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Abstract 
 
Inertial navigation systems (INS) are composed of inertial sensors, such as accelerometers and gyroscopes. An INS updates its orienta-

tion and position automatically; it has an acceptable stability over the short term, however this stability deteriorates over time. Odometry, 
used to estimate the position of a mobile robot, employs encoders attached to the robot’s wheels. However, errors occur caused by the 
integrative nature of the rotating speed and the slippage between the wheel and the ground. In this paper, we discuss mobile robot posi-
tion estimation without using external signals in indoor environments. In order to achieve optimal solutions, a Kalman filter that estimates 
the orientation and velocity of mobile robots has been designed. The proposed system combines INS and odometry and delivers more 
accurate position information than standalone odometry.  
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1. Introduction 

A mobile robot is an automatic machine that navigates in a 
given environment and recognizes its surroundings using 
many sensors. The study of mobile robots has developed rap-
idly in various fields, such as housework support, elder assis-
tance, education, medical care, national defense, etc. The lo-
calization of a mobile robot in order to achieve autonomous 
movement is an important technique and is currently an im-
portant research field. There are two general methods used for 
localization: relative positioning and absolute positioning [1]. 
Relative positioning, also known as dead reckoning, evaluates 
the position of the mobile robot by using its velocity and yaw 
angles measured by encoders attached to the robot’s wheels or 
by inertial sensors [1-8]. Absolute positioning evaluates the 
position of the mobile robot by using external distance meas-
uring systems. 

Dead reckoning estimates a relative position from the initial 
starting point information. Generally, it uses an inertial meas-
urement unit (IMU) or a control variable, such as an encoder, 
and so does not depend on external signals [1-12]. Therefore 
dead reckoning has advantages in being simple, low cost, and 
has an easier time in estimating the position in real time com-

pared to absolute positioning. In order to measure the position, 
the absolute positioning method uses the global positioning 
system (GPS), ultrasonic local positioning systems, infrared 
network systems, radio frequency identification (RFID) sys-
tems, etc. [1, 4]. GPS cannot be used indoors and has a slow 
update rate [1, 13]. The ultrasonic local positioning systems 
and the infrared network systems are low cost, small, and are 
easy to interface [1, 12-17]. However, these methods cannot 
measure far distances, require additional installation and have 
a difficulty in accuracy due to signal interference. RFID re-
quires additional equipment and has a high cost. These abso-
lute positioning methods have an advantage in that they do not 
accumulate positioning errors, but the overall positioning er-
rors are relatively big. 

In this paper, we discuss the position estimation of mobile 
robots in an indoor environment, such as a building or a fac-
tory. We assume that the mobile robot travels on a flat, mostly 
level surface. When the mobile robot travels, the position and 
the yaw angle of the mobile robot can be estimated by encod-
ers attached to the robot’s wheels. This method is known as 
odometry [1-8]. The encoders measure the wheel’s angular 
rate of change. The position and yaw angle of the mobile ro-
bot are calculated by the rotary angle, and the diameter of the 
wheel, and the body width of the mobile robot. When using 
odometry, unbounded errors occur due to slippage, mis-
matches in the system parameters, measurement inaccuracies, 
and noise from the encoder signals [1-8]. Although these er-
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rors are relatively small, they do accumulate, caused by posi-
tion and yaw angle errors, over the long run. The inclination 
of the ground is also a source for errors. These errors can be 
reduced by using attitude compensation. An INS updates the 
orientation and position information automatically without 
external signals. The INS, which consists of an IMU and a 
navigation computer, provides the position and orientation of 
the mobile robot at a high rate, typically 100 times per second 
[9-11]. If the mobile robot's initial information is known, the 
position and orientation are determined by the integration of 
the accelerations and the angular rates [9-11]. However, low 
frequency noise and sensor biases are amplified due to the 
integrative nature of the system [9, 18-20]. That is, INS offers 
a good short term stability but has a poor long term stability. 
Therefore, an INS without additional external signals has un-
bounded position and orientation errors.  

By themselves, standalone odometry and INS are not suit-
able for dead reckoning for over long periods of time due to 
the accumulation errors. In this paper, we combine the odome-
try and the INS in order to reduce the accumulation errors 
found in the dead reckoning. Although both INS and odome-
try have accumulation errors, the integration of these two sys-
tems will reduce these errors to an acceptable level. In order to 
achieve an optimal integrated system, a Kalman filter will be 
designed and used [21]. The main idea is same as followings: 
The position of the mobile robot is estimated by the velocity 
and orientation that are calculated by tri-axial accelerometers 
and tri-axial gyroscopes for every 20 Hz period (50 ms). In 
order to estimate the orientation, for every 4 Hz period 
(250 ms), the roll and the pitch are updated using accelerome-
ter, the yaw angle rate is updated using odometer, and the yaw 
angle is updated using the magnetic sensor. In order to esti-
mate the position, the odometer refines the velocity measure-
ment. The aim of this paper is to extend the period of travel-
ling without needing any external position data from an abso-
lute positioning system. 

 
2. The navigation system 

The purpose of the proposed system that combines the INS 
and odometry is to estimate the orientation and position of the 
mobile robot with only a small amount of errors, using the 
information from two systems that have different features. 
This section presents the fundamental equations of the naviga-
tion system and describes the proposed positioning algorithm. 

 
2.1 The inertial navigation system  

The INS consists of an IMU and a navigation computer. 
The IMU is an assembly of the inertial sensors, which include 
tri-axial accelerometers, tri-axial gyroscopes, and at least dual 
axial magnetic sensors [9-11]. The navigation computer oper-
ates using an algorithm that estimates the orientation, velocity 
and position. The tri-axial accelerometers measure the abso-
lute three dimension acceleration with respect to the body 

frame. The inclination of the mobile robot is evaluated with 
three orthogonal accelerometers because the tri-axial acceler-
ometers provide very accurate information when the mobile 
robot is stationary. In addition, single and double integration 
of the accelerations provide the velocity and position, respec-
tively. The three orthogonal gyroscopes provide the angular 
rates regarding the three axes. The integration of the angular 
rates provides the orientation of the mobile robot. In addition 
the integration of the tri-axial gyroscopes provides the orienta-
tion not only when the mobile robot is stationary, but also 
when it is moving. 

 
2.1.1 The initial alignment algorithm  

Dead reckoning calculates a relative position from the initial 
position information and the initial orientation information of 
the mobile robot. The initial alignment process is used to cal-
culate the initial orientation from the outputs of the inertial 
sensors when the mobile robot is stationary. We can assume 
that the starting point is the origin. The initial orientation can 
be calculated with three orthogonal accelerometers and dual 
magnetic sensors. 

The acceleration ( bf ) on the body frame is measured at a 
complete standstill in the following manner: 
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where b

nC  is the transformation matrix from the navigation 
frame to the body frame. nf  is the acceleration on the navi-
gation frame and ng is the gravity. φ  and θ denote the roll 
angle and the pitch angle, respectively. From Eq. (1), the roll 
angle and pitch angle become: 
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The yaw angle (ϕ ) may be obtained from the earth rotation 
angular velocity when stationary. However, it is quite difficult 
to measure the earth’s rotation angular velocity because it 
demands gyroscopes with very high resolutions in order to 
measure this very small angular acceleration value. 

The magnetic sensor measures the magnitude of the earth's 
magnetic field using a magneto-resistive element. The compass 
sensor is composed of two magnetic sensors with an orthogo-
nal orientation that sense the horizontal components of the 
earth’s magnetic field. The compass sensor can therefore 
measure the yaw angle. The dual axial magnetic fields 
( ,ex eyH H ) that are measured by the dual magnetic sensors 
provide the magnetic north angle (α ) in the following manner: 
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There is a difference between true north and magnetic north. 
This angular difference is known as the declination angle ( λ ). 
The declination varies from 0° to 30° in most populated re-
gions of the world. These declination values change slightly 
over time as the earth’s tectonic plate shift. Therefore, the 
actual declination value is different in each location. The yaw 
angle is a right-handed rotation about true north. Therefore the 
yaw angle is determined by: 

 
,λ ϕ α ϕ λ α= − = + .

 
 (5) 

 
Fig. 1 depicts the earth magnetic field vector and the relation-
ship between magnetic north and true north. 

 
2.1.2 The bias calibration algorithm  

The initial alignment process determines the initial orienta-
tion of the mobile robot. The initial alignment is very impor-
tant because the dead reckoning algorithm uses this initial 
orientation in order to update its attitude and position [1, 9-11]. 
The accelerometers and gyroscopes have bias errors because 
of sensor misalignment, sensitivity and offset. In initial align-
ment, the orientation is calculated by the tri-accelerometers. 
When the mobile robot is moving, the orientation is calculated 
by the integrations of the angular rates that are measured by 
the tri-gyroscopes. Also the velocity and position are calcu-
lated by single and double integrations of the accelerations, 
respectively. Therefore, the biases of the accelerometer and 
gyroscope will increase the errors of the orientation and the 
position. Hence, the outputs of accelerometer and gyroscope 
must be calibrated in applications that require high accuracy, 
such as a mobile robot.  

In principle, the inclination of the mobile robot platform is 
determined from the tri-accelerometers, however the unknown 

biases of the tri-accelerometers affect the accurate measure-
ment of the inclination angle. In order to reduce the unknown 
biases of the tri-accelerometers, we will use dual-axial incli-
nometers. Two orthogonally mounted inclinometers measure 
the small deviations of the mobile robot platform at up to 

30± °  from the horizontal plane (x-y plane). The inclination 
information that is provided by the dual-axial inclinometers is 
used to cancel the biases on each axis of the accelerometer. 
Unfortunately, this inclination information is only useful when 
the mobile robot is stationary, since inclinometers are inher-
ently sensitive to acceleration. Therefore, the accelerometer 
biases must be determined before attempting to estimate the 
orientation, velocity and position while the mobile robot is 
moving. 

When the mobile robot is stationary, an algorithm that com-
pensates the biases of the tri-accelerometers is the following. 
The compass sensor measures the yaw angle and the dual-
axial inclinometers measure the roll and pitch angle. We will 
assume that these angles (yaw, roll and pitch) are the real ori-
entation of the mobile robot. A transformation matrix ( n

bC ) 
that shows the relationship between the body frame and the 
navigation frame becomes Eq. (6) by using these angles.  
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where cos and sin.= =c s  The relationship between the 
acceleration in the body frame and the acceleration in the na-
vigation frame is: 
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Since the mobile robot is stationary, the accelerations found in 
the navigation frame are only from the gravity vector. That is, 
the accelerations in the north and east direction are zero. The 
accelerations that are transformed with the navigation frame 
become the accelerometer biases excluding the gravity vector. 
In order to compensate for the biases, the outputs of the com-
pass sensor, dual-axial inclinometers and the tri-axial acceler-
ometers are sampled for 10 seconds; the sampled data are then 
averaged and are applied in the following algorithm. 

 
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

− +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

measure bias

measure bias

measure bias

N N
n

E E
n

D D

f f

f f

f g f

f ,
 

 (8) 

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

+⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

bias measure

bias measure

bias measure

N N
n

bias E E
n

D D

f f

f f

f f g

f ,
 

 (9) 

ˆ = −n n n
biasf f f

 
 (10) 

 
 
Fig. 1. The earth magnetic field vector. 
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where ˆnf  is the acceleration that removes the biases from the 
navigation frame. After estimating the biases in the navigation 
frame, the measured accelerations in the body frame are eval-
uated using 
 

=b b n
bias n biasf C f ,

 
 (11) 

ˆ = −b b b
biasf f f .

 
 (12) 

 
In Eq. (11), 

1−
⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦

Tb n n
n b bC C C . The ‘-1’ superscript indi-

cates an inverse matrix and the ‘T’ superscript indicates a 
transpose matrix. ˆbf  is the acceleration that removes the 
biases from the body frame. The inverse matrix of the trans-
formation matrix is equal to the transpose matrix, since the 
transformation matrix is orthogonal. 

The tri-gyroscopes provide the three dimension angular rate 
with respect to the body frame. Although the angular rate is 
reliable over long periods of time, it must be integrated in 
order to provide an absolute orientation measurement. There-
fore, even small errors in the angular rate generate unbounded 
errors. When the mobile robot is stationary, the angular rates 
in the body frame must be zero. Therefore, the measured an-
gular rates are bias errors. In order to compensate for the bi-
ases, the angular rates are sampled for 10 seconds; the sam-
pled data are then averaged. Fig. 2 shows the block diagram of 
the proposed bias estimation algorithm. 
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where ˆ bω  is the angular rate vector that removes the biases 
in the body frame. 

 
2.1.3 The position algorithm  

Through Newton's law of motion, the velocity of the mobile 
robot is calculated by using a single integration of the accel-
eration. The velocity at one time-step from the present will be 
equal to the present velocity plus the commanded acceleration 
multiplied by the measurement period (Δt ). The position is 
calculated by using a single integration of the velocity. 

1+ = + Δk k k tv v f ,
 

 (15) 

1+ = + Δk k k tP P v .
 

 (16) 
 

After the measured acceleration transforms the body frame 
into the navigation frame, by applying the acceleration of the 
gravity, the equation of velocity becomes: 
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where ⎡ ⎤= ⎣ ⎦k k k

Tn
k N E Dv v vv  denotes the velocity vector 

on the navigation frame at time k. The position of the mobile 
robot becomes: 
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where ⎡ ⎤= ⎣ ⎦k k k

Tn
k N E DP P PP  denotes the position vector 

on the navigation frame at time k. 
 

2.2 The odometry system  

The rotor encoder is the system that converts the angular 
rate of the rotor into a digital signal. Generally, the rotor en-
coders are attached onto the wheels of the mobile robot; the 
wheel's rotary angle is measured by the encoder. The rotor 
encoder generates N pulses while the wheel rotates 360 de-
grees. If the measured pulses are M counts, each wheel's ro-
tary angle becomes: 

 

, ,2 , 2η π η π= × = ×l r
k l k r

M M
N N  

 (19) 

 
where ,ηk l  and ,ηk r  are the left and right wheel's rotary 
angles in radians, respectively. lM  and rM  are the meas-
ured pulses on left and right encoders. 

The velocity, position and yaw angle of the mobile robot are 
estimated by using each wheel's rotary angle. Fig. 3 shows the 
movement prediction of the mobile robot from the wheels’ 
rotary angles. The mobile robot’s travel distance ka  can be 
expressed in terms of its wheel’s radius ( wheelR ), and each 
wheel’s rotary angle. 

 
Fig. 3. The movement prediction using rotary angles. 

 
 

 
Fig. 2. The block diagram of the bias estimations. 
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The mobile robot’s yaw angle rate ( ϕΔ k ) is calculated by the 
width of the robot ( widthd ) and the distance travelled by each 
wheel. 
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In this case, the robot’s rotation radius ( kr ) is: 
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According to the cosine law, the mobile robot’s position rate 
( λΔ ) can be expressed as: 
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If the robot moves in a straight line, the yaw angle rate will be 
zero. In this case, the rotation radius will become arbitrarily 
large, and the term in the parenthesis Eq. (24) will become 
zero. Therefore, Eq. (24) must be expanded by using a Taylor 
series as: 
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The following is the mobile robot’s position rate transformed 
into the navigation frame. 
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If roll and pitch are experienced by the mobile robot, the posi-
tion rate that compensates the attitude is: 
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The mobile robot's position and yaw direction is defined as: 
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In this case, the velocity is a differential of the mobile robot’s 
quantity of change in the position. 
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3. Error compensation using the Kalman filter 

Both positioning systems using encoders and that using in-
ertial sensors have accumulative errors, but caused by differ-
ent reasons. In the method using inertial sensors, integration of 
the outputs is the cause of the accumulated errors. In the 
method using encoders, systematic and nonsystematic errors 
are accumulated through calculation. We design a linear Kal-
man filter to combine these features. The Kalman filter is 
known to be the most ideal filter to estimate state variables in 
a dynamic system [19, 21]. 

 
3.1 The orientation compensation  

In the initial alignment algorithm, the orientation of the mo-
bile robot is calculated by the tri-accelerometers and the com-
pass sensor. If the mobile robot is moving, it will have accel-
erated motion, that is, the tri-accelerometer will measure not 
only the acceleration of the gravity but also the acceleration 
motion of the mobile robot. In this case, the attitude has a low 
accuracy because the roll and pitch angles are measured by the 
tri-accelerometers [10, 11]. Similarly, the compass sensor, 
which measures the yaw angle, has errors, since small mag-
netic field changes can be caused by metals found in the ex-
ternal environment [1]. Therefore, when the mobile robot is 
moving, it is difficult to measure the orientation of the mobile 
robot using the initial alignment algorithm. 

The tri-gyroscopes provide the angular rate in the body 
frame. The tri-gyroscopes are useful for measuring the orien-
tation of the mobile robot while the mobile robot is moving. 
However the orientation must be integrated using the angular 
rates; the gyroscope has drift and random walk noise which 
can effect these integration. So the orientation estimation us-
ing only gyroscopes generate accumulated orientation errors. 

In odometry, the yaw angle rate is calculated by Eq. (22). 
However, the yaw angle rate is inaccurate with an unbounded 
accumulation of systematic and nonsystematic errors [1-8]. 

We design the linear Kalman filter to estimate the orienta-
tion. The tri-gyroscopes are used as a system input variables 
because the tri-gyroscopes have fast response and less error 
covariance, but the error is accumulative. The tri-
accelerometers, the compass sensor and yaw angle rate from 
odometry are used as a measurement variable because these 
outputs have not accumulated errors, but have big error co-
variance. 

 
3.2 The position compensation  

Dead reckoning is a common method used to predict the 
position of a mobile robot by internal sensors, generally iner-
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tial sensors, and control variables, such as the encoder. The 
position estimation obtained by dead reckoning has an accept-
able accuracy over the short term, however it has unbounded 
errors over the long term. In this study, we use inertial sensors 
and encoders attached to the robot’s wheels for positioning. 
The positioning method using inertial sensors must integrate 
the measured tri-accelerations. This integration increases the 
unbounded errors in the velocity and position of the mobile 
robot [9, 11]. In the positioning method using the encoders, 
the velocity and position of the mobile robot is calculated by 
the angular rate of rotor and the diameter of the wheel. How-
ever, unbounded errors occur due to the measuring errors 
found in the encoders, i.e. the mechanical design defects of the 
mobile robots, the slippage between the wheels and ground, 
etc. [1-8]. 

The accurate positioning of a mobile robot using either the 
inertial sensors or the encoders is difficult to achieve due to 
the unbounded errors found in each system. Although they 
both have unbounded velocity and position errors, a coupled 
system will reduce the error to an acceptable level. The tri-
accelerometers are suitable for a system input variables be-
cause the tri-accelerations offer fast response and good short 
term stability, but have big accumulated errors due to a double 
integration. The outputs of orientation compensated odometry 
have less error covariance but have slow response (about five 
times per second). Therefore the outputs of orientation com-
pensated odometry are suitable for a measurement variable in 
the linear Kalman filter. 

 
3.3 The Kalman filter  

Fig. 4 shows the block diagram of the Kalman filter used 
for dead reckoning. The linear stochastic difference equations 
for the Kalman filter in this case are: 

 
1 1 1− − −= + +k k k kx Ax Bu w ,
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= +k k kz Hx v
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where φ θ ϕ ϕ⎡ ⎤= Δ⎣ ⎦k k
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k N E k k k kv vx  is the state 

variable at time k and are divided into the velocity, orientation 

and yaw angle rates of the mobile robot. The random variables 
kw  and kv  represent the process and measurement noise, 

respectively. The specific equations for the time update (pre-
dict) and the measurement update (estimate) are [21]: 
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where ˆ kx  denotes the estimated state variable and ˆ −kx  de-
notes the predicted state variable. kK  denotes the estimation 
error covariance and −

kK  denotes the prediction error covari-
ance. kG  denotes the Kalman gain. 

The estimated and predicted state variables are a linear 
combination. We assume that the correlations between the 
velocity and the orientation are zero and that the system ma-
trix is a unit matrix. 
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The system input variables are the outputs of the acceler-

ometer and the outputs of gyroscope. The correlations of each 
input are zero. The input variable and state variable are only 
related to the measurement period and the transformation ma-
trix. 
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N E D b x y zf f f f f fC . 

The measurement variable and the state variable are a linear 
combination. We assume that the correlations of the meas-
urement variable are zero and that the measurement matrix is 
a unit matrix. 

 
6 6= xH I ,

 
 (41) 

k k

T

k N E k k k k ka a c oo o
v v φ θ ϕ ϕ⎡ ⎤= Δ =⎣ ⎦z Hx

 
(42) 

 
where the ‘o’ subscript indicates the calculated values from 
the odometry and the ‘a’ subscript indicates the calculated 
values from Eqs. (2) and (3). The ‘c’ subscript is the output 
from the compass sensor. 

 
Fig. 4. The block diagram of the Kalman filter. 

 



 B.-S. Cho et al. / Journal of Mechanical Science and Technology 25 (11) (2011) 2907~2917 2913 
 

  

The process noise covariance is the error covariance that is 
measured from the inertial sensors. If we assume that the cor-
relations of inertial sensors are zero, the process noise covari-
ance is the following. The white noise of velocity is related to 
white noise of acceleration and the measurement period. If the 
white noise of acceleration in the navigation frame is fN , 
then the noise covariance of velocity in the navigation frame 
is: 

 
2 2 2 2⎡ ⎤ ⎡ ⎤= = Δ = Δ⎣ ⎦ ⎣ ⎦v v f fQ N N t Q tE E

 
 (43) 

 
where fQ  is the noise covariance of acceleration. Similarly, 
the noise covariance of orientation that is single integration of 
gyroscope output is: 
 

2 2 2 2⎡ ⎤ ⎡ ⎤= = Δ = Δ⎣ ⎦ ⎣ ⎦angle angle gyro gyroQ N N t Q tE E
 

 (44) 

 
where gyroN  is a white noise of gyroscope and gyroQ  is the 
noise covariance gyroscope. The process noise covariance is: 
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w h e r e  2,Δ = Δ

N Nv fQ Q t  2 ,Δ = Δ
E Ev fQ Q t  2 ,

φΔ = Δ
xv gQ Q t   

2,
θΔ = Δ

yv gQ Q t  2
ϕΔ = Δ

zv gQ Q t  and ⎡ ⎤ =⎣ ⎦N E D

T
f f fQ Q Q  

.* ⎡ ⎤
⎣ ⎦x y z

Tn n
b b f f fQ Q QC C . 

xf
Q , 

yfQ , 
zf

Q  are the error  

covariance measured with the tri-axis accelerometers. 
xgQ , 

ygQ , 
zgQ  are the error covariance measured with the tri-axis 

gyroscopes. Operator ‘.*’ is the array multiplier in MATLAB. 
The measurement noise covariance is the error covariance 

that is measured with the encoders and the compass sensor 
and it is the error covariance of the attitude calculated by the 
accelerometers. In this case, we assume that the correlation 
between the attitude from accelerometers, the output of com-
pass sensor, and the outputs of the encoders are zero. The 
measurement noise covariance is therefore: 

 
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

φ

θ

ϕ

ϕΔ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

N

E

v

v

R

R

R
R

R
R

R
 

 (46) 

where 
NvR , 

EvR  and ϕΔR  are the error covariance of the 
velocity and yaw angle rates estimated by the encoders. φR  
and θR  are the error covariance of the attitude calculated by 
the accelerometer. ϕR  is the error covariance of the yaw 
angle measured with the compass sensor. Fig. 5 depicts the 
flowchart of the proposed system. 

 
4. The experiment 

4.1 The system configuration 

The mobile robot is propelled by two DC motors. Each mo-
tor was equipped with two channel encoder that measures the 
rotating velocity and rotating direction of the wheels. An 
ADIS16354, Analog Device Inc., inertial sensor module was 
used to measure the acceleration and angular rate. In order to 
measure the absolute yaw angle, we used a Honeywell 
HMC6352. The tilt sensor used to compensate for the acceler-
ometer bias is an SCA100T that uses a dual-axial inclinometer 
made by VTI technologies. A TMS320F28335 DSP, Texas 
Instrument Inc., was used to calculate the proposed dead reck-
oning algorithm and to control the mobile robot. Fig. 6 shows 
(a) the mobile robot, (b) the designed sensor and motor drive 
board and (c) the designed positioning and control board.  

 
4.2 The bias compensation experiment 

In order to perform the stationary accelerometer bias com-
pensation, we collected 200 samples from the tilt and compass 
sensors for 10 seconds and then averaged collected samples. 

 
 
Fig. 5. The flowchart of the proposed system. 
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The transformation matrix was calculated using these outputs 
(roll, pitch and yaw) and was applied to proposed algorithm. 
Similarly, the bias values for the gyroscope were calculated 
using the average value of 200 collected samples. Fig. 7 and 
Fig. 8 show the outputs of the tri-axis accelerometers and the 
tri-axis gyroscopes for 3600 seconds after the bias compensa-
tion using the proposed algorithm. In Fig. 7(d), at the y-axis is 
shown in regards to the ground inclination. In Fig. 8, the angu-
lar rates are almost zero after the bias compensation. Fig. 9 
depicts the orientation of the mobile robot determined by the 
initial alignment algorithm using the tri-accelerometers and 
the compass sensor. In Fig. 9(a), the roll angle is shown in 

regards to the ground inclination. In Fig. 9, the accelerations 
on navigation frame are almost zero because we are compen-
sated for the ground inclination by using the tilt and compass 
sensors. 

 
 
Fig. 6. The implemented system. 

 

    
    (a) x-axis acceleration  (b) x-axis acceleration after compernsation

 

    
    (c) y-axis acceleration  (d) y-axis acceleration after compernsation

 

    
    (e) z-axis acceleration  (f) z-axis acceleration after compernsation
 
Fig. 7. The acceleration on the body frame. 

 

    
    (a) x-axis angular rate  (b) x-axis angular rate after compernsation
 

   
    (c) y-axis angular rate  (d) y-axis angular rate after compernsation
 

   
    (e) z-axis angular rate  (f) z-axis angular rate after compernsation
 
Fig. 8. The angular rate on the body frame. 
 

    
            (a) Roll     (b) n-axis acceleration after compernsation
 

    
            (c) Pitch     (d) e-axis acceleration after compernsation
 

    
            (e) Yaw     (f) d-axis acceleration after compernsation
 
Fig. 9. The orientation and the acceleration on the body frame. 
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4.3 The orientation estimation experiment 

In order to perform the orientation estimation, the mobile 
robot was programmed to travel in a 9700 mm diameter circle 
in the test space. Figs. 10 and 11 depict the orientation of the 

mobile robot in a clockwise (CW) and counterclockwise 
(CCW) direction, respectively. The pitch angle from the gyro-
scope continuously decreased because the mobile robot taken 
accelerated towards the x-axis. The roll angle from the gyro-
scopes continuously decreased or increased, due to the cen-
trifugal force generated by the circular motion of the mobile 
robot. From the experiment result, it can be observed that the 
output of gyroscope is heavily affected by the movement of 
the mobile robot. Therefore the orientation must be periodi-
cally compensated by using external signal, while the mobile 
robot is moving in long term. From Figs. 10 and 11, the esti-
mated orientation using proposed algorithm has been experi-
mentally shown to compensate for the accumulative error. 
Also, the roll and pitch from the proposed algorithm are 
shown to have periodic angles due to the ground inclination. 

 
4.4 The position estimation experiment 

The mobile robot travelled in a 9700 mm diameter circle. 
The experiments were performed using CW and CCW circu- 

          (a) Roll from gyro           (b) Roll from Kalman 
 

         (c) Pitch from gyro           (d) Pitch from Kalman 
 

          (e) Yaw from gyro           (f) Yaw from Kalman 
 
Fig. 10. The CW orientation. 
 

          (a) Roll from gyro           (b) Roll from Kalman 
 

         (c) Pitch from gyro           (d) Pitch from Kalman 
 

         (e) Yaw from gyro            (f) Yaw from Kalman 
 
Fig. 11. The CCW orientation. 

 

 
(a) Estimation position by odometry 

 

 
(b) Estimation position by Kalman filter 

 
Fig. 12. The CW estimation position. 
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lar motions, fifty times each. Figs. 12 and 13 depict the posi-
tions of the mobile robot. In the figures, the circle is the true 
position of the mobile robot. In the experiment results, the 
odometry method estimates a smaller circular position than 
true position because the calculated yaw angle changes faster 
than the true yaw angle. Although the result has not been pro-
vided in this paper, the positioning using only inertial sensor 
has shown unbounded position error due to double integration. 
The proposed method delivers a reliable position with an ac-
ceptable estimation error compared to the method that only 
used odometry or inertial sensors. However, whereas the pro-
posed method provided a small error it had a large variance. 
Table 1 display the estimation position mean and standard 
deviation at each of the four positions. 

 
5. Conclusions 

An INS offers a quick and accurate response in the short 
term, but the position estimation errors are amplified due to 
the integrative nature of the INS, low frequency noise, and 
sensor bias. The position estimation using encoders will suffer 
from negative bias due to systematic and nonsystematic errors, 
and unbounded position errors due to the integrative nature of 
the rotating speed.  

In this paper, we presented mobile robot position estimation 
that combines odometry and the INS in order to reduce the 
accumulation errors inherent in dead reckoning. In order to 
compensate for weaknesses found in each system, we de-
signed a Kalman filter. The proposed system estimates the 
orientation of the mobile robot using inertial sensors, therefore 
it can compensate for the inclination of the ground. Inertial 
sensors have bias errors; the proposed method corrected the 
bias errors. The proposed method also compensates for the 
yaw angle errors that generate position errors in odometry 
therefore it has smaller position errors. Although the proposed 
system has a comparatively large variance, the system shows a 
reliable level of position estimation. In the proposed method, 
the dead reckoning period that estimates the position without 
any external position data from an absolute positioning system 
has been extended. In order to improve the position estimation 
accuracy, the system modeling algorithm and the two sys-
tems’ combination algorithm need further study. 
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