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Abstract

Genome-wide association studies (GWAS) were successful
to identify genetic factors robustly associated with lung can-
cer. This review aims to synthesize the literature in this field
and accelerate the translation of GWAS discoveries into
results that are closer to clinical applications. A chronologic
presentation of published GWAS on lung cancer susceptibil-
ity, survival, and response to treatment is presented. The most
important results are tabulated to provide a concise overview
in one read. GWAS have reported 45 lung cancer suscepti-
bility loci with varying strength of evidence and highlighted
suspected causal genes at each locus. Some genetic risk loci
have been refined to more homogeneous subgroups of lung
cancer patients in terms of histologic subtypes, smoking

status, gender, and ethnicity. Overall, these discoveries are
an important step for future development of new therapeutic
targets and biomarkers to personalize and improve the qual-
ity of care for patients. GWAS results are on the edge of
offering new tools for targeted screening in high-risk indivi-
duals, but more research is needed if GWAS are to pay off the
investment. Complementary genomic datasets and func-
tional studies are needed to refine the underlying molecular
mechanisms of lung cancer preliminarily revealed by GWAS
and reach results that are medically actionable. Cancer Epidemiol
Biomarkers Prev; 27(4); 363–79. �2017 AACR.

See all articles in this CEBP Focus section, "Genome-Wide
Association Studies in Cancer."

Introduction
Lung cancer is the leading cause of cancer-related deaths

worldwide in both men and women (1, 2). Our molecular
understanding of this disease is in progress. Although it has
long been recognized that lung cancer runs strongly in families
(3–5), the specific genes that are responsible for enhanced risk
are just starting to be revealed. Identifying genes responsible
for lung cancer before the era of genome-wide association
studies (GWAS) has been limited. Candidate susceptibility
genes coding for enzymes involved in the activation, detoxifi-
cation, and repair of damages caused by tobacco smoke as well
as genes in inflammatory and cell-cycle pathways have been
extensively studied (6, 7). Many of these candidate gene studies
are either preliminary or controversial (8). Rare germline muta-
tions in TP53, RB1, and EGFR have been shown to confer
inherited predisposition to lung cancer (9–11). Fine mapping
of genome-wide linkage peak on 6q23-25 also identified RGS17
as a predisposing gene (12). With the arrival of GWAS approx-
imately 10 years ago, it became possible to interrogate the
human genome more comprehensively for lung cancer suscep-
tibility genes.

Chronologic Presentation of Published
GWAS on Lung Cancer

GWAS have identified genetic factors robustly associated
with lung cancer. Tables 1 and 2 provide a chronologic pre-
sentation of published GWAS on lung cancer in European and
Asian populations, respectively, and summarize susceptibility
loci identified. During the last decade, GWAS have evolved
from finding lung cancer loci per se, to a more refined search
strategy focused on specific subgroups of lung cancer patients.
Advances in analysis strategies were also achieved moving from
single marker analyses to pathway-based and variant prioriti-
zation approaches. GWAS have also been performed to find
genetic loci associated with lung cancer survival, response to
conventional therapies, and multiple sites of cancer. GWAS by
environmental exposures and genome-wide epistasis analyses
are also emerging. This review aims to provide a concise
overview of this literature. All GWAS on lung cancer suscepti-
bility, survival, and response to treatment reported in the
literature were cumulated and manually curated by the authors.
At the time of writing this review, a search on PubMed with the
keywords "GWAS" and "lung cancer" was performed to identify
any missing GWAS in the field. Finally, GWAS and suscepti-
bility loci on lung cancer were further refined with the GWAS
catalog (13). Please note that we have attempted to include all
loci reported in the literature without quality assessment or
exclusion criteria based on the magnitude of effects, sample
size, or other criteria. Lung cancer susceptibility loci were
reported on the basis of the interpretation of the authors in
the original articles.

GWAS on Lung Cancer Susceptibility
GWAS in European populations

The first GWAS on lung cancer were reported in 2008.
Three independent studies identified a susceptibility locus on
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chromosome 15q. Hung and colleagues (14) found two SNPs
strongly associated with lung cancer on chromosome 15q25.
Further genotyping in this region revealed many SNPs in tight
linkage disequilibrium (LD) showing evidence of association.
Six genes are located in this region including three nicotinic
acetylcholine receptor subunits (CHRNA5, CHRNA3, and
CHRNB4). Interestingly, no appreciable variation in the risk
was found across smoking categories or histologic subtypes of
lung cancer. In a second GWAS, a SNP within the CHRNA3 gene
was strongly associated with smoking quantity and nicotine
dependence (15). The same SNP was also strongly associated
with lung cancer. The results suggest that the variant on chro-
mosome 15q25 confers risk of lung cancer through its effect on
tobacco addiction. In contrast, a third study showed weak
evidence that the 15q25 locus influences smoking behavior
and is mostly directly associated with lung cancer (16). How-
ever, it should be emphasized that the later GWAS was con-
ducted in cases and controls matched on smoking status, thus
limiting variation between the two groups and the power to
detect any smoking association. Further analyses from the same
study suggest that SNPs and smoking have independent effects
on risk. Together, these three studies unequivocally support the
15q25 locus as harboring susceptibility variants for lung cancer
or smoking behavior.

A GWAS performed in familial lung cancer confirmed the
susceptibility locus on 15q24-25.1 (17). A subsequent GWAS
identified two newly associated risk loci for lung cancer (18). In
this study, 15q25 was again the most strongly associated locus.
However, by pooling the results with other studies (14, 16),
new cancer risk loci were found. Two intronic SNPs located in
different genes (BAG6, previously known as BAT3, and MSH5)
and separated by more than 600 kilobases on chromosome
6p21 were significantly associated with lung cancer. The stron-
gest association, aside 15q25 and 6p21, was found on chro-
mosome 5p15 within the CLPTM1L gene. The 5p15 locus was
further supported by an expanded GWAS from previous popu-
lations (19). Two uncorrelated SNPs in that region were
strongly associated with lung cancer. These SNPs are located
within or in proximity to two biologically relevant genes
namely CLPTM1L and TERT. Together, by the end of 2008,
three susceptibility loci for lung cancer were identified, that is,
15q25, 6p21, and 5p15.

A more extensive follow-up on a previous GWAS (18) further
supports the contribution of the three loci (20). The latter study
supports the possibility that two independent loci are acting on
15q25. The latter locus was also associated with smoking
behavior, with risk alleles correlated with higher tobacco con-
sumption. In contrast, the 5p15 and 6p21 loci were not
associated with smoking behavior. However, DNA variants at
5p15 were associated with histologic subtypes of lung cancer,
with an increased frequency of the risk allele in cases with
adenocarcinoma. This observation was subsequently confirmed
in a meta-analysis published in 2009 (21). This study provides
compelling evidence that the 5p15 susceptibility locus for lung
cancer is confined to a more specific subtype of lung cancer, that
is, adenocarcinoma. Particularly intriguing in that study of
more than 30,000 subjects is the absence of new genomic
regions associated with lung cancer. In 2010, a meta-analysis
of 16 GWAS confirmed lung cancer loci on 15q25, 5p15, and
6p21 (22). Again, the association at 5p15 was confined to
adenocarcinoma, whereas the 6p21 locus was more stronglyTa
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Table 2. Susceptibility loci for lung cancer identified by GWAS in Asian ancestry populations

Reference Studya
Sample size
(cases/controls) Disease/trait Platform (# SNPs)

Region
(size) Gene Key SNPs

Yoon et al.
(26)

Korea 621/1,541 NSCLC Affymetrix 5.0 (246,758) 3q29 C3orf21 rs2131877
Korea replication 804/1,470 rs10433328

rs952481
rs4677657

5p15 TERT rs2736100
CLPTM1L rs402710

rs401681
Miki et al. (27) Japanese 1,004/1,900 Adenocarcinoma Illumina HumanHap610-Quad

and HumanHap550 (432,024)
5p15 TERT rs2736100

Japanese 525/7,678
Korean 569/1,470

3q28 TP63 rs10937405
rs4488809
rs9816619
rs4600802

Hu et al. (28) Han Chinese (Nanjing,
Beijing, Shanghai)

2,331/3,077 Lung cancer Affymetrix 6.0 (591,370) 3q28 TP63 rs4488809

1st stage replication 2,283/2,243
rs10937405

2nd stage replication 4,030/4,166 5p15.33 TERT rs465498
CLPTM1L rs2736100

13q12.12 MIPEP rs753955
TNFRSF19

22q12.2 MTMR3 rs17728461
HORMAD2 rs36600
LIF

Dong et al.
(29)

Chinese (GWAS) 2,331/3,077 Lung cancer Affymetrix 6.0 (591,370) 10p14 GATA3 rs1663689
Chinese (stage 1) 2,283/2,243
Chinese (stage 2) 5,153/5,240

5q32 PPP2R2B rs2895680
STK32A
DPYSL3

20q13.2 CYP24A1 rs4809957
rs2296239

5q31.1 IL3 rs247008
CSF2
P4HA2
SLC22A5
ACSL6

1p36.32 AJAP1 rs9439519
NPHP4

Shiraishi et al.
(32)

Japanese 1,695/5,333 Adenocarcinoma Illumina OmniExpress &
Omni1-Quad (538,166)

5p15.33 TERT rs2736100
1st validation 2,955/7,036 rs2853677
2nd validation 1,379/1,166

3q28 TP63 rs10937405
17q24.3 BPTF rs7216064
6p21.3 BTNL2 rs3817963

Dong et al.
(30)

Han Chinese 833/3,094 Squamous cell
carcinoma

Affymetrix 6.0
(570,009)

12q23.1 NR1H4 rs12296850
Replication 1 822/2,243 SLC17A8
Replication 2 1,401/4,166

Jin et al. (31) Han Chinese 1,341/1,982 Lung cancer Illumina HumanExome
(72,423)

6p21.33 PRRC2A
(BAT2)

rs9469031
(P515L)Replication 1 1,115/1,246

FKBPL rs200847762
(P137L)

Replication 2 3,584/3,669

20q11.21 BPIFB1 rs6141383
(V284M)

6p22.2 HIST1H1E rs2298090
(L152R)

Never
smokers

Hsiung et al.
(35)

GELAC (Han Chinese) 584/585 Lung adenocarcinoma in
never-smoking Asian
females

Illumina HumanCNV370-Duo and
HumanHap610 Quad (457,504)

5p15.33 CLPTM1L rs2736100
GELAC (replication) 610/560 TERT
CAMSCH 287/287
SNU 259/293
SWHS 209/213
WHLCS 207/207
KNUH 121/119
KUMC 95/87
GEL-S 193/546
NJLCS 203/203

(Continued on the following page)
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associated with squamous cell carcinoma. Stratification by
histology identified three loci for squamous cell carcinoma
including 12q13.33, 9p21.3, and 2q32.1. In 2014, another
GWAS meta-analysis taking advantage of the imputation based
on the 1000 Genomes Project was performed (23), which
allowed testing for less frequent SNPs not measured in earlier
studies. The top nine signals were followed-up and rare genetic
variants were associated with squamous cell carcinoma in the
BRCA2 gene on 13q13.1 and in CHEK2 on 22q12.1. CHEK2
was previously associated with lung cancer (24), but this was
the first time using a GWAS approach. The 3q28 locus was
associated with lung adenocarcinoma, which has been previ-
ously found in Asian populations (see the following section).
Finally, the latest and largest lung cancer GWAS in individuals
of European ancestry was performed in 29,266 cases and
56,450 controls (25). This GWAS highlighted the genetic het-
erogeneity across histologic subtypes of lung cancer and
reported novel loci for lung cancer per se (1p31.1, 6q27,
8p21.1, and 15q21.1) and adenocarcinoma (8p12, 10q24.3,
11q23.3, and 20q13.33). Previously reported lung cancer loci
were more specifically associated with squamous cell carcino-
ma in this study including 6p21.33, 12p13.33, and 22q12.1.

GWAS in Asian populations
Genetic heterogeneity in lung cancer susceptibility is observed

between populations of European and Asian descent. For exam-

ple, the strongest lung cancer susceptibility variants on 15q25
have very low allele frequencies in Asian populations. Similarly,
variants on 6p21 found in Europeans are not polymorphic in
Asians. Accordingly, GWAS specific for Asian populations were
required.

In a Korean population, a GWAS on NSCLC revealed a new
locus on chromosome 3q29 (26). This study also confirmed the
5p15 susceptibility locus in Koreans. Other GWAS in Asian
populations have followed. Two susceptibility lociwere identified
in Japanese and Korean populations confirming 5p15 and eluci-
dating a new locus on 3q28 (27). The 5p15 and 3q28 were
subsequently confirmed in a larger GWAS in Han Chinese
(28). In addition, two new loci on 13q12.12 and 12q12.2 were
identified. In the same GWAS, but with an extended validation
sample size, five new lung cancer loci were identified including
10p14, 5q32, 20q13.2, 5q31.1, and 1p36.32 (29). A subsequent
GWAS specifically for lung squamous cell carcinoma in Han
Chinese revealed a new locus on 12q23.1 (30). Using the exome
genotyping chip, rare variants on 6p21.33, 20q11.21, and 6p22.2
were also found in the Chinese populations (31). On 6p21.33,
twomissense variants, one in PRRC1A (also known as BAT2) and
the other in FKBPL, were independently associatedwith the risk of
lung cancer, suggesting more than one genetic signal in this
region. This study also demonstrated that 6p21.33 is also a
susceptibility locus for Asian populations, but with different risk
variants. The aforementioned GWAS in Japanese population (27)

Table 2. Susceptibility loci for lung cancer identified by GWAS in Asian ancestry populations (Cont'd )

Reference Studya
Sample size
(cases/controls) Disease/trait Platform (# SNPs)

Region
(size) Gene Key SNPs

Lan et al. (36) Female Lung Cancer
Consortium in Asia

5,510/4,544 Lung cancer in never
smokers

Illumina (512,226) 10q25.2 VTI1A rs7086803
1,099/2,913 rs11196080

6q22.2 ROS1, DCBLD1 rs9387478
6p21.32 HLA class II

region
rs2395185

5p15.33 TERT rs2736100
3q28 TP63 rs4488809
17q24.3 BPTF rs7216064

Wang et al.
(37)

Female Lung cancer
Consortium in Asia

6,877/6,277 Lung cancer in never
smokers

Illumina (7,564,751) 6p21.1 FOXP4 rs7741164
5,878/7,046 FOXP4-AS1

9p21.3 CDKN2B rs72658409
CDKN2B-AS1

12q13.13 ACVR1B rs116101143
Ahn et al.
(38)

Korean 446/497 NSCLC in never smokers Affymetrix 6.0 (474,503) 18p11.22 FAM38B rs11080466
434/1,000 (PIEZO2) rs11663246

APCDD1
NAPG

Kim et al. (39) Korean 285/1,455 Lung cancer in never
smoker women

Affymetrix 5.0 (331,088) 2p16.3 NRXN1 rs10187911
Replication 1 293/495
Replication 2 546/744

Genome-
wide
epistasis

Chu et al.
(52)

Han Chinese 2,331/3,077 Lung cancer Affymetrix 6.0 (591,370)
(epistatis)

2q32.2 HIBCH rs2562796
Replication 1 1,534/1,489 INPP1 rs16832404
Replication 2 2,512/2,449 PMS1

STAT1
Cross-cancer
loci

Jin et al. (54) Han Chinese 5,368/4,006 Cross-cancer Affymetrix 6.0 6p21.1 LRFN2 rs2494938
Han Chinese 9,001/11,436 7p15.3 SP4 rs2285947

DNAH11

Abbreviations: CAMSCH, Chinese Academy of Medical Sciences Cancer Hospital Study; GELAC, Genetic Epidemiological Study of Lung Adenocarcinoma; GEL-S,
Genes and Environment in Lung Cancer, Singapore study; KNUH, Kyungpook National University Hospital Study; KUMC, Korea University Medical Center Study;
NJLCS, Nanjing Lung Cancer Study; SNU, Seoul National University Study; SWHS, Shanghai Women's Health Cohort Study; WHLCS, Wuhan Lung Cancer Study.
aItalic text indicates replication cohorts.
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was later expanded in terms of sample size and SNP coverage to
identify a new locus on 17q24.3 (32). The association with lung
adenocarcinoma was also confirmed for 5p15, 3q28, and 6p21,
but not for 13q12.12 and 22q12.2.

GWAS in never smokers
Lung cancer in never smokers is known to be a distinct entity

(33). The first GWAS on lung cancer in never smokers was
reported in 2010 (34). A single locus on chromosome
13q31.3 was identified. The lung cancer–associated SNPs were
located in the GPC5 gene and were also associated with mRNA
expression levels of this gene in human lung tissues. A subse-
quent GWAS was performed in never-smoking females from
Asia (35). The 5p15 locus was confirmed with an effect size
greater than the estimates reported in populations of European
background. Interestingly, the 15q25 and 6p21 loci were not
associated with lung cancer in this study and no new loci were
identified. In a larger GWAS of the same population forming the
Female Lung Cancer Consortium in Asia, new susceptibility loci
were revealed at 10q25.2 and 6q22.2 (36). The 6p21 was also
associated with lung cancer in this study, but significant markers
were not in LD with those previously reported, suggesting again
more than one independent genetic signal at 6p21. This study in
Asian females also confirmed other loci reported before includ-
ing 5p15, 3q28, and 17q24.3. A recent meta-analysis was
reported with an extended sample size of the Female Lung
Cancer Consortium in Asia (37). A new locus on 12q13.13 was
identified as well as genetic variants not correlated with lung
cancer-SNPs previously associated with lung cancer on 6p21.1
and 9p21.3. In never smokers from Korea, a new NSCLC locus
on 18p11 was identified (38). The 2p16.3 locus was also
suggested in nonsmoking Korean women (39). However, pre-
vious loci identified in never smoker populations were not
replicated in these Korean studies including 5p15 and 13q31.3.

Pathway-based GWAS
Pathway-based analyses have been used to identify lung

cancer loci. Using GWAS data, genes listed under the category
of inflammation were evaluated by lung cancer histologic sub-
types (40). This analysis identified a risk locus on chromosome
12p13.33 harboring the RAD12 gene. A similar approach was
used to evaluate SNPs in inflammatory pathway genes in life-
time never smokers (41). SNPs on chromosome 12q13 in the
ACVR1B and NR4A1 genes were associated with lung cancer,
particularly in women and those who reported environmental
tobacco smoke exposure. Focused on DNA repair genes, a recent
study revealed variants in GTF2H4 on 6p21 and in XRCC4 on
5q14.2 associated with lung cancer risk (42). Pathway-based
analyses of GWAS data have also identified groups of genes
linked by known biological pathways (ABC transporters, VEGF
signaling, G1–S check point, and NRAGE signals death through
JNK) that were modestly, but coordinately associated with the
risk of developing lung cancer (43).

Variant prioritization approaches
New lung cancer loci were also revealed by incorporating an

intermediate phenotype, that is, smoked cigarettes per day, into
the analyses (44). By combining the estimates derived from the
case–control analysis and the intermediate phenotype, a stronger
signal was observed on 15q25 locus compared with the case–
control study alone. Genetic associations with lung cancer were

also detected on 19q13 and 3p26, which demonstrated improved
power to identify genetic loci by combining different types of data
from a single population. Studying cohorts of patients well-
characterized for lung cancer may thus be very promising using
this approach. A similar approach was used by assigning higher
priors to SNPs associated with family history of lung cancer (45).
By focusing on SNPs missed by traditional GWAS, this study
identified 30 variants that showed evidence of association with
lung cancer risk. The strongest associations were found on
10q23.33 and 4p15.2. Biological priors within a Bayesian frame-
work were also applied to histology-specific analyses (46). In this
study, the 4p15.2 locus was assigned more specifically to squa-
mous cell carcinoma and a new adenocarcinoma locus was
identified on 18q12.1.

GWAS-by-exposure interaction
Accounting for environmental exposure is challengingowing to

the large number of possible factors as well as the level of
measurement accuracy that can be achieved for each exposure.
Despite these challenges, some genome-wide gene–environment
interaction studies are starting to emerge in the field of lung
cancer. The first attempt of a genome-wide gene–smoking inter-
action study identified two SNPs on 14q22.1 and 15q22.32
influencing the risk of lung cancer (47). For asbestos exposure,
interacting loci were suggested on 2q34, 7q32.1, and 11q13 (48).
A risk locus for asbestos-associated lung cancer was also discov-
ered on 22q13.31 (49). Interacting loci with household air
pollution caused by solid fuel burning for heating and cooking
were also evaluated in never smoker women from Asia (50).
Interestingly, interactions were reported for GWAS-nominated
loci previously identified in this population (36), but no new loci
reached significance at the genome-wide scale level. Exploratory
analyses of gene–occupation interactions in determining lung
cancer susceptibility were also performed for 17 established or
suspected lung carcinogens and 49 additional occupational
agents (51). A large number of gene–environment interactions
were reported in that study. However, the results could not be
validated in an independent population because of the unique-
ness of the dataset with detailed occupational exposure data. So
far, results from genome-wide gene–environment studies in lung
cancer have been more hypothesis-generating owing to limited
sample size and power as well as the lack of appropriate replica-
tion sets. To make further progress, extra care will be needed to
build large cohorts that are well-characterized for environmental
exposures.

Genome-wide epistasis
The effects of genetic variants on lung cancer are likely to be

amplified when multiple variants synergize together. Gene–
gene interactions may identify genetic determinants of lung
cancer. The first and only genome-wide two-locus interaction
analysis performed so far revealed a significant interaction
between two SNPs 60 kilobases apart on 2q32.2 (52). Indi-
vidually, the two interacting SNPs were not significantly asso-
ciated with the risk of lung cancer. Further investigations of
gene–gene interactions will be needed to understand the genet-
ic architecture of lung cancer.

Cross-cancer susceptibility loci
Large-scale GWAS across cancer sites have been conduct-

ed to identify pleiotropic loci. For lung cancer, the first
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pleiotropic locus was identified on 5p15 (TERT-CLPTM1L;
ref. 53). A novel pleiotropic association at 7p15.3 was found
in Han Chinese involving lung cancer, non-cardia gastric
cancer, and esophageal squamous cell carcinoma (54). The
GAME-ON/GECCO Network on lung, ovary, breast, prostate
and colorectal cancer then identified novel pleiotropic asso-
ciations involving lung cancer on 12q24 (55) and 1q22 (56).
Known lung cancer loci were also identified in cross-cancer
analyses including 6p21 (54) and 5p15 (55) as well as 9p21.3
and 13q13.1 (56). These loci are particularly promising to
reveal shared carcinogenesis mechanisms across multiple can-
cer sites.

Integration of GWAS on Lung Cancer
Susceptibility

Excluding gene–environment loci that are more suggestive at
this point, GWAS reported 45 loci associated with lung
cancer. Figure 1 shows the chronologic and cumulative number
of lung cancer susceptibility loci identified. Loci are also listed on
the basis of chromosome number in Table 3. Note that these loci
are an evolving list. The strength of evidence for association with
lung cancer and effect size vary by loci (Fig. 2). Evidence support-
ing some loci is relatively modest and will require validation in
independent studies. The magnitude of genetic associations

45
44
43
42
41
40
39
38
37
36
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33
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12 6q22.2
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Figure 1.

Chronologic and cumulative lung
cancer susceptibility loci identified by
GWAS. New loci identified yearly are
on a black background. The
cumulative number of loci is shown
with gray background.

GWAS-Nominated Lung Cancer Loci

www.aacrjournals.org Cancer Epidemiol Biomarkers Prev; 27(4) April 2017 371

D
ow

nloaded from
 http://aacrjournals.org/cebp/article-pdf/27/4/363/2285267/363.pdf by guest on 26 August 2022



reported in publications also varies within loci. For example,
the largest OR for chromosome 15q25 was 7.2 reported in
familial form of lung cancer with a relatively modest P value of
1.03 � 10�3 (17). On the other hand, the same locus was
reported highly significant (P ¼ 3.08 � 10�103) with an OR of
approximately 1.3 (25), which is an effect size more consistent
with most studies on sporadic form of lung cancer. The max-

imum OR and P value per locus as well as variability between
studies are illustrated in Fig. 2. Refining susceptibility loci by
clinically relevant subgroups is a critical step to reveal func-
tional variants and causative genes (57). Table 3 summarizes
the evidence supporting the specificity of lung cancer risk loci
by histology, smoking status, gender, ethnicity, and age of
onset. For example, convincing evidence supports that the

Table 3. Lung cancer susceptibility loci derived from GWAS, genetic risk specificity by subgroups, and suspected causal genes

GWAS loci Histology Smoking Gender Ethnicity
Age of
onset >1 loci Suspected causal genes

1p36.32 (29) s m a AJAP1 (87), NPHP4 (88)
1p31.1 (25) e FUBP, DNAJB4
1q22 (56) SQ MUC1 (89, 90), ADAM15 (91), THBS3
2p16.3 (39) AD n w a NRXN1 (92)
2q32 (22) SQ e NUP35 (93)
2q32.2 (52) AD s m a HIBCH, INPP1 (94), PMS1, STAT1
3p26 (44) e No genes. Deletions associated with cancer (95, 96)
3q28 (23, 25, 27, 28, 32, 36) AD w TP63 (97, 98)
3q29 (26) a C3orf21 (26)
4p15.2 (45, 46) SQ e KCNIP4 (99)
5p15 (18–22, 25–28, 32, 35, 36, 55) AD n w TERT (100–105), CLPTM1L (106–110)
5q14.2 (42) e XRCC4 (111)
5q31 (29) a o PAHA2 (112), CSF2 (113), IL3 (113), SLC22A5 (29, 114),

ACSL6 (115)
5q32 (29) AD n w a STK32A (29), PPP2R2B (116, 117), DPYSL3 (118)
6p22.2 (31) a HIST1H1E
6p21 (18, 20–22, 25, 31, 32, 36, 37, 42, 54) SQ e BAG6 (119, 120), APOM (121, 122), TNXB (123), MSH5

(124), BTNL2, PRRC2A (BAT2), FKBPL (125, 126),
HSPA1B (127), FOXP4, FOXP4-AS1, GTF2H4 (42),
LRFN2, HLA-A (128), HLA-DQB1 (128)

6q22 (36) AD n w a DCBLD1 (129, 130), ROS1 (131–133)
6q27 (25) e RNASET2
7p15.3 (54) a SP4, DNAH11
8p21.1 (25) e EPHX2, CHRNA2
8p12 (25) AD e NRG1 (134)
9p21.3 (22, 25, 37, 56) CDKN2A (135), CDKN2B (135), CDKN2B-AS1 (136,

137), MTAP
10p14 (29) a GATA3 (138–141)
10q23.33 (45) n w e y FFAR4 (142)
10q24.3 (25) AD e OBFC1
10q25.2 (36) SQ w a VTI1A (143–145)
11q23.3 (25) AD e MPZL3, AMICA1
12p13.33 (22, 25, 40) SQ e RAD52 (40, 146–151)
12q13.13 (37, 41) n w ACVR1B (152, 153), NR4A1
12q23.1 (30) SQ a NR1H4 (154), SLC17A8 (155, 156)
12q24 (55) e SH2B3
13q12.12 (28) a y MIPEP, TNFRSF19 (157)
13q13.1 (23, 25, 56) SQ e BRCA2 (158)
13q31.3 (34) n e GPC5 (159, 160)
15q21.1 (25) AD e SEMA6D, SECISBP2L (161)
15q25 (14–22, 25, 44) s e CHRNA5, CHRNA3, CHRNB4, IREB2, PSMA4 (162),

HYKK
17q24.3 (32, 36) a BPTF (32, 163, 164)
18p11.22 (38) n a FAM38B (165), APCDD1 (166, 167), NAPG
18q12.1 (46) AD e GAREM (168)
19q13.2 (25, 44) e TGFB1 (169), CYP2A6
20q11.21 (31) a BPIFB1 (170)
20q13.2 (29) AD a CYP24A1 (171–174)
20q13.33 (25) AD e RTEL1 (175)
22q12.1 (23, 25) SQ e CHEK2 (24, 176)
22q12.2 (28) a LIF (177, 178), HORMAD2, MTMR3

NOTE: The color of the background illustrates the strength of evidence on a black-and-white scale, where black indicates convincing evidence andwhite indicates no
evidence so far. The strength of evidence was assigned on the basis of the content of publications cited in the first column and our best possible judgment and
comprehension of each locus considering the number of studies that replicated the associations, the level of statistically significance, and the quality of the studies, for
example, sample size. No evidence (white) does not delineate the lack of associations that have been studied from those not yet examined and also highlights
knowledge gaps.
Abbreviations: AD, adenocarcinoma; a, Asians; e, Europeans; m, men; n, never-smokers; o, older; s, smokers; SQ, squamous cell carcinoma; w, women; y, younger.
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5p15 locus is specific to lung adenocarcinoma and more
strongly associated with never smokers and women (21, 22,
28). Similar genetic association patterns are also emerging for
2p16.3, 5q32, and 6q22. Accordingly, a number of studies have
started to delineate the effects of genetic variants in specific
subgroups of patients with lung cancer, which is important to
reveal the true nature of genetic effects detected in GWAS and
narrow the set of genetic variants and genes worthy of func-
tional studies. It is also important to know whether indepen-
dent variants in the same loci are associated with lung cancer.
Convincing evidence supports at least two independent loci on
15q25, 5p15, and 6p21 (Table 3). Two independent loci were
also reported at 9p21.3 (37) and 22q12.2 (28), but will require
further validation. This knowledge is lacking for other lung
cancer loci. Table 3 also provides a glimpse of suspected causal
genes at each locus. Further functional and biological analyses
will be needed to understand the role of these genes in lung
cancer development.

GWAS on Lung Cancer Survival
Interindividual differences in lung cancer survival are

observed among lung cancer patients, even among those with
the same tumor stage and treatment regimen. The identification
of genetic factors associated with lung cancer survival has the
potential to guide adjuvant therapy after surgery in early-stage
disease, but also to refine prognosis and personalize clinical
care in advanced-stages disease. So far, GWAS on lung cancer
survival were performed in patients with early-stage NSCLC
(58, 59), advanced-stage NSCLC (60–63), and SCLC (64).
GWAS were also performed in more specific subgroups of lung
cancer patients including never smokers with NSCLC (65) and
patients with lung adenocarcinoma (66). Together, these stud-
ies have identified 23 loci associated with lung cancer survival
(Supplementary Table S1). However, none of these loci was

reported in more than one study. The lack of replication may be
explained by heterogeneity in treatment regimens. There is also
no overlap with GWAS lung cancer susceptibility loci. While the
9p21.3 locus was associated with both susceptibility (22, 37)
and survival (62), sentinel SNPs are located more than 1 Mb
away from each other, indicating that they are likely not
reflecting the same association. GWAS susceptibility loci were
specifically evaluated for association with survival in SCLC
(67). Briefly, three loci on 20q13.2, 22q12.2, and 5p15 dem-
onstrated some evidence of association with survival. However,
none reached genome-wide significance. It should be noted
that clinical follow-up of patients are needed to conduct sur-
vival analyses and GWAS based on this outcome have thus been
performed with much smaller sample sizes compared with
studies focused on cancer susceptibility. Larger-scale studies
are needed to identify robust lung cancer survival loci.

GWAS on Response to Lung Cancer
Therapies

Somatic alterations in the tumor genome are known to
modulate the response to anticancer therapy. Less is known
about the influence of the host genome on treatment response.
The effect of germline variants on sensitivity and toxicity to
platinum-based chemotherapy have been examined by GWAS.
In patients with SCLC, seven loci demonstrated some evidence
of association with treatment response in a discovery set, but
were not convincingly replicated in a validation set (68). In
NSCLC patients, a locus on 21q22.3 was associated with
platinum-induced hepatotoxicity (69) and two loci on
2q24.3 and 17p12 were associated with the risk of plati-
num-induced myelosuppression (70). More and larger studies
are needed to effectively delineate chemosensitive patients that
will benefit from treatment and nonresponders that may be
spared the adverse side effects associated with chemotherapy.

Figure 2.

Magnitude of the genetic associations
for the 45 lung cancer susceptibility
loci reported in the literature. P values
and OR for key SNPs indicated
in Tables 1 and 2 were collected from
reported studies. The top and bottom
panels show P values and OR,
respectively. The x-axis shows the 45
lung cancer susceptibility loci ordered
on the basis of chromosome position.
Bars illustrate the maximum P value
(smallest P values) or the maximum
OR reported per locus. Tick symbols
inside bars are the results of the
individual studies. Top, the y-axis
represents P values in -log10 scale.
The dashed horizontal line shows the
typical GWAS significance threshold,
that is, 5 � 10�8. Bottom, the y-axis
represents OR. Note that ORs lower
than 1 were converted into their
reciprocal (1/OR) for illustration
purpose. OR for locus 3p26 was not
available.
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Future Directions
Important progress wasmade to understand host susceptibility

to lung cancer usingGWAS. This approach is also starting to reveal
inherited variants associated with lung cancer survival and
response to treatment. During the last decade, progress was driven
by enlarging sample sizes, improving methods to genotype and
impute SNPs with more comprehensive reference sets (e.g., 1000
Genomes Project), and the creation of large-scale international
collaborations and consortia. Additional developments were
made by studying patients of different ancestries, never smokers,
women, and specific lung cancer histology. Progress was also
made by refining results by pathway-based analysis and variant
prioritization approaches. The next important step in the field of
genomics of lung cancer is to identify the causal genetic variants
and genes underpinning GWAS-nominated loci. In addition, the
new genomic knowledge must be translated into real benefits for
patients. These must be achieved if GWAS are to pay off the huge
investment. We foresee different strategies to reach these goals.

eQTL and TWAS
We need to continue to mine GWAS data using more

advanced statistical techniques that leverage other sources of
data. So far, expression quantitative trait loci (eQTL) mapping
studies in a variety of tissues have been used to extent the
functional meaning of GWAS in lung cancer (23, 25, 29, 30, 32,
34, 37, 45, 56, 71). More comprehensive methods of coloca-
lization of GWAS and eQTL signals were recently developed
and must be performed to reveal genetic associations explained
by regulatory effects on gene expression (72). The identification
of lung cancer-associated genetic variants associated with the
expression of specific genes in a disease relevant tissue is an
important step forward to understand the molecular mechan-
isms underpinning GWAS signals. In addition, the relation-
ships between genetic variants, RNA expression levels, and lung
cancer must be further delineated by causality models and
Mendelian randomization approaches (73, 74). Large-scale
lung cancer GWAS (25) and lung eQTL (75) are also available
to perform the first transcriptome-wide association study
(TWAS) in lung cancer. In this approach, the cis genetic com-
ponent of expression derived from the eQTL dataset is used to
impute expression data for cases and controls used in the
GWAS. Imputed genome-wide gene expression levels of sample
size orders of magnitude larger than any of the transcriptomic
datasets generated so far can then be used to identify genes
whose expression is significantly associated with the disease.
This approach has the potential to elucidate the most likely
molecular drivers of lung cancer in GWAS-nominated loci, but
also yield molecular drivers of lung cancer outside GWAS loci.
GWAS, eQTL, and TWAS results will also need to be integrated
with genes differentially expressed in lung tumor compared
with adjacent nontumor lung tissues. For example, we have
recently derived a robust list of genes differentially expressed in
lung tumor from our own transcriptomic dataset (76) as well as
two publicly available datasets (77, 78). These results identified
genes consistently deregulated in lung tumor and revealed
important insights about the molecular transitions that occur
between normal and tumor lung tissues. Accordingly, very
promising research is underway exploiting GWAS and gene
expression datasets to identify causal genes and molecular
drivers of lung cancer.

Deep molecular profiling and biobanking
To make further progress, relevant tissues must be profiled

beyond gene expression. GWAS variants of lung cancer may not
exert their effects through gene regulation, but other molecular
phenotypes such as protein expression, protein state, metabolite
levels, and epigenetic marks. Accordingly, deep molecular profil-
ing of human lung tissues will be needed to comprehend the
molecular impact of inherited variants on lung cancer. Current
biobanking activities to collect high-quality and large numbers of
well-annotated lung specimens are the essence of this future
development.

Exposome
As depicted in Table 3, the independent contribution of GWAS

loci on lung cancer, smoking behavior, and nicotine dependence
is still not clearly delineated. Larger-scale gene–exposure interac-
tion studies with established environmental risk factors including
tobacco smoke and solid fuel burning are warranted. More
comprehensive assessment of environmental factors including
radon, asbestos, household and outdoor pollution, and occupa-
tional agents will be critically important, but at the same time very
challenging to measure accurately in large sample size. A well-
orchestrated community effort thus seems necessary (79).

Exome and genome sequencing
New genomic approaches from next-generation of sequencers

are also expected to refine GWAS loci and discover new variants
unlikely to be found by GWAS. To this effect, whole-exome
sequencing in three members of a five-generation family affected
by lung cancer has revealed a rare variants in PARK2 resulting in a
loss-of-function of this tumor suppressor gene (80). Although
rare, the effect size of this mutation was greater than those
reported in GWAS. Similarly, exome-sequencing of sporadic and
familial cases of lung cancer identified rare deleterious mutations
in GWAS-nominated loci located in the CDC147 and DBH (81)
genes. Whole-genome sequencing in a family with very high
aggregation of lung adenocarcinoma revealed a functional mis-
sense variant in theoncogeneYAP1 (82) associatedwith the risk of
developing the disease. We expect these types of discoveries using
exome and genome sequencing to multiply in the near future.

En route for a genetic risk score
Identified lung cancer susceptibility loci provide hope to

build tools for targeted screening of high-risk individuals. To
date, cumulative effects of loci have shown promising results to
improve the discriminatory performance of risk prediction
models, but not sufficiently to merit clinical implementation
(83). For example, a recent report combining GWAS loci
demonstrated only small improvement in lung cancer risk
prediction in models including basic clinical factors such as
age and smoking (84). Interestingly, the best model may not
come from considering only the top GWAS loci. A genetic risk
score built from seven telomere-length associated genetic var-
iants was associated with lung cancer risk (85). More recently, it
was demonstrated that the cumulative effects of susceptibility
variants were better predictors when organized in biological
pathways (86). These examples demonstrated the variety of
strategies that are currently used to develop new clinical tools to
predict lung cancer. Such tools are urgently needed to enable
earlier diagnosis. The task is challenging and will require major
efforts, but seems more realistically feasible with the outcomes
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of GWAS in hands. We hope that this compendium of lung
cancer GWAS loci will facilitate further progress in building a
clinically useful genetic risk score.

Conclusions
Understanding the genetic factors underlying the develop-

ment of lung cancer is important to elucidate the etiology of the
disease. This genetic knowledge is a prerequisite to develop and
improve future clinical strategies for lung cancer management.
Discovered loci summarized in this review testify progress
made in this field during the last decade. This review also
highlights knowledge gaps about causal variants and genes
responsible for the underlying genetic associations and pro-
poses some short-term solutions to ensure further progress
through eQTL, colocalization, causality models and TWAS. The
specificity of many lung cancer loci in terms of histologic
subtypes, gender, and ethnicity have been discovered for some
loci, but will demand large studies with well-characterized
individuals for others. Although smoking and other environ-
mental factors, notably solid fuel burning, are clearly interact-

ing with host factors to cause the disease, the specific variants
that come into play are still elusive. Preliminary data pro-
vides some clues about inherited variants associated with lung
cancer survival and response to treatment, but will require
validation in larger-scale studies. On the other hand, robust
genetic factors associated with lung cancer derived from GWAS
give hope for possible clinical translation. In short term, a
genetic risk score to screen high-risk individuals seems realis-
tically achievable and would allow more effective treatments
available at earlier stages of the disease. In mid and longer
terms, discovering the causal genes underpinning GWAS signals
will propel results one step closer to clinical applications by
revealing new therapeutic targets and biomarkers to personal-
ize quality of care.
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