
95

A debugging standard for high-performance

computing

Joan M. Francioni
Computer Science Department, Winona State

University, Winona, MN 55987, USA

E-mail: joanf@wind.winona.msus.edu

Cherri M. Pancake
Department of Computer Science, Oregon State

University, Corvalis, OR 97331, USA

E-mail: pancake@cs.orst.edu

Throughout 1998, the High Performance Debugging Forum

worked on defining a base level standard for high performance

debuggers. The standard had to meet the sometimes con-

flicting constraints of being useful to users, realistically im-

plementable by developers, and architecturally independent

across multiple platforms. To meet criteria for timeliness, the

standard had to be defined in one year and in such a way that it

could be implemented within an additional year. The Forum

was successful, and in November 1998 released Version 1

of the HPD Standard. Implementations of the standard are

currently underway. This paper presents an overview of Ver-

sion 1 of the standard and an analysis of the process by which

the standard was developed. The status of implementation

efforts and plans for follow-on efforts are discussed as well.

Keywords: Debuggers, debugging, high performance com-

puting, parallel programming, parallel debuggers, standards

1. Introduction and background

The High Performance Debugging Forum (HPDF)

was established in March of 1997, with the goal of

defining standards relevant to debugging tools for high-

performance computing (HPC) systems. By the fol-

lowing January, the first draft of the standard was made

available to the HPC community for comment and eval-

uation. This paper describes the process and the results

of that standards effort.

Prior to HPDF, there were no published standards

or rigorous definitions of debugger interfaces or func-

tionality. As might be expected, the lack of standards

meant that debugger implementations varied widely. In

the serial world, this situation has not been entirely bad;

variation has contributed to the overall development of

appropriate and effective debugger syntax/semantics.

Since serial programmers are likely to continue work-

ing on a system for extended periods of time, they can

get used to a “favorite debugger” and not have to worry

about changing tools frequently. Some serial debug-

gers are even supported on multiple platforms (e.g.,

gdb [20] and dbx [21]), although their implementations

may vary in subtle ways on each platform.

Unfortunately, the scenario is quite different for the

parallel programming community. The nature of HPC

is one of rapidly changing hardware and software en-

vironments. At any one time, there are fewer than a

dozen companies producing HPC machines and they

compete within a relatively small market [16]. From

the computer manufacturer’s viewpoint, there has been

no real economic advantage to expending effort so that

debuggers will be consistent with those on competitors’

machines – or even those on future versions of their

own machines. Consequently, each new machine may

present a totally new debugger, or one that has features

incompatible with earlier or future version.

From the user’s perspective, it is not cost effective to

have to learn a new debugger for every new machine,

especially when the lifespan of the tool or machine may

be only a couple of years. Moreover, most HPC users

work on different systems from one project to another,

and sometimes for a single project. Ease-of-use and

cross-platform compatibility have become key consid-

erations in user decisions about whether to adopt new

parallel tools [17]. To date, however, there is no par-

allel debugger that behaves consistently across differ-

ent architectures and operating systems, nor one that

is considered easy to learn and use. Even debuggers

originally developed by independent software develop-

ers may vary from one implementation to another, such

as the Totalview developed by Etnus (formerly Dol-

phin Interconnect Solutions) [5], versus the Totalview

ported by Cray to the T3E series).

Scientific Programming 8 (2000) 95–108

ISSN 1058-9244 / $8.00 2000, IOS Press. All rights reserved

96 J.M. Francioni and C.M. Pancake / A debugging standard for high-performance computing

The HPC community has discussed the need for par-
allel debugger standards at national and international
workshops over the years. In October of 1996, users
and debugger developers at the ARPA/NSF Workshop
on Parallel Tools concluded that a community-wide
standards effort should be started without delay. An
organizational meeting was held at the SC96 confer-
ence the following month, and the High Performance
Debugging Forum was officially established in March
of the following year. HPDF is a collaborative effort
involving researchers in the area of parallel debugging,
commercial parallel debugger developers, and repre-
sentatives of HPC user organizations. It is sponsored
by the Parallel Tools Consortium (Ptools) [15]. Similar
efforts to standardize parallel performance tools are un-
derway by Ptools and the APART (Automatic Perfor-
mance Analysis: Resources and Tools) Esprit Working
Group.

“HPDF” refers to the Forum that defined the stan-
dard. For purposes of identification, the name of
the standard itself is High Performance Debugger

(HPD) Standard. In this paper, we explain the goals
and overall structure of Version 1 of the HPD Stan-
dard. (Complete information, including definitions
of syntax and semantics, can be found on-line at
http://www.ptools.org/hpdf.) The limitations of the
standard, the processes employed in developing it, and
the current status of the standard are also discussed.

1.1. Goals of the HPD standard

The Forum established three general goals concern-
ing parallel debuggers. First, parallel debuggers should
satisfy the basic requirements of persons who develop
applications for HPC machines. That is, the target user
should be application developers, as opposed to com-
piler writers, library developers, etc. Second, parallel
debuggers should be usable by those application devel-
opers, in the sense of easy to learn and easy to use.
Third, parallel debuggers should be consistent across
platforms, so that users of one standard-conforming
debugger can switch to another with little or no effort.

One important lesson learned from previous stan-
dards efforts is that the window of opportunity for
HPC standards is quite small [15]. The rate of change
in HPC hardware and operating systems is extremely
rapid. Experience has shown that any standards effort
which takes more than a year or two from start to finish
will be outdated before it can be implemented. Tak-
ing this into account, the Forum decided that its initial
standard should be defined within a year and imple-
mentable within another year. Specifically, the HPD
Standard, Version 1 should:

– Capture the best-practice knowledge and experi-

ence of parallel debugger implementors across the

industry.

– Establish a well-defined, testable, and minimal

core set of features that can be implemented on all

HPC systems.
– Ensure that parallel debugger implementors pro-

vide this set of features in a consistent way.

– Limit the core set in size so that initial commercial

implementations can be available within a year of

the standard’s release.

To meet these goals, the Forum decided to subdi-

vide the relevant issues into different versions, or lay-

ers, such that each successive version would build upon

previous ones. Also, it was decided that the first version

should define a standard command-based (i.e., non-

graphical) interface for parallel debuggers. Issues such

as graphical interfaces and support for debugging opti-
mized code would be deferred to future versions. While

much of the standard was expected to be equally appli-

cable to serial debuggers, attention would be focused

on those issues that arise when the program being de-

bugged includes multiple threads, multiple processes,

or collections of multi-threaded processes.
The resulting standard, HPD Version 1, defines the

syntax and semantics of commands supporting the most

needed debugging functions. Individual implementa-

tions are free to add other commands – indeed, this may

be necessary in order to support debugging of machine-

specific features – but only the commands specified

in the standard are required. A debugger that meets
all the requirements specified in the formal HPD stan-

dards document [8], is said to be an HPD-conforming

debugger.

1.2. Architecture-independence of the standard

The HPD Standard attempts to be both hardware- and

operating-system-neutral, in the sense that it should be
possible to build a standard-conforming debugger on a

wide variety of different computing systems. This was

a realistic objective because a broad group of computer

and software manufacturers participated in the Forum.

In most cases, the group was able to reach consensus so

that required features of the standard could be system-
independent. Some features were defined as extensions

to the standard, in recognition of the fact that not all

systems can support them at the present time. (A hand-

ful of special features, known to be system-dependent,

were explicitly called out with suggestions of how the

variation should be accommodated.)

J.M. Francioni and C.M. Pancake / A debugging standard for high-performance computing 97

Since the HPD Standard addresses the needs of HPC

application developers, it assumes that programs need

to be system-independent. In particular, target pro-

grams are assumed to be written in one or more high-

level languages, for execution on possibly many differ-

ent computer systems, and execution performance of

the program is an important consideration.

Explicit parallelism is assumed as the basic pro-

gramming model, so the standard applies to both

shared-memory programming (multiple threads of ex-

ecution in a single address space, such as those spec-

ified by OpenMP and distributed-memory program-

ming (multiple processes co-operating via message-

passing libraries, such as PVM [6] or MPI [13]). HPD-

conforming debuggers may also be useful for implic-

itly parallel programs (e.g., auto-parallelized DO loops

or array operations), but the issues of how to map from

runtime or intermediate-level information to original

user source code are not addressed in the initial version

of the standard.

The HPD Standard recognizes the functionality

needed for three models of parallelism: processes-only,

threads-only, and multilevel (both multi-process and

multi-thread). Where the constraints of these mod-

els differ, the standard specifies how a debugger sup-

porting each model will behave. The objective is to

make it possible for debuggers of all three types to pro-

vide support that is as consistent as possible, given the

constraints imposed by the underlying models. Thus,

if a user’s application is processes-only, the behavior

should be consistent regardless of whether it is execut-

ing under the control of a processes-only or a multilevel

debugger.

The languages considered during development of the

standard were Fortran (F77 and F90), C, and to a lesser

extent, C++. In principle, the standard could apply to

other languages, but debugger syntax was not explicitly

checked for conflicts with expression syntax in other

languages. Moreover, the standard does not address

interpreted languages, which typically are packaged

with a built-in debugger. A debugger is said to “support

a language” if its commands apply to programs in that

language (e.g., gdb supports C). An HPD-conforming

debugger must provide the following functionality in

support of each target language:

– Accept source files written in that language, and

executables generated from them.

– Navigate to source locations in procedures written

in that language.

– Accept right-hand-side expressions in the syntax

of that language, evaluate them to object values

using the semantics of the language, and display

those values.

– Accept left-hand-side expressions in the syntax of

that language, evaluate them to object references

using the semantics of the language, and assign

values to those objects.

The HPD Standard gives specific directions for ap-

plying the above functionality in C and Fortran because

they are the most common HPC languages.

1.3. Outline of this paper

An overview of the HPD Version 1 standard is pre-

sented in Section 2. The general conceptual model

is described along with definitions for the general ter-

minology used throughout. In Section 3, the process

of developing the standard is presented and analyzed.

Section 4 includes a discussion of the next phase of

development for the HPD Standard. An Appendix lists

the command set for Version 1 of the standard.

2. Conceptual model of parallel debugging

A debugger is a tool that gives a user visibility into,

and control over, an executing program – the target pro-

gram. A parallel debugger performs that same func-

tion for a parallel program. In the world of parallel

computing, an executing program consists of one or

more processes, each associated with a particular exe-

cutable (and perhaps one or more shared libraries) and

each occupying a memory address space. Every pro-

cess, in turn, has one or more threads, each with its own

register set and its own stack. The target program is

thus the complete set of threads and/or communicating

processes that make up a given execution of the user’s

application, over the full course of program execution.

2.1. Interacting with the debugger

Although the debugger affects a target program, it is

not part of the target program’s execution. As shown

in Fig. 1, the debugger can be thought of as running

in separate process(es). Thus, debugger semantics are

defined separately from the semantics of the target pro-

gram language. (For an alternative way of defining de-

bugger semantics, see [2].) The debugger communi-

cates with the target program according to an execution-

98 J.M. Francioni and C.M. Pancake / A debugging standard for high-performance computing

console

input

console

output

debugger

input

debugger

outputprogram

interface

execution-time

interface

user interface

Debugger Program

Target Program

User

Fig. 1. Relationship between debugger and target program.

time interface that is usually operating system-specific

(e.g., ptrace or /proc).

When the target program executes, it goes through a

series of program states. If we assume a deterministic

target program – as is the case with any serial program

– it is possible to require that, as the debugger starts

and stops program execution, it does not change the

sequence of program states that would have occurred

if the program were executing on its own. In a paral-

lel program, however, the debugger’s intervention may

change the timing interrelationships among threads or

processes; this in turn may change the overall behavior

of the target program. Although this is not the intent of

the debugger, it can not be guaranteed not to occur.

Initiating Debugging. The standard requires that it

be possible to initiate debugging sessions in three ways.

The debugger can be invoked from the command line

and the target program executed within the the debug-

ger environment. Alternatively, the debugger may be

attached to a program that is already executing in the

normal run-time environment. In either case, if the tar-

get program consists of many processes, the debugger

may need to interact with the run-time system or the

library that is responsible for managing those processes

(e.g., PVM [6] or MPI [13]). Third, the debugger may

be associated with a parallel program that terminated

abnormally, as long as an image of the running program

was captured and stored as a core file. Since there are

no running process(es) associated with the target pro-

gram in this case, only certain debugging operations are

available for core-file debugging. In particular, while it

is possible to examine the location of the program and

the values of its variables, it is not possible to modify

anything about the program image preserved in the core

file.

In all three cases, the debugger not only controls
the executable(s) that constitute the target program, re-

flected in the memory and register values of the exe-
cuting program, but also utilizes debugging informa-

tion associated with the source files of the executables.
Such information provides a means for the debugger to
give high-level output to the user, expressed in terms of

the variables and procedures used in the source code. It
also enables the debugger to access smaller components

of the program (e.g., source files), thereby eliminating
the need for some assistance from the user. On most tar-

get systems, debugging information is only generated
when the executable is compiled with special options
(such as “-g”) in effect.

User Command Model. Debuggers are designed to
receive user input on what actions should be taken to

control the target program’s execution or to reveal infor-
mation about it. For the purposes of the HPD Standard,

this input is via a command-language (non-graphical)
interface. The specifics of the command language are

given in the formal standards document; here we dis-
cuss the general command model.

When a debugger command is executed, one or more

of the following occurs:

– A change takes place in the current state of the

target program.
– A change takes place in the information that the

debugger maintains about the target program.
– Information about the target program or the de-

bugging session is displayed to the user.

A prompt is issued when the command has com-
pleted and the debugger is ready to accept another one.

The command model is sequential in the sense that
only one command is being processed at any given

time. For instance, if the user issues a command to

J.M. Francioni and C.M. Pancake / A debugging standard for high-performance computing 99

print out an array, the debugger does not prompt again
until all elements of the array have been displayed.
The standard does not define any kind of “background
command execution” capability analogous to the use
of an ampersand within a UNIX shell. (It is, of course,
fine if a particular debugger implementation adds this
feature.)

Because the command model is sequential, it is im-
portant that the description of each command in the
standard defines explicitly when that command is con-
sidered “complete”. For some commands, this is ob-
vious; e.g., the command to print an array is complete
when all the values have been displayed. For others,
such as the command to step the execution of each
process through its “next” statement, the moment of
completion is not as intuitively obvious. One process
might execute a receive operation which forces it to
pause until the message arrives from some other pro-
cess; does this mean that the step can’t complete? Still
other commands, like the setting of a breakpoint, may
cause deferred actions (stopping at the breakpoint) to
occur later in execution, but the command “completes”
much earlier (once the breakpoint has been registered
by the debugger).

The sequential nature of commands applies to de-
bugger processing of the commands, not to the rela-
tionship of debugger execution with program execu-
tion. The standard’s command model does not require
that the target program be stopped when the debugger
prompts for and performs commands. It dictates only
that one command be complete before another can be
issued. Some processes may continue to execute while
the debugger is performing commands. On the other
hand, some commands cannot be performed by the de-
bugger if the target program is still active. For example,
it may not be possible to print the values of an array
if one or more processes is still executing (and hence,
might change those values). Therefore, each command
description explicitly states when the command can be
issued and what type of error ensues if the command is
attempted at other times.

Debugger Output. A debugger typically issues a
variety of messages in response to user input. Some of
these confirm that an operation completed successfully
or indicate that a problem occurred. Others provide
in-depth detail about what the debugger or the target
program is doing. The HPD Standard specifies what
output is required for each particular command and also
defines a general mechanism for controlling the amount
of warning and diagnostic messages.

Debuggers differ from other interactive tools in that
some output may appear on the screen, not at the time

a command is issued but at some later time. This is the

case for commands related to actionpoints, i.e., those

points where the flow of program execution suspends

under user request. For example, a debugger typically

generates no immediate output when a breakpoint is

set, but instead prints an informational message each

time a process or thread arrives at the breakpoint.

2.2. Effects of parallelism on debugger behavior

Execution control of a target program is relatively

simple in a serial debugging environment, since the

program is always either stopped or running. When it

is running and its operations cause some event to occur

(e.g., arriving at a breakpoint), this is said to trigger

the event and the debugger stops the program. The

user can later continue program execution, effectively

undoing the effect of triggering the breakpoint. Parallel

program execution is more complex, however, as each

thread has an individual execution state. When a thread

triggers a breakpoint, the question arises as to what, if

anything, should be done about the other threads and

processes.

In this section we discuss how thread sets make it

possible for the user to determine which threads are

affected by debugger comments. This provides a basis

for describing how parallel execution can be managed.

We define actionpoints as a means for causing program

execution to stop, then present the stopping and starting

mechanisms adopted for the HPD Standard and discuss

how these are used to control program execution.

Thread sets. The concept of thread sets provides

the foundation for extending the semantics of serial de-

bugger operations to a form suitable for parallel pro-

grams. This concept allows a debugger command to be

applied to a whole collection of processes or threads,

rather than to just one at a time. Process sets are the

standard practice of existing parallel debuggers that ac-

commodate multiple processes (cf. Cdbx [3], code-

view [19], CXdb [1], HP/DDE [7], ipd [11], Lade-

bug [4], MPPE [12], ndb [18], P2D2 [9], pdbx [10],

Prism [22], TotalView [5]).

The HPD Standard extends this notion to multi-

threaded programs as well. It defines a thread set to be

a set of threads drawn from all threads in all processes

of the target program. Unlike a serial debugger, where

each command clearly applies to the single thread of

execution control, parallel debuggers can have poten-

tially many distinct threads of control and potentially

many different locations corresponding to a program

symbol (e.g., a variable). The concept of a target thread

100 J.M. Francioni and C.M. Pancake / A debugging standard for high-performance computing

set is thus used to restrict a debugger command so that

it applies to one, many, or all threads of control.

Commands must always apply to some thread(s),

referred to as the target set for the command. While

it is possible for the user to explicitly type the target

set as part of each command, the debugger maintains

an implicit target set, referred to as the current set.

When the debugger initiates, the current set includes

all threads in the target program, but the user is free

to change this at any time. (Additional information on

thread sets is provided in Section 2.3.)

Actionpoints. By setting up actionpoints, the user

requests in advance that target program execution stop

under certain conditions. Three types of actionpoints

are supported in the standard. Each allows the user to

indicate that execution should continue until some spe-

cific type of program event occurs. A breakpoint spec-

ifies that the execution of a process should stop when-

ever it reaches a given location relative to the source

code. A watchpoint provides analogous control on the

basis of data storage, stopping whenever the value of a

variable is updated. A barrier, as its name suggests, ef-

fectively prevents processes from proceeding forward

beyond a certain point in the source code until other

processes have also arrived, providing a mechanism for

synchronizing the activities of processes. (Barriers can

only be applied to entire processes, not to individual

threads.)

Each actionpoint is associated with a trigger set,

or set of threads for which the actionpoint has been

defined. There is also a stop set that establishes which

threads should be halted as a result of the actionpoint.

When any member of the trigger set causes the program

event to trigger, the debugger intervenes, issues some

type of message to indicate that the event has occurred,

and stops all members of the stop set as well as the

triggering thread. The user can then examine the value

of program and debugging variables, and make changes

accordingly.

Thread State. As it executes, the target program goes

through a series of states. We can think of execution

control as a way for the user to request that the debug-

ger allow the target program to advance, stopping at

some future program state. Although the term “stop”

is intuitive, what we really mean is “pause execution

and allow the user to examine the state of the program

before continuing”.

In fact, at any point the target program can be said

to have a composite state, reflecting the states of all

the individual threads involved in its execution. Each

thread that is actively executing the target program

is, at any given time, in one of three possible exe-

cution states: running, stopped/runnable, or

stopped/held.

The running state is defined from the perspective

of the debugger. That is, an execution command such

as go has been issued, the debugger has passed the

appropriate request to the underlying run-time system,

and no subsequent program event has triggered. From

the debugger’s point of view, such a thread is “run-

ning”, and debugger commands that attempt to exam-

ine or change that thread’s program information, will

not be possible. (From the perspective of the under-

lying run-time environment, such a thread may make

many transitions between being ready to run and actu-

ally running, but typically these lower-level transitions

are invisible to the debugger and the debugger user.)

A thread enters the stopped/runnable state un-

der several circumstances:

– when the executable is first loaded or the debugger

first attaches to an existing process

– when the user explicitly asks the debugger to stop

the thread

– when the thread’s execution triggers a program

event

– when some other thread’s execution triggers a pro-

gram event that affects this thread

Once the thread has stopped, debugger commands

to examine or change the state of the thread become

available. In addition, the thread becomes eligible as

a target for any command which causes it to resume

execution. (With debuggers that do not choose to im-

plement the extensions for controlling threads individ-

ually, all threads within a given process will be stopped

when any one of them triggers an event, and all will

be returned to the running state when execution is

resumed.)

The stopped/held state is similar to the stop-

ped/runnable state, except that a thread in this state

will not respond to resume commands. A thread enters

this state as a result of triggering a barrier. The thread’s

state must first be changed to stopped/runnable

– which happens when the barrier has been satisfied

or by explicit user command – before it is eligible for

resuming. Only a few debugger commands for exam-

ining and changing state are available when a thread is

in the stopped/held state.

Advancing Program Execution. The advantage of

interactive debuggers is that they allow the programmer

to exert control over the execution of the target program.

That is, rather than simply launching the program to

J.M. Francioni and C.M. Pancake / A debugging standard for high-performance computing 101

run until it terminates (or pauses for input), the user
can choose to step execution through one statement at a
time, run the program until he/she decides to stop it, or
allow it to run freely until some actionpoint is reached.

For most serial debuggers, the program can be
stopped between the execution of any two consecutive
statements. The situation is not so simple for parallel
debuggers, which have to manage the execution of mul-
tiple threads. The stopping model employed by parallel
debuggers that support multithreaded target programs
(e.g. [20,21]) is referred to as the “stop-the-world”
model. In this model, the debugger automatically stops
all threads of execution whenever any thread triggers
an actionpoint. This has the advantage of providing a
target program that is quiescent while the user exam-
ines program state. However, it has the disadvantage
of seriously disrupting program execution.

An alternative stopping model is to simply leave
other threads of execution unaffected when one (or
more) triggers an actionpoint. This is the model
adopted by most multiprocess parallel debuggers
(e.g. [1,10,11,18]). For example, in a client-server ap-
plication, it is more natural when a client triggers a
breakpoint that the server not be stopped as well.

The HPD Standard adopts a dual stopping model:
stop-the-world for threads and leave-others-alone for
processes. That is, any processes that have not trig-
gered an actionpoint will be unaffected, but all threads
in each process that have done so will be stopped to-
gether. This approach provides a common denomina-
tor that can be implemented on all HPC systems. The
alternative – to stop only the individual threads that
triggered an actionpoint – is specified as an extension to
the standard; syntax and semantics are defined for any
implementations that wish to implement the extension.
Figure 2 summarizes this concept.

Parallel debuggers must also define a starting model.
This applies to the so-called resume commands, those
which re-start execution after one or more threads have
stopped. The issue here is how many threads to re-start
– all of them which were stopped, or just those selected
by the user. In HPD Version 1, the default starting
model is the mirror image of the stopping model, so that
a resume command un-does the effect of triggering an
actionpoint. The ability to start just individual threads
within a process is defined as an extension. This starting
model is depicted in Fig. 3.

2.3. Other features of the HPD standard

The notion of symbols from traditional serial debug-
ging has also been extended to accommodate features

unique to parallel programs. This section describes

the special features that an HPD-conformant debugger

uses to manage the complex namespace associated with

parallel execution.

Named Thread Sets. As discussed in the last section,

thread sets constitute the primary mechanism for con-

trolling which elements of the executing program are

affected by each debugger command. Because of their

importance, the HPD Standard includes mechanisms

for associating logical names with these sets. That is,

in addition to relying on the default set or overriding

it with an explicit specification on the command line,

the user can refer to symbolic names associated with

particular sets of threads. The user can use one of these

names to refer to the group, rather than having to type

a list of the processes/threads belonging to it.

Six debugger-defined sets are created and maintained

automatically by the debugger:

– all: the set of all threads associated with the

target program

– running: all currently executing threads (i.e., in

the running state)

– stopped: all threads that are not currently

running (i.e., in the stopped/runnable or

stopped/held states)

– runnable: all threads capable of running (i.e.,

in the stopped/runnable state)

– held: all threads that cannot run until some se-

ries of events occurs (i.e., in the stopped/held

state)

– exec(executable): all threads associated

with a particular executable

Membership in a debugger-defined set changes over

the course of the program. That is, the members to

which one of these set names refers will depend on

when the command is issued.

In addition, the user is free to create any number of

user-defined sets, reflecting the logical organization of

the program. For example, sets might be established

for client versus server processes, a master thread and

a collection of worker threads, or just those processes

computing the values of boundary elements in an ar-

ray. The set names can then be used in any commands

and can be used in combination with debugger-defined

sets. For example, a command could refer to just those

processes in the set named FirstTen that are currently

stopped.

Consider the situation where a user defines the set

Boundaries to include the processes responsible for

calculations of ghost array elements, corresponding to

102 J.M. Francioni and C.M. Pancake / A debugging standard for high-performance computing

Stop all threads of

processes that trigger

Stop only the threads

that trigger

Stop all threads

in all processes

HPD standard Not included Optional extension

Stopping Model

Fig. 2. Execution control stopping model.

Start all threads of

processes in current set

Start only the threads

in current set

Start all threads

in all processes

Not included HPD standard Optional extension

Starting Model

Fig. 3. Execution control starting model.

processes [8–10,19,21,22]. (Note that these are logical
numbers assigned by the debugger; the operating sys-

tem and the parallel runtime system may assign other
numbers to the process/thread. The appropriate map-

pings may be retrieved via other debugger commands.)

If Boundaries is then assigned as the current set,
subsequent commands would apply to just those pro-

cesses. This mechanism can also be used in combina-
tion with debugger-defined sets. To continue the ex-

ample, if the user then asked to see a list of stopped
processes, the list would show just those processes in

Boundaries that are currently stopped.
The membership of any named set (debugger- or

user-defined) is determined at the time it is evaluated

for use in a particular operation. There are two distinct
times when evaluation can take place: the point of

definition and the point of use. The first occurs when
the name of the set is first defined, while the point

of use occurs whenever the set name is referenced or
when the debugger applies some membership test (e.g.,

to determine which thread modified the value being
monitored by a watchpoint).

Consider the example of Boundaries. At the

point of definition, the set would include any of the
boundary processes that happen to exist at that time,

say [8–10,19]. By the time Boundaries is actually
used on a debugger command, however, some of those

processes may no longer exist and new ones may have
come into existence. Suppose [8,19] have terminated

while processes [20,21] have been created by the time
the point of use occurs. In that case, Boundaries

would refer to the set [9,10,20,21] at the point of use.

Given the potential variation in membership of a
named set, it must be possible to distinguish between

the two points of evaluation. Dynamic sets are evalu-

ated at the point of use, while static sets are evaluated
at the point of definition. Because dynamic sets will

be the most common, all named sets are dynamic by
default. There is a special syntax for indicating that set

membership should be evaluated statically.

Machine State, Program State, and Debugger State.

A central concept of debugging is that program exe-

cution causes a series of orderly transitions from one
state to another. In parallel debugging, these states are

actually collections of state information about all pro-
cesses and threads in the parallel program. State can

be reported in terms of the machine-level operations
that actually execute the program, the higher-level op-

erations that the programmer specified in writing the

source code, or the additional information maintained
by the debugger in order to control program execution.

Machine state is expressed in machine-level terms
such as addresses and registers, and includes the follow-

ing for each process: process memory; each thread’s
register set; each thread’s stack content; and each

thread’s execution state (running, stopped/runnable, or
stopped/held). A debugger has the ability to examine

machine state, make modifications to it (e.g., changing

the contents of a memory location or register), and infer
relationships.

Rather than assisting the user in accessing machine
state directly, HPD-conforming debuggers provide a

higher level interface to the machine via program state.
Program state is an interpretation of machine state in

terms of the high-level language of the source code.
Specifically, code addresses are related back to source

program statements, data addresses are related back

to source program variables, and the contents of stack
addresses are expressed in terms of a call stacks, re-

flecting the source program’s invocation of functions

J.M. Francioni and C.M. Pancake / A debugging standard for high-performance computing 103

and subroutines. Note that there will be a separate call
stack for each process or thread that is executing the
program.

While program state describes the actual state of the
executing target program, debugger state refers to the
information that the debugger maintains in order to in-
terpret and respond to user commands. The informa-
tion in debugger state is defined by the user directly
(e.g., defining aliases), modified as a result of a more
general command (e.g., setting a breakpoint), modified
as a result of a program event (e.g., triggering a break-
point), or determined by examining program state (e.g.,
evaluating the current state of a thread).

The HPD Standard provides commands for examin-
ing many features of program and debugger state. It
does not allow the user to interact with the target pro-
gram at the level of machine state (so-called instruction-
level debugging).

Managing Symbols and Expressions. Many com-
mands refer to one or more program objects by using
symbol names as arguments. In addition, some com-
mands take expressions as arguments, where the ex-
pression may contain symbol names representing pro-
gram variables. Thus, the rules for forming and in-
terpreting symbol names affect much of a debugger’s
functionality. The debugger learns about a program’s
symbols and their relationships by reading the debug-
ging information that was generated during program
compilation. The information includes a mapping from
symbol names to descriptions of objects and, for each
symbol, details about what kind of symbol it is (e.g.,
a function), where it is located in memory once the
executable has been loaded, and other associated fea-
tures (e.g., number and data types of any function ar-
guments).

Two distinct concepts are relevant in discussing the
interpretation of symbol names: context and scope.
Context is dynamic and implies where the program’s
point of execution is currently located. In serial debug-
ging, this can be specified by naming a line-number
from the source code and the contents of the call stack
corresponding to the single thread of execution. Since
an HPD debugger must keep track of potentially very
many threads, its execution context is a 4-tuple with
the components: {process, thread, frame, active-line}.
Each thread has its own execution context, which may
or may not be the same as that of other threads. The
process and thread components uniquely identify the
thread. The frame and line components indicate where
the location is with respect to the thread’s call stack.

With respect to symbols, scope refers to a region of
a program’s source code that has a specific set of sym-

bols associated with it. Thus, while context reflects

program dynamics, scope is a static concept. When-

ever a thread’s execution context lies in a given scope,

the associated symbols may legitimately be referenced.

Every piece of debuggable code has a single such scope

associated with it.

The algorithm for symbol lookup is language depen-

dent. For most languages with which we are concerned,

however, the general process is similar. The current

symbol’s execution context determines a target scope,

whose associated symbols are searched for a matching

name. If the name is not found, the symbols for the

scope that contains the target scope are searched; this

occurs recursively, so the symbols for the containing

scopes are searched outwardly, in order of the scopes’

nesting. Symbols for any scope that does not con-

tain the original scope are not searched; these symbols

are out of scope (i.e., cannot be matched). Additional

language-independent rules often apply. For instance,

if lookup is performed on behalf of a breakpoint com-

mand, only a symbol corresponding to a procedure will

be matched; for a watchpoint, only one representing a

variable; and so forth.

Symbol names are used in expressions, which are

an important part of the data display and manipulation

functions of the debugger. In effect, expressions iden-

tify the data to be processed. In debuggers, expressions

appear in two contexts: expressions that are evaluated

to yield a result value (e.g., arguments to print),

and expressions representing memory locations to be

changed. Some languages allow very complex expres-

sions in one or both contexts. For example, Fortran 90

is famous for its array sub-language. Although HPDF

encourages implementors to provide support for the

largest possible sub-language, it does not require all

implementors to do so. Only a subset of expressions

and operators are required by the standard.

Note that when multiple threads execute the same

portion of source code, a single scope can be reflected

in dozens (or hundreds) of execution contexts. Thus,

when a user asks the debugger to display or change the

current value of a symbol, the question arises of which

one(s) of potentially many values is desired. This is

another case where the thread set is used to manage

debugger processes; the command is interpreted as re-

ferring to just those instances of the symbol that cor-

respond to threads in the current set (or the explicitly

specified set).

Managing Command Output from Multiple Threads.

Another area where the HPD Standard had to extend

serial debugging mechanisms was the display of out-

104 J.M. Francioni and C.M. Pancake / A debugging standard for high-performance computing

put. If the target thread set for a command includes

very many members, there could be a potentially large

amount of output,much of which may be repetitive. For

example, consider the command to display the values

of an 100-member array. If multiple threads each have

their own copies of the array, the user could quickly be

inundated by the output.

The HPD Standard introduces the concept of output

aggregation to reduce output volume and repetition.

As a convenience to the user, when the output across

multiple processes and/or threads is identical, the de-

bugger “collapses” it, displaying just a single copy of

the values. Suppose, for example, that a user wishes

to display the contents of the 100-member array, which

has just been initialized and copied to all threads. Even

a small number of threads would result in a lengthy

listing that would make it difficult to detect whether all

arrays do or do not have the same contents. Aggregated

output provides a means of summarizing the contents

of all threads which have the same values. If the array

is the same on all threads, only one copy is displayed.

If one thread has different values, these are displayed

separately.

3. Analysis of the standard

Version 1 of the HPD Standard was designed to meet

the specific goals described in Section 1. As such, it

specifies a command language that can be used to debug

parallel programs. The language provides a core set

of commands in the sense that a user can accomplish

the basic functions necessary for parallel debugging

using only these commands. In particular, it meets the

Baseline Development Environment requirements for

debuggers defined by two national HPC task forces [14,

15].

On the other hand, the standard is not exhaustive by

any means. A number of commands that users have

identified as desirable are not yet included in the stan-

dard, primarily due to the time and scope constraints

established by the Forum. Indeed, it is expected that

HPD-conforming debuggers will also include features

that are not covered by the standard.

In this age of graphical user interfaces (GUIs), it may

seem odd and even futile to have spent so much energy

defining a command-line interface. Surely debugger

implementors can and must deliver attractive, GUI-

based debuggers to be competitive. Nevertheless, the

choice to restrict the first standard to a command-line

interface was important for four major reasons.

1. Surveyed users were clear that a textual interface

is important, for dial-in access to remote systems,

for supporting “scripts” of frequently-used com-

mand sequences, and for some, because of per-

sonal preference in terms of interface style.

2. The standards group was able to focus on the basic
functionality of debugger operations, rather than

on the presentation of the commands, streamlin-

ing the process of standards definition.

3. A standard command interface will provide a ba-

sic infrastructure on which tool developers can

layer machine-independent interfaces, including

GUIs – something which has not been possible to
date.

4. The fact that company-specific GUI guidelines

need not be adhered to made it possible to reach

consensus sooner.

Thus, defining the functionality and terminology of a
core set of commands not only yields something that is

useful in its own right, but establishes a solid foundation

for subsequent efforts to define standard GUI elements

for debuggers and related tools.

3.1. Conformance to the standard

HPDF determined that a debugger will conform to
the standard if it implements all commands required

by the standards document [8], preserving the speci-

fied syntax and semantics. In a few cases, the require-

ments vary according to whether the debugger supports

threads-only, processes-only, or multilevel target pro-

grams. While such variations are permitted, each de-
bugger implementation is expected to conform to ex-

actly one of the three models.

That does not mean that all HPD-conformant debug-

gers will be identical. It is expected that individual

implementations will provide additional functionality

and commands. Conformance will hold, however, as

long as such additions do not conflict with the HPD
definitions.

A significant amount of the group’s time was spent

exploring issues of implementability. Compiler and op-

erating system support for debugging vary widely from

one parallel computing platform to another. Therefore,

it may be that a particular implementation is unable to
support some features in a standard-conforming way.

It is expected that a document will be provided indicat-

ing where and how the implementation varies from the

standard.

In addition to specifying requirements, the HPD

Standard presents a number of recommendations about

J.M. Francioni and C.M. Pancake / A debugging standard for high-performance computing 105

how features might be implemented most effectively.

Consider the example of output from the command to

print the current value of a scalar. The standard re-

quires that if the values are identical for consecutively

numbered threads or processes, the lines must be ag-

gregated for easier viewing. The recommendation is

that a more sophisticated algorithm be used, so that if

the values from threads 0–5 and 7–10 are identical, but

thread 6 differs, only two lines of output will be gen-

erated (rather than three, which would conform to the

standard).

In addition, a number of extensions provide prelim-

inary information about anticipated future versions of

the standards or features that are considered important

by users but cannot be required at this point. For exam-

ple, a high priority among users is the ability to store a

checkpoint file at some intermediate point during pro-

gram execution, and then later on load the file into the

debugger and continue execution from that point. This

could not be incorporated into the standard because the

ability to store and/or restart checkpoint files is depen-

dent on operating system support that is not available

on most current machines. The extension to the HPD

standard specifies what the syntax should look like if

such a feature can be implemented, however. Exten-

sions are based on the group’s discussions about partic-

ular debugger operations and reflect the direction future

standards are likely to take. Thus, they are meant to

give guidance to developers who are currently working

on such functions.

3.2. Process used to develop the standard

The process used to develop the HPD Standard, Ver-

sion 1 was successful in producing a standard within

the time frame established as a goal. Looking back

on the process reveals that there were five factors in

particular contributing to this success as follows:

– timing

– participation of key players

– limited duration of effort

– limited scope of effort

– structure of the Forum

The timing of the effort was close to ideal. At the

start of the Forum, most of the HPC vendors were en-

gaged in the early development phases of new or re-

vised debuggers for their systems. They were inter-

ested in settling on the key issues in a timely fashion.

Furthermore, the participants were already dealing with

the relevant issues, so that the standards effort was not

completely orthogonal to their work responsibilities.

They also were able to consider the issues being dis-

cussed with an awareness of how things should work in

their own debuggers without being entirely constrained

by how things were already implemented.

Another facet of the timing factor was that the need

for a standard was already agreed upon by the HPC

community. Moreover, the members of the Forum col-

lectively had enough experience with other, previous

standards efforts to know what perils to watch out for

and how much compromise would actually be neces-

sary. Thus, the group began this effort with a solid

agreement to make it happen and a good understanding

of what was necessary to do this.

The Forum had the participation of key players from

industry, debugger research, and the HPC user commu-

nity, with a relatively constant group of people present

at all meetings. These two factors greatly contributed

to the success of the standard’s effort. Table 1 lists

the HPC companies which participated in the Forum.

The debugging research community was represented

by members from both academia and federal research

labs. The user community participated in two ways: in-

dividuals who attended the regular meetings (including

representation from the EuroTools group), plus mem-

bers of the larger Ptools community who provided for-

mal feedback on the decisions being made. There was

also a significant amount of input from the general

HPC community, which was facilitated by making de-

tailed minutes of every meeting, email archives from

the working groups, and all working documents for the

standard available on the Web in a timely fashion.

The Forum had the benefit of reviewing previous

standards groups dealing with HPC issues. Their ex-

periences made it clear that the duration of the effort

needed to be relatively short. It was decided early on

that the target time-line was one year to develop the

first phase of the standard and one year for implemen-

tation of that standard. By clarifying this up front, the

group as a whole knew that discussions could only go

on so long before decisions needed to be made. In

addition, industry representatives knew that resolution

of the issues would happen within a finite time so that

they could plan their development work accordingly.

In order to keep to the time-line of one year for

definition plus one for implementation, the Forum was

forced to limit the scope of the project to a manageable

load. For example, even though we knew that users

wanted checkpoint capabilities, it turned out to be too

complicated an issue to work out all the specifics in the

time we had and it was also determined to be infeasible

106 J.M. Francioni and C.M. Pancake / A debugging standard for high-performance computing

Table 1

Industry participants in HPDF

Company Product

Cygnus Solutions software (gdb debugger)

Dolphin Interconnect Solutions, Inc. (now Etnus, Inc.) software (Totalview debugger)

Digital Equipment Corporation (now Compaq) hardware and software

Hewlett-Packard/Convex Division hardware and software

Hewlett-Packard hardware and software

IBM hardware and software
Numerex software (debugger not yet released)

The Portland Group software

Sequent Computer Systems hardware and software

SGI/Cray Research hardware and software

Sun Microsystems hardware and software

Tera Computer Company hardware and software

for most of the companies to implement in the near

future. Therefore, it was left as an extension to HPD

Version 1, rather than a requirement. Such decisions

had to be made frequently throughout the year and there

were definitely times when it was hard to contain the

scope of the project. On the whole, however, the group

was able stick with the time-line and let things go when

necessary in order to move forward.

The structure of the Forum consisted of three co-

chairs, a number of working groups, and the group as

a whole. The entire group met five times throughout

the year for formal two- and three-day meetings. The

co-chairs were responsible for organizing these meet-

ings, directing the discussions during the meetings, and

posting the minutes of the meetings on the Web. The

working groups met at the formal meetings but also

worked via electronic discussion. In addition, the larger

group did a significant amount of work between meet-

ings in order to work out details and draft the standard

document in an appropriate way. Pancake served as

librarian for the Standard document. Clearly, the target

time-line could not have been met without a high level

of work outside of the meetings.

3.3. Moving forward with the standard

Three companies, whose debuggers account for a

significant majority of current usage, have stated infor-

mally that they intend to implement the standard. At the

Parallel Tools Consortium Annual Meetings which took

place in April 1999 and May 2000, Etnus (formerly

Dolphin Interconnect Solutions) and Cygnus both in-

dicated that they anticipated availability of debuggers

implementing at least part of the standard within the

near future. In addition, two university research groups

that are producing Java debuggers have indicated that

they will base the interface on the HPD standard.

The University of Tennessee, Oregon State Univer-

sity, and NASA Ames Research Center collaborated to

develop a reference implementation in order ot demon-
strate feasibility and uncover any development prob-

lems associated with the standard. They were success-

ful in developing a front end to parse command in-
put and pass it to a back-end based on the p2d2 dis-

tributed debugger that was developed a few years ago

at NASA/Ames. Due to funding limitations, however,
only some of the HPD functionality was actually im-

plemented and tested.

Since the standards group met, several debugger de-
velopment efforts at specific companies have been dis-

continued. This appears to have been due to a con-

junction of two factors: decrease in funding levels for
parallel tools at HPC hardware companies, and increas-

ing reliance on the availability of debuggers furnished

by third-party software companies. Two companies
have indicated informally that if they do fund debug-

ger efforts in the future, they intend to implement the

standard.
Finally, the companies involved in HPDF plus three

non-U.S. companies (NEC, Fujitsu, and Pallas) partic-

ipated in a 1998–99 task force to establish guidelines
for specifying software requirements on procurements

of HPC machines [14]. This effort involved representa-

tives from a variety of user sites, charged with identify-
ing key software that should be available in a consistent

way across individual vendor platforms. The result-
ing guidelines, which represent consensus of the users

and vendor representatives, included an HPD confor-

mant debugger as a key requirement. There is evidence
that HPD debugger is already being included on new

software purchase requests.

The implementation process is obviously critical in
determining the suitability and efficacy of any stan-

dard. Etnus is the first company to release an HPD-

conforming debugger (the product was announced in

J.M. Francioni and C.M. Pancake / A debugging standard for high-performance computing 107

Spring of 2000). Indeed, their progress on implemen-

tation efforts has suggested a number of refinements
and clarifications to the standard. These are currently
under discussion and should be submitted for formal
HPDF approval by early 2001. It is hoped that the

initial implementation of a Java debugger conforming
to the HPD command-line interface will be available
from one of the university efforts shortly thereafter.

Finally, while the availability of a standard command-

level debugging interface is clearly an improvement, it
is not the only support needed for debugging HPC ap-
plications. The Forum plans to initiate a second phase

of development, which will extend efforts into one of
the areas that had to be ignored to to the factors out-
lined in the introduction. Among the possible topics to
be addressed by version 2.0 of the HPD standard, the

following are certain to be central:

1. graphical displays of array data
2. specific features to support debugging of message-

passing programs, and
3. at least some level of standardization for GUI

implementations

The High Performance Debugging Forum has
demonstrated that it is possible for tool users and de-
velopers to collaborate successfully. The participation

of both groups was central in arriving at a definition
of the software support needed for debugging HPC ap-
plications. Further, the fact that so many companies
participated was important in establishing models that

would be feasible across a broad variety of platforms.
While the group was not able to arrive at a “silver bul-
let” solution for all problems associated with parallel
debugging, it was highly successful in circumscribing

a scope that both addressed critical needs and could be
dealt with in a timely fashion. The real outcome, of
course, will not be proven until multiple vendor prod-

ucts using the standard have been put into production
use.

Acknowledgements

Special acknowledgement must be made to the
Working Group leaders, who probably ended up do-
ing much more work than they originally anticipated!
These included Richard Title (HP), Charles Koelbel

(Rice University), Gail Alverson (Tera), Robert Hood
(NASA Ames Research Center), Janis Johnson (Se-
quent), and Shirley Browne (University of Tennessee).

The Parallel Tools Consortium formally sponsored

the program, providing its Web site and access to its

user community. Sessions of its annual meetings in

1997 and 1998 were devoted to HPDF progress, and the

Steering Committee assisted in identifying appropriate

members from the industry and research sectors.

The HPC Modernization Program of the US Depart-

ment of Defense helped defray the costs of meetings

and of maintaining the shared Web services. This was

made possible through an agreement with Northrup

Grumman Corporation, on behalf of the NAVO Major

Shared Resource Center, to Oregon State University.

Meeting planning and coordination services were pro-

vided by Oregon State, with assistance from various

members of the Forum.

Appendix. Commands required by HPD Version 1

– General Debugger Interface

∗ alias – Create or view user-defined com-

mand(s)

∗ unalias – Remove previously defined com-

mand

∗ history – Reference the session command

history

∗ set – Change or view the value(s) of a debugger

state variable(s)

∗ unset – Restore default setting for a debugger

state variable(s)

∗ log – Start or stop the logging of debugger

input/output

∗ input – Read and execute commands stored in

a file

∗ info – Display debugger environment infor-

mation

∗ help – Display help information

– Process/Thread Sets

∗ focus – Change the current process/thread set

∗ defset – Assign a set name to a group of

processes/threads

∗ undefset – Undefine a previously defined

process/thread set

∗ viewset – List the members of a pro-

cess/thread set

∗ whichsets – List all sets to which a pro-

cess/thread belongs

– Debugger Initialization/Termination

∗ load – Load debugging information about tar-

get program and prepare for execution

108 J.M. Francioni and C.M. Pancake / A debugging standard for high-performance computing

∗ run – Start or re-start execution of target pro-

cess(es)

∗ attach – Bring currently executing pro-

cess(es) under control of the debugger

∗ detach – Detach debugger from target pro-

cess(es), leaving target process(es) executing

∗ kill – Terminate execution of target pro-

cess(es)

∗ core – Load core-file image of process(es) for

examination

∗ status – Show current status of processes and

threads

∗ quit – Terminate the debugging session

– Program Information

∗ list – Display source code lines

∗ where – Display the current execution location

and call stack

∗ up – Move up one or more levels in the call

stack

∗ down – Move down one or more levels in the

call stack

– Data Display and Manipulation

∗ print – Evaluate and display the value of a

program variable or expression

∗ assign – Change the value of a scalar program

variable

– Execution Control

∗ go – Resume execution of target process(es)

∗ step – Execute statement(s) by a specific pro-

cess/thread

∗ halt – Suspend execution of target process(es)

∗ wait – Block command input until target pro-

cess(es) stop

– Actionpoints

∗ break – Define a breakpoint

∗ barrier – Define a barrier point

∗ watch – Define an unconditional watchpoint

∗ actions – Display a list of actionpoints

References

[1] Convex Computer Corporation, Convex CXdb User’s Guide,

Second Edition, October 1993, DSW-473.

[2] R.H. Crawford, R.A. Olsson, W.W. Ho and C.E. Wee, Seman-

tic Issues in the Design of Languages for Debugging, Com-

puter Languages 21(1) (April 1995), pp. 17–37.

[3] Cray Research, Inc., UNICOS Symbolic Debugger Reference

Manual, June 1991, SR-2091 6.1.

[4] Digital Equipment Corporation, Ladebug Debugger Manual,

Version 4.0, March 1996, AA-11 yPZ7EE-TE.
[5] Dolphin Interconnect Solutions, Inc. (now Etnus, Inc.), To-

talView Multiprocess Debugger User’s Guide, Version 3.7.7,

September 1997.

[6] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek

and V. Sunderam, PVM3 User’s Guide and Reference Manual,

Oak Ridge National Laboratory, Oak Ridge, TN, September

1994, ORNL/TM-12187.

[7] Hewlett Packard Company, HP/DDE Debugger User’s Guide,

First Edition, July 1996, B3476-90015.

[8] High Performance Debugging Forum, HPD Version 1 Stan-

dard: Command Interface for Parallel Debuggers, C. Pancake

and J. Francioni, eds, Technical Report CSTR-97, Dept. of

Computer Science, Oregon State University, 1997. Also avail-

able online at http://www.ptools.org/hpdf/draft.

[9] R. Hood, The P2D2 Project: Building a Portable Distributed

Debugger, in: Proceedings of the SIGMETRICS Symposium

on Parallel and Distributed Tools, Philadelphia, May 1996.

[10] IBM Corporation, IBM AIX Parallel Parallel Environment:

Programming Primer, Release 2.0, June 1994, SH26-7223.

[11] Intel Corporation, Paragon Interactive Parallel Debugger Ref-

erence Manual, October 1993, 312547-002.

[12] MasPar Inc., MasPar Programming Environment (MPPE)

User Guide, Version 2.1, July 1991, 9305-0000.

[13] Message Passing Interface Forum, MPI: A Message Passing
Interface Standard, International Journal of Supercomputing

Applications 8(3/4), 1994.

[14] C.M. Pancake and C. McDonald, eds., Task Force on Re-

quirements for HPC Software and Tools: Guidelines for Spec-

ifying HPC Software, Technical Report 99-80-01, Dept. of

Computer Science, Oregon State University, March 1999.

Also available online at http://www.nacse.org/distribution/
HPCreqts/report.

[15] C.M. Pancake, Establishing Standards for HPC System

Software and Tools, NHSE Review 2(1) (Nov. 1997). On-

line journal available at http://nhse.cs.rice.edu/NHSEreview/

97-1.html.

[16] C.M. Pancake, Collaborative Efforts to Develop User-Oriented

Parallel Tools, in: Debugging & Performance Tuning for Par-

allel Computing Systems, M. Simmons and D. Reed, IEEE
Computer Society Press, 1996, pp. 355–366.

[17] C.M. Pancake, Software Support for Parallel Computing:

Where Are We Headed? Communications of the ACM 34(11)

(1991), 52–64.

[18] Parasoft Corporation, nCUBE 2 Programmer’s Guide,

Rev. 2.0, December 1990, pp. 102294.

[19] Silicon Graphics, Inc., CASEVision/Workshop User’s Guide,

(Vols I and II), April 1992, 007-1523-020 and 007-1524-020.
[20] R. Stallman and Cygnus Support, Debugging with GDB,

Cygnus Solutions, Inc., 1994.

[21] SunSoft, Inc., Solaris Application Developer’s Guide, 1997,

ISBN 0-13-205097-8.

[22] Thinking Machines Corporation, Prism User’s Guide, Ver-

sion 1.2, March 1993.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

