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ABSTRACT

The control of systems containing pure dead time ele-
ments has plagued the control engineer for many years. .
This thesis discusses a new controller developed by this
writer which offers improved performance in first order

processes dominated by a dead time element.
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I. INTRODUCTION

This writer contacted a number of control systems en=-
gineers at Taylor Instrument Company in Rochester, New York,
in an attempt to find a suitable thesis topic which would
satisfy the requirements of the Master of Science\Degree in
Electrical Engineering and also benefit Taylor Instrument Com-
pany of which this writer is an employee., In each discussion
with various engineers, the difficulty in controlling pro-
cesses with large dead time elements was mentioned and the
desirability of a new method of control was expressed. As
a result of these discussions, this writer spent a few months
researching the problem of dead time process control. The
result of this research is detailed in this thesis. It éssen=-
tially consists of a new controller which itself contains a
dead time element. The new controller provides improved re-

sponse with respect to conventional controllers when dead

time dominated processes are considered.



-2 -

II. REVIEW OF LITERATURE

Available literature on dead time process control in-
dicates a general awareness of the associated control diffi-
culty. Detailed investigations into optimum controller set-
tings when industry standard controllers are used~have been

undertaken., For instance, an article published in the July,

1965 issue of Control Engineering written by A. Haalman

and titled "Adjusting Controllers For A Dead Time Process"
suggests optimum standard controller types and associated
settings for various plants which contain dead time elements.
An article by G. H. Cohen and G. A. Coon titled "Theoretical
Consideration of Retarded Control", which was published in

the July, 1963 issue of ASME Transactions, suggests settings

for standard controllers used in dead time systems. The
famous Ziegler-Nichols settings which are documented in al-
most every process control text book also account for system
dead time. However, for systems dominated by a dead time
element, the Ziegler-Nichols settings are conservative, re-
sulting in sluggish response.

Available literature indicates a general lack of non-
standard controller configurations which could provide better
performance than standard controllers. An article by Masahiro
Hori titled "Discrete Compensatér Controls Dead Time Process"
suggests a new sampled-data controller. However, performance

with this controller is still poor. This thesis depicts a
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non-standard controller which attempts to bridge this gap.

Since the controller derived in this thesis contains a

dead time element, various means of simulating a dead time

element were investigated. The following articles were used

as reference:

1)

2)

3)

4)

"Comparing Dead Time Approximations", P. G. Haag,
Control Engineering, October, 1967,

"An Analysis of Transport Delay "Simulation Methods",
J. B. Knowles and D. W. Leggett, The Radio and Elec-
tronic Engineer, Vol. 42, No. 4, April, 1972,

"A Transport Delay Simulator Using Digital Techniques",
A. B. Keats and D. W. Leggett, The Radio and Elec-
tronic Engineer, Vol. 42, No. 4, April, 1972,

"Transport Delay Simulation", K. Hogberg, Instru-
ments and Control Systems, June, 1966,
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III. GENERAL DISCUSSION OF DEAD TIME ELEMENTS AND SYSTEMS

Many process control systems contain dead time ele-
ments. The output of such an element is equivalent to the
input delayed in time by a finite amount. Thus, ;f r is
the input to a dead time element where r = 0 for %4.0, the
output, ¢, can be expressed as

c(t) = r(t-T7) u(t-T) _ (1)
where u(t-T) denotes a function which has a value of zero
for t<T and a value of unity for t=T.

The transfer function for a dead time element can be
obtained by taking the Laplace transform of equation (1).

Thus C(S) =7 [r(t-'I‘) u(t—T)]

or c(s) = e"ST R(S)
and C(S) = e"ST . (2)
R(S

Therefore the transfer function for a dead time ele-
ment is simply e-s? where T corresponds to the magnitude of
the time delay. The magnitude and phase of this transfer

function can be obtained by using Euler's equation as

C(jw; = X(jw) = e-JWT = ¢coswT - JsinwT
R( jw

2
from whicth(jw)I = J;ossz + sin wT = 1
and |X(jw) = tan~? I}sian] _ tan-l [sin(-wT)}
coswT coswT
= tan-l[sin(-w'l‘ - tan"l[tan(-wT)_] = -wT,
cos(-wT .

Thus, the dead time element has unity gain throughout the
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frequency domain and a phase lag which is a linear function
of frequency. The extreme difficulty in controlling dead
time systems is a direct result of this phase lag which in-
creases rapidly with increasing freqguency.

An example of a system containing a dead time is shown

in Figure 1.

- é;,KD > controller >
reference 2 .
thickness
AN
valve
’ d
thickness ,
transducer variable
. steel roller =>(+
3 - —
[:] velocity=v £ixed
roller

Figure 1: Steel Thickness Control System

The purpose of this control system is to keep the thick-

ness of a strip of steel constant. The steel strip is fed
between two rollers. The distance between the two rollers,
and thus the thickness of the steel, can.be adjusted by vary-

ing the air pressure to the movable roller. The feedback
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signal, which is obtained by a thickness transducer, is
located a distance, d, from the rollers. Thus, the feed-
back signal has a pure delay associated with it due to the
finite velocity of the steel and the distance, d, which
must be traveled from the rollers to the sensing_glement.
The magnitude of the time delay is simply the distance
divided by the velocity (T = d). Similarly, many fluid

v

flow control systems also contain a dead time due to the

distance velocity lag along a pipe.
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IV. DESCRIPTION OF SYSTEM

The type of dead time system which will be discussed in

this paper is shown in Figure 2.

R(S)

\+/f\\

(s)
E(S)x M(Sl/ﬁ 57

N ME(S)e

N

—

Cc(s)

> G, (S) ) 28

'\

<
<

Figure 2: General system block diagram with

dead time element in the forward
path.

The following nomenclature is applicable:

R(S)
E(S)
M(S)
C(s)
D(S)
G, (s)

and P (s)e~ST
Q%S)

]

]

reference input,
error signal,
manipulated variable,
controlled variable,
disturbance input,

controller transfer function

= plant transfer function, where P(S) and
Q(S) are assumed to be polynomials in S,

It is shown below that the transient analysis of this

system is analogous to that of a system having the dead time

element in the feedback path,

except that the time response



-8~

of the system with the dead time element in the forward path
will be delayed by one dead time, T. For the system shown

in Figure 2 the transfer functions can be derived as

-ST
G,(S)P(S) e

_ST
c(s) - Q(S) _ = G_(S)P(S)e >
R(S L+ o -ST . —=—— 5T
G (S)B(S) e Q(S) + G (S)B(S)e
Q(s)
and C(S) - P(s)e >t .
D(S 3T

Q(s) + Gc(S)P(S)e

For a system with the dead time in the feedback path
as shown in Figure 3, the transfer funetions can be derived

as

(S)

R(S) +
N/ » ¢ (s) + ’ . P(S >,c%sl

=0

N\

(¢]
O
wn

-ST ' ya
B N

L
< e

Figure 3: General system block diagram with
dead time element in the feedback
path.

Ge(S)P(S)

C'(S _ Q(s)
= —s7 = Cc(SIP(S)
1 + G,(S)P(S)e
Q(s)

-ST

Q(s) + Gc(S)P(S)e
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and C'(S) - B(S) e
Dis Q(S) + ¢, (S)P(s)e™ST

Thus the two systems have response transforms which

differ only in terms of an e“ST term in the numerator. For
identical setpoint or disturbance inputs, the two systems
will have almost identical transient responses, dif%ering
only in that the response of the system having the dead time
in the forward path will be delayed by time, T. This point
is emphasized because many practical systems, such as the
steel thickness control system previously discussed, have
dead times in the feedback path. The responses which are
presented later in this paper directly conform to a system
with the dead time lag in the forward path. However, the
response of a similar system with the dead time lag placed
in the feedback loop can easily be obtained by shifting the

time axis by T.
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V. IDEAL CONTROLLER

Let us assume that the system depicted in Figure 2 is
subjected to a unit step change in the setpoint, that is
R(S)=1/S. Since the forward path has a dead time lag, the
output of the system will not be able to change uﬁt;l at
least one dead period interval, T, has elapsed. The best
possible response for this system would be a unit step change
in the output occurring T seconds after tﬂe input step was
applied. Mathmatically, the best possible or ideal re-
sponse to a unit step change in the setpoint would be ex-

pressed as

_ _ _=ST
=Cr=e

S e

CIdeal

The form of the controller transfer function, Gc(S),

which will provide this ideal output is derived below.

G (S)P(s)e™>T
c -ST
c(s) = Q(s) = G (S)P(S)e and,
RISV 14+ 6 (5)P(5)e=ST  Q(S) + 6, (s)B(5)e~ST
Q(s)
since R(S)=1, the output transform can be written as
S
C(S) = Gc(S)P(S)e-ST (5)
s[a(s) + G.(s)P(s)e~5T] .
Let C(S) = Cp(s) = e=5T. o
S .
ST -ST
- - G P
Then, eS = c(S)P(S)e which, after ecross

s[a(s) + 6, (s)P(s)e™""]
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multiplying and simplifying, yields

Gc(S)P(S) = Q(S) + Gc(s)P(s)e‘ST.

This can be rearranged as

6. (5) = __0(S) = c.(s), (4)
P(s)[1-e=5T]

the ideal controller transfer function.

Let us assume that a good approximation to S) can be
obtained in the frequency range of interest, witﬁ ihe under-
standing that, in practice, it generally could not be exact-
ly realized, since the order of the numerator would usually
be higher than the order of the denominator. The system
with the ideal controller is diagrammed in Figure 4. The
variable T in equation 4 has been replaced by X in Figure 4

to account for differences between the dead time value in

the controller and that of the plant.

D(S)

+ Q(s) N [pis)e-ST 2 (s)
Juju%—(::>__9___ p(s) [1-e~ X1 _ Q%g) 7]

Z
<

Figure 4: System block diagram with ideal
controller.,
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The 1 portion of the ideal controller can be real-

-XS
l - ¢ |

ized by an inner positive feedback loop as diagrammed in

Figure 6. This can readily be seen since H(S) = J(3) + e X H(S)
or H(S) = 1 .
J(s; L. 58
- e
| D(S)
R(S), J(s) iy ,
P(S 0(sS

N
1
P
&)

Z
<

Figure 6: System block diagram with the ideal con-
troller realized by an inner positive
feedback loop.

Let us derive the output response of this system for a

unit step change %n the reference input, r.

e
XS -ST

C(Sg =_1=-e _ = £ and, since
- -X5 -
R(S 1+ e o0 1 - e + T
-XS
l -e¢

R(S) = 1, the output transform can be written as
S
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c(s) = e~ST .

If the dead time in the controller, X, identically

equals the process dead time, T, the output C(S) is e'ST,
S
the ideal response. However, let us assume a mismatch in

-

T and X and calculate the output transient response. Then

- -ST
c(s) = e~ST =& . %T s
s(1 + e=ST _ ¢7%5) S ‘1+e  -e
and the 1 portion of the response can be

1+ e-ST _ %5

expanded into a power series by application of the follow-

ing formula

e 2
1 = 51-1)“z“ =] «Z4+7 - z5 + 24 o o o o

1+ Z n=0 .

.Therefore,

ST -XS

ST - -
c(s) = e 3 [l - (e'ST - e XS) + (e - e 2
S

)e -

-ST -XS.3 )
(e - e ) . . o]Wthh can be further expanded to

- - - - -(X+7)S  =2XS
. ST[l _ ST 4 o=X5 , -2S8T _ . (X+7)S, o

yield C(S)

—(X+ -(2X+7)S -3XS
_ o=35T , = (X 2T)S_ 56 ( ) + e o ']

-ST =2 -(X+7)S -(3ST) -(X+2T)S
Thus, C(S) = e -e ST 4 o ( ) + e - 2e ( )
S S S S S
-(2X+7)S - - -(2X+
.o _ o™4ST | g -(X+BT)S _ 5 -(2X#2T)S
S S S S

-(3X+7)S
+ e ° . . . .
S R
Letting X = 0.9 and T = 1.0, a 10% misiatch, the out-

put equation can be written in the time domaln as



c(t) = u(t-1.0) - u(t=-2.,0) + u(t-1.9) + u(t-3.0)
- 2u(t=2.9) + u(t-2.8) = u(t=-4) + 3u(t-3.9) - 3u(t-3.8)
+ u(t-so,’) . ° ° ®

A plot of c(t) versus time is diagrammed below.

ce(4) & t:3¢ 423
- g’——.—_—-— _ _ - _ g -
r -
-
i i
I | 1 1
¢! 437 | |1
! !
P! ! !
) ! ' !
P ' |
| | |
by | |
|
| | |
S |
1.0 Ta'o T'rw 4.0 :
11 m:ﬂ
-1 | |

Figure 6: The output response to a unit step change
in setpoint with the ideal controller hav-
ing X=0.9 and T=1.0.
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Thus, with the controller dead time eﬁual to 90% of
the process dead time, the system response is poor due to
the large output peaks which deviate significantly from the
desired output response. It is not difficult to show that
the system response is unacceptable for any value of X un-
equal to T. Thus, in a practical situation, where Et would
be impossible to exactly matech X and T, this controller

7
form would give unacceptable response.
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VI. NEW CONTROLLER

A new controller form can be obtained by relaxing the

ideal response, C(S) = e=ST 1o ¢(S) = ae"'sT « The addi-
S S(S+a)

tion of the pole at S = -a to the output response causes a
rounding of the waveforms and eliminates the largé'péaks
associated with the ideal controller. The value of a will
be determined as a compromise between fast;and smooth re-

-sponse for any given mismatch between X and T.

clt) c(t)
lo - —~ — Lo- — — —
4' *
T t T
Figure 7a: 1Ideal unit Figure 7b: Relaxed unit
step response step response

The form of Gc(S) resulting from the relaxed output response
criteria can now be determined. Equation (3) is repeated

below, as

Go(S)P(s)e™"
c(s) = (3)

sfa(s) + Gc(s)P(s)e"ST] ‘
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=ST
Let C(S) = ae , the relaxed output.
S(S+a$

-ST -ST
Then a? = _G.(s)r(S)e which, after cross
S(S+ -
a) s[a(s) + 6, (s)P(s)e™ST]

multiplying and simplifying can be written as
afq(s) + GC(S)P(S)e-ST]= G, (S)P(S)(S+a).

Rearranging yields Q(S) a = Gc(S)[P(S)(S+a) - a P(S)e-s?]

or 6 (S) = __a o(s) . ' (5)
P(S)[S+a—ae'ST]

Equation (5) defines the new controller. The defining

equation can be written as Gc(S) = a_Q(s)
(5)(s+a) 128220
P a [-— Sta ]
2. ;
or G,(S) = _S+a S) by factoring out the S+a term
¢ =ST P(s
1l - ae
S+a

in the denominator.

A block diagram of the new controller is shown in Fig-

ure 8. The a portion of the new controller response
S+a-ae~ST
is realized here by a positive feedback loop having a
S+a)

in the forward path and a pure delay in the feedback path.

E(S
) ( )* a \ \ [0(S) 3 M(3)
S+a 7 7 IP(S)
Gc(s)=1gs)
_ST E(S)
e 1«

Figure 8: One possible realization of the new
controller,
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By using well-known block diagram reduction techniques

the above diagram can be rearranged to the form shown in

Figure 90
E(S) \* \ yvia Q(S) N M(S)
4 7 [(s+2)P(S) 7
4
/N
ST
ae K
Sta

Figure 9: Another possible realization of the new
controller.

p(s)e~ST
The plant transfer function, ~—§%§T—-' dictates that

the order of Q(S) must be equal to or gréater than the order
of P(S) for the plant to be physically realizable. Most
physical systems do have the order of Q(S) greater than the
order of P(S). The controller realization shown in Figure
8 reguires the realization of P(g),which cannot be achieved
if the order of Q(S) is greater than the order of P(S). If
an approximation to-%%%% over a limited frequency range
proves unsatisfactory {n terms of output response-the form

shown in Figure 9 could be used. The transfer function

a Q(S) can be realized even if the order of Q(S) does
S+a)P(S
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exceed the order of P(S) by one. The form shown in Figure
9 is not recommended, however, unless an approximation to

Q(S) is not satisfactory because the term _a_ appears twice
?nsthis form. This means additional hardw§;2 and makes one

more adjustment necessary.
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VII. COMPARISON OF NEW CONTROLLER WITH A PROPORTIONATL-
PLUS-INTEGRAL CONTROLLER

In the remainder of this paper the response of a plant

having P(S) = _B , that is a plant described by the transfer

Q(Sg S+B

function Be'ST
S+B

plant transfer function was chosen for two reasons. First,

, Will be determined. This specific form of

many practical systems are accurately represented by the
combination of a dead time element and a simple first order

lag such as _B . This statement can be supported by the fact
S+B

that the famous Ziegler-Nichols controller setting equations
are based on the premise that most process control systems

can be approximated by a transfer function of the form
Be'ST
S+B

which are relatively dominated by the dead time element and

. JSecond, this paper deliberately considers systems

thus represent very difficult control problems. The addi-
tion of more poles or zeros to the plant transfer function
would not appreciably change the results obtained because
of the assumed dominance of the dead time element.,

The standard proportional-plus-integral controller
form is recommended in Haalman's paper for good response to

a plant of the form Be'ST and, thus, will be used as a

S+B

comparison to the new controller scheme.
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The setpoint and disturbance response for a unit step
change will now be determined for each controller configura-
tion.

First, the setpoint response for the assumed plant
using the new controller, as shown in Figure 10,wi11 be

13

calculated. It is assumed that Q(S) in the controller can

be set exactly equal to StB. Regéiring to Figure 9 it has
been shown fhat this is pgssible, since Q( is cascaded
with the §%_ lag. P
a
+ D(S)

e () S e [T 5. N pe-ST|3-C(5)
B(S+a-ge~ST) S+B

Z
<
Figure 10: System diagram of an assumed Be~ST
S+B
plant with new controller.
a(S+B) Be"ST
For this system C(S) = B(S+a-ae~>7) (S+B) = ae~5T
R(S) 1 + a(s+B) Be~ST Sta
B(S+a-ae~>T) (S+B)
and, when R(S) = 1, the output transform becomes C(S)=ae"ST .
S S(S+a)
Taking the inverse transform yields
e(t) = [1-e”@(t-T)] u(t-1). (6)

It should be noted that the response is independent of B.

If the ideal response, cI(t). is considered to be a
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unit step delayed in time by an amount T, the integral
absolute error can be written as

Eg =5ﬂ:}t-T) - [l-e-a(t-Tﬁl u(t-T)Idt, which can be

. _ cr-a(t-7)
simplified to E_ =Jle u(t-1)| dt.
Q

Since u(t=-T) = 0 for t< T o
®_a(t-T) -a(t-Tﬂ
E =\ye dt = =1 e
S Tp

a T

= -1(0-1) = 1. (7)
a a

Thus, the integral absolute error (I.A.E.) for a step
-change in the setpoint is simply l. To minimize the I.A.E.
it would be desirable to make theavalue of a as large as
possible. However, for very large values of a the system
would become unstable when small mismatches between the
plant dead time and the controller dead time exist. Thus
the value of a must be chosen to give small error with
reasonable mismatches in controller settings. For example,
later in this paper it will be shown that the value of 3.33
for a will result in good response when a 10% mismatch exists
between the plant and controller dead time.

The response to a step disturbance will now be calcu-
lated., Referring to Figure 10 we find

~ST

Be
c(s) = S+B

D(S) 1 4 a(s+B)e~ST8
B(S+a-ae'ST)(S+B)
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or, after simplification,

ST -
C(S) = Be 1l -~ ae ST
D(S) S+B S+a .

Assuming D(S) = 1, the output transform can be written as
' S

~S ~2ST
C(S) = Be T aBe

S(S+B) S(S+a) (S+B) .

Using partial fraction expansion techniques, the output

can be rewritten as .
_ ~ST ~2ST
c(s)-[gl+92]e -[Q3 + Q4 + Q5 T e
S S+B S S+a S+B .
The coefficients can be found, using residues, to be
Q1 = B =1,
S+B
S=0
Qz = _B = ..1,
|
=~B
Q3 = aB =1,
(S+a) (S+B)
S=0
Q4 = aB = B ,
S(S+B) a-B
S=~a
and Q5 = aB = g
S(S+a) B~-a
S=~B .
Thus,
- =2ST
c(s) =[; - ]e ST -[; + B+ 2 ]e
- S S+B S (a-B)(S+a) (B~-a) (S+B) .
Taking the inverse transform yields .
~B(t~T -a(t-2T)
c(t) =[l - e ﬁu(t-’l‘) -[1 +B e +
a~B
-B(t-2T) :
ae ]u(t-ZT). (8)
B~a
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Since this is tﬁe response to a disturbance, the ideal

response, cI(t), is zero. The I.A.E. can be calculated as

Ed =ﬂﬁ-e'B(t'T)]u(t-T) -[1 + _g_e'a(t'ZT) +

2 a-B
~B(t-2T)
a_e ]u(t-ZT)Idt "
o-e £ _p(t-1) - a(t-21)
27T -B(t-T) =B(t=-T ~a(t=2T
or Eg =f[l-e ]dt + f[-e - _Be -
T 2T a-B
-B(t-2T)
a e ]dt.
B=-a )
“R(t- ~B(t=-T -a(t=-2T
Thus Ed =[t + le B(t-T) ]ZTv-+l%e B(t-1) + B e
B T ala-Bf
~B(t=-2T) e
+ a e
B B-a 2T
-BT -BT
or By =T + le -1~ 1le - B - a
B B B ala-B) B(B-a) .
This can be rewritten as
2 2
E. =T~-1+3B -3 (9)
d B aB(B-a) .

The setpoint and disturbance responses with a propor-
tional-plus-integral controller are difficult to obtain by
hand calculation. An analog computer simulation could be
used, however, considerable effort would be required to ob-
tain a satisfactory simulation for the dead time element.

A simulation using a second order Pade' approximation to the
dead time element was tried but the recorded response did
not accurately match the calculated response, indicating
that a higher order Pade' approximation was necessary.

Since the second order approximation used all the integrators
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conveniently available, the analog simulation approach was
not pursuved further. Instead, to eliminate errors due-to
dead time element approximations, a digital computer simu-
lation was used. A stored analog computer simulation pro-
gram called DYSIM*¥¥*, which is available on a General Elec-
tric time shared computer, was employed. A detailea dis-
cussion of the DYSIM**¥* simulation of this system is given
in Appendix A. This program can accurateli simulate a

dead time delay.

_The settings for the proportional gain and reset rate
of the proportional-plus-integral controller were calculated
by formulas presented in an article by A. Haalman.1 Mr.
Haalman suggests that a proportional-plus-integral con-

troller, having the form G,(S) = K(1+_1 ), be used if the

ST,
plant equation has the form e'ST. Mr. Haalman recommends
1+S1,
that for this situation the equations K = 2T, and T, =Ta

3T
be used to calculate the controller settings.

By lettingT, = 1, the plant transfer function referred
B

to by Mr. Haalman becomes the plant transfer function analy-
zed in this paper. The recommended settings thus become

K=_2 andY, = 1. The regular block diagram for the pro-
3TB B
portional-plus-integral control of a plant of the form

Be=ST is shown in Figure 11,
S+B

1. Haalman, A., "Adjusting Controllers For A Dead Time
Process", Control Engineering, July, 1965,
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The responses to a unit step change iri the setpoint
for both controller configurations are plotted in Figure-12,.
The value of T was arbitrarily set at 1. It should be
noted that both setpoint response plots are independent
of the value of B. This fact is obvious for the new con-
troller by analysis of equation 6, It is shown beiow that
the same is_true for the proportiona;-plus-integral con=-
troller, Referring to Figure 11

K 1+%GS Be~ oL
S) = %S " S%B .

1 + K 1+1S Be~oT
%S S8

Q
L~

Haalman's settings dictate that X = _2 andT, =1
Thus,

Q
-
w2
~—
i

=
wn
[
+
[
147]
w
=]

2_S+B _e” ~ST

B
ST -
B e AST + 2e o

Since R(S) = 1, the output transform can be written as
S

e--ST
-ST

c(s) =1 2
S 257 + 2e

+ which is independent of B. Thus,

if Haalman's settings are used, the setpoint response of

the system with PI control will be independent of B,



Table 1 outlines the controller settings which were
used for four different values of B, The ratio of B to T
indicates the relative dominance of the dead time element.
As the value of B increases the effect of the dead time
element becomes more significant. It should be noted that
the value of a has been set ‘equal to 3.35. This value was
found in a later part of this thesis to result in good out-
put response when there is a 10% mismatch between plant and
controller dead times. The choice of the value of a will

be considered in detail later in this thesis.

of B when dead time,

T,

is unity.

P.I. Controller New Controller

P G, (S) = K 1+uS G.(S) = a(s+B)
S B(S+a-ae™>)

K i a B
4,0 0.1667 0.26 3.33 4,0
2.0 0.333 0.5 3.33 2.0
1.0 0.667 l.0 3.33 1.0
0.5 1.3334 2.0 3,33 0.5

Table 1. Controller settings for various values



The setpoint response curves shown in Figure 12 indicate
that the system performance is superior with the new con-
troller. The I.A.E. has been improved by better than a
factor of 4 and the settling time to within 2% of the final
value is improved by a factor of 3.7. The I.A.E.‘fpr the
response obtained when the new controller form is used was
calculated using equation 7. The I.A.E. for the proportion-
al-plus-integral controller response was calculated by DYSIM**%*,
The output of block 32 on Figure Al in Appendix A represents
the I.A.E. calculated by DYSIM*¥*%¥,

The responses to a unit step disturbance are different
for each controller form. The responses for various values
of B are plotted in Figures 13, 14, 15, and 16 for T = 1.0,
The output response and I.A.E. for the proportional-plus-
integral controller were calculated by DYSIM¥**¥ 3nd the out-
pu% response and I.A.E. for the new controller were deter-
mined using equations 8 and 9. A digital computer program
was used to evaluate equation 8., The same controller set-
ttpgs which were used for the setpoint response (listed in
Table 1) were used to calculate the disturbance responses.
Table 2 contains the I.,A.E. and the 2% settling time,-ﬁs,

for the various cases considered.,
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Proportional~ _ % improvement
Plus-Integral |New Controller using
lController | new_controller
B 1,A.8, |75 (2%) | 1.A.E.|7 (2%) | I,A.E.| T (2%)
seconds seconds seeonds
4,0 2,26 9.0 1,24 3.6 A%% | 60%

-

2,0 | 2,16 | 9.0 | 1.2l | 4.5 | 39,1% b0%
1,0 | 1,85 | 9,0 | 1.2 | 5.6 | 28,67 B37,8%
0,6 | 1,61 | 9.0 | 1.325f 9.0 | 11,9% 0%

Table 2. I,A.E. and s compari#&n of thé Proportional-
Plus~Integral Controller and the new controller for
various values of B with T = 1,0 for a unit step
disturbance,

Table 2 shows that the new controller provides sig~-
nificant improvement in most disturbance responses, The
degree of improvement increases as the value of B increases,
indicating that the new controller would be most judicious-
ly used on processes which are dominated by dead time ele-
ments,

The disturbance response for a pure dead time plant
is plotted in Figure 17, Instead of a proportiopal-plus-
integral econtroller, Mr, Haalman recommends only integral
control with 1, = 27, Thus, the disturbance response was
calculated for a cgntroller of the form GQ(S) §q%é, where

‘.= 27 and the new controller of the form Gc(S) ;'

3,33
§+3, 355,355
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The new controller configuration resulted in a 41% decrease
in the I.A.E. and a 67.7% reduction in the 2% settling time.

The integral controller response and associated I.A.E.
were calculated by DYSIM*#*#*., A detailed discussion is given
in Appendix B. The regular block diagram is shown in Figure
18.
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VIII. EFFECTS OF MISMATCH IN PROCESS AND CONTROLLER DEAD
TIME VALUES '

The effect on the setpoint response of a mismatch
between the process dead time and the dead time wvalue in
the new controller can be determined by analysis of the

system diagrammed below. The dead time value in th& new

controller is labeled X.

R(S)st/™ N\ a (S \ | p(s)e=ST \ c(s)
"N/ 7 s+a-ae~®S FIS R0 4
z
N\

Figure 19: Block diagram of a plant having a dead
time element and controlled by the new
controller.

The transfer function between the setpoint and out-

put can be written as

—a _ 9(s) P(s) 5T
g%g% . sraae XS ﬁfsg Q(s
R(S

1+ __a a(s) B(s) e
S+a-ae X5 P(s) q(S)

ST
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By application of the expansion formula

ﬂ i
1 fzg (-1)°%2"°
T+%

n=0

the previous equation can be rewritten as

- =ST XS 2 ST =XS5.2
C(S) = ae ST 1 - ale -e ) + a (e S - )]
R(S S+a S+a )

r 3

(S+a)2

3 =ST =XS.3 4 - 4
- a (e -e )+ a (e ST-e XS)' . o .]

(s+a)5 (S+a)4

Letting R(S) =1, the transform of the output, after
S

expansion, becomes

=ST =ST <=XS
C(S) = ae [1 - al(e - ) +
S(S+a)

S+a

2, - -(X+ -
(e 28'1‘_2e (x T)S+e 2XS

a ) -
(S+a)2
3 =3ST  ~(X+2T)s  =-(2X+T)S .3XS
a (e -3e +3e -€ + ¢ 6 W
(S+a)5 ’
which can be rewritten as
-ST 2 .2sT ~(X+T)S
C(S) = ae - a (e -€ . )
z + ;
S{5+a S(S+a)
3 =3ST ~(X+2T7)S -(2X+T)S
a (e -2e ) +e ) -
3
S(S+a)
4 24ST  -(X+ -(2X+2T)S _(3X+T)S
a (e -3e ( 5T)S+5e -e + ., .

s(s+a)4
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Performing a partial fraction expansion yields

c(s) =Ja + _B e'ST+[g+ D _+ _E .

o~25T _ e-(X+T)S]+[F + &+ =

L LS (S+am):3 (S+a)2

[ -3ST -(X+2T7)S -(2X+7T)
e -2e +e +

"ales

+ X . + I + M + N:,
(S+a) (s+a)'r5 (s+a)® Sta

-4ST . (X+ -(2X+2T)S
[e _gem(EFBT)S |

The residues can be calculated as

= _ 8 -
A= S+a L,
S=0
B = % = -1’
S=-a
a2
C = = -1,
(S+a)2
S=0
2
D = -——-g’ i = a,
S=-a
az
E = ._.2. = 1’
S
S=-a
3
F = —2& =1,
(s+a)

-(5x+T)S]



-l -

S=wa
az
Hz—;'z— —--a’
S=-a
aS
I == = =1,
SS
S=~a
4
Jz-a = ol
4 »
(S+a)
S=0
4
K=-—-—-a' = 3
S a-,
S=-a
4
I,:..a.'_é :::az’
S
S=-a
4
M:i = a,
s3 |
S=-a
4
and N = +a =1
= =1,
S
S==a

Thus, c(t) = yl(t-T)u(t-T) + yz(t-ZT)u(t-ZT) -
yz(t—X-T)u(t-X-T) + yz(t-ST)u(t-ST) -
2y 5 (t=-X-2T)uft-X-21) + yz(t-2X~T)u{t-2X-1) +
¥4 (t-4T)u(t-47) - 3y,(t-X-3T)u(t-X-3T) +

3y4(t-2X-2T)u(t-2X-2T) - y4(t-3X-T)u(t-3X-T)



-

-1 -
where y_(t) = { ~[A + _B - 1-e72%,
1 S S+a
-1, - -
yz(t) = J: C+ _D + E] = ~1+ate~2Y4e at’
_S (S+a)2 S+a
y,(8) = 7/7E+_¢c +_E__+ 1] =
S 5 2 S+a
(s+a) (S+a)
2 2 a - -
l ~late at-ate at-e at’
2

-1
and y4(t)‘=4( Jd + K + L + M + N ] =
[ (S‘Hit)4 (S‘h'a.)3 (S+a)2 Sta

-1 + ;azt e + laztze at + ate + e at.
2

6

A digital computer was used to generate plots of ¢ as
a function of time for various values of a and X with T set
equal to unity. The program was written in Basicec language.
A printout of this program is listed in Figures 20 and 21.
Plots of c¢(t) for T=1 and a = 10, b6, 3.33, 2.5, and 2 are
diagrammed in Figures 22, 23, 24, 25, and 26, respectively.
In each plot the value of X was set equal to both .95 and
1.05, representing a plus and minus 5% mismatch between the
process dead time and the controller dead time. Plots of
c(t) for plus and minus 10% mismatches in the value of the
dead time using the same values of a as above are shown .
in Figures 27, 28, 29, 30, and 31, For T=1, a=2.5, and X=1,2

and 0.8, the output response of the same system with a
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20% mismatch is shown in Figure 32.

Analysis of these response plots indicates that the
value of the parameter a considerably effects the shape of
~-the response. In general, as a is increased in value the
system exhibits larger peaks in the transient response, in-
dicating that the system stability is reduced.

Using minimum I.A.E. to define an optimum criteria can
be seen to be deficient by observing the curve for a=10 in
Figure 22, This response as can readily be determined from
observation of the plots has the smallest value of I.A.E.,
but the degree of smoothness is poor. An operator observing
this response. could think the process was in control after
a time duration of about 1.5 seconds. However, an unexpected
peak on the order of 20% at t=2.1 seconds and another peak
on the order of 5% at t=3.0 seconds actually results in the
output remaining outside a 2% error band for about 3.5
seconds. Consequently, the optimum value of a was defined
as the value which minimizes the time for the output to
come and stay within 2% of its final wvalue.

In Figure 3% a plot of 2% settling time versus 1l/a is
shown for both 5% and 10% mismatches between plant and con-
troller dead time. The plotted values of settling time are
the worst case values when both plus and minus percentages
of mismateh are considered. This graph indicates that a
value of a=5 is optimum for a minimum 2% settling when a

5% mismatch is present while a value of a=3.33 is optimum



when a 10% mismatch exists. The operator would be required

to make an estimate of the probable mismatch variation for

the particular plant under consideration and select a value
of a based on this.,



100
105
107
110
120
130
140
150
160
170
180
190
195
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
380
390
400
410
Figure 20:

X=1.05

PRINT "“X=',X

PRINT

Ti=0

Ti=T1+0.1

IF Ti>=+75 THEN 750
PRINT
PRINT
PRINT
A=1.0/T1
T=0.8
T=T+0.2
@=0
Yi=0
Y2=0
Y3=0
Y4=0
YS5=0
Y6=0
Y7=0
Y8=0
Y9=0

IF
IF
1F
IF
IF
1F
1F
1F
IF
1F
Go

"Ti="»T1

T® 710

T-1>=-.005 THEN 420
T-2>=-.005 THEN 440
T-1-X>==.005 THEN 460
T-3>=-+005 THEN 480
T=X=-2>=-¢005 THEN 510
T-2%X=1>==-+005 THEN 540
T-4>=-005 THEN 570
T=-3~X>==-005 THEN 600
T=2%X-2>=-+005 THEN 640
T=3%X-1>=-+005 THEN 690

Computer program used to calculate c(t) when

T and X are unequal.
ued on the next page.

This listing is contin-



, 20 Y 1= 1=EXKPC=ARCT=13y 7 77" — - e
430 G® T8 300 i
(440 Y2=A%(T-2)%EXP(=A%( T-2))+EXP(-A%(T-2))-1 !

‘450

l460 Y3=-A%(T= 1=-X)*EXP(-Ax (T- 1~ X)) EXP( A*(T-l X))+l

‘470
-480
1490
‘500
510
1520
530
'540
1545
1550
1560
;570
+580
1590
1600
610
1620
| 630
- 640
1 650
670
680
690
700 Y
710
'720
‘7 30
"7 40
750

1 d

&:
RPN 2= SN TR IS GPUILNE A MO S L SR SR A0 Yo WA~ LB VR B
NS R MR o ALY e

ald -

Ay JE

G8 T8 310

Ge T8 320 T T

X 1= (= oSk At 2% (T-3) 1 2= A% (T=3) = ¥ EXP(= A (T-3))

@=X1+1+0 - .

Ge Té 330 ‘ :

Y4-<x2+1 0)%(~- 2) """ i

G§ T@ 340 ' 3

X 3==o 5% At 2% ( T- 2%kX= 1) 1 2= A% (T=2%X= 1) - 1 !

RS5=X 3% EXP(= A% (T-2%X=-1)) . 4

Y5=R5+1+0 5

G8 T# 350 ;

X4=CA13/6)%(T=4)1 3+ A2k 00 5% (T= 4 12+ Ax (T-4) + 1 3

Y6=X4%EXPC(=A%(T=4))-1 o .

G& T8 380 Y

XS'(At3/6)*(T-3-X)f3+At2*0o5*(T-3-X)12+A*(T-3-X)+l :

X6=XS*EXP(-Ak(T-3-X))=1

Y7=-3%X6

G@ Té 390

XT= CAt 3/6)% ( T-2%X=2) 1 3+ At 2% 0o 5% ( T- 2%k X = 2) 1 24 Ak (T-2%X-2) +

X8=XT*EXP(=~ Ak (T-2%X=-2))=1

Y8=3%X8

G® Te 400

Rl (At3/6)%CT-3%X~ 1)1 3+A12%0e Sk (T~ 3kX~ 1) 12+ A (T-3£X- 1)+
==R1IKEXP(=A%(T=3%X-1))+1

Y—Y1+Y2+Y3+Y4+YS+Y6+Y7+Y8+Y9+Q

PRINT T»Y ‘

IF T<=S.1 THEN 190

G@ T@ 120 ‘ : :

END 4

=%
i
<
- K
1
{
I

o 7 \ ' M
’ o G L - L S|

S N A P TN VOTIVE, OV I B, S &;»’,é

Figure 21: Continued listing of Figure 20.
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The previous analysis showed the effect of mismatches
between process and controller dead time values on the
setpoint step response. The following analysis shows the
effect of this mismatch when a unit step disturbance occurs
in the loop. For this analysis P(S) will again be set
equal to B and Q(S) will again be set equal to S+B.r

R(S)=0 D(S)=1/S -
) AR y | a(s+B) Be ™ yC(s)
7 B(s+a-ae™X>) __S5+B
3
Figure 34: Block diagram of Be”“_ -ST plant controlled
TS+B

by new controller.
Referring to Figure 34, the transfer function from D(S)

to C(S) can be written as

Be'sT
c(s) = S+B D(S)
1+ a(S+B) Be™>"
B(S+a-ae'XS) S+B
_ Be'ST(S+a-ae-XS) D(S)
(S+B)[S+a+a(e'ST-e'XSﬂ .

Factoring out an S+a term in both the numerator and de-

nominator yields

-ST[l - ae-xs]
C(S) = —=>8 Sta D(S)

(s+B) {1 + aje'ST-e-XS{}
S+a .
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Since D(S) = 1, "the output transform can be written as

S ,
. -ST[l - QE:EE]
C(S) = __Be Sta J
'S(S+B)[1 + a(e-ST-q'XS)
S+a .

Applying the expansion formula,.
* nn
1 =2 (-1) Z
1+7
n=0 R

the above expression can be rewritten as

.

- - -ST =XS
C(s) = Be o" [ - ae XS] l-ale -e ) +
S{S+EB) Sta : S+a

2, - - 2 - -XS 3
a (e ST-e XSy az(e ST o

)

(s+a)” (5+a)®

(S-l-a)4 | (S+a)5

4, -ST _x5,4 ~ST - |
ot (e™5"e"%5) WP oS XS5 {}

Expanding yields

-

=XS
<ST{l - ae ~-oT -XS
C(S) = Be S+a {? - ae + ae +

»
.

S(S+B) S+a St+a

2 -2ST ~(X+T7)S -2st
a [e =2€ +e -

(S+a)%

- - (X2 ¢ o(2X+T7)S -3XS
a5 [e 3ST_Se (X ZT)S+5e ( o ] N
(S+a)5

~

4 - - -(2X+27)S
a [e=45" 46 (X+3T)S ¢ o
(S+a)

-(3X+T)S -4XSJ
-4e +e d -
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5 -6ST  ~(X+4T)S ~-(2X437)S -(3X+2T)S
a {e =De +10 +

e -10e
5
(S+a)

~-(4X+T)S -5xs] :?
59 -e + [ ] L [ ] L [ ]

This can be rewritten as

~2ST ~(X+T)S
¢(s) = Be=ST aBe + aBe

+
S(S+B) ~ S(S+a)(S+B) S(S+a)(S+B)

a B

2 -(X+27)S -(2X+T)S
[é'SST-Ze +e ) -

s(s+B)(s+a)z

3 -4 ~(X+3T)S -(2X+2T)S
a B [e ST-Se +3e ( ) -

s(s+13)(s+a):’J

-(5X+T)S]
e +

4 -5ST =(X+4T)S  _(2X+3
a B [g -4e +6e ( T)S-

s(s5+B) (s+a)”

-(3X+2T)S -(4X+T)$]
+ + .,

4e e

~(X+T)S -(2T+X)S _
- aBe + 2%Be - a2pe=(BX+T)S

S(S¥BI(5%2)  5(543) (5+a)2 S(S+B) (5+a)?
: -G - —(3X+T)S
KA [é (X+3T)s_ze (2x+21)S, (3X+T) ]+

s(s+B) (s+a)°

a B

4 [é-(4T+X)s-ze-(2X+5T)S*ze-(5X+3T)S
s(s+B) (s+a)?

-(4X+T)S]
e +
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Combining terms results in

- -2ST 2 <3ST
C(S) = Be ST - aBe + a Be

S(S+B)  S(S+aJ(S*B)  (q,3)(s+a)’

2_ -(X+27)s -
2’ Be )S 235 [Le=25T .,

S(s+B) (s+a)®  S(S+B)(s+a)> .

L3

~(X+37)S -(2x+2T)s]
2e -2 '+

a B

4 [ - -(X+4 -(2X+3T)S
4 -
S(S*B)(S*a.)

e-(3X+2T)sJ + ..

which, after a partial fraction expansion, can be rewritten as

. -ST -23T
c(s) =[§_:L+J2 e + [J__3_+J4 + Jb ]e +
S S+ S S+B S+a

[.'Ki + J7 + J8 + J9 [e'SST...e'(X'*ZT)S] +
I S 52 7—-5]S+a .

JJ10 + J11+ 712 + 513 +J14]
LS S%B “(545)3 (sta)® St

_4ST -(X+37)S _(2X+2T)S
[—e +2e -8 +

[916 + J16 + __J17 + _ J18 + _ Jig + J20
LS S*B (s+a)* 3 2 S+a.]
a (S+a) (s+a)

-

=-65T  _(X+47)S  -(2X+ -(3X+2T)S]
[e -3e (x ) +3e ( 3T)s-e 4 cee o
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The residues can be calculated as

Jl

J2

J3

J4 =

Jb

Jé
J7

J8

J9

J10
J11

Jlz

J13

J14

N

B

B_ 1,
S+B

S5=0

-1,

nlw

s

-aB
(S+a) (S+B)

=3B

S{S+a

n

- aBgB-Zag,

(a<B)

B(3a®-3aB+B),
(a-B)>
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J15 = 1,
J16 = - at |
(a-B)4
J17 = a°B,
a=B
J18 = - a®B(B-2a),
(a-B)°
J19 = B(335-3a23+aB§)»
(a-B)°
2
and J20 = 4a°B+4aB°-B%-6a°B
7
(a-B) ]

Then, by taking the inverse transform,

c(t) = yy (t-T)u(t-1) + y,(t-27)u(t-27) +
¥z(t-3T)u(t-3T7) - yz(t-X-ZT)u(t-X-BT) -
Y4 (t-4T)u(t-47) + 2y4(t-X-5T)u(t-X-5T) -
y,(t-2X-2T)u(t-2X-27) +
yg(t=BT)u(t-5T) - By (t-X-4T)u(t-X-4T) +

3y5(t-2X-3T)u(t-2X-5T) - y5(t-5X-2T)u(t-3X-2T)

Bt

where yl(t) = 1l-e  ,
=Bt =-at
y,(t) = -1+ _ace -_Be ",
2 a-B _B
2 =Bt - -at
yz(t) =1~ __a e + aB te at_ (B-2a)Be ,
(a-B)Z a-bB (a-B)Z
=Bt 2 - -
y4(t) =1 - a® e . aZB t%e™3% aB(B-2a)te at,
(a-B)3 2(B-a) (a-B)2

2 2, =at
B(3a -3aB+B Je , and

(a-B)°
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4 B 3 - 2 -
ys(t) =1~ a° e Pt a B tze at _ angB-zazt e

(a-B)4 6(a-B) 2(a-B)2

at

3 2 2 - ; 2
+ B(3a -3a B+aB )te at + (4aSB+4aBS-B -6azB )e

(3'3)3 (a-B)4 .

4 -at

The output disturbance response corresponding to the
above equation was calculated by use of a digital computer.
The response for X=1,0 and X=1.1 when a=b, T=1.0, and B=2
is plotted in Figure 35. The 10% mismatch, in controller
and plant dead times causes a 6% increase in I.A.E. with
respect to the same system with no mismatch.

The setpoint response of the same system is shown in
Figure 28 for X=1.1. The 10% mismatch causes 57.5% increase
in I.A.E. (from .2 to .315). Thus, from the stand point of
error due to plant and controller dead time mismatches, the
response to a step change in setpoint is more sensitive and
thus more- critical than a step disturbance change. For
this reason, the optimum value of a was determined by con-
sideration of the setpoint response curves. The disturbance
and setpoint responses, even with mismatches between the con-
troller and plant dead times on the order of 10%, are gener-
ally superior to responses of the same plant with a propor-
tional-plus-integral controller. For the disturbance response
the degree of improvement becomes more substantial as the

dominance of the dead time element increases.,
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IX. DEAD TIME LAG SIMULATION

To obtain the performance which the new controller is
theoretically capable of, it is necessary to accurately sim-
ulate a dead time lag. In recent months the prices of ana-
log to digital converters, digital to analog convéf;ers, and
long shift registers have dropped significantly, indicating
that a digital simulation may be economically achieved.

One possible approach would be to sample and digitize the
analog signal at a peribéic rate. FEach digital word could
then be entered into a shift register and shifted at the
same periodic rate. The digital information could be picked
off at the end of the shift register and converted baek to
an analog signal by a digital to analog converter. The

time delay would depend on the number of bits available in
the shift register and the sampling frequency. This imple-
mentation was not undertaken as part of this thesis but is

mentioned to show that the preceding results are of more

than theoretical interest.
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X. LOOP TUNING PROCEDURE

The loop tuning procedure for the new controller is
extremely simple. One possible approach is to initially
obtain the process reaction curve. This is done hy break-
ing the loop, applying a unit step change to the plant,
and recording the output response. This same technique is
used to obtain the famous Ziegler-Nichols §ettings. From

the process reaction curve, a plant transfer function approx-

imation,Ke'ST,can be obtained, as is_shown in Figure 36 o
' S+B
output ~
L S —
y=1-
B
63V}
K=vB

c+\I

[
1
|
i
i
(]
)

-u@ﬂ p
&%

Figure 36: Typical Process Reaction Curve

This immediately gives the operator the value of Q(S) in
the-new controller. The value of a must be déter£§§ed by
cpnsideration of the expected variation .in the dead .time
T of the plant. If the controller is properly designed,
the value of X should be capable of being set extremely

close to the value of T and remain stable for various en-

viromental conditions. However, the value of T in the plant
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will typically not be constant but may have variations occur-
ing from time to time. If expected variations combined-
with the uncertainty of the original measurement of T are
on the order of 10%, a value of l/é equal to 30% of T would
give satisfactory performance., If variations plus measure-
ment uncertainty are about 6%, then a value of 1/a Equal to
20% of T would be satisfactory. These two results are
based on calculations detailed in this thesis. For other
possible variations other values of a should be determined.
It should be noted that the process reaction curve
shown in Figure 35 can approximate most process control
systems dominated by dead time element. Exceptions to
this rule are plants which contain an integrating element

which are termed non-self regulating,
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XI. CONCLUSION

The new controller allows improved response over that
of a proportional-plus-integral controller. The degree of
improvement is significantly better for setpoint step changes
and varies for disturbance step changes as a function of

the ratio of plant dead time to lag, that is T/1.
B

As this ratio increases, indicating tﬁe plant is dom-
inated by the dead time, the degree of improvement also in-
creases so this controller would primarily be useful with
plants having large dead time to lag ratios, that is a
plant dominated by a pure dead time. From a practical
standpoint the response to a disturbance change is usually

of prime importance.
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XII. APPENDIX A

DYSIM*** SIMULATION OF THE PROPORTIONAL-PLUS-INTEGRAL

CONTROL OF Be™>' PLANT.

S+B

Figure Al is a computer block diagram of the* DYSIM*#*
simulation of the system shown in Figure 11 . The‘numbers
above each element are the block numbers., The various
symbols within each block indicate the blo;k type. The

following list summarizes the symbols used:

o+ adder

K constant

G gain multiplier

I integrator

- inverter

u dead time

m absolute value block

Pl initial condition on an integrator
P2 gain term on an integrator

P3 gain term on an integrator,

The dead time block, which is symbolized by u, has a
dead time equal to one-half the digital computer integration
interval. To obtain accurate output data with T=1, the in-
tegration interval was specified as 0.1 and a fourth order
Runge-Kutta integration was used. This integration interval
thus requires 20 dead time blocks (block numbers 10 thru 29)

to realize a unit delay. The printout shown in Figure A2



7B

is a computer listing of the block diagram shown in Figure
Al. The initial cﬁnditions and parameters at the bottom
of the page determine the proportional gain, reset rate,
plant time constant, and type of response (setpoint or
disturbance) desired. For instance, in the printéut shown,
parameter one on block one is set at unity, indicating a
vnit step change in the setpoint. Parameter one on block
number three sets the proportional gain at ‘0.1667, para-
meter two on block four sets the reciprocal of the reset
time at four and parameters two and three on block eight
set éhe value of B at 4, Figure A3 shows the computer

program data file, which is used to operate DYSIM¥*%,
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TR T T T < A ¥ e o

D e e /S et S o by o

: ' BLECK TYPE INPUTI1 INPUT2 INPUT3
/ 1 K 0 0 0 ‘
2 + 1 © 30 0 ,
L 3 ] 2 0 0 i
! 4 ) S 0 3 (0] i
L S + 6 3 4 3
1 6 . K 0 y 0 . 0
& 7 . + 5 0 ‘0 -
i 8 1 0 7 9 -
. 9 - 8 - 0 0 i
10 U ... 8 0 0 !
: 11 U " 10 0 0
3 12 U 11 0 0 1
i 13 u 12 0 0 3
b 14 U 13 0 0 .
b 15 U 14 0 0
¥ 16 U 15 0 0 %
{ 17 U 16 0 0 .
i 18 U 17 0 0 ,;5
¢ 19 U 18 - 0 0 "

20 U 19 0 0 §

21 U 20 0 0 §

22 U 21 0 ) i
: 23 U 22, 0 0
- 24 U 23 0 0 ,‘
;- 25 U 24 0 ) A
26 U 25 0 0 ;
' 27 U 26 0 0 f
: 28 U 27 0 0
- 29 U 28 0 0 3
s 30 - 29 0 0 1
; 31 M 2 0 0 3
. 32 1 31 0 0 ‘3
N §
b . INITIAL CONDITISNS AND PARAMETERS |
§ BL 8CK 1C/PAR1 PAR2 PAR3 é
o 1 1. 000000E+00 O« ' Oe ‘ 1
,i .3 1.667000E-01 Oe 0. :
J a4 . 0. . 4.000000E+00 0. , A
E 8 . 0. 4. 000000E+00 4+ 000000E+00

Figure A2: DYSIM*** computer printout of block arrange-

ment shown in Figure Al.
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v e g s e " e sy

100 1,K»0,0,0
110 2,+5,1,30,0
120 3,G»2,0,0
‘v 130 4,150,350 .
' 140 5,+,6,3, 4 B
i 150.6+,K»0,0,0 E
1 160 75455,0,0
L 170 851505759
180 95,-,8,0,0
190 10, U850, 0 ‘ '
200 11,U,10,0,0
210 12,U,11,0,0
220 13,U,12,0,0
230 14,U,13,0,0
240 '15,U,14,0,0
250 16,U,15,0,0
260 175U 1650,0

. 270 185U»175,050

280 19,U, 1850,0

290 20,U, 19,050

2 .300 21,Us205,0,0

| 310 22,U,21,0,0

: ~ 320 23,U»2250,0
" 330 24,U,23,0,0

340 25,Us24,0,0

- 350 26,Us25-0,0..

i 360 27,U52650,0
370 28,U,27-0,0 el
380 29,U>28,0,0 . A
390 305-529,0,0 ! e

- 400 31,M5250,0
410 32,1,31,0,0
420 0,0,0,050

'X_'430 11,0,0

440 3516675050

FIEERTOR e TR - B L e

e s AR

e £ Y S o AT b #E A e e il rtnran A

SERdRRE . £ e

R S E

s aeema

me.g,&“m-».m et tets $ IR e vt o s o i e s SR i 5 0

¢ 450 4,0, 4, 0 .’ ~
- 460 620,050 Ty -
§-470 8,054, 4 ) _ e

Figure A3: DYSIM®*¥ computer program required to imple-
ment simulation shown in Figure Al.
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APPENDIX B

DYSIM*** SIMULATION OF THE INTEGRAL CONTROL OF AN e~ST
PLANT.

The computer block diagram, block configuration list=-

ing, and DYSIM*** program are shown on Figures Bl; B2, and
B3, respectively. v
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. BLBCK TYPE INPUT1 INPUT2 INPUTaa
Lo 1 1 0 24 0 ]
5 2 K 0 0 o
! 3 + 2 1 o 3
Pt 4 ] 3, ) 0
b 5 ‘U 4 0 0 '
? 6 ] 5 0 0 {
3 -7 U 6 0 0
; 8 u 7 0 0 "
. 9 u 8 0 o j,
! 10 u 9 0 o 'ﬁ
: 11 U 710 0 o i
' 12 ] 11 0 ] {
s 13 v 12 0 0o
: 14 ] 13 0 o |
£ 15 U 14 0 o
P 16 U 15 0 0
Py 17 u 16 ] o -
; 18 ] 17 0 o 1
v 19 ] 18 0 o ]
t 20 ] 19 0 o
] 21 ] 20 0 o
- 22 v 21 0 o
{ 23 ] 22 0 o
{ 24 - 23 0 o ..
. 25 M 23 ] 0
: 26 I o 2s 0 3
§~ INITIAL C8NDITISNS AND PARAMETERS i
[ BLECK 1C/PAR1 PAR2 PAR3
,%ﬁ 1 ' O. 6.3 67 00005“01 Oe 1
?, 2 1+000000E+00 O. O. 1
e 26 _ O 1.000000E+00 0. ;é
ko S Eh st R Sl KRR S B ot S T —— S GRS

Figure
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B2: DYSIM*#*#* computer printout of block arrange-

ment shown in Figure Bl.
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% 220 13,U»125,0,0 : /
?' 230 14,U,13,0,0 . AT
240 15,U514,0,0 B
250 16,U,15,0,0
260 17,U» 16,050
270 18,U, 17,050
280 19,U» 1850, 0
290 20,U, 19,0, 0
300 2i,U205,0,0
310 225U, 21,050 g o 5
320 23,U»225,0,0 ; ' S
330 24,-5,23,0,0 '
340 25,M5 23,0, 0
350 26,150,2550
360 0,0,0,0,0 K
370 1505466750 e e
380 2,1,0,0
., 390 2650,1,0 o 4
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.Figure B3: DYSIM*** computer program required to imple-
ment simulation shown in Figure Bl.
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APPENDIX C

3
DYSIM#*#*%* VERIFICATION OF NEW CONTROLLER RESPONSE.

The output responses which were plotted throughout
this thesis using the new controller were obtained by hand
calculation using the Laplace transform. Occasiogally, a
digital computer was used to evaluate the resultant time
domain equations. This appendix outlines f{he simulation
of the new controller in a system with a QQ:EE plant using
DYSIM*#**, Specifically, the response to asgfep disturbance
when B=2, a=5, T=1, and X=1 was calculated by DYSIM¥*#*#*,

The response of the same system was calculated by hand and
the resultant output response was plotted in Figure 35,
block diagram of the system which encorporates the new con-
troller realization shown in Figure 9 is drawn in Figure Cl.
Figure C2 is a computer block diagram of the system. Fig=-
ures C3 and C4 outline the DYSIM***'program, and -Figure CH
is a table of the output values versus time. Comparison

of this table with the output response plotted in Fiéﬁre 356

indicate a close agreement, thus verifying the hand compu-

tation.
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Figure C3:

CEMMAND1?2CONF ‘
BL 6CK TYPE INPUTI INPUT2 INPUT3

' 1 K 0 0 0

.2 + 52 1 0
3 .~ + 2 4 0 i
: L4 1 0 25 5
S - ~ 4 (0] 0 - - :
6 v 3 -0 (0] i
7 1] 6 0 0
8 U 7 0 0 ¢

9 v 8 0 . 0

10 U 9 0 )
11 v 10 0 )
12 v 11 o 7 0
1N 13 U 12 0 -0 ]
. 14 U 13 0 0 %
15 u 14 0 0
L 16 . ] 15 0 0 K
; 17 U 16 0 )
18 U 17 -0 0
19 U 18 0 0
20 U 19 0 0 :
21 U 20 0 0 i
22 U 21 0 ) A
23 v 22 0 0

25 u - 24 0 0
26 G ‘ 3 0 0 }
27 1 0 55 28 Lo
28 - 27 . 0 0 ;
: 29 K 0. 0 0 g
‘:_,J,; _,’30,._11“_.4.. ,,+ POV 429\ Vo tasiobei T 26 - B e 27_ -53

Y

DYSIM### computer printout of block arrange-
ment shown in Figure C2.
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T e

31 Y] 30 =0 0 ]
‘32 u 31 0 1)
33 u 32 0 0 l
34 u 33 0 0 g
35 u /" 34 0 0 ;
36 u 35 0 1) "
37 u 36 0 0 '4
38 u 37 0 1) {
39 u 38 0 o i
a0 u 39 0 0 -
A al U 40 o 0 *
42 u a1 o 0 z
. 43 u 42 0 0
a4 u 43 0 0
45 u 44 0 )
a6 u 45 0 0 )
a7 u 46 0 0 -
48 u a 0 0 b
49 u 48 0 - o -~ i
50 u 49 . 0 .0 ;
51 1 0 50 52 :
52 - 51 - 0 1) i
53 M 2 0 0 ~
54 1 53 0 ) :
55 - 26 0 0 '
INITIAL CENDITI@NS AND PARAMETERS
BL OCK 1C/PAR1 PAR2. PAR3 ,
4 O. 5. 000000E+00 S 000000E+00
26 2.500000E+00 O. ‘ O. ’ o
- | 0. - " 34000000E+00 5.000000E+00 '
29 1. 000000E+00 Oe. 0.
51 Oe

2.000000E+00 2. 000000E+00

Figure C4: Continued from Figure C3.



TIME

Oe
2.0000E-01
4.0000E-01
6 « 0000E=-01
8 « 0000E-01
1. 0000E+00
1+2000E+ 00
1. 4000E+00
1.6000E+00
1.8000E+ 00

~B86 -

BUTPUT 51
Oe
O.
O.
Oe
Oe
O«
3¢0116662E-01
5365286 0E~01
69276334E-01
79633228E-01

[P Y -_—

GUTPUT 54
Oe
O
Oe
O
Oe
Oe
2479106 39 E-02
1.1311846E=-01
2.3702511E~01
3.8658271E-01

o ST e

2.0000E+00 8+46498830E-01 5¢5314434E-01
2.2000E+00 8¢ 1842845E-01 7 .2548364E-01
2+ 4000E+00 6+2003665E-01 8+6939032E-01
2.6000E+00 4¢ 39 44063E-01 97 495896E-01
2.8000E+00 3¢0130450E-01 1.0484477E+00
3+0000E+ 00 2.0322908E-01 1.09838354E+00
3+2000E+00 1359 4058E-01 1+1319156E+00
3¢4000E+ 00 808923280E-02 1+1539438E+00
3¢6000E+00 6¢2121045E-02 141689762E+00
3«8000E+00 402368869E-02 1.1793083E+00 '
4.0000E+00 2,8377164E-02 1.1862692E+00
4.2000E+00 1.8811392E-02 1.1908994E+00
4+ 4000E+00 1.2398392E-02 1.1939569E+00
4.6000E+00 8e3721547TE-03 1.1960060E+00
4.8 000E+00 5¢ 450578 1E-03 1.1973636E+00 ;
5+ 0000E+00 3¢5014067TE-03 1.1982383E+00 i
5¢2000E+ 00 2.2993480E-03 1+1988054E+00 i
5¢4000E+ 00 1-5632999E-03 1.1991840E+00 ¢
5.6 000E+00 1¢1192468E-03 1199 4463E+00 g
5.8000E+00 77230113E-04 1.1996323E+00 i
6 « 0000E+00 Se 147 4880E-04 1.1997581E+00 i
i
COMMAND2? COMMAND 1 ;
Figure C5: Output response of system in Figure Cl

with B=2, a=5, and T=1l.0.
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APPENDIX D

FREQUENCY RESPONSE OF THE NEW CONTROLLER

The controller derived in this thesis has a transfer

function

Gc(S) = —a__ Q(s)
S+a-ae~>T P(S)

which can be rewritten as

G.(S) = X(s) qQ(s) .
¢ p§s§

The frequency response of Gc(S) is thus determined by

two factors, namely, X(S) and Q% ;. Q(Sg is determined by
P(S P(S
the plant since the plant transfer is defined as Pésgq'ST.

Since S) was assumed to be a ratio of polygoiials in
S, the numeiaior and denominator could be factored and stan-
dard straight line approximations could easily be implemented
on a Bode plot to obtain the magnitude and phase plots ver-
sus frequency. This same simple procedure cannot easily be
applied to X(S) since it is not a ratio of polynomials, If
the magnitude and phase plots of X(S ) were known, it would
require only a simple graphical procedure to add the effects
of g%g% and, thus, obtain the complete response plots of the
conirgller. Thus, as a design guide, let us obtain the fre-
quency plots of X(S).

Letting S=jw yields

X(jw) = a

~jwT
jwta-ae W .
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Applying Euler's identity yields

X(Jjw)= a
jw+a~a(coswT-jsinwT)

which can be rewritten as

X(jw) =

a
a(l-coswT)+j(w+asinwT)

ThusIX(jw)'= a _ . .
[ag(l-cosz)2+(w+asian)z]g

. -1
and |X(jw) = -tan = w+asinwT
L——-— a(l-coswt) .

Simplifying yields

lX(jw),= a
2 . 2 2 5
(2a -2a”coswT+w +2awsinwT)
and lX(jw) = -tan'l w+asinwT .

a(l-coswT)

Throughout this thesis, the value of T was typically
set equal to 1 and the value of a was typically set equal
to %3.%4 to obtain transient output plots. With these same
values of a and T, the|X(jw)|and[§£jE) were obtained as a
function of frequency on a digital computer. The response
plots are shown in Figures D1 and D2. Both the magnitude
and phase plots gxhibit peaks at approximately multiples
of w=5 radians per second due to the transcendental char-

acteristics of the denominator of X(jw).
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