a∈A

Za

is a Whitney stratification of the fiber Z . In particular the index set A has a partial
order defined by a ≤ b if Za ⊆ Z̄b. There is a unique maximal element in A.
The corresponding stratum, known as the principal or top stratum Zprin, is open
and dense in Z . Moreover the null foliation of the symplectic form ω restricted
to any stratum Za is exactly given by the G-orbits. Hence there exists a unique
symplectic form ωa on the quotient manifold Xa = Za/G satisfying π∗

a ωa = ι∗aω,
where ιa : Za ↪→ M is the inclusion map and πa : Za →→ Xa the orbit map. The
decomposition

(2.2) X =

∐
a∈A

Xa

is a locally normally trivial stratification of the quotient X into the symplectic
manifolds Xa . The principal stratum Xprin = Zprin/G is open and dense in X .
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3. Forms on a symplectic quotient

We use the same notation as in the previous section. We denote the de Rham
complex of a manifold P by �(P). A differential form on the symplectic quotient
X is a differential form α on the top stratum Xprin such that there exists a differential
form α̃ on M satisfying π∗

prinα = ι∗prinα̃. We say that α̃ induces α. An easy averaging
argument shows that we may assume α̃ to be G-invariant on M . We denote the
collection of differential forms on X by �(X).

If X = Xprin, then X and Z are manifolds and the lift of any form on X to Z can
be extended to M , so in this case our notion of a differential form on X reduces
to the standard notion. Observe that �(X) is a subcomplex of �(Xprin), and it is
closed under the wedge product.

Example 3.1. The symplectic form ωprin on Xprin is induced by the symplectic
form ω on M and so defines a closed 2-form on X .

Clearly not every invariant form on M induces a form on X . Indeed, if α̃ ∈

�(M)G induces α ∈ �(X), then ι∗prinα̃ = π∗

prinα is a G-horizontal form on the
G-manifold Zprin, so it is annihilated by all inner products i(ξM) for ξ ∈ g. Recall
that a form β on M is basic with respect to the G-action if it is G-invariant and
G-horizontal. Adapting this notion to our context, we say that β is 8-basic if it
is G-invariant and if ι∗prinβ ∈ �(Zprin) is horizontal. Let �8(M) denote the set
of 8-basic forms. This is a subcomplex of �(M) and the kernel of the natural
surjection �8(M) → �(X) is the ideal

I8(M) = {β ∈ �(M)G
| ι∗prinβ = 0}.

Thus the de Rham complex of X is isomorphic to

(3.2) �(X) ∼= �8(M)/I8(M),

a subquotient of the de Rham complex of M . In degree 0 we have the smooth
functions on X as defined in [Arms et al. 1991],

C∞(X) ∼= C∞(M)G/
{ f ∈ C∞(M)G

| f = 0 on Z }.

If O is a G-invariant open neighborhood of Z , then O is a Hamiltonian G-manifold
in its own right, so we can define �8(O) and I8(O). Plainly (3.2) remains valid
if we replace M with O . Thus �(X) depends only on the G-germ of M at Z .

It is true, though not completely obvious from the definition, that every form on
X restricts to a form on each stratum of X .

Lemma 3.3. (i) Let β ∈ �8(M). Then ι∗aβ is a horizontal form on Za for all a.

(ii) Let β ∈ I8(M). Then ι∗aβ = 0 for all a.

(iii) There is a well-defined restriction map �(X) → �(Xa) for each stratum Xa .
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Proof. Let β ∈�8(M) and z ∈ Za . Choose a sequence {zn} in Zprin converging to z.
By compactness of the Grassmannian we may assume that the sequence of tangent
spaces Tzn Zprin converges to a subspace T of Tz M . By definition i(ξM)βzn = 0 on
Tzn Zprin for all ξ ∈ g, so by continuity i(ξM)βz = 0 on T for all ξ . By Whitney’s
Condition A we have Tz Za ⊆ T . Hence i(ξM)βz = 0 on Tz Za for all ξ . This
proves (i).

Similarly, if β ∈ I8(M) then βzn = 0 on Tzn Zprin, so by continuity βz = 0 on T
and hence βz = 0 on Tz Za , which proves (ii).

It follows from (i) that if β ∈ �8(M) then ι∗aβ descends to a form βa on Xa .
The assignment β 7→ βa defines a homomorphism �8(M) → �(Xa) for each a.
It follows from (ii) that this map is 0 on the ideal I8(M). Using the isomorphism
(3.2) we obtain the desired restriction map �(X) → �(Xa). �

4. Symplectic induction

A shortcoming of the de Rham complex �(X) is that it appears to depend on the
way in which X is written as a quotient. But in certain interesting situations this
defect turns out to be illusory. For instance, let H be a closed subgroup of G and let
(N , ωN ) be a Hamiltonian H -manifold with equivariant moment map 9 : N → h∗.
Consider the Hamiltonian G × H -space

P = T ∗G × N ,

where the action of G on P is given by left multiplication on T ∗G and the action
of H by right multiplication on T ∗G and the given action on N . Let M be the
symplectic quotient of P with respect to the H -action. This is called the G-
space induced by the H -space N . Since H acts freely on T ∗G, M is a smooth
manifold and from P it inherits a symplectic form ω and a Hamiltonian G-action
with moment map 8. Let Y be the symplectic quotient of N by the H -action
and X the symplectic quotient of M by the G-action. The principle of reduction in
stages implies that X and Y are isomorphic in the sense that there is a stratification-
preserving homeomorphism Y → X that restricts to a symplectomorphism on each
stratum. We can represent the situation symbolically by a commutative diagram

P ..............
G

- N

M

H
?

........
..............

G
- Y ∼= X ,

H
?

........

where the dotted arrows indicate symplectic reduction with respect to the relevant
group. We assert that the de Rham complexes of X and Y are likewise isomorphic.
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To prove this we need to recall from [Sjamaar and Lerman 1991, §2] the def-
inition of the isomorphism Y → X . Choose an H -invariant subspace m of g

complementary to the subalgebra h. Then we have H -invariant decompositions
g = h ⊕ m and g∗

= h∗
⊕ m∗. Define a map

G × m∗
× N → P ∼= G × g∗

× N

by sending (g, α, p) to (g, α−9(p), p). This is an H -equivariant diffeomorphism
from G×m∗

×N onto the zero fiber of the H -moment map on P . Taking quotients
by H we obtain a G-equivariant diffeomorphism

M ∼= (G × m∗
× N )/H

from M to the homogeneous vector bundle over G/H with fiber m∗
× N . We

identify M with this bundle and write a typical point in it as [g, α, p], with g ∈ G,
α ∈ m∗ and p ∈ N . The G-action on M is given by k[g, α, p] = [kg, α, p] for
k ∈ G and the moment map by

(4.1) 8([g, α, p]) = Ad∗(g)(α + 9(p)).

Let f : N → M be the embedding defined by f (p) = [1, 0, p]. Then f is H -
equivariant and (4.1) shows that 8 ◦ f = pr∗ ◦9, where pr∗ : h∗

→ g∗ is the
transpose of the projection map g → h. Hence f maps the zero fiber Z N = 9−1(0)

into Z and descends to a map Y → X , which is the required isomorphism. In
particular f maps the principal stratum (Z N )prin into the principal stratum of Z .
In fact Z and Zprin are homogeneous bundles over G/H ,

Z = (G × Z N )/H and Zprin = (G × (Z N )prin)/H.

This implies that the restriction map f ∗
: �(M)→�(N ) sends �8(M) to �9(N )

and I8(M) to I9(N ). Therefore, because of the isomorphism (3.2), it descends to
a map r : �(X) → �(Y ).

Proposition 4.2. The map r : �(X) → �(Y ) is an isomorphism.

Proof. This relies on material developed in the Appendix. Let ιprin : Zprin → M be
the inclusion map. This is a bundle map of fiber bundles over the base G/H . Its
restriction to a fiber is the inclusion map (ιN )prin : (Z N )prin → N . Let

eM : �(N )H
→ �(M)G,

eZ : �((Z N )prin)
H

→ �(Zprin)
G

be the extension homomorphisms for the homogeneous bundles M and Zprin as
defined in the Appendix. Then

(4.3) eZ ◦ (ιN )∗prin = ι∗prin ◦ eM
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by Lemma A.2.
Now we show that r is surjective. In fact we must show that f ∗�8(M) =

�9(N ). Let γ ∈�9(N ). Then by definition (ιN )∗prinγ is H -basic, so eZ ((ιN )∗prinγ )

is G-basic by Lemma A.1(ii). From (4.3) we get that ι∗prineM(γ ) is G-basic, i.e.
eM(γ ) ∈ �8(M). Using Lemma A.1(i) we find that γ = f ∗β with β = eM(γ ) ∈

�8(M). Hence f ∗�8(M) = �9(N ).
Next we prove that r is injective. Suppose that β ∈ �8(M) satisfies f ∗β ∈

I9(N ). We need to show that β ∈ I8(M). The assumptions on β mean that ι∗prinβ

is G-basic and that (ιN )∗prin f ∗β = 0. Using Lemma A.1(iii) we get

ι∗prinβ = eZ ( f ∗ι∗prinβ) = eZ ((ιN )∗prin f ∗β) = eZ (0) = 0,

that is, β ∈ I8(M). �

5. The de Rham sheaf

To prove a de Rham theorem we need to sheafify the de Rham complex. Let U
be an open subset of the symplectic quotient X . The stratification of X induces
one on U , so we can talk about the principal stratum of U etc. A differential
form on U is a differential form α on Uprin such that for all x ∈ U there exist
α′

∈ �(X) and an open neighborhood U ′ of x in U such that α = α′ on U ′

prin.
The set of differential forms on U is denoted by �(U ). It is easy to check that
the presheaf of differential graded algebras � : U 7→ �(U ) is a sheaf. Its space of
global sections is the previously defined de Rham complex �(X).

Lemma 5.1. � is an acyclic sheaf , i.e. H i (X, � j ) = 0 for all i ≥ 1 and j ≥ 0.

Proof. The space X possesses smooth partitions of unity subordinate to arbitrary
open covers U. Indeed, for each U ∈U choose a G-invariant open Ũ in M such that
U = (Ũ ∩ Z)/G and let O be the union of the Ũ ’s. Choose a smooth G-invariant
partition of unity on the G-manifold O subordinate to the cover defined by the Ũ ’s;
this induces a smooth partition of unity on X subordinate to U. Thus the sheaf of
smooth functions �0 is fine in the sense of [Godement 1973, §3.7]. A standard
result in sheaf theory (see [Godement 1973, Théorème 4.4.3], for example) now
implies that �0 is acyclic. Since � is a module over �0, it is fine, and therefore
acyclic, as well. �

There is an alternative characterization of forms on open subsets of X . The
proof is an easy exercise involving partitions of unity.

Lemma 5.2. Let U be an open subset of X and let α ∈ �(Uprin). Then α ∈ �(U )

if and only if there exist a G-invariant open subset Ũ of M and a form α̃ ∈ �(Ũ )

such that U = (Ũ ∩ Z)/G and ι∗prinα̃ = π∗

prinα.
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Now let R be the sheaf of locally constant real-valued functions on X and con-
sider the sequence

(5.3) 0 → R
i

−→ �0 d
−→ �1 d

−→ · · · ,

where i : R → �0 is the natural inclusion. The following assertion is proved in the
next section.

Lemma 5.4. The sequence (5.3) is exact.

Thus the de Rham complex is an acyclic resolution of the constant sheaf, which
by standard sheaf theory (see [Godement 1973, Théorèmes 4.7.1, 6.2.1], for ex-
ample) implies the following de Rham theorem.

Theorem 5.5. The de Rham cohomology ring H(�(X)) is naturally isomorphic to
the (Čech or singular) cohomology ring of X with real coefficients H(X, R).

6. The Poincaré lemma

In this section we prove the following (marginally stronger) version of Lemma 5.4:
every x ∈ X has a basis of open neighborhoods U such that the sequence

(6.1) 0 → R
i

−→ �0(U )
d
−→ �1(U )

d
−→ · · ·

is exact. The proof is a variation on a familiar homotopy argument in de Rham
theory, which requires a brief look into the functorial properties of �(X).

Let (M ′, ω′, 8′) be a second Hamiltonian G-manifold with zero fiber Z ′
=

(8′)−1(0) and symplectic quotient X ′
= Z ′/G. Then we have stratifications Z ′

=∐
a∈A′ Z ′

a and X ′
=

∐
a∈A′ X ′

a analogous to those for Z and X . Call a map f : M →

M ′ allowable if

(i) f is smooth and G-equivariant;

(ii) f (Z) ⊆ Z ′;

(iii) d f (Tz Zprin) ⊆ T f (z)Z ′

a(z) for all z ∈ Zprin, where Z ′

a(z) ⊆ Z ′ is the stratum of
f (z).

For instance, if f is smooth and equivariant and maps Zprin into a single stratum
of Z ′, then f is allowable.

Example 6.2. Let (V, ω) be a symplectic vector space on which G acts linearly and
symplectically. A moment map is given by 8

ξ
V (v) =

1
2ω(ξv, v), where ξ ∈ g acts

on V via the infinitesimal representation g → sp(V ). Let t ∈ R and let f : V → V
be the dilation f (v) = tv. Clearly f preserves Z . Furthermore, if t 6= 0, then f (v)

has the same stabilizer as v, so f maps Zprin to itself. If t = 0, then f maps Zprin

to 0. In either case f maps Zprin into a single stratum of Z and it is obviously
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smooth and equivariant, so it is allowable. Similarly, if |t | ≤ 1 and B is a G-
invariant open ball about the origin, the restriction of f is an allowable map from
B to itself.

The following result is easy to deduce from Lemma 3.3.

Lemma 6.3. Let f : M → M ′ allowable. Then the pullback homomorphism
f ∗

: �(M ′)→�(M) sends �8′(M ′) to �8(M) and I8′(M ′) to I8(M), and there-
fore induces a homomorphism f ∗

: �(X ′) → �(X).

Homotopies induce chain homotopies on the de Rham complex in a standard
way. Let F : M ×[ 0, 1] → M ′ be a smooth homotopy and put Ft = F |M×{t}. Let t
be the coordinate on [ 0, 1] and for γ ∈ �(M ′) put κFγ =

∫ 1
0 i(∂/∂t)F∗γ dt . Then

κF lowers the degree by 1 and

F∗

1 − F∗

0 = κF d + dκF .

Assume that F is equivariant with respect to the given G-actions on M and M ′ and
the trivial action on [ 0, 1]. It is straightforward to check that

κF ◦ g∗
= g∗

◦ κF for all g ∈ G,(6.4)

κF ◦ i(ξM ′) = −i(ξM) ◦ κF for all ξ ∈ g.(6.5)

Call the homotopy F allowable if

(i) F is smooth and G-equivariant;

(ii) Ft : M → M ′ is allowable for almost all t ∈ [ 0, 1];

(iii) d F(z,t)(∂/∂t) ∈ TF(z,t)Z ′

a(z,t) for almost all t ∈ [ 0, 1] and for all z ∈ Zprin,
where Z ′

a(z,t) ⊆ Z ′ is the stratum of F(z, t).

For instance, if F is smooth and equivariant and if there exists a single stratum Z ′
a

of Z ′ such that Ft(Zprin) ⊆ Z ′
a for almost all t , then F is allowable.

Example 6.6. Let (V, ω) be a symplectic representation space for G as in Example
6.2. The radial contraction F : V × [ 0, 1] → V given by F(v, t) = tv is smooth
and equivariant and satisfies Ft(Zprin) ⊆ Zprin for t 6= 0. Hence it is allowable.
Likewise, F defines an allowable homotopy B × [ 0, 1] → B for any G-invariant
open ball B about the origin.

Lemma 6.7. Let F : M × [ 0, 1] → M ′ be an allowable homotopy. Then the
homotopy operator κF : �(M ′) → �(M) sends �8′(M ′) to �8(M) and I8′(M ′)

to I8(M), and therefore induces a homotopy κF : �(X ′) → �(X).

Proof. Let γ ∈ �k
8′(M ′). Then γ is invariant, so κFγ is invariant by (6.4). Let

z ∈ Zprin. Using (6.5) we find that for any multivector v ∈ 3k−1(Tz Zprin)

(6.8) i(ξM)(κFγ )z(v) =

∫ 1

0
φ(t) dt,
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where φ(t) = −γF(z,t)(ξM ′, F∗∂/∂t, (Ft)∗v). Let Z ′

a(z,t) be the stratum of Z ′ con-
taining F(z, t). Since F is allowable,

F∗∂/∂t ∈ TF(z,t)Z ′

a(z,t) and (Ft)∗v ∈ 3k−1(TF(z,t)Z ′

a(z,t)
)

for most t . Moreover, by Lemma 3.3(i) the restriction of γ to Z ′

a(z,t) is horizontal.
Hence φ(t) = 0 for almost all t . From (6.8) we get i(ξM)(κFγ )z(v) = 0; in other
words κFγ ∈ �k−1

8 (M). The inclusion κF I8′(M ′) ⊆ I8(M) is proved in a similar
way, and the last assertion now follows from the isomorphism (3.2). �

Example 6.9. Applying Lemma 6.7 to the radial contraction of Example 6.6 we
find that the de Rham complex of the symplectic quotient of a vector space V is
homotopically trivial. More generally, if Y = (B∩ Z)/G is the symplectic quotient
of any G-invariant open ball B about the origin, then the de Rham complex of Y
is homotopically trivial.

Example 6.10. Let H be a closed subgroup of G and let V be a symplectic H -
module. Let B be an H -invariant open ball about the origin and let O be the
Hamiltonian G-manifold induced by B. Let Y be the symplectic quotient of B by
the H -action and U the symplectic quotient of O by the G-action. Then �(U ) ∼=

�(Y ) by Proposition 4.2, so �(U ) is homotopically trivial by Example 6.9.

This example generalizes to arbitrary Hamiltonian G-manifolds by means of
a slice argument. Let z ∈ Z and let H = Gz be the stabilizer of z. Consider
the symplectic H -module V = (TzGz)ω/TzGz known as the symplectic slice at z.
Choose an H -invariant open ball B in V and let O be the G-space induced by B.
The symplectic slice theorem due to Marle and to Guillemin and Sternberg (see
[Sjamaar and Lerman 1991, §2], for instance) says that, for sufficiently small B,
z has a G-invariant open neighborhood that is isomorphic to O as a Hamiltonian
G-manifold. Hence the point x ∈ X determined by z has an open neighborhood U
for which �(U ) is homotopically trivial. By letting B shrink to a point we obtain
a collection of such neighborhoods, which is a basis of the topology at x . This
finishes the proof of (6.1).

7. Integration and the symplectic class

In this section we show that top-degree forms on a compact symplectic quotient
are always integrable and establish a version of Stokes’ theorem. We conclude that
the cohomology class of the symplectic form and its powers are nonzero.

For technical reasons we do not assume at the outset that X is compact. We
start by introducing a metric on Xprin and demonstrating that X has “locally fi-
nite” volume. Choose a G-invariant compatible almost complex structure J on the
Hamiltonian G-manifold M . The volume element determined by the Riemann-
ian metric σ = ω( · , J · ) is identical to the Liouville volume form ωd/d! (where
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2d = dim M). The almost complex structure and Riemannian metric descend in a
natural way to each stratum of X . Let 2n = dim X and write µ = ωn

prin/n! for the
volume element of the principal stratum Xprin.

Lemma 7.1. Every x ∈ X has an open neighborhood U such that vol Uprin is finite.
Hence Xprin has finite volume if X is compact.

Proof. Choose z ∈ Z mapping to x and let H = Gz . By the symplectic slice theorem
we may take U to be the symplectic quotient of an H -invariant neighborhood B
of the origin in the symplectic slice V at z. The almost complex structure on M
induces one on V , turning V into a unitary H -module. The metric on Uprin induced
by the flat metric σV on V is quasi-isometric to the metric induced by σ . Therefore
it is enough to show that U has finite volume with respect to the former. Let W be
the orthogonal complement in V of the subspace of invariants V H . The quadratic
moment map 8V is constant along V H , so ZV = V H

× ZW , where ZV = 8−1
V (0)

and ZW = 8−1
V (0) ∩ W . Let B = B1 × B2, where B1 is an open ball about the

origin in V H and B2 an H -invariant open ball about the origin in W . Then B has
a product metric and so do (ZV )prin = V H

× (ZW )prin and the quotient

(7.2) Uprin = B1 × (B2 ∩ (ZW )prin)/H.

Recall that the metric cone over a Riemannian manifold (Y, σY ) is the product
Y × (0, 1) with metric t2σY + dt ⊗ dt , where t is the coordinate on (0, 1). The
metric cone over Y has finite volume if Y does. For instance, the ball B2 in W
is the metric cone over the sphere S = ∂ B2. Similarly, with respect to the metric
induced by σW , B2 ∩ (ZW )prin is a metric cone over S ∩ (ZW )prin. Upon taking
quotients we see that (B2 ∩ (ZW )prin)/H is a metric cone over (S ∩ (ZW )prin)/H .
The link S∩ ZW is the zero fiber of the moment map v 7→

(
8W (v), 1

2(1−|v|
2)

)
for

the H ×U(1)-action on W , where U(1) acts by complex scalar multiplication. By
induction on the depth of the stratification, the principal stratum of the symplectic
quotient (S ∩ (ZW ))/H has finite volume. Hence (B2 ∩ (ZW )prin)/H has finite
volume and therefore, because of the product decomposition (7.2), so does Uprin.

�

The Riemannian metric on M determines metrics on 3k(T M) for all k. Let
|β| ∈C0(M) denote the pointwise norm of a form β on M . Similarly, for α ∈�(X)

let |α| ∈ C0(Xprin) denote the pointwise norm over the principal stratum. If α is
induced by α̃ ∈ �8(M), then |α̃| is a G-invariant continuous function on M and

(7.3) π∗

prin|α| ≤ ι∗prin|α̃|.

The support of a form α ∈ �(X) is its support as a section of the sheaf �. This
is the same as the closure in X of the support of α considered as a form on Xprin.
The estimate (7.3) implies that for α ∈ �(X) with compact support the pointwise
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norm |α| is a bounded function on Xprin and therefore by Lemma 7.1 the global
norm

∫
Xprin

|α|µ is finite. In particular, for α of top degree 2n the integral
∫

Xprin
α

is absolutely convergent.
We can now prove Stokes’ theorem. The proof is based on the fact that the

singular strata of X have codimension ≥ 2, which makes the boundary terms in the
integral vanish.

Proposition 7.4.
∫

Xprin
dγ = 0 if γ ∈ �2n−1(X) has compact support.

Proof. We use the notation of the proof of Lemma 7.1. By using partitions of unity
we can reduce the general case to the case where γ has compact support in an
open subset U of the form B1 × (B2 ∩ ZW )/H . Let 2m = dim ZW /H . If m = 0
then U is nonsingular and the result follows from the usual version of Stokes’
theorem, so we may assume m ≥ 1. Let χ : [ 0, ∞) → [ 0, 1] be a smooth function
satisfying χ(t) = 0 for t near 0 and χ(t) = 1 for t ≥ 1. Define a sequence of
H -invariant functions χ̃k : V → [0, 1] for k ≥ 1 by χ̃k(v) = χ(k|prW v|), where
prW : V → W is the orthogonal projection. These functions descend to smooth
functions χk : U → [0, 1]. The functions 1 − χk are bump functions supported
near the singularities of U . In fact the sets Sk = supp(1 − χk) form a decreasing
sequence satisfying

(7.5)
⋂

k

Sk = B1 × {0 mod H},

the most singular stratum of U . Therefore
⋂

k(Sk)prin is empty and∣∣∣∣∫
Xprin

dγ −

∫
Xprin

χkdγ

∣∣∣∣ =

∣∣∣∣∫
(Sk)prin

(1 − χk)dγ

∣∣∣∣ ≤ C vol(Sk)prin → 0

as k → ∞. (Here C is an upper bound for |(1 − χk)dγ |.) This shows that∫
Xprin

dγ = lim
k→∞

∫
Xprin

χkdγ.

To see that this limit is 0 we use∫
Xprin

χkdγ =

∫
Xprin

d(χkγ ) −

∫
Xprin

dχk ∧ γ.

Since d(χkγ ) is supported away from the most singular stratum (7.5), we can
assume by induction on the depth of the stratification that

∫
Xprin

d(χkγ ) = 0. More-
over, ∣∣∣∣∫

Xprin

dχk ∧ γ

∣∣∣∣ ≤

∫
Xprin

|dχk ||γ |µ ≤ C
∫

(Sk)prin

|dχk |µ,

where C is an upper bound for |γ |. Let ρ̃k : W → W be the dilation v 7→ kv and
ρk the induced map on ZV /H . Then χk = χ1 ◦ ρk and Sk = ρ−1

k (S1). It follows
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that dχk(x) = kdχ1(ρk(x)). By (7.2), Uprin is the product of a ball and a metric
cone, so vol(Sk)prin = k−2m vol(S1)prin, where 2m = dim ZW /H ≥ 2. Hence∣∣∣∣∫

Xprin

dχk ∧ γ

∣∣∣∣ ≤ Ck1−2m
∫

(S1)prin

|dχ1|µ → 0

as k → ∞. Therefore limk→∞

∫
Xprin

χkdγ = 0. �

Stokes’ theorem implies that the volume form of a compact quotient is not exact.

Corollary 7.6. Suppose that X is compact. Then the class of ωk
prin in H 2k(�(X))

is nonzero for 0 ≤ k ≤ n, where 2n = dim X .

8. Generalizations

The results above can be generalized in two obvious ways. First we consider sym-
plectic quotients at nonzero levels. Let O be a coadjoint orbit in g∗. The symplectic
quotient at O is XO = ZO/G, where ZO is the fiber 8−1(O). The spaces ZO and XO

stratify in exactly the same way as when O = {0} and the strata of XO again carry
natural symplectic forms. Differential forms on XO can now be defined as before.
There is a symplectic slice theorem for orbits in ZO, so all our results generalize
to this situation with virtually unchanged proofs.

Next we consider actions of a noncompact group G. The symplectic slice theo-
rem remains valid, provided that G acts properly on M . For locally closed coadjoint
orbits O stratifications of ZO and XO were obtained in [Bates and Lerman 1997].
However, our definition of forms on X is valid as it stands only when O is closed,
because forms on a nonclosed subset may not extend to the ambient manifold. If
O is locally closed we define �(XO) = �8(N )/I8(N ). Here N = 8−1(D) is
the preimage of any G-invariant open neighborhood D of O in g∗ such that O is
closed in D, �8(N ) is the set of G-invariant forms on N that restrict to basic
forms on (ZO)prin, and I8(N ) is the set of G-invariant forms on N that restrict to
0 on (ZO)prin. With this minor modification our results carry over to symplectic
quotients by proper actions at locally closed coadjoint orbits. (For general orbits
one might try to apply the methods developed in [Cushman and Śniatycki 2001],
but we have not attempted this.)

Appendix: Forms on homogeneous bundles

Let G be a compact Lie group and H a closed subgroup. For any H -manifold F
we can form the homogeneous fiber bundle with fiber F over G/H ,

E = (G × F)/H.

The map f : F → E defined by f (p) = [1, p] identifies F with the fiber over the
coset 0 mod H . (Here [g, p] denotes the coset (g, p) mod H of (g, p) ∈ G × F .)
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Restriction to the fiber is a homomorphism

f ∗
: �(E)G

→ �(F)H .

It is not hard to see that G-basic forms on E restrict to H -basic forms on F and that
f ∗

: �bas(E) → �bas(F) is an isomorphism. We require a slight generalization of
this elementary fact.

Choose an H -equivariant projection g → h; this determines a G-invariant con-
nection 1-form θ ∈ �1(G, h)G×H on the principal H -bundle G → G/H . Let V E
be the vertical tangent bundle of E and let θE ∈ �1(E, V E)G be the G-invariant
connection 1-form on E associated to θ . Let γ ∈ �(F)H be any invariant form on
the fiber. Define a form e(γ ) ∈ �(E) by putting

e(γ )[g,p](v) = γp
(
(g−1)∗θE(v)

)
for [g, p] ∈ E and v ∈ 3(T[g,p]E). (For simplicity we write θE for the extension of
the connection θE : T E → V E to a multiplicative map 3(T E) → 3(V E).) The
H -invariance of γ implies that e(γ )[g,p](v) does not depend on the choice of the
representative (g, p) of the coset [g, p]. The G-invariance of θE implies that e(γ )

is G-invariant. Thus we have defined a map

e : �(F)H
→ �(E)G,

which we call the extension homomorphism determined by θ . (An alternative def-
inition runs as follows. Let V = pr∗ T F , where pr : G × F → F is the Cartesian
projection. The vertical bundle of E is then the quotient V E ∼= V/H . A form
γ ∈ �(F)H is a section of 3(T F) and as such extends uniquely to a section γ̃

of V that is constant along G. Then γ̃ is G × H -invariant and so descends to a
G-invariant section γ̄ of V E . Thus e(γ )= θ∗

E γ̄ is a G-invariant section of 3(T E).
This argument also shows that e(γ ) is smooth.) The following result is immediate
from the definition.

Lemma A.1. (i) f ∗e(γ ) = γ for γ ∈ �(F)H ;

(ii) e maps �(F)bas to �(E)bas;

(iii) e( f ∗β) = β for β ∈ �(E)bas.

It follows from (i) that f ∗
: �(E)G

→ �(F)H is surjective and from (ii)–(iii)
that f ∗

: �bas(E) → �bas(F) is an isomorphism, as noted above. Now let F ′ be a
second H -manifold and let j : F → F ′ be an H -equivariant map. Then j extends
naturally to an G-equivariant bundle map ̄ : E → E ′

= (G × F ′)/H . Moreover
θE is the pullback of the associated connection θE ′ on E ′. This implies that the
extension homomorphism is functorial in the following sense.

Lemma A.2. e ◦ j∗
= ̄∗

◦ e′, where e′
: �(F ′)H

→ �(E ′)G is the extension
homomorphism for E ′.



166 REYER SJAMAAR

References

[Arms et al. 1991] J. M. Arms, R. H. Cushman, and M. J. Gotay, “A universal reduction procedure
for Hamiltonian group actions”, pp. 33–51 in The geometry of Hamiltonian systems (Berkeley,
1989), edited by T. Ratiu, Math. Sci. Res. Inst. Publ. 22, Springer, New York, 1991. MR 92h:58059
Zbl 0742.58016

[Bates and Lerman 1997] L. Bates and E. Lerman, “Proper group actions and symplectic stratified
spaces”, Pacific J. Math. 181:2 (1997), 201–229. MR 98i:58085 Zbl 0902.58008
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