
Rochester Institute of Technology Rochester Institute of Technology 

RIT Scholar Works RIT Scholar Works 

Theses 

6-1-1973 

A dead time process controller A dead time process controller 

Frank Hermance 

Follow this and additional works at: https://scholarworks.rit.edu/theses 

Recommended Citation Recommended Citation 

Hermance, Frank, "A dead time process controller" (1973). Thesis. Rochester Institute of Technology. 

Accessed from 

This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in 
Theses by an authorized administrator of RIT Scholar Works. For more information, please contact 
ritscholarworks@rit.edu. 

https://scholarworks.rit.edu/
https://scholarworks.rit.edu/theses
https://scholarworks.rit.edu/theses?utm_source=scholarworks.rit.edu%2Ftheses%2F4666&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.rit.edu/theses/4666?utm_source=scholarworks.rit.edu%2Ftheses%2F4666&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ritscholarworks@rit.edu


Approved by: 

A DEAD TIME PROCESS CONTROLLER 

by 

Frank Hermance 

A Thesis Submitted 

in 

Partial Fulfillment 

of the 

Requirements for the Degree of 

MASTER OF SCIENCE 

in 

Electrical Engineering 

Pro f • Robert E. Lee 
(Thesis Advisor) 

Prof. George A. Brown 

Prof. Harvey E. Rhody 

Prof. W.P Waller 
(Department Head) 

DEPARTMENT OF ELECTRICAL ENGINEERING 

COLLEGE OF ENGINEERING 

ROCHESTER INSTITUTE OF TECHNOLOGY 

ROCHESTER, NEVi YORK 

June, 1973 



ii

ABSTRACT

The control of systems containing pure dead time ele.

ments has plagued the control engineer for many years.

This thesis discusses a new controller developed by this

writer which offers improved performance in first order

processes dominated by a dead time element.
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I. INTRODUCTION

This writer contacted a number of control systems en

gineers at Taylor Instrument Company in Rochester, New York,

in an attempt to find a suitable thesis topic which would

satisfy the requirements of the Master of Science Degree in

Electrical Engineering and also benefit Taylor Instrument Com-

pany of which this writer is an employee. In each discussion

with various engineers, the difficulty in controlling pro

cesses with large dead time elements was mentioned and the

desirability of a new method of control was expressed. As

a result of these discussions, this writer spent a few months

researching the problem of dead time process control. The

result of this research is detailed in this thesis. It essen

tially consists of a new controller which itself contains a

dead time element. The new controller provides improved re

sponse with respect to conventional controllers when dead

time dominated processes are considered.
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II. REVIEW OF LITERATURE

Available literature on dead time process control in

dicates a general awareness of the associated control diffi

culty. Detailed investigations into optimum controller set-

tings when industry standard controllers are used have been

undertaken. For instance, an article published in the July,

1965 issue of Control Engineering written by A. Haalman

and titled "Adjusting Controllers For A Dead Time Process"

suggests optimum standard controller types and associated

settings for various plants which contain dead time elements.

An article by G. H. Cohen and G. A. Coon titled "Theoretical

Consideration of Retarded Control", which was published in

the July, 1953 issue of ASME Transactions, suggests settings

for standard controllers used in dead time systems. The

famous Ziegler-Nichols settings which are documented in al

most every process control text book also account for system

dead time. However, for systems dominated by a dead time

element, the Ziegler-Nichols settings are conservative, re

sulting in sluggish response.

Available literature indicates a general lack of non

standard controller configurations which could provide better

performance than standard controllers. An article by Masahiro

Hori titled "Discrete Compensator Controls Dead Time Process"

suggests a new sampled-data controller. However, performance

with this controller is still poor. This thesis depicts a
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non-standard controller which attempts to bridge this gap.

Since the controller derived in this thesis contains a

dead time element, various means of simulating a dead time

element were investigated. The following articles were used

as reference:

1) "Comparing Dead Time Approximations", F. G. Haag,
Control Engineering. October, 1967.

2) "An Analysis of Transport Delay "Simulation Methods",
J. B. Knowles and D. W. Leggett, The Radio and Elec
tronic Engineer, Vol. 42, No. 4, April, 1972.

3) "A Transport Delay Simulator Using Digital Techniques",
A. B. Keats and D. W. Leggett, The Radio and Elec
tronic Engineer, Vol. 42, No. 4, April, 1972.

4) "Transport Delay Simulation", K. Hogberg, Instru
ments and Control Systems, June, 1966.
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III. GENERAL DISCUSSION OF DEAD TIME ELEMENTS AND SYSTEMS

Many process control systems contain dead time ele

ments. The output of such an element is equivalent to the

input delayed in time by a finite amount. Thus, if r is

the input to a dead time element where r = 0 for t< 0, the

output, c, can be expressed as

c(t) = r(t-T) u(t-T) (1)

where u(t-T) denotes a function which has a value of zero

for t<T and a value of unity for t> T.

The transfer function for a dead time element can be

obtained by taking the Laplace transform of equation (1).

Thus C(S) =/ jr(t-T) u(t-T)]
or C(S) =

e"ST

R(S)

-ST

and C(S) = e (2)m
Therefore the transfer function for a dead time ele-

ST
ment is simply e , where T corresponds to the magnitude of

the time delay. The magnitude and phase of this transfer

function can be obtained by using Euler's equation as

jwT
C ( ,jw ) = X(jw) = e = coswT - jsinwT
R(W

from which |x( jw) j = Jcos wT + sin wT = 1

f-sinwTl _ tan
L coswTj

=
'

|"sin(-wT)"[ =

tan"[tan (-wT)] =
-wT.

[cos(-wT)J

Thus, the dead time element has unity gain throughout the

and[x(jw) = f-sinwTl _

tan-1 fsinUwT)!
L coswTj LcoswT J

-lr../ m,1 _-l
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frequency domain and a phase lag which is a linear function

of frequency. The extreme difficulty in controlling dead

time systems is a direct result of this phase lag which in

creases rapidly with increasing frequency.

An example of a system containing a dead time is shown

in Figure 1.

refere

thickness
ss^P

/\

thickness rn
transducer' '

?

4 controller

steel

velocity^

P

valve

variable
_

roller -(+J

Bfc
fixed
roller

Figure 1: Steel Thickness Control System

The purpose of this control system is to keep the thick

ness of a strip of steel constant. The steel strip is fed

between two rollers. The distance between the two rollers,

and thus the thickness of the steel, can be adjusted by vary

ing the air pressure to the movable roller. The feedback
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signal, which is obtained by a thickness transducer, is

located a distance, d, from the rollers. Thus, the feed

back signal has a pure delay associated with it due to the

finite velocity of the steel and the distance, d, which

must be traveled from the rollers to the sensing. element.

The magnitude of the time delay is simply the distance

divided by the velocity (T = d). Similarly, many fluid
v

flow control systems also contain a dead time due to the

distance velocity lag along a pipe.
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IV. DESCRIPTION OF SYSTEM

The type of dead time system which will be discussed in

this paper is shown in Figure 2.(
R(S) _ E(S)

M GC(S)

Jj>(S)
M(S) 1+

* ->- P(S)e
Q.(S)

-ST

^

<-

C(S)

Figure 2: General system block diagram with

dead time element in the forward
path.

The following nomenclature is applicable:

R(S) = reference input,

E(S) = error signal,

M(S) = manipulated variable,

C(S) = controlled variable,

D(S) = disturbance input,

G (S) = controller transfer function

, x ST
and P(S)e = plant transfer function, where P(S) and

Q(S) Q(S) are assumed to be polynomials in S.

It is shown below that the transient analysis of this

system is analogous to that of a system having the dead time

element in the feedback path, except that the time response



-8-

of the system with the dead time element in the forward path

will be delayed by one dead time, T. For the system shown

in Figure 2 the transfer functions can be derived as

ffl -

GC(S)P(S) e
-ST

QlsT

1 + G (S)P(S) e

qTsF

= G (S)P(S)e
-ST -2

-ST

Q(S) + Gc(S)P(S)e
-ST

and C(S) = P(S)e

D(S

-ST

Q(S) + G (S)P(S)e
=Sf

For a system with the dead time in the feedback path

as shown in Figure 3, the transfer functions can be derived

as

<~ -ST <

Figure 3: General system block diagram with

dead time element in the feedback
path.

CM?)
R(S)

GC(S)P(S)

Q(S)

1 + Gc(S)P(S)e
-ST

= GC(S)P(S)

"qTsT
Q(S) + Gc(S)P(S)e

-ST
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and C ' ( S ) = P(S) .

D(S) Q(S) + Gc(S)P(S)e-ST

Thus the two systems have response transforms which

-ST

differ only in terms of an e term in the numerator. For

identical setpoint or disturbance inputs, the two .systems

will have almost identical transient responses, differing

only in that the response of the system having the dead time

in the forward path will be delayed by time, T. This point

is emphasized because many practical systems, -such as the

steel thickness control system previously discussed, have

dead times in the feedback path. The responses which are

presented later in this paper directly conform to a system

with the dead time lag in the forward path. However, the

response of a similar system with the dead time lag placed

in the feedback loop can easily be obtained by shifting the

time axis by T.
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V. IDEAL CONTROLLER

f

Let us assume that the system depicted in Figure 2 is

subjected to a unit step change in the setpoint, that is

R(S)=1/S. Since the forward path has a dead time lag, the

output of the system will not be able to change until at

least one dead period interval, T, has elapsed. The best

possible response for this system would be a unit step change

in the output occurring T seconds after the input step was

applied. Mathmatically, the best possible or ideal re

sponse to a unit step change in the setpoint would be ex

pressed as

-ST

CT^ -.
= CT = e

ai

Ideal I o
#

-

The form of the controller transfer function, G (S),
c

which will provide this ideal output is derived below.

Gc(S)P(S)e-ST

ST
C(S) =

"

'Q(S) =
Gc(S)P(S)e

apdtLLs) =

1sT 1 +R(S) 1 + G(S)P(S)e-sT Q(S) + Gc(S)P(S)e"ST

c

qTs!

since R(S)=.l, the output transform can be written as

S

C(S) =

Gc(S)P(S)e~ST

S[Q(S) + Gc(S)P(S)e-ST] .

- -ST

(3)

Let C(S) = Cj(S) = e

S .

-ST G
(S)P(S)e"ST

Then, e - 2 which, after cross

S[Q(S) + Gc(S)P(S)e"bT]
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multiplying and simplifying, yields

G (S)P(S) = Q(S) + G
(S)P(S)e"ST

c c

This can be rearranged as

GC(S) = Q(s) = GX(S), (4)
P(S)[l-e-Srp]

the ideal controller transfer function.

Let us assume that a good approximation to Q(S) can be
pTsT

obtained in the frequency range of interest, with the under-

standing that, in practice, it generally could not be exact

ly realized, since the order of the numerator would usually

be higher than the order of the denominator. The system

with the ideal controller is diagrammed in Figure 4. The

variable T in equation 4 has been replaced by X in Figure 4

to account for differences between the dead time value in

the controller and that of the plant.

*^0->
O.(S)

P(S)tl-e-^

\s
D(S)

^o>

+

P(S)e
-ST

QlsT
> Cll

Figure 4: System block diagram with ideal
controller.
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The portion of the ideal controller can be real-

-XS

1 - e

ized by an inner positive feedback loop as diagrammed in

-XS,
Figure 5. This can readily be seen since H(S) = J(3) + H(S)

or H(S) = 1 .

R(S) J(S)

<-

->-

H(S).

-XS

9631
pTsT

<-

D(S)

< v> P(S)e -ST

QlST

_Cl2i

Figure 5: System block diagram with the ideal con

troller realized by an inner positive
feedback loop.

Let us derive the output response of this system for a

unit step change in the reference input, r.
e-ST

-XS
~ST

eC(S) = 1 - e

RTsT ! +
ST

"

^15 1ST
1 - e + e

and, since

1 - e
-XS

R(S) =
,1,

the output transform can be written as

S
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-ST

S(l +
e"ST

- e"XS)

If the dead time in the controller, X, identically
-ST

equals the process dead time, T, the output C(S) is e ,

S
the ideal response. However, let us assume a mismatch in

T and X and calculate the output transient response. Then

CM
e-SI

=e^I . 1

SU + e-ST

- e-zs>
s T67*f~66xs

and the i_ _ portion of the response can be

1 +
e~ST

-

'

expanded into a power series by application of the follow

ing formula

*nn
= (-l)V = 1 - Z + Z - Z +

Z4

. . . .

1 + Z n=0

Therefore,

/x
~ST

f, / -ST -XS, , -ST -XS 2
C(S) = e [1 - (e - e ) + (e - e ) -

S

ST -XS 3
(e - e ) . . . Jwhich can be further expanded to

y
S

., ,,.,
-STr. -st -XS -2ST .

-(X+T)S -2XS

ield C(S) = e [1 - e
x + e + e -2e +e

S

-SST + 3e-(XS.
^-(BX+HS

+ _ _ j ^- e

/**
'ST -2ST -(X+T)S -(3ST) -(X+2T)S

Thus, C(S) = e - e + e + e - 2e
S S S S S

+ _

e.4ST

+ 3e.(X+3T)S
.

3e-(2X+2T)S

+ e

S S

-(3X+T)S

S

Letting X = 0.9 and T = 1.0, a 10$ mismatch, the out

put equation can be written in the time domain as
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c(t) = u(t-l.O) - u(t-2.0) + u(t-1.9) + u(t-3.0)

- 2u(t-2.9) + u(t-2.8) - u(t-4) + 3u(t-3.9) - 3u(t-3.8)

+ u(t-3.7) ...

A plot of c(t) versus time is diagrammed below.

C(4) f
a-

* r<
,

-I

4'3'1

l.O

t
1.1

a.o

t
.3.0

-i.<\
J-9

v.o

Ll
Figure 6: The output response to a unit step change

in setpoint with the ideal controller hav-

ing X=0.9 and T=1.0.
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Thus, with the controller dead time equal to 90% of

the process dead time, the system response is poor due to

the large output peaks which deviate significantly from the

desired output response. It is not difficult to show that

the system response is unacceptable for any value -of X un

equal to T. Thus, in a practical situation, where it would

be impossible to exactly match X and T, this controller

form would give unacceptable response.
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VI . NEW CONTROLLER

A new controller form can be obtained by relaxing the

ideal response, C(S) = e"ST to C(S) =
. The addi-

S S(S+a)

tion of the pole at S =
-a to the output response causes a

rounding of the waveforms and eliminates the large peaks

associated with the ideal controller. The value of a will

be determined as a compromise between fast and smooth re-
*

sponse for any given mismatch between X and T.

c*t>

\.o - -

t

c(t)

l.O

Figure 7a Ideal unit

step response

Figure 7b: Relaxed unit

step response

The form of G (S) resulting from the relaxed output response
C

criteria can now be determined. Equation (3) is repeated

below, as

C(S) =

Gc(S)P(S)e
-ST

S^Q(S) + G (S)P(S)e~STJ.
(3)
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-ST

Let C(S) =
. the relaxed output.

SlS+aJ
-ST

Then ae

sTs+aT

G(S)P(S)e -ST

S[Q(S) + Gc(S)P(S)e"ST]

which, after cross

multiplying and simplifying can be written as

a[Q(S) + Gc(S)P(S)e"ST]= GC(S)P(S) (S+a) .

r -STl

Rearranging yields Q(S) a = & (S) [P(S) (S+a) - a P(S)e J
or G (S) =

c
a Q(S) (5)

P(S) [S+a-ae"STJ
Equation (5) defines the new controller. The defining

equation can be written as G (S) = a Q(S)

p(s)(s+a)Ti-a|MS=]
or G (S) - S+a

C

1 - ae
-ST pfS)

Q(S) by factoring out the S+a term

S+a

in the denominator.

A block diagram of the new controller is shown in Fig

ure 8. The
-ST

portion of the new controller response
S+a-ae"

is realized here by a positive feedback loop having a

(S+a)
in the forward path and a pure delay in the feedback path.

E(S)

<D * a

S+a
>

-ST

-4-

> Q(S)
Ks)

> M(S)

Gn(S)=M(S)
C

E(S)

Figure 8: One possible realization of the new

controller.
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By using well-known block diagram reduction techniques

the above diagram can be rearranged to the form shown in

Figure 9.

E(S)

?o >

/N

ae
-ST

S+a

->
a Q(S)
(S+a)P(S) > _Mj

Figure 9: Another possible realization of the new

controller.

P(S)e-ST

The plant transfer function, Q g|
' dictates that

the order of Q(S) must be equal to or greater than the order

of P(S) for the plant to be physically realizable. Most

physical systems do have the order of Q(S) greater than the

order of P(S). The controller realization shown in Figure

8 requires the realization of p(s\, which cannot be achieved

if the order of Q(S) is greater than the order of P(S). If

q(S)
an approximation to p7*sy over a limited frequency range

proves unsatisfactory in terms of output response the form

shown in Figure 9 could be used. The transfer function

a Q ( S ) can be realized even if the order of Q(S) does
(S+a)P(S)
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exceed the order of P(S) by one. The form shown in Figure

9 is not recommended, however, unless an approximation to

Q(S) is not satisfactory because the term a appears twice
PTsT S+a
in this form. This means additional hardware and makes one

more adjustment necessary.
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VII. COMPARISON OF NEW CONTROLLER WITH A PROPORTIONAL-

PLUS-INTEGRAL CONTROLLER

In the remainder of this paper the response of a plant

having P(S) =
_B_,

that is a plant described by the transfer

oTsT S+B

ST
function Be , will be determined. This specific form of

S+B

plant transfer function was chosen for two reasons. First,

many practical systems are accurately represented by the

combination of a dead time element and a simple first order

lag such as B . This statement can be supported by the fact
S+B

that the famous Ziegler-Nichols controller setting equations

are based on the premise that most process control systems

can be approximated by a transfer function of the form

ST
Be Second, this paper deliberately considers systems
S+B

which are relatively dominated by the dead time element and

thus represent very difficult control problems. The addi

tion of more poles or zeros to the plant transfer function

would not appreciably change the results obtained because

of the assumed dominance of the dead time element.

The standard proportional-plus-integral controller

form is recommended in Haalman's paper for good response to

-ST

a plant of the form Be and, thus, will be used as a

S+B

comparison to the new controller scheme.
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The setpoint and disturbance response for a unit step

change will now be determined for each controller configura

tion.

First, the -setpoint response for the assumed plant

using the new controller as shown in Figure 10, will be

calculated. It is assumed that Q(S) in the controller can

HsT
be set exactly equal to S+B. Referring to Figure 9 it has

B
been shown that this is possible, since Q.(3) is cascaded

pTs)
with the a lag.

S+a |D(S)
+. I

C(S)M^ry6 (S+B)
B(S+a-ae"ST)

^ 4 Be -ST

S+B
>

<-

-STFigure 10: System diagram of an assumed Be
S+B

plant with new controller.

-ST
a (S+B) Be

For this system C(S) = B(S+a-ae~^T) (S+B) = ae -ST

RTS) i + a(S+B)
Be-ST s+a

B(S"+a-ae-ST)(S+B)

ST
and, when R(S) = 1, the output transform becomes

C(S)=ae"

S S(S+a)

Taking the inverse transform yields

c(t) = [l-e^^-T)] u(t-T). (6)

It should be noted that the response is independent of B.

If the ideal response, Cj(t), is considered to be a
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unit step delayed in time by an amount T, the integral

absolute error can be written as

E =J|u(t-T) -

[l-e"a
J u(t-T)| dt, which can be

simplified to E = J\e i"T'
u(t-T)| dt.S o

Since u(t-T) = 0 for t< T

r"-a(t-T) -a(t-T)r

E =Je dt =
-1 e I

b
T a T

= - 1(0-1) = 1. (7)
a a

Thus, the integral absolute error (I.A.E.) for a step

change in the setpoint is simply To minimize the I.A.E.
a

it would be desirable to make the value of a as large as

possible. However, for very large values of a the system

would become unstable when small mismatches between the

plant dead time and the controller dead time exist. Thus

the value of a must be chosen to give small error with

reasonable mismatches in controller settings. For example,

later in this paper it will be shown that the value of 3.33

for a will result in good response when a 10$ mismatch exists

between the plant and controller dead time.

The response to a step disturbance will now be calcu

lated. Referring to Figure 10 we find

-ST

Be
C(S) = S+B
D(S) 1 + a(S+B)e-STB

-ST

B(S+a-ae )(S+B)
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or, after simplification,

m
= Be

-ST

S+B

r-> -ST l1 - ae

L S+a J .

Assuming D(S) = 1, the output transform can be written as

S

, , -ST -2ST

C(S) = Be - aBe

S(S+B) S( S+a) (S+B) .

Using partial fraction expansion techniques, the output

can be rewritten as

C(S) =fel + 21 -FQ3 + g_ + Q5_l
e~2ST

IS S+B J [S S+a S+B J
The coefficients can be found, using residues, to be

= 1,

=0

=
-1,

S=-B

= 1,

S=0

01 = B
S+B

Q2 = B
S

Q3 = aB

(S+a) (S+B)

Q4 = aB

S(S+B)

and Q5 = aB

S(S+a)

S=-a

B .

(a-B)

= a

B-a
S=-B

Thus,

(S) =fl - -fl

Ls s+bJ Ls
+ B + a le
(a-B)(S+a) (B-a)(S+B)J

-2ST

Taking the inverse transform yields

, %
_ -B(t-TL r -a(t-2T)

c(t) =[l - e J u(t-T) - 1 + B_ e +

-B(t-2TL
, n

.

a e |u(t-2T). (8)
B-a J
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Since this is the response to a disturbance, the ideal

response, Cj(t), is zero. The I.A.E. can be calculated as

Ed -Jjg..-B*-I],tt-I) -[1 + +

lB(t-2T)-, I

a e u(t-2T) dt
B-a

J

2Tr -B(t-T)n r> -B(t-T) la(t-2T)
or E, =

J"

1-e dt + Jf-e -Be

d
T

L J 2TU

a-B

-B(t-2T)

e

B-a
Idt.

r -B(t-T)1?T r -B(t-T;

Thus E, =ft + le BVX"i; p1 +fle +- B
d L B Jn, Lb aTa

r -B(t-T)
-a(t-2T)

e

a(a-B)

-B(t-2T),^

+ a e

B(B-a) 2T

-BT -BT

or E, = T + le - 1, - le - B - a
a

B B B a(a-B) B(B-a) .

This can be rewritten as

2 2
E ,

= T - 1 + B - a (9)d B aB(B-a) .

The setpoint and disturbance responses with a propor

tional-plus-integral controller are difficult to obtain by

hand calculation. An analog computer simulation could be

used, however, considerable effort would be required to ob

tain a satisfactory simulation for the dead time element.

A simulation using a second order Pade ' approximation to the

dead time element was tried but the recorded response did

not accurately match the calculated response, indicating

that a higher order Pade' approximation was necessary.

Since the second order approximation used all the integrators
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conveniently available, the analog simulation approach was

not pursued further. Instead, to eliminate errors due to

dead time element approximations, a digital computer simu

lation was used. A stored analog computer simulation pro

gram called DYSIM***, which is available on a General Elec-

trie time shared computer, was employed. A detailed dis

cussion of the DYSIM*** simulation of this system is given

in Appendix A. This program can accurately simulate a

dead time delay.

The settings for the proportional gain and reset rate

of the proportional-plus-integral controller were calculated

by formulas presented in an article by A. Haalman. Mr.

Haalman suggests that a proportional-plus-integral con

troller, having the form G_(S) = K(l+_1 ), be used if the

STA
-ST

plant equation has the form e . Mr. Haalman recommends

1+ST,.

that for this situation the equations K = 2%. and T^ =~r*

3T

be used to calculate the controller settings.

By letting"^ = 1, the plant transfer function referred

B

to by Mr. Haalman becomes the plant transfer function analy

zed in this paper. The recommended settings thus become

K = 2 and Th = 1. The regular block diagram for the pro-

3TB B

portional-plus-integral control of a plant of the form

Be-ST is shown n Figure 11.
S+B

1. Haalman, A., "Adjusting Controllers For A Dead Time
Process", Control Engineering, July, 1965.
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The responses to a unit step change iri the setpoint

for both controller configurations are. plotted in Figure 12.

The value of T was arbitrarily set at 1. It should be

noted that both setpoint response plots are independent

of the value of B. This fact is obvious for the new con

troller by analysis of equation 6. It is shown below that

the same is. true for the proportional-plus-integral con

troller. Referring to Figure 11

ST
K 1+T.S Be

C(S) = XS S+B .

^
i + Eins b6

f.S S+B

Haalman's settings dictate that K = 2 and"^ = 1.
3TB B

Thus,

o

1+is
-st

B_ Be
3TB

"

IS S+B
C(S) = B
R(S) 1+1S

1+2 B
-ST

3TB IS S+B
B

-ST

2 S+B e
' 3T S S+B

-ST

1+2 S+B e

=

-ST

2e
-ST

3ST + 2e
3T S S+B

Since R(S) = JL, the output transform can be written as

S
ST

C(S) = 1
2e~

, which is independent of B. Thus,
S

3ST +
2e"ST

if Haalman's settings are used, the setpoint response of

the system with PI control will be independent of B.



-28-

Table 1 outlines the controller settings which were

used for four different values of B. The ratio of B to T

indicates the relative dominance of the dead time element.

As the value of B increases the .effect of the dead time

element becomes more significant. It should be noted that

the value of a has been set equal to 3.33. This value was

found in a^.later part of this thesis to result in good out

put response when there is a 10$ mismatch between plant and

controller dead times. The choice of the value of a will

be considered in detail later in this thesis.

B
P.I. Controller New Controller

G (S) = K 1+ytS
c

-ns
GC(S) = a(S+B)

BtS+a-ae""3)

4.0

2.0

1.0

0.5

K T; a B

0.1667

0.333

0.667

1.3334

0.25

0.5

1.0

2.0

3.33

3.33

3.33

3.33

4.0

2.0

1.0

0.5

Table 1. Controller settings for various values

of B when dead time, T, is unity.
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The setpoint response curves shown in Figure .12 indicate

that the system performance is superior with the new con

troller. The I.A.E. has been improved by better than a

factor of 4 and the settling time to within 2% of the final

value is improved by a factor of 3.7. The I.A.E. for the

response obtained when the new controller form is used was

calculated using equation 7. The I.A.E. for the proportion

al-plus-integral controller response was calculated by DYSIM***.

The output of block 32 on Figure Al in Appendix A represents

the I.A.E. calculated by DYSIM***.

The responses to a unit step disturbance are different

for each controller form. The responses for various values

of B are plotted in Figures 13, 14, "15, and 16 for T = 1.0.

The output response and I.A.E. for the proportional-plus-

integral controller were calculated by DYSIM*** and the out-

put response and I.A.E. for the new controller were deter

mined using equations 8 and 9. A digital computer program

was used to evaluate equation 8. The same controller set

tings which were used for the setpoint response (listed in

Table 1) were used to calculate the disturbance responses.

Table 2 contains the I.A.E. and the 2% settling time, *p ,

for the various cases considered.
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Proportional-

Plus-lntegral
F.nn t.rnl 1 ay

New Controller
$ improvement

using

1 I.A.E, %(2%)
ieeopdg

I.A.E. *s (2$)
seconds

I.A.E, ^ (2$)
seconds

4,0 2,26 9,0 1,24 3.6 43$ "60$

2.0 2,15 9.0 1.31 4.5 39.1$ 50$

1,0 1,85 9.0 1,32 5.6 28.6$ 37,8$

0,5 1.51 9.0 1.325 9.0. 11,9$ 0$

)le g. I.A.E. and ^s comparison of the Proportionai-

Plus-Integral Controller and the new controller for

various values of B with T - 1.0 for a unit step
disturbance.

Table 2 shows that the new controller provides sig

nificant improvement in most disturbance responses. The

degree of improvement increases as the value of B increases,

indicating that the new controller would be most judicious

ly used on processes which are dominated by dead time ele

ments.

The disturbance response for a pure dead time plant

is plotted in Figure 17, Instead of a proportional-plus-

integral controller, Mr, Haalman recommends only integral

control with T*. 3T, Thus, the disturbance response was

2
etleulated for a controller of the form GR(S) %JL where

.b

t^S and the nw controller of the form &{) f

3,33
S+3.33g.3g"
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The new controller configuration resulted in a 41$ decrease

in the I.A.E. and a 67.7$ reduction in the 2$ settling time.

The integral controller response and associated I.A.E.

were calculated by DYSIM***- A detailed discussion is given

in Appendix B. The regular block diagram is shown in Figure

18.
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VIII. EFFECTS OF MISMATCH IN PROCESS AND CONTROLLER DEAD
TIME VALUES

The effect on the setpoint response of a mismatch

between the process dead time and the dead time value in

the new controller can be determined by analysis of the

system diagrammed below. The dead time value in the new

controller is labeled X.

R(sy > :_^S^IS+a-ae Aa
Pfs

> P(S)e

oTsT

-ST

>

+

C(S)

Figure 19 : Block diagram of a plant having a dead
time element and controlled by the new

controller.

The transfer function between the -setpoint and out

put can be written as

-ST

C(S)
its!

S+a-ae
-XS Pts) qTsT

i + a QS1 ZLSI e
-ST

S+a-ae"XS

P(S) Q(S)

-ST

ae

=X5 1st
S+a-ae +ae

ae
-ST

(S+a) Tl + -e~XS)1

1 S+a J .
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By application of the expansion formula

1+7 <-

n n

n=0

the previous equation can be rewritten as

-ST
C(S) = ae

RtsT S+a

,
-ST -XS. 2. -ST

-XS"v2

1 - ate -e ) + a (e -e >
S+a (S+a)8

3, -ST -XS.3 4 _ST -XS 4
- a (e -e ) + a (e -e *b) . . .

, x3 4
(S+a) (S+a)

Letting R(S) =1, the transform of the output, after
S

expansion, becomes

, %
-ST

C(S) = ae

S(S+a)
[l - al

-ST -XSX
e -e )
S+a

2, -2ST 0 -(X+T)S^ -2XS.

a (e -2e +e \
(S+a)2

3 -3ST -(X+2T)S -(2X+T)S -3XS

a (e -3e +3e -e + . .

(S+a)3

which can be rewritten as

. . -ST 2. -2ST -(X+T)S

C(S) = ae - a (e -e ) +

^^ S(S+a)*

3, -3ST -(X+2T)S -(2X+T)St
a (e -2e +e \ -

3
S(S+a)

4, -4ST -(X+3T)S
-(2X+2T)S

_(3X+T)S

a (e -3e +3e -e +

S(S+a)
4
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Performing a partial fraction expansion yields

C(S) == [A + B
le"

+fc + D +
_E_1 .

LS S+aJ LS 7s+aT^ S+aJ

[ 6,e-2ST

_ e-<X+T>S|+| +
__0__

+ H
(S+a)3 (S+a)2 S+aJ

T -3ST -(X+2T)S -(2X+T)S][e -2e +e J +

[** K
..

+ L + M +
_N_

(S+a)4
(s+a)* (S+a)* S+a

f -4ST -(X+3T)S -(2X+2T)S -(3X+T)S*|
le -3e + 3e -e J . . .

The residues can be calculated as

A = a

S+a
'= 1.

S=0

B = S =
-1/

S=-a

2
C =

D =

E =

F =

-a

(S+a)'

2

=
-I,

S=0

-a

S

2
a

7

= a.

S=-a

= 1.

S=-a

3
= 1.

(S+a)
S=0
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3

H = -a

S

-a

S=-a

=
-a,

S=-a

I =

J =

-
-1,

S=-a

-a

(S+a)

4

=
-1.

S=0

*,=!L 3
- a-

L = S-
4

.2

M - -a

S=-a

S=-a

S=-a

a2.

a,

and N = +a

S

= 1.

S=-a

Thus, c(t) = y1(t-T)u(t-T) + y2(t-2T)u(t-2T) -

y2(t-X-T)u(t-X-T) + yg(t-3T)u(t-3T) -

2y3(t-X-2T)u(t-X-2T) + yg( t-2X-T)u(t-2X-T) +

y4(t-4T)u(t-4T) - 3y4(t-X-3T)u( t-X-3T) +

3y4(t-2X-2T)u(t-2X-2T) - y4( t-3X-T)u(t-3X-T)



where y (t) -1 \k + B 1
1 [S S+aJ
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-1, _ t ,
-at

= 1-e ,

y9(t) = jf fC + D +
_J_1

=
-l+ate-at+e,

IS 7^17 S+aJ

*3(t)
=/_1fl + G + H + I 1

I5 (S+a)3 (S+a)2 S+aJ

,
2 2 -at -at -at

1 - la t e -ate -e ,

2

and y4(t) = / "1fJ + K + L + M
Is (S+a)4 (S+a)3 (S+a)2

+ N 1
S+aJ

3 3 -at 2 2 -at .
-at -at

-1 + la t e + la t e + ate + e .

6 2

A digital computer was used to generate plots of c as

a function of time for various values of a and X with T set

equal to unity. The program was written in Basic language.

A printout of this program is listed in Figures 20 and 21.

Plots of c(t) for T=l and a = 10, 5, 3.33, 2.5, and 2 are

diagrammed in Figures 22, 23, 24, 25, and 26, respectively.

In each plot the value of X was set equal to both .95 and

1.05, representing a plus and minus 5$ mismatch between the

process dead time and the controller dead time. Plots of

c(t) for plus and minus 10$ mismatches in the value of the

dead time using the same values of a as above are shown

in Figures 27, 28, 29, 30, and 31. For T=l, a=2.5, and X=l,2

and 0.8, the output response of the same system with a
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20$ mismatch is shown in Figure 32.

Analysis of these response plots indicates that the

value of the parameter a considerably effects the shape of

the response. In general, as a is increased in value the

system exhibits larger peaks in the transient response, in

dicating that the system stability is reduced.

Using minimum I.A.E. to define an optimum criteria can

be seen to be deficient by observing the curve for a=10 in

Figure 22. This response as can readily be determined from

observation of the plots has the smallest value of I.A.E.,

but the degree of smoothness is poor. An operator observing

this response, could think the process was in control after

a time duration of about 1.5 seconds. However, an unexpected

peak on the order of 20$ at t=2.1 seconds and another peak

on the order of 5$ at t=3.0 seconds actually results in the

output remaining outside a 2$ error band for about 3.5

seconds. Consequently, the optimum value of a was defined

as the value which minimizes the time for the output to

come and stay within 2$ of its final value.

In Figure 33 a plot of 2$ settling time versus 1/a is

shown for both 5$ and 10$ mismatches between plant and con

troller dead time. The plotted values of settling time are

the worst case values when both plus and minus percentages

of mismatch are considered. This graph indicates that a

value of a=5 is optimum for a minimum 2$ settling when a

5$ mismatch is present while a value of a=3.33 is optimum
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when a 10$ mismatch exists. The operator would be required

to make an estimate of the probable mismatch variation for

the particular plant under consideration and select a value

of a based on this.
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100 X=1.05
105 PRINT "X=M>X
107 PRINT
1 10 T1=0
120 T1=T1 + 0.1
130 IF Tl>=.75 THEN 750
140 PRINT
150 PRINT "T1 = 'ST1
160 PRINT
17 0 A=1.0/T1
180 T=0.8
190 T=T+0.2
195 Q=0
200 Y1=0
210 Y2=0
220 Y3*0
230 Y4=0

240 Y5=0

250 Y6=0

260 Y7=0
27 0 Y8=0
280 Y9=0

290 IF T-l>=-005 THEN 420

300 IF T-2>=-.005 THEN 440

310 IF T-l-X>=-005 THEN 460

320 IF T-3>=-.005 THEN 480

330 IF T-X-2>=-.005 THEN 510

340 IF T-2*X-l>*=-,005 THEN 540

350 IF T-4>=- .005 THEN 57 0

380 IF T-3-X>=-005 THEN 600

390 IF T-2*X-2>=-.005 THEN 640

400 IF T-3*X- l>=-005 THEN 690

410 G0 T 710

Figure 20: Computer program used to
T and X are unequal. This listing is contin

ued on the next page.
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]420 Yi=l-EXPC-A*"CT-n)
''*-*"-- ' - ~ 6^

"cj
430 G0 T0 300 J
}440 Y2=A*CT-2>*EXP<-A*<T-2>)+EXPC-A*<T-2))-l 1
'450 60 T0 310 1

'460 Y3=-A*CT-1-X>*EXP<-A*<T-1-X>)-EXP<-A*CT-1-X>)+1

?47 0 G0 T0 320 I
480 Xl=C-.5*At2*CT-3)t2-A*<T-3>-l)*EXP<-A*CT-3>>

:*

S490 Q=X 1+1.0 j
3500 G0 T0 330

l 1
[510 X2=C~.5*At2*CT-X-2>t2-A*CT-X-2>-l>*EXP<-A*<T-X-2>>

*520 Y4*CX2+1.0>*C-2> |
1530 GS T0 340 |
.540

X3=-.5*At2*<T-2*X-l>t2-A*<T-2*X-l>-l 1
!545 R5=X3*EXPt>A*CT-2*X-l>> ' |
[550 Y5=R5+1.0 4
i560 G0 T0 350 |
570 X4=(At3/6>*(T-4)3+At2*0.5*(T-4)t2+A*CT-4)+ 1

J580 Y6=X4*EXPOA*CT-4>>-r >-J

t 590 G0 T0 380 H
!600 X5=(At3/6)*CT-3-X)*3+At2*0.5*<T-3-X)t2+A*<T-3-X>+l

6 10 X6=X5*EXP(-A*<T-3-X>>-l ]
620 Y7=-3*X6 , '}

i 630 G0 T0 390 3

640 X7=CAt3/6>*<T-2*X-2)f 3+At2*0.5*CT-2*X-2>t2+A*<T-2*X-2>+l

650 X8=X7*EXPC-A*<T-2*X-2>>-l

'. 67 0 Y8=3*X8 j
680 G0 T0 400 \
690 RlsCAt3/6>*(T-3*X-l>t3+At2*0.5*CT-3*X-l)t2+A*<T-3*X-l)*l

700 Y9=-R1*EXPC-A*CT-3*X-1)>+1

7 10 Y=Y1+Y2+Y3+Y4+Y5+Y6+Y7+Y8+Y9+Q i

7 20 PRINT T*Y I
7 30 IF T<=5.1 THEN 190

7 40 G0 T0 120 ^ .?

7 50 END '

wt- ,.--.A.\\Jix^Mi^a^ii.'^.^-zi^h 'E -j.Ji.^7 &?,'-

Figure 21: Continued listing of Figure 20.

>- ,n*incmr&*IMfctt^Agri^Xif?-JiJVJB^it;.-Aa
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The previous analysis showed the effect of mismatches

between process and controller dead time values on the

setpoint step response. The following analysis shows the

effect of this mismatch when a unit step disturbance occurs

in the loop. For this analysis P(S) will again be set

equal to B and Q(S) will again be set equal to S+B.*

R(S)=0
D(S)=1/S

K>^ a (S+B)
-XS

B(S+a-ae )

-ST

Be
S+~B

">
CIS)

4 pnv

Figure 34: Block diagram of
Be" x

plant controlled

S+B
by new controller.

Referring to Figure 34, the transfer function from D(S)

to C(S) can be written as

D(S)
Be

C(S) = S+B

1 + a(S+B) Be
-ST

B(S+a-ae-ZS)
S+B

Be"ST(S+a-ae"XS) D(S)

(S+B)[s+a+a(e-ST-e-XS)]
Factoring out an S+a term in both the numerator and de

nominator yields

C(S) =
Be
M* "

%^]
(S+B) C-, i -ST -XS.

J 1 + a(e -e )
D(S)

S+a
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Since D(S) =
.1,

the output transform can be written as

r XS T
-ST

1 " *f
i I S+a JC(S) = Be

' - ll + a(e"ST-e"XS)11 +

S+a ] .

Applying the expansion formula,.
. .

..n_n

i =<r
(-i)"z"

l+Z
n=0

the above expression can be rewritten as ,

-ST

C(S) = Be
sTs+bT

[- ae
-XS1

S+a .

t
-ST -XSX

1 - a(e -e \ +

S+a

2 -ST -XS^2 3, ST -XS 3
a (e -e j _ a (e -e ) +

(S+a)' (S+a)*

5, -ST _XS,5

a (e -e ) - a (e -e )5~~ r"-"-J " ""-"-" e

(S+a) (S+a)

Expanding yields
-XS1

.STfl
- ;

C(S) = Be L S+a
-ST .XS

il - ae + ae +

S(S+B) S+a S+a

2 r -2ST -(X+T)S .2XSl

e -2e +e J -

(S+a)

3
a

P -3ST
-(X+2T)S<

-(2X+T)S -3XS1

le -3e +3e -e J +

(S+a)

-4e

4 ^ST

I

fe_^"x-4e"lrf* M*/w+6e

-(3X+T)S -4XS1

+e J -
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5 t -5ST -(X+4T)S -(2X+3T)S -(3X+2T)S

a I e -5e +10e -lOe

5
L

(S+a)

-(4X+T)S -5XS]5e -e J + . . . .

This can be rewritten as

Be aBe

STS+BT S(S+a)(S+B) S( S+a) (S+B)

..,, -2ST -(X+T)S

C(S) = Be bl
aBe + aBe +

2t> r-SST -(X+2T)S -(2X+T)Sl
a B e ^bi-2e +e J -

2
S( S+B) (S+a)

3 r -4ST -(X+3T)S -(2X+2T)S

a B le -3e +3e

S(S+B)(S+a)

-(3X+T)sl

e -1 +

4 r -5ST
-(X+4T)S

-(2X+3T)S
a B le -4e +6e

4
S(S+B)(S+a)

-(3X+2T)S -(4X+T)sl

+e -i +4e +e

-(X+T)S 2 -(2T+X)S

2, -(2X+T)SaBe + a Be - a Be
S( S+B) (S+a) S(S+B)(S+a)2 S(S+B)(S+a)2

3
a B
S(S+B)(S+a)3

p -(X+3T)S
o _(2X+2T)S_L -(3X+T)S"|[e -2e +e J +

4^ T -(4T+X)S -(2X+3T)S. -(3X+2T)S

a B le -3e +3e

S(S+B)(S+a)4

-(4X+T)Sn
J+ *

. . .
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Combining terms results in

,x -ST -2ST 2 -3ST

C(S) = Be - aBe + a Be

STS+BT S(S+a)(S+B) s(s+E)(s+a)8

2 ^L
S(S+B)(S+a) S(S+B)(S+aT

-(X+3T)S -(2X+2T)sl

2e -e
J +

4 f -5ST -(X+4T)S -(2X+3T)S

a B [e -3e +3e

S( S+B)
(S+a)4

-(3X+2T)S1

e J + . . . .

which, after a partial fraction expansion, can be rewritten as

-ST -2ST

C(S) = fil + J2 le + fJ3 + J_ + J5 ~}e +

LS S+bJ IS S+B S+aJ

TJ6 + J7_ + J8 + j9lfe-3ST-e-(X+2T)Sl +

is S+B (S+a)2 Ts+alL

fjlO + Jll + J12 + J13. + J14]ts S+B (S+a)3 Ti^ S+aJ

r -4ST
-(X+3T)S

_(2X+2T)S"|1-e +2e -e J +

[J15 + J16 + J17 + J18 + J19 + J20l

K S+B 7i^ ^S
(s+a)2 S+d

T-5ST -(X+4T)S -(2X+3T)S
"(3X+2T)S1

[e -3e +3e -e J - + . . .
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The residues can be calculated as

JI =

_B_|

= 1,
S+B

|s=o

J2 = B, =
-1.

S
|S=-B

J3 =
-aB =

-1.

(S+a) (S+B)
S=0

J4 = iaB |
= a ,

a-B

S=-B
S(S+a)l

J5 =
-aB

=
-B.

S(S+B) a-B

S=-a

J6 = 1,

J7 = -a

(a-B)c

Jo = aB,
a-B

J9 = - (B-2a)B.
(a-B)2

J10 = 1,

Jll = -

a3

.

(a-b)3

J12 = - a B,
B-a

J13 = - aB (B-2a^,
(a-B)

J14 = B(3a2-3aB+B2).
(a-B)3
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J15 = 1,

J16 =
4
a .

(a-B)4

J17 = a3B.

a-B

J18 =
- a B(B-2a).

(a-B)2

J19 = B(3a3-3a2B+aB2).
(a-B)3

J20 =
4a3B+4aB3-B4-6a2B2

(a-B)4

Then, by taking the inverse transform,

c(t) = y1(t-T)u(t-T) + y2(t-2T)u(t-2T) +

y3(t-3T)u(t-3T) - y (t-X-2T)u(t-X-2T) -

y4(t-4T)u(t-4T) + 2y (t-X-3T)u(t-X-3T) -

y4(t-2X-2T)u(t-2X-2T) +

yR(t-5T)u(t-5T) - 3y (t-X-4T)u(t-X-4T) +

3yf-(t-2X-3T)u(t-2X-3T) - y ( t-3X-2T)u( t-3X-2T )

where yn(t) =
1-e"

,

. . -Bt -at

y (t) =
-1 + -

,
6

a-B a-B

, , 2 -Bt -at , %
-at

y (t) =1 - a e + aB te - (B-2a)Be ,

3
i t^2 a-B , ^2

(a-B) (a-B)

y(t) = 1 - e"Bt- - aB(B-2a) te"at-
4

(a-B)3 2<B-a> (a-B)2

B(3a -3aB+B )e , and
(a-B)3
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,., t
4 -Bt 3 3 -at 2 , ,2 -at

y (t) = 1 - a e + a B t e
*"

- a B(B-2a)t e

(a-B)4 *<^T 2(a-B)2

+ B(3a3-3a2B+aB2)te"at

+
(4a3B+4aB3-B4-6a2B3)e"at

(a-B) (a-B)4

The output disturbance response corresponding to the

above equation was calculated by use of a digital computer.

The response for X=1.0 and X=l.l when a=5, 1=1.0.; and B=2

is plotted in Figure 35.. The 10$ mismatch, in controller

and plant dead times causes a 6$ increase in I.A.E. with

respect to the same system with no mismatch.

The setpoint response of the same system is shown in

Figure 28 for X=l.l. The 10$ mismatch causes 57.5$ increase

in I.A.E. (from .2 to .315). Thus, from the stand point of

error due to plant and controller dead time mismatches, the

response to a step change in setpoint is more sensitive and

thus more- critical than a step disturbance change. For

this reason, the optimum value of a was determined by con

sideration of the setpoint response curves. The disturbance

and setpoint responses, even with mismatches between the con

troller and plant dead times on the order of 10$, are gener

ally superior to responses of the same plant with a propor

tional-plus-integral controller. For the disturbance response

the degree of improvement becomes more substantial as the

dominance of the dead time element increases.
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IX. DEAD TIME LAO SIMULATION

To obtain the performance which the new controller is

theoretically capable of, it is necessary to accurately sim

ulate a dead time lag. In recent months the prices of ana-

log to digital converters, digital to analog converters, and

long shift registers have dropped significantly, indicating

that a digital simulation may be economically achieved.

One possible approach would be to sample and digitize the

analog signal at a periodic rate. Each digital word could

then be entered into a shift register and shifted at the

same periodic rate. The digital information could be picked

off at the end of the shift register and converted back to

an analog signal by a digital to analog converter. The

time delay would depend, on the number of bits available in

the shift register and the sampling frequency. This imple

mentation was not undertaken as part of this thesis but is

mentioned to show that the preceding results are of more

than theoretical interest.
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X. IOOP TUNING PROCEDURE

The loop tuning procedure for the new controller is

extremely simple. One possible approach is to initially

obtain the process reaction curve. This is done by break

ing the loop, applying a unit step change to the plant,

and recording the output response. This same technique is

used to obtain the famous Ziegler-Nichols settings. From

the process reaction curve, a plant transfer function approx-

-ST

imation.Ke .can be obtained, as is_shown in Figure 36.
- - S+B

output
' ^

,63v

y=l

B

K=vB

Figure 36: Typical Process Reaction Curve

This immediately gives the operator the value of Q(S) in
PtfT

the- new controller. The value of a must be determined by

consideration of the expected variation in the dead .time

T of the plant. If the controller is properly designed,

the value of X should be capable of being set extremely

close to the value of T and remain stable for various en-

viromental conditions. However, the value of T in the plant
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will typically not be constant but may have variations occur-

ing from time to time. If expected variations combined -

with the uncertainty of the original measurement of T are

on the order of 10$, a value of 1/a equal to 30$ of T would

give satisfactory performance. If variations plus measure

ment uncertainty are about 5$, then a value of 1/a equal to

20$ of T would be satisfactory. These two results are

based on calculations detailed in this thesis. For other

possible variations other values of a should be determined.

It should be noted that the process reaction curve

shown in Figure 35 can approximate most process control

systems dominated by dead time element. Exceptions to

this rule are plants which contain an integrating element

which are termed non-self regulating.
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XI. CONCLUSION

The new controller allows improved response over that

of a proportional -plus-integral controller. The degree of

improvement is significantly better for setpoint step changes

and varies for disturbance step changes as a function of

the ratio of plant dead time to lag, that is T/l.
B

As this ratio increases, indicating the plant is dom

inated by the dead time, the degree of improvement also in

creases so this controller would primarily be useful with

plants having large dead time to lag ratios, that is a

plant dominated by a pure dead time. From a practical

standpoint the response to a disturbance change is usually

of prime importance.
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XII. APPENDIX A

DYSIM*** SIMULATION OF THE PROPORTIONAL-PLUS-INTEGRAL

S+B
CONTROL OF

Be"ST

PLANT.

Figure Al is a computer block diagram of theVDYSIM***

simulation of the system shown in Figure 11 The numbers

above each element are the block numbers. The various

symbols within each block indicate the block type. The

following list summarizes the symbols used:

+ adder

K constant

G gain multiplier

I integrator

inverter

n dead time

m absolute value block

PI initial condition on an integrator

P2 gain term on an integrator

P3 gain term on an integrator.

The dead time block, which is symbolized by u, has a

dead time equal to one-half the digital computer integration

interval. To obtain accurate output data with T=l, the in

tegration interval was specified as 0.1 and a fourth order

Runge-Kutta integration was used. This integration interval

thus requires 20 dead time blocks (block numbers 10 thru 29)

to realize a unit delay. The printout shown in Figure A2
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is a computer listing of the block diagram shown in Figure

Al. The initial conditions and parameters at the bottom

of the page determine the proportional gain, reset rate,

plant time constant, and type of response (setpoint or

disturbance) desired. For instance, in the printout shown,

parameter one on block one is set at unity, indicating a

unit step change in the setpoint. Parameter one on block

number three sets the proportional gain at '0.1667, para

meter two on block four sets the reciprocal of the reset

time at four and parameters two and three on block eight

set the value of B at 4. Figure A3 shows the computer

program data file, which is used to operate DYSIM***.
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!

-'*,*-***
f-yf*

BLiCK TYPE INPUT1 INPUT2 INPUT3

IK 0 0 0

2 + 1 30 0

3 6 2 0 0

4 1 0 3 0
5 + 6 3 4

6.n '. 6 . K 0 0 .0

7 3+ 5 0 * 0
I 8 I 0 7 9

9 - 8 0 0

10 U a , 8 0 0

11 U 10 0 0

12 U 11 0 0

13 U 12 0 0

14 U 13 0 0

15 U 14 0 0

16 U 15 0 0

17 U 16 0

18 U 17 0 0

19 U 18-0 0

20 U 19 0 0

21 U 20 0 0

22 U 21 0 0

23 U 22 , 0 0

24 U 23 0 0

25 U 24 0 0

26 U 25 0 0

r27 U 26 0 0

28 U 27 0 0

29 U 28 0 0

30-29 0 0

31 M 2 0 0

32 I 31 0 0

INITIAL CBNDITISNS AND PARAMETERS

BL0CK IC/PAR1 PAR2 PAR3

1 1.000000E+00 0* 0.

3 1.667 000E- 01 0. 0.

4 0. 4.000000E+00 0.

g 0. 4.000000E+00 4*000000E+0G
.*jaj.~

Figure A2 :
DYSIM*** computer printout of block arrange

ment shown in Figure Al.



-76-

-wi>*i.**motj ,Er**flyi,.V'i(*iV-'"'
'*T>0 ?QflW ^w^w';-.----i|

\

lk^_^

100 1*K* 0*0*0
1 10 2* + * 1* 30*0
120 3*6*2*0*0
130 4* I * 0* 3* 0
140 5*+* 6* 3* 4
150 6*K* 0*0*0
160 7*+* 5*0*0
170 8*1*0*7*9
180 9*-*8*0*0
190 10*U*8*0*0
200 11*U* 10*0*0
210 12* U* 11*0*0
220 13, U* 12*0*0
230 1 4* U* 1 3* 0* 0
240 1 5* U* 1 4* 0* 0
2 50 16* U* 15*0*0
260 17* U* 16*0*0
27 0 18* U* 17*0*0
280 19* U* 18*0*0
290 20* U* 19*0*0
300 21*U*20*0*0
310 22* U* 21* 0*0
320 23* U* 22* 0*0
330 24* U* 23* 0* 0
340 25* U* 24* 0* 0
350 26* U* 25* 0* 0
360 27 *U* 26* 0*0
37 0 28* U* 27* 0*0
380 29* U* 28* 0*0
390 30*-* 29*0*0
400 31*M*2*0*0

410 32*1* 31*0*0
420 0* 0* 0* 0* 0
430 1* 1*0*0
440 3*. 1667*0*0

450 4* 0* 4* 0
460 6* 0* 0* 0
47 0 8* 0* 4* 4

w.-.-;*
&a|#sMk.:,fe!S.-&&W(kz.- j

Figure A3: DYSIM*** computer program required to imple-

ment simulation shown in Figure Al.
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APPENDIX B

-ST

DYSIM*** SIMULATION OF THE INTEGRAL CONTROL OF AN e

PLANT.

The computer block diagram, block configuration list

ing, and DYSIM*** program are shown on Figures Bl;v B3, and

B3, respectively.
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BL0CK TYPE INPUT 1 INPUT2 INPUT3 ]
II 0 24 0

I 2 K 0 0 0

) 3 + 2 1 0

} v 4 U 3 0 0
5 U 4 0 0
6 U 5 0 0
7 U 6 0 \0

8 U 7 0 0
9 U 8 0 Cf
10 U 9 0 0
11 U "10 0 0
12 U 11 0 0
13 U 12 0 0
14 U 13 0 0
15 U 14 0 0
16 U 15 0 0
17 U 16 0 0
18 U 17 0.0
19 U 18 0 0
20 U 19 0 0
21 U 20 0 0
22 U 21 0 0

; 23 U 22 0 0
24-23 0 0

[ 25 M 23 0 0

26 I 0 25 0

INITIAL CNDITI@NS AND PARAMETERS

BL0CK IC/PAR1 PAR2 PAR3

1 0. 6.67 0000E-01 0.

| 2 l.OOOOOOE+OO 0. 0.

I'-,'--. 26 0. l.OOOOOOE+OO 0.

TZ-xifift^jt^'^dsv^r.r\t&i&&X'.?
--:iJ"

.?.*.<__ .^r > -r-'^jaiaaira^yi".jljiiwd -r^-wnNiy&^ss^ttg.y

Figure B2 : DYSIM*** computer printout of block arrange-

ment shown in Figure Bl.
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V^-If^y^^ri^^fi. -

LLL 14t43EST 11/20/7 2

100
1 10
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
27 0
280
290
300
310
320
330
340
350
360
37 0
380
390

1*1*0*24*0
2*K* 0*0*0
3* + * 2* 1*0
4* U* 3* 0* 0
5* U* 4* 0* 0
6* U* 5* 0*0
7*U*6*0*0
8*U*7*0*0
9* U* 8* 0*0
10*U*9*0*0
11*U* 10*0*0
12* U* 11*0*0
13*U* 12*0*0
14* U* 1 3* 0* 0
1 5* U* 1 4* 0* 0
16* U* 15*0*0
17 *U* 16*0*0
18* U* 17*0*0
19* U* 18*0*0
20* U, 19*0*0
2 1* U* 20* 0* 0
22* U* 21* 0*0
23* U* 22* 0* 0
24*-* 23* 0*0
25*M*23*0*0
26*1*0*25*0
0* 0* 0* 0* 0
1*0* .667* 0
2* 1*0*0
26*0* 1*0

-'^sa>;. ^^^^^.^^H.^^^^^^.-*^

Figure B3: DYSIM*** computer program required to imple-

ment simulation shown in Figure Bl.
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APPENDIX C

DYSIM*** VERIFICATION OF NEW CONTROLLER RESPONSE.

The output responses which were plotted throughout

this thesis using the new controller were obtained by hand

calculation using the Laplace transform. Occasionally, a

digital computer was used to evaluate the resultant time

domain equations. This appendix outlines $he simulation

-ST

of the new controller in a system with a Be plant using
S+B

DYSIM***. Specifically, the response to a step disturbance

when B=2, a=5, T=l, and X=l was calculated by DYSIM***.

The response of the same system was calculated by hand and

the resultant output response was plotted in Figure 35.

block diagram of the system which encorporates the new con

troller realization shown in Figure 9 is drawn in Figure Cl,

Figure C2 is a computer block diagram of the system. Fig

ures C3 and C4 outline the DYSIM*** program, and Figure C5

is a table of the output values versus time. Comparison

of this table with the output response plotted in Figure 35

indicate a close agreement, thus verifying the hand compu

tation.
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C0MMAND17C0NF

BL0CK TYPE INPUT1 INPUT2 INPUT3
1 K 0 0 0
2 + 52 1 0
3 + 2 4 0
4 I 0 25 5
5 - v 4 0 0
6 U 3 0 0
7 U 6 0 0
8 u 7 0 0
9 u 8 o 0
10 u 9 0 0
11 u 10 0 0
12 u 11 0 0
13 u 12 0 ^0

14 u 13 0 0
15Y u 14 0 0
16 u 15 0 0
17 u 16 0 0
18 u 17 0 0
19 u 18 0 0
20 u 19 0 0
21 u 20 0 0
22 u 21 0 0
23 u 22 0 0
24 u 23 0 0
25 u 24

.
0 0

26 6 3 0 0
27 I 0 55 28
28 - 27 0 0
29 K 0 0 0
30 ,

+ 29 ...,.

'

26 27 il

Figure C3: DYSIM*** computer printout of block arrange

ment shown in Figure C2.
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31 U 30
'

'
-'A^., r 0

"

o 1
32 U 31 0 0 io !33 u 32 0
34 u 33 0 0

'

i
35 u / 34 0 0
36 u 35 0 0 'j
37 u 36 0 0

' 1
38 u 37 0 o t
39 u 38 0 0 ' 1
40 u 39 0 0 . 1

I 41 u 40 0 0
42 u 41 0 0 I
43 u 42 0 0
44 u 43 0 0
45 u 44 0 0
46 u 45 0 0
47 u 46 0 0
48 u 47 0 o '-j
49 u 48 0 0 * I
50 u 49 0 0
51 I 0 50 52
52 - 51 - 0 0
53 M 2 0 0 ^ ;

54 I 53 0 0
55 - 26 0 0

INITIAL C0NDITI0NS AND PARAMETERS
BL0CK IC/PAR1 PAR2 PAR3
4 o. 5. OOOOOOE+OO 5. OOOOOOE+OO ,

;.. 26 2.500000E+00 0. 0.
-

27 0. 3. OOOOOOE+00 5. OOOOOOE+OO

1 29 l.OOOOOOE+OO 0. 0.

51 0. 2. OOOOOOE+OO

Figure C3.

2. OOOOOOE+OO

Figure C4: Continued from
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TIME 0UTPUT 51 0UTPUT 54
0. 0. 0.

2.0000E-01 0. 0.
4.0000E-01 0. 0.

6.0000E-01 0. 0.

8.0000E-01 0. 0.

1.0000E+00 o. 0.
1.2000E+00 3.01 16662E-01 2.7 9 106 39 E- 02
1.4000E+00 5.3652860E-01 1. 131 1846E-01
1.6000E+00 6.9276334E-01 2.37 0251 IE- 01
1.8 000E+00 7 .9633228E-01 3.8658 27 1E-01
2.0000E+00 8.6498830E-01 5.5314434E-01

2.2000E+00 8. 1842845E-01 7. 2548 36 4E- 01
2.4000E+00 6.2003665E-01 8.6939032E-01

2.6000E+00 4. 39 4406 3E- 01 9.749 5896E-01

2.8000E+00 3.0130450E-01 1. 048 447 7 E+ 00
3.0000E+00 2. 03229 08 E- 01 1.098 38 54E+00
3.2000E+00 1. 359 4058E- 01 1. 1319156E+00

3.4000E+00 8. 89 2328 0E- 02 1. 1539 438 E+ 00
3.6000E+00 6.2121045E-02 1.1689762E+00

3.8000E+00 4. 2368869E- 02 1.179 308 3E+00
4.0000E+00 2.8377 164E-02 1.1862692E+00

4.2000E+00 1.88 11 39 2E- 02 1. 1908994E+00

4.4000E+00 1.2398 39 2E- 02 1. 19 39 569 E+ 00

4.6000E+00 8. 37 21 547 E- 03 1. 1960060E+00

4.8000E+00 5.450578 1E-03 1. 197 36 36 E+ 00 ',

5.0000E+00 3. 50 14067 E- 03 1. 1982383E+00 !

5.2000E+00 2. 299 348OE- 03 1. 1988054E+00 ;

5.4000E+00 U5632999E-03 1. 199 18 40E+00 .

5.6 000E+00 1. 1 192468E-03 1. 1994463E+00
'

5.8000E+00 7 .7230U3E-04 1. 1996323E+00 i
6.0000E+00 5. 147 488 0E-04 1. 1997 58 1E+00 i

CI1MAND2?C0MMAND1

Figure C5 : Output response of system in Figure Cl

with B=2, a=5, and T=1.0.
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APPENDIX D

FREQUENCY RESPONSE OF THE NEW CONTROLLER

The controller derived in this thesis has a transfer

function

GC(S) = a Q(S)
S+a-ae"ST P(S)

which can be rewritten as

GC(S) = X(S) Q(S) .

The frequency response of G (S) is thus determined by
v*

two factors, namely, X(S) and Q ( S ) . Q(S) is determined by
pTsT pTsT q_

the plant since the plant transfer is defined as
P(S)e"

.

Since Q.(S) was assumed to be a ratio of polynomials in
PTST

S, the numerator and denominator could be factored and stan

dard straight line approximations could easily be implemented

on a Bode plot to obtain the magnitude and phase plots ver

sus frequency. This same simple procedure cannot easily be

applied to X(S) since it is not a ratio of polynomials. If

the magnitude and phase plots of X( S ) were known, it would

require only a simple graphical procedure to add the effects

of Q(S) and, thus, obtain the complete response plots of the

pIsT
controller. Thus, as a design guide, let us obtain the fre

quency plots of X(S).

Letting S=jw yields

X(jw) a

-jwT

jw+a-ae
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Applying Euler's identity yields

X( jw)= a

jw+a-'a(coswT- jsinwT)

which can be rewritten as

X(jw) - a

a(l-coswT)+j(w+asinwT)

Thus|X(Jw)| = a
_

x i

[a2(l-coswT)2+(w+asinwT) ]*

and jX(jw) = w+asinwT

a(l-coswt) .

Simplifying yields

[X(jw)|= a

2 ? 2 W
(2a -2a coswT+w +2awsinwT)

-1

and IxUw) = w+asinwT .

1
a(l-coswT)

Throughout this thesis, the value of T was typically

set equal to 1 and the value of a was typically set equal

to 3.34 to obtain transient output plots. With these same

values of a and T, the|X( jw)| and [x( jw) were obtained as a

function of frequency on a digital computer. The response

plots are shown in Figures Dl and D2. Both the magnitude

and phase plots exhibit peaks at approximately multiples

of w=5 radians per second due to the transcendental char

acteristics of the denominator of X(jw).
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