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Abstract This paper addresses comprehensive ranking systems determining an ordering of entities by
aggregating quantitative data for multiple attributes. We propose a DEA-CP (Data Envelopment Analysis
- Compromise Programming) model for the comprehensive ranking, including preference voting (ranked
voting) to rank candidates in terms of aggregate vote by rank for each candidate. Although the DEA-CP
model once employs the flexible DEA weighting system that can vary by entity, it finally aims at regressing
to the common weights across the entities. Therefore, the model can totally rank the entities by specifying
nothing arbitrary, and can avoid to use the diverse DEA weights.
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1. Introduction

This paper deals with comprehensive ranking systems, e.g., project ranking systems, in which
we evaluate and rank n entities by aggregating quantitative data for t attributes. Although
such a multi-attribute ranking is broadly used in various fields, we cannot but employ a
weighted sum of the attribute values as an evaluation criterion. That is, the problem is to
obtain a total score Zj =

∑t
r=1 uryrj for entity j, j = 1, ..., n, where yrj(≥ 0) is the value to

attribute r of entity j, and ur(≥ 0) is the weight given to attribute r. Consider a special case
of the comprehensive ranking, and suppose that yrj is the number of r-th place votes that
candidate j receives. Then, this is a preference voting system, i.e., ranked voting system, in
which each voter selects, ranks and votes the top t candidates among n, and we determine
an ordering of all the n candidates by obtaining Zj. Note that the comprehensive ranking
includes the preference voting. Since it is not easy to determine a priori clear-cut weights
in comprehensive ranking systems, we must say that any comprehensive ranking in terms
of the weighted sum is somewhat arbitrary however the weights are specified.

In order to exclude the arbitrariness, we can consider to apply DEA (Data Envelopment
Analysis) (e.g., Charnes et al. [3], Cooper et al. [5]) to the comprehensive ranking. Cook
and Kress [4] first propose a DEA-based preference voting model, in which the candidates
are regarded as DMUs (Decision Making Units) in DEA, and every DMU j is considered
to have t DEA outputs, i.e., yrj, r = 1, ..., t, and one DEA input, i.e., “unit input” whose
amount is unity (Hashimoto [7]). This idea is applicable to the DEA-based comprehensive
ranking. In the DEA comprehensive ranking, we evaluate entities using a total score Zj, a
weighted sum of multi-attribute values, but the weights ur, r = 1, ..., t, can vary by entity.
That is, each entity is rated in terms of the weights most favorable to itself.

Although the DEA comprehensive ranking can do without employing a priori weighting,
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there exist two kinds of criticism originated from the above-mentioned property peculiar to
DEA: (1) Multiple top-ties. DEA usually judges multiple DMUs as DEA efficient. There-
fore, DEA ranking usually has multiple entities tied for the first place; (2) Too diverse
weights. Each entity evaluated in DEA ranking has the freedom to choose its own optimal
weights. The ranking using such different weights by entity is not commonplace, so that
it would rather be unacceptable than the traditional ranking using common weights across
the entities.

To resolve the problem of multiple top-ties, several methods are addressed. For the pref-
erence voting, Cook and Kress [4] propose to discriminate the top-tied candidates, i.e., DEA
efficient DMUs, by maximizing a discrimination intensity function, implying the minimum
gap between successively ranked weights, subject to the condition that they remain DEA
efficient. However, we must then specify the discrimination intensity function, which brings
another arbitrariness than that in determining weights. Hashimoto [8] resolves this problem
in also the preference voting by applying the DEA exclusion model (Andersen and Petersen
[1]), that can discriminate DEA efficient DMUs, instead of the standard DEA model. But
it should be noted that in the more general comprehensive ranking with no a priori infor-
mation about weight distribution, as these authors also state, the DEA exclusion model
ranks the DEA efficient DMUs outlying in the data space too high. Green et al. [6] develop
another model that constructs the DEA/ cross-efficiency matrix (Sexton et al. [9]) and
ranks the candidates by its eigenvector. This is applicable to the comprehensive ranking.
But regrettably, we must say that this method also depends on the diverse DEA weights
like [4] and [8].

Based on the considerations above, this paper proposes a new comprehensive rank-
ing model named DEA-CP (DEA- Compromise Programming). This is also a DEA-based
model, but aims at regressing to the common weights across the entities. For the ranking,
we would prefer the common weights across the entities to the different weights by entity.
We employ the DEA for resolving the difficulty to a priori determine clear-cut weights, not
for obtaining the different weights. In order to regress from the diverse sets of weights gotten
by the DEA to a set of the common weights, we employ the compromise programming (Yu
[12], Zeleny [13]). We can find no other ranking models seeking the common weights across
the entities by combining the DEA and the compromise programming. The DEA-CP model
can rank the entities by specifying nothing arbitrary, and can avoid to use the diverse DEA
weights. Further, it can resolve the problem of multiple top-ties, and produces no problem
of outliers ranked too high.

2. DEA-CP Ranking

The DEA-CP ranking model proposed in this paper consists of two stages: (1) DEA com-
prehensive ranking and (2) compromise programming. We begin with describing the model
for the preference voting. Therefore, the first stage of the model is here the DEA preference
voting.

2.1. DEA preference voting model

We formulate the model of DEA preference voting, the same of Cook and Kress [4], as
follows:

Maximize Zj0 =
t∑

r=1

uryrj0 (2.1a)

subject to
t∑

r=1

uryrj ≤ 1, j = 1, ..., n, (2.1b)
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ur − ur+1 ≥ ε, r = 1, ..., t − 1, (2.1c)

ut ≥ ε, (2.1d)

where ε is a positive non-Archimedean infinitesimal.

This is a DEA/ multiplier form model with each candidate as a DMU. We solve this LP
(Linear Programming) problem with decision variables ur, r = 1, ..., t, for each candidate
j0, j0 = 1, ..., n, and try to rank the candidates according to the maximum Z∗

j0
. Constraints

(2.1c) form the DEA/ assurance region (Thompson et al. [11]) expressing a strict ordering
of weights. Since each DMU can diversely select its own optimal weights, model (2.1)
usually judges multiple DMUs as DEA efficient, i.e., Z∗

j0
= 1. In this way, although the

DEA preference voting can certainly do without arbitrary specifying weights, it usually
ranks multiple candidates as the top based on the diverse weights differently defined by
candidate.

2.2. Compromise programming

Model (2.1) gives a DEA score vector Z∗ = (Z∗
1 , ..., Z

∗
n) based on the optimal weights

varying by candidate j, and there are usually multiple top-tied candidates with Z∗
j = 1.

These diverse optimal weights imply different interpretations of the voters’ preference by
the candidates, which causes the problem of multiple top-ties. Moreover, although the idea
of flexibly defined weights is peculiar to DEA vs other comprehensive evaluation methods,
there are surely some people who think it unrealistic or unfair. To resolve this, at the
second stage of the DEA-CP model, we consider regressing to the common weights across
the candidates. However, we can neither employ any predetermined weights because of
arbitrariness, nor employ optimal weights for any special candidate because of fairness.
Therefore, we here apply the notion of compromise programming in the multiobjective
decision-making, that minimizes the sum of each candidate’s deviation from the ideal point.

Let u = (u1, ..., ut) be the vector of common weights across the candidates to be obtained,
and let

U =

{
(u1, ..., ut)

∣∣∣∣∣
t∑

r=1

uryrj ≤ 1, j = 1, ..., n, ur − ur+1 ≥ ε, r = 1, ..., t − 1, ut ≥ ε

}
(2.2)

be the set of all feasible u, the feasible weight set. Further, let Zj(u) =
∑t

r=1 uryrj be the
total score function to candidate j, let Z(u) = (Z1(u), ..., Zn(u)) be the vector of Zj(u),
and let S = {Z(u)|u ∈ U} be the total score set. For any candidate j, score Z∗

j model
(2.1) gives is the maximum total score that he/she can obtain. Therefore, vector Z∗ is the
ideal point in the sense that every candidate is evaluated in terms of his/her own optimal
weights. If Z∗ is feasible, i.e., there exists u0 ∈ U such that Z(u0) = Z∗, the weight
vector u0 would be acceptable. Since such a fortunate case is rare, we aim at reaching to
the closest point Z(u) to the ideal point Z∗. For this purpose, we need a distance function
that measures the closeness between the points Z∗ and Z(u). We introduce the well-known
distance function (

∑n
j=1 wj|Z∗

j −Zj(u)|p)1/p, where wj (≥ 0) is the weight given to candidate
j, and p, 1 ≤ p ≤ ∞, is a parameter (e.g., Chankong and Haimes [2]).

Since this distance function implies the total sum of each candidate’s regret that he/she
cannot achieve the ideal point Z∗, we search the point Z(u) by minimizing the function.
Noting that we should regard the weight to each candidate as equal because of fairness, and
noting that Z∗ ≥ Z(u) , we can formulate the problem for seeking the closest point to Z∗
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as follows:

Minimize Dp(Z(u)) =

 n∑
j=1

(
Z∗

j −
t∑

r=1

uryrj

)p
1/p

(2.3a)

subject to u ∈ U . (2.3b)

Obtaining the optimal solution u∗ to model (2.3), we rank the candidates by Zj(u
∗).

In model (2.3), we can, in theory, specify the parameter p any value in the range 1 ≤
p ≤ ∞. However, in computation, i.e., from a viewpoint of algorithms to obtain the optimal
solution, and because of geometrical concepts of distance, we cannot but consider only the
following three values: p = 1, the L1 (absolute value) norm; p = 2, the L2 (Euclidean) norm;
and p = ∞, the L∞ (Tchebycheff) norm.

(1) The L1 norm. When p = 1, the model (2.3) is equivalent to the following LP
problem:

Maximize
n∑

j=1

t∑
r=1

uryrj (2.4a)

subject to u ∈ U . (2.4b)

(2) The L2 norm. When p = 2, let
∑n

j=1(Z
∗
j − ∑t

r=1 uryrj)
2 = D̃2(Z(u)). Then,

D2(Z(u)) = [D̃2(Z(u))]1/2 is a strictly increasing function of D̃2(Z(u)). Therefore, since
minimizing D2(Z(u)) is equivalent to minimizing D̃2(Z(u)), we can solve the following QP
(Quadratic Programming) problem instead of the model (2.3) for p = 2:

Minimize D̃2(Z(u)) =
n∑

j=1

(
Z∗

j −
t∑

r=1

uryrj

)2

(2.5a)

subject to u ∈ U . (2.5b)

(3) The L∞ norm. As is well-known, we can transform the model (2.3) for p = ∞ to the
following:

Minimize max
j=1,...,n

(
Z∗

j −
t∑

r=1

uryrj

)
(2.6a)

subject to u ∈ U . (2.6b)

This can further be transformed as an LP formulation.

2.3. Selecting a norm

We must here choose one out of the L1, L2 and L∞ norms. The effect of parameter p is to
place more or less emphasis on the relative contribution of individual regret. The larger the
p value is chosen, the more importance is given to the largest regret. Ultimately, the L∞
treats only the maximal regret. On the contrary, the L1 norm takes all regrets into account
in direct proportion to their magnitudes. The L2 norm measures the shortest geometric
distance from the ideal point to the actual evaluation point. Notwithstanding, we have no
rationale to choose the value of p.

We here select the L2 norm from the reason of the unique optimal solution of total score
vector Z(u). If model (2.3) has multiple optimal solutions of Z(u), the ranking in terms of
Zj(u

∗) might be indefinite. Hence, we prove the following property.
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Property. For 1 < p < ∞, model (2.3) has a unique optimal solution of Z(u).
Proof. For 1 < p < ∞, since Dp(Z(u)) is a strictly increasing function of

D̃p (Z(u)) =
n∑

j=1

(
Z∗

j −
t∑

r=1

uryrj

)p

,

minimizing Dp(Z(u)) is equivalent to minimizing D̃p(Z(u)). D̃p(Z(u)) is a strictly convex
function of Z(u) because each (Z∗

j −
∑t

r=1 uryrj)
p, j = 1, ..., n, is strictly convex. Therefore,

letting Z1,Z2 ∈ S and letting λ be a scalar 0 ≤ λ ≤ 1,

D̃p

(
(1 − λ)Z1 + λZ2

)
< (1 − λ)D̃p(Z

1) + λD̃p(Z
2). (2.7)

Suppose that model (2.3) has two optimal solutions Ẑ
1
and Ẑ

2
, then D̃p(Ẑ

1
) = D̃p(Ẑ

2
) =

D̃∗
p, where D̃∗

p is the minimum to D̃p(Z(u)), because minimizing Dp(Z(u)) is equivalent to

minimizing D̃p(Z(u)). Since S is convex (see Appendix A), any convex combination of Z1

and Z2 also belongs to S. But from (2.7),

D̃p

(
(1 − λ)Ẑ

1
+ λẐ

2
)

< (1 − λ)D̃p(Ẑ
1
) + λD̃p(Ẑ

2
) = D̃∗

p.

This is in contradiction to that D̃∗
p is the minimum to D̃p(Z(u)). Therefore, model (2.3)

has a unique optimal solution Ẑ. �

This property implies that if an optimal solution u∗ to the model (2.3) for 1 < p < ∞
is obtained, then the unique optimal vector Ẑ(u∗) is also obtained, so that we can rank
the candidates in terms of the total scores Ẑj(u

∗). This is guaranteed by only the L2 norm
among the three norms.

For the more general comprehensive ranking, not the preference voting, removing the
constraints ur − ur+1 ≥ ε, r = 1, ..., t − 1, from the feasible weight set U , we can follow the
same discussion. Therefore, we employ the L2 norm, i.e., employ solving the QP problem
(2.5) as the second stage of the DEA-CP ranking model.

3. Ranking Cases

To demonstrate the performance of the proposed DEA-CP ranking model, we show two
ranking cases corresponding to the preference voting and the comprehensive ranking.

3.1. Preference voting case

Table 1 shows a preference voting case where each voter selects, ranks and votes the top
five candidates and we try to determine an ordering of all the fourteen candidates (t = 5,
n = 14). We get the Borda order based on the weights a priori determined as ur = t−r+1 =
6 − r, r = 1, ..., 5 (Stein et al. [10]). The DEA/AR (DEA/ Assurance Region) score is that
model (2.1), having constraint (2.1c) as the assurance region, produces. Here, candidates
A and B are tied for the top. The DEA/AR exclusion model is by Hashimoto [8], and is
different from the DEA/AR model by that candidate j0 being evaluated is excluded from
constraint (2.1b) as

∑5
r=1 uryrj ≤ 1, j = 1, ..., 14, j �= j0.

The DEA-CP obtains the results resolving the multiple top-ties like the DEA/AR ex-
clusion. But unlike the diverse weights of the DEA/AR exclusion, the DEA-CP has the
common weights across the candidates. That is, the optimal solution to model (2.5) is
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Table 1: A preference voting case a

Candi- Rank DEA-CP DEA/AR DEA/ Borda
date exclusion b AR b

1 2 3 4 5 Score Order c Score Order c Score Order
A 27 38 15 7 4 1.000 1 1.226 2 1.000 1
B 38 15 16 14 7 0.991 2 1.407 1 1.000 2
C 21 25 30 8 5 0.977 3 0.978 3 0.978 3
D 2 8 10 23 19 0.679 4 0.681 4 0.681 4
E 1 1 11 22 24 0.646 5 0.648 5 0.648 5
F 2 4 4 7 13 0.329 6 0.330 6 0.330 6
G 1 0 4 7 13 0.274 7 0.275 7 0.275 7
H 0 1 1 0 0 0.022 11 0.025 11 0.025 8
I 0 0 1 1 1 0.033 8 0.033 8 0.033 9
J 0 0 0 1 2 0.033 9 0.033 9 0.033 10
K 0 0 0 1 2 0.033 9 0.033 9 0.033 10
L 0 0 0 1 0 0.011 12 0.011 12 0.011 12
M 0 0 0 0 1 0.011 13 0.011 13 0.011 13
N 0 0 0 0 1 0.011 13 0.011 13 0.011 13

a Data of the aggregate votes yrj , r = 1, ..., 5, j = 1, ..., 14, are quoted from Stein et al. [10],
and are also used in Hashimoto [8].
b See [8]. But the AR (Assurance Region) here is different from that of [8].
c Different orders with the same score are according to the infinitesimal term. See Appendix
B as to the computation of the DEA-CP model.

u∗ = (u∗
1, ..., u

∗
5) = (0.0111, 0.0109, 0.0109, 0.0109, 0.0109). (Strictly, from constraints (2.2),

the optimal value u∗
r is greater than u∗

r+1, r = 2, ..., 4, by an infinitesimal ε, respectively.)
We should note that a total ordering different from the Borda one is obtained through the
common weights across the candidates by specifying nothing arbitrary.

3.2. Comprehensive ranking example

Consider a general comprehensive ranking where we rank five entities by aggregating quan-
titative data for two attributes. The attribute data yrj, r = 1, 2, j = 1, ..., 5, are given in
Table 2, and Figure 1 displays the five entities on the attribute plane. Note that the com-
prehensive ranking model with no a priori information about weight distribution does not
have constraint (2.1c) as the AR, i.e., it forms the DEA, not the DEA/AR, model.

Table 2 shows that the DEA exclusion can discriminate four DMUs (entities A-D) on the
frontier in Figure 1. Here, entity D obtains the greatest DEA exclusion score 2.0 (= OD/OD′

in Figure 1) because the DEA exclusion computes the score in terms of its reference point

Table 2: A comprehensive ranking example

Entity Attribute DEA-CP DEA exclusion DEA
1 2 Score Order Score Order Score

A 1 7 0.827 4 1.000 4 1.000
B 2 7 0.963 2 1.067 2 1.000
C 3 6 1.000 1 1.050 3 1.000
D 6 1 0.914 3 2.000 1 1.000
E 2 2 0.469 5 0.485 5 0.485
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Figure 1: The five entities plotted on the attribute plane.

onto the shifted DEA exclusion frontier. This is the problem that the DEA exclusion ranks
the DEA efficient DMUs outlying (entity D) too high.

On the other hand, the DEA-CP can provide more reasonable results with the optimal
weights u∗ = (0.136, 0.099) common across the entities. That is, the DEA-CP resolves the
problem of outliers ranked too high as well.

4. Summary and Conclusions

This paper has proposed the DEA-CP model for comprehensive ranking, including prefer-
ence voting, of entities by aggregating quantitative data for multiple attributes. This model
avoids a priori fixed weights to the attributes in terms of the DEA, and aims at regressing
to the common weights across the entities in terms of the CP. That is, the DEA-CP model
can get a total ordering of the entities by specifying nothing arbitrary. Further, it can avoid
to use the diverse DEA weights and produces no problems of outliers ranked too high. It
is considered that the DEA-CP model can be a powerful method to comprehensively rank
the entities with multiple attributes.

Appendix A
Proof of that the total score set S is convex. Let Z1(u1),Z2(u2) ∈ S. From model (2.1),
Z1(u1) ≤ (1, ..., 1) and Z2(u2) ≤ (1, ..., 1). Letting λ be a scalar 0 ≤ λ ≤ 1, (1 − λ)u1 +
λu2 = u ∈ U because the feasible region U of LP constraints is a convex set. Then,

(1 − λ)Z1(u1) + λZ2(u2) = (1 − λ)

(
t∑

r=1

u1
ryr1, ...,

t∑
r=1

u1
ryrn

)
+ λ

(
t∑

r=1

u2
ryr1, ...,

t∑
r=1

u2
ryrn

)
= (Z1(u), ..., Zn(u))

≤ (1, ..., 1). �
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Appendix B
We treat the positive non-Archimedean infinitesimal in solving model (2.5) as follows:

Setting the infinitesimal (ε > 0) as ε = 0 and computing model (2.5), we obtain the
optimal solution u∗ and the DEA-CP scores Ẑj(u

∗), j = 1, ..., n. This implies that we
suppose boundaries of the constraints related to ε (we here call ε-boundaries) to be included
in the feasible region to model (2.5).

(1) If u∗ is not on any ε-boundary, u∗ is also the optimal solution to model (2.5) in the
case of ε > 0. Therefore, we can rank the candidates by Ẑj(u

∗).
(2) If u∗ is on the ε-boundary, u∗ is not a feasible solution to (2.5). However, within

the range of Archimedean numbers, u∗ is the optimal solution to (2.5) and the ordering in
terms of Ẑj(u

∗) is valid.
(3) In (2), and in the case of some ties in terms of the DEA-CP scores Ẑj(u

∗), we
examine whether to discriminate the Ẑj(u

∗) scores using the non-Archimedean infinitesimal
term with ε > 0.

In the case of Table 1, letting ε = 0, we get u∗
r = 0.0109, r = 2, ..., 5. This corresponds

to (2) or (3) above. In terms of (2), we can rank ten candidate groups, i.e., candidates A-H,
(I, J, K) and (L, M, N) using the DEA-CP scores Ẑj(u

∗). To discriminate candidates I, J
and K, for example, we let u∗

4 = u∗
5 + ε, u∗

3 = u∗
5 + 2ε and u∗

2 = u∗
5 + 3ε (ε > 0), and can find

ẐI(u
∗) > ẐJ(u

∗) = ẐK(u∗).
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