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Abstract—Evolving connectionist Systems (ECoS) are a family
of constructive artificial neural network algorithms that were
first proposed by Kasabov in 1998, where ‘evolving’ in this
context means “changing over time”, rather than evolving
through simulated evolution. A decade on, the number of ECoS
algorithms, and the problems to which they have been applied,
have multiplied. This paper reviews the current state-of-the-art
in the field of ECoS networks via a substantial literature review.
It reviews (1) the motivations for ECoS, (2) the major ECoS
algorithms in use, (3) previously existing constructive algorithms
that are similar to ECoS, (4) empirical evaluations of ECoS
networks over benchmark data sets, (5) applications of ECoS
to real-world problems. The paper ends with some suggestions
of future directions of research into ECoS networks.

Index Terms—Survey, Connectionism and neural nets, Knowl-
edge acquisition

I. INTRODUCTION

A
S of 2008, ten years have passed since Evolving Con-

nectionist Systems (ECoS) [67]–[71], [73], [74], [76]

artificial neural networks (ANN) were first proposed by

Kasabov [64]–[66]. As the variety of ECoS networks and their

applications have increased over this period, and the circle

of researchers using them has expanded outside of Kasabov’s

own group, now is an appropriate time to take stock of what

has been done with these networks.

It is perhaps unfortunate that Kasabov chose the term

“evolving” to describe his ANN. While it seems that for many

the term “evolving” evokes thoughts of evolutionary compu-

tation, ECoS are not evolutionary algorithms. ECoS networks

do not use the mechanisms of evolutionary computation, such

as fitness-based selection, reproduction and mutation. Instead,

as far as ECoS networks are concerned, the word “evolving”

has the much broader meaning of change through time.

The genesis of ECoS ANN lay in the requirements of

Intelligent Information Systems (IIS) [66], [72], [77]. IIS are

information processing systems that deal with information in

an intelligent way, that is, they deal with information in a way

similar to that of a human domain expert. Seven general, major

requirements for intelligent systems were enumerated in [66].

These requirements are:

1) Fast learning from a large amount of data.

2) Real-time, incremental adaptation to new data.

3) An open structure, where new features (either inputs or

outputs) can be added.

4) Able to reasonably keep track of and retrieve data that

has been previously seen.

5) Continuous improvement throughout the lifetime of the

system.
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6) Able to analyse and explain themselves, through for

example rule extraction.

7) Able to represent spatial and temporal elements of data.

Evolving Connectionist Systems are a family of constructive

ANN algorithms that were developed to fulfil these seven

requirements. ECoS is a class of ANN architectures with a

learning algorithm that modifies the structure of the network as

training examples are presented. Although the seminal ECoS

architecture was the Evolving Fuzzy Neural Network (EFuNN,

see Subsection II-B), several other architectures have been

developed that utilise the ECoS algorithm. These include the

minimalist Simple Evolving Connectionist System (SECoS,

Subsection II-C), Evolving Self-Organising Maps (ESOM,

Subsection II-D), and the Dynamic Evolving Neural-Fuzzy

Inference System (DENFIS, Subsection II-E).

ECoS was designed around the following principles [66]:

1) The ECoS training algorithm is designed with the in-

tention that all the algorithm can learn from the data

is learned in the first training pass (one-pass learning).

Additional exposure to the training data is not necessary.

2) ECoS are intended to be used in an on-line learning

application. This means that new data will be constantly

and continuously coming into the system, and that this

data must be learned by the network without forgetting

the old. The general ECoS architecture and learning

algorithm allows an ECoS network to accommodate this

new data without a catastrophic forgetting of the old.

3) The manner in which neurons are added to an ECoS

means that some training examples are stored, initially,

verbatim within the structure of the network. These

examples are then either modified (refined) by exposure

to further examples, or, depending upon the training

parameters used, remain the same and can be later

retrieved.

The advantages of ECoS are that they avoid the problems

associated with traditional connectionist structures such as

MLP [66], [77]: They are hard to over-train, due to the

constructive nature of their learning algorithm; they learn

quickly, as the learning algorithm is a one-pass algorithm,

that is, it requires only a single presentation of the data set;

and they are far more resistant to catastrophic forgetting than

most other models, as new training data is represented by

adding new neurons, rather than accommodating the additional

data in the existing neurons. ECoS networks also have several

advantages over other constructive algorithms. Firstly, they

are not limited to a particular application domain, they can

be applied to both classification and function approximation.

Secondly, they do not require multiple presentations of the
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training data set, as is the case with some of the constructive

algorithms in existence, such as RAN [137] and GAL [11].

Finally, they are able to continue learning and are not restricted

to learning a single training set as some other constructive

algorithms such as RAN and Cascade Correlation [35] are.

For the purposes of this paper, an ANN is considered to be

an ECoS network if it fulfils the following criteria:

1) It is a constructive network, where the addition of neu-

rons is determined by the novelty of individual training

examples

2) When a neuron is first added to the network, it explicitly

represents the training example that caused it to be

added.

3) It is capable of training over multiple data sets, with

only a single pass over each set.

4) It is explicitly derived from the principles of ECoS, as

laid down by Kasabov in [66], [77].

This paper reviews the current state-of-the-art for ECoS

networks. In Section II it presents the major ECoS algorithms,

surveys techniques that have been developed for extracting

rules from ECoS networks and algorithms for optimising

the performance of ECoS. Section III compares ECoS to

selected other constructive algorithms and Section IV reviews

empirical evaluations of ECoS networks. Section V surveys the

application of ECoS networks to a wide variety of problems

and Section VI suggests areas of future research. Due to the

large number of acronyms used in this paper, a list of acronyms

is appended.

II. ECOS ALGORITHMS

This section reviews the extant ECoS algorithms. Firstly, the

general ECoS architecture and training algorithm are presented

in Subsection II-A. The major members of the ECoS family

are then described in Subsections II-B to II-E, where an algo-

rithm is considered to be major if it has significant differences

to other ECoS algorithms, or the algorithm has been widely

applied. Minor ECoS algorithms are surveyed in Subsection

II-F, where an algorithm is considered to be minor if it does

not significantly differ from other ECoS algorithms. Methods

of optimising ECoS networks are reviewed in Subsection II-G.

Algorithms for extracting fuzzy rules from ECoS networks

are described in Subsection II-H, and methods for adding

additional outputs to EFuNN and SECoS are described in

Subsection II-I.

A. ECoS Architecture and Learning

The first ECoS network was EFuNN (Subsection II-B),

from which a generalised constructive ANN architecture and

training algorithm was derived.

An ECoS network is a multiple neuron layer, constructive

artificial neural network. An ECoS network will always have

at least one ‘evolving’ neuron layer. This is the constructive

layer, the layer that will grow and adapt itself to the incoming

data, and is the layer with which the learning algorithm is most

concerned. The meaning of the connections leading into this

layer, the activation of this layer’s neurons and the forward

propagation algorithms of the evolving layer all differ from

Fig. 1. General ECoS architecture

those of classical connectionist systems such as MLP. For the

purposes of this paper, the term ‘input layer’ refers to the

neuron layer immediately preceding the evolving layer, while

the term ‘output layer’ means the neuron layer immediately

following the evolving layer. This is irrespective of whether

or not these layers are the actual input or output layers of

the network proper. For example, in Figure 1, which shows

a generic ECoS structure, the “input layer” could be the

input layer proper of the network (as with SECoS networks,

Subsection II-C) or it could be a neuron layer that processes

the actual input values for presentation to the evolving layer

(as with EFuNN networks, Subsection II-B). By the same

token, the “output layer” could be the actual output layer

of the network (as it is with SECoS) or a neuron layer that

further processes the outputs of the evolving layer (as with

EFuNN). The connection layers from the input neuron layer

to the evolving neuron layer and from the evolving layer to

the output neuron layer, are fully connected.

The activation An of an evolving layer neuron n is deter-

mined by Equation 1.

An = 1 − Dn (1)

where Dn is the distance between the input vector and the

incoming weight vector for that neuron. Since ECoS networks

are fully connected, it is possible to measure the distance

between the current input vector and the incoming weight

vector of each evolving-layer neuron. Although the distance

can be measured in any way that is appropriate for the inputs,

this distance function must return a value in the range of zero

to unity. For this reason, most ECoS algorithms assume that

the input data will be normalised, as it is far easier to formulate

a distance function that produces output in the desired range

if it is normalised to the range zero to unity.

Whereas most ANN propagate the activation of each neuron

from one layer to the next, ECoS evolving layers propagate

their activation by one of two alternative strategies. The first

of these strategies, entitled OneOfN propagation, involves only

propagating the activation of the most highly activated (“win-

ning”) neuron. The second strategy, ManyOfN propagates the

activation values of those neurons with an activation value

greater than the activation threshold Athr.
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for each input vector I and its associated desired output

vector Od do

Propagate I through the network

Find the most activated evolving layer neuron j and its

activation Aj

if Aj < Sthr then

Add a neuron

else

Find the errors between Od and the output activations

Ao

if |Od − Ao| > Ethr then

Add a neuron

else

Update the connections to the winning evolving

layer neuron j

end if

end if

end for

Fig. 2. ECoS learning algorithm

The ECoS learning algorithm is based on accommodating

new training examples within the evolving layer, by either

modifying the weight values of the connections attached to

the evolving layer neurons, or by adding a new neuron to

that layer. The algorithm employed is described in Figure 2.

The addition of neurons to the evolving layer is driven by

the novelty of the current training example: if the current

example is particularly novel (it is not adequately represented

by the existing neurons) then a new neuron will be added.

Four parameters are involved in this algorithm: the sensitivity

threshold Sthr, the error threshold Ethr, and the two learning

rates η1 and η2. The sensitivity threshold and error threshold

both control the addition of neurons and when a neuron is

added, its incoming connection weight vector is set to the

input vector I, and its outgoing weight vector is set to the

desired output vector Od. The sensitivity and error thresholds

are measures of the novelty of the current example. As can be

seen in Figure 2, if the current example causes a low activation

(that is, it is novel with respect to the existing neurons) then

the sensitivity threshold will cause a neuron to be added that

represents that example. If the example does not trigger the

addition of a neuron via the sensitivity threshold, but the output

generated by that example results in an output error that is

greater than the error threshold (that is, it had a novel output),

then a neuron will be added.

The weights of the connections from each input i to the

winning neuron j are modified according to Equation 2.

Wi,j(t + 1) = Wi,j(t) + η1(Ii − Wi,j(t)) (2)

where:

Wi,j(t) is the connection weight from input i to j at time t

Ii is the ith component of the input vector I

The weights from neuron j to output o are modified

according to Equation 3.

Wj,o(t + 1) = Wj,o(t) + η2AjEo (3)

where:

Wj,o(t) is the connection weight from j to output o at time t

Aj is the activation of j

Eo is the signed error at o, as measured according to Equation

4.

Eo = Oo − Ao (4)

where:

Oo is the desired activation value of output o

Ao is the actual activation of o.

This is essentially the perceptron learning rule. From this

it becomes apparent that in [65] and subsequent publications

[91], [172] the terms Od and Ao above were incorrectly

reversed.

Since this algorithm deals with each training example as it is

seen, the way in which the network learns will be affected by

the order in which examples are presented. While this is not a

concern for applications that are continuously learning, it is for

situations where the network is learning from an existing set

of data. Although no literature has come to light that examined

the effect of changing the order of training examples, it was

considered in designing the optimisation algorithm of [167],

as described in Subsection II-G.

B. Evolving Fuzzy Neural Networks

EFuNN was the first ECoS network described [65], [66]

and is an application of the ECoS principles to the Fuzzy

Neural Network (FuNN) [85]. It is a five neuron layer feed

forward network (Figure 3), where each layer performs a

specific function. The first neuron layer is the input layer. The

second layer is the condition layer. Each neuron in this layer

represents a single triangular fuzzy membership function (MF)

[182] attached to a particular input, and performs fuzzification

of the input values based on that MF. This layer is not fully

connected to the input layer, as each condition neuron is

connected to a single input neuron, that is, each input neuron is

connected to its own subset of condition neurons. The weight

of the connection between the condition neuron and its input

defines the centre of the condition neuron’s MF, where the

lower and upper bounds of the MF are defined as the centres of

the neighbouring MF. The activation function for a condition

neuron c, which was based on triangular membership functions

in [65], [66], is defined by Equation 5.

Ac =



















1 − Ii−Wi,c

Wi,c+1−Wi,c
, Wi,c < Ii < Wi,c+1

1 − Wi,c−Ii

Wi,c−Wi,c−1
, Wi,c−1 < Ii < Wi,c

1, Wi,c = Ii

0, otherwise

(5)

where:

Ac is the activation of the condition node c

Wi,c is the connection weight defining the centre of the MF

attached to condition neuron c

Wi,c−1 is the connection weight defining the centre of the

MF to the left of c

Wi,c+1 is the connection weight defining the centre of the
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MF to the right of c

I is the input vector

Wi,c is the connection weight from input node i to condition

node c.

The third layer of neurons is the evolving layer, which is

also referred to as the rule layer. The distance measure used

in this layer, which is the distance between the fuzzified input

vector and the weight vector, is described in Equation 6.

Dn =

1

2

( c
∑

i=1

|Ii − Wi,n|
)

c
∑

i=1

Wi,n

(6)

where:

c is the number of condition neurons (fuzzy inputs)

I is the fuzzified input vector

W is the Condition to Rule layer weight matrix.

The fourth layer of neurons is the action layer: neurons in

this layer represent fuzzy membership functions attached to

the output neurons. This layer is similar to the input layer,

in that each action neuron is connected only to the output

neuron with which its membership function is associated.

Also, the value of the connection weight connecting the action

neuron to its output defines the centre of the action neuron’s

membership function. The activation function of the action

layer neurons is a simple saturated linear function. The final

neuron layer is the output layer. This calculates crisp output

values from the fuzzy output values produced by the action

layer neurons. The output layer performs centre of gravity

defuzzification over the action layer activations to produce

a crisp output. This value is calculated according to Equation 7

Ao =

∑m

a=i Wo,aAa
∑

Aa

(7)

where:

Ao is the activation of the output node o

Aa is the activation of action node a

m is the number of action neurons attached to o

Wo,a is the value of the connection weight from action node

a to output o

Figure 3 shows an idealised EFuNN with three input neu-

rons. Two MF are attached to the first input neuron, three to

the second, and two to the third. There are three rule neurons

and two outputs, with two MF attached to each output.

EFuNN have been applied to a large number of applications,

as discussed in Section V, and have also been found to be

useful as member of ensembles [118], [172].

C. Simple Evolving Connectionist Systems

The Simple Evolving Connectionist System (SECoS) was

proposed as a minimalist implementation of the ECoS algo-

rithm [161], [165], that is, it is an architecture that has the

Fig. 3. EFuNN architecture

minimum number of neuron layers necessary to learn data.

Alternatively, SECoS can be viewed as a minimalist EFuNN,

with the fuzzification and defuzzification components being

removed. Lacking the fuzzification and defuzzification mech-

anisms of EFuNN, the SECoS model was created for several

reasons. Firstly, they are intended as a simpler alternative to

EFuNN. Since they lack the fuzzification and defuzzification

structures of EFuNN, SECoS are much simpler to implement.

Having fewer connection matrices and a smaller number of

neurons, there is much less processing involved in simulating

a SECoS network. They are also much easier to understand

and analyse: while EFuNN expands the dimensionality of the

input and output spaces with its fuzzy logic elements, SECoS

deals with the input and output space ‘as is’. Therefore, rather

than dealing with a fuzzy problem space, SECoS deals with

the problem space directly. Each neuron that is added to the

network during training represents a point in the problem

space, rather than a point in the expanded fuzzy problem space.

Secondly, for some situations, fuzzified inputs are not only

unnecessary but harmful to performance, as they lead to an

increase in the dimensionality of the input space and hence

an increase in the number of evolving layer neurons. Binary

data sets are particularly vulnerable to this, as fuzzification

does nothing but increase the dimensionality of the input data.

By removing the fuzzification and defuzzification capabili-

ties, the adaptation advantages of EFuNN are retained while

eliminating the disadvantages of fuzzification, specifically by

eliminating the need to select the number and parameters of the

input and output membership functions. For most applications,

SECoS are able to model the training data with fewer neurons

in the evolving layer than an equivalent EFuNN [159].

A SECoS network consists of three layers of neurons: The

input layer, with linear transfer functions; The evolving layer;

And an output layer with a simple saturated linear activation

function. The distance measure used in the evolving layer is

the normalised Manhattan distance, as shown in Equation 8:
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Dn =

c
∑

i=1

| Ii − Wi,n |

c
∑

i=1

| Ii + Wi,n |
(8)

where:

c is the number of input neurons in the SECoS

I is the input vector

W is the input to evolving layer weight matrix.

The normalised Euclidean distance can also be used, as

defined by Equation 9.

Dn =

√

∑c

i=1(Ii − Wi,n)2√
c

(9)

There are two layers of connections in the SECoS model.

The first connects the input neuron layer to the evolving layer.

The weight values here represent the coordinates of the point

in input space each evolving layer neuron represents. The

second layer of connections connects the evolving layer to

the output neuron layer. The weights in this layer represent

the output values associated with the input examples.

The learning algorithm is the same as that described in

Subsection II-A and as used by EFuNN. However in SECoS

the input vector I is the actual crisp input vector, while the

desired outputs Od vector is the crisp target output vector.

D. Evolving Self-Organising Maps

The previously presented algorithms, EFuNN and SECoS,

both follow the general ECoS architecture and training al-

gorithm outlined in Subsection II-A. While it is still an

ECoS network, the Evolving Self-Organising Map (ESOM)

[30]–[32] deviates from the general algorithms in order to

implement unsupervised learning. As in a conventional Self-

Organising Map (SOM) [96] the ESOM has two layers of

neurons, the input layer and the map layer, and weighted

connections from the input to map neurons. It is the map

layer that evolves in this model. Neurons also have weighted

connections to their two immediate neighbours. The activation

An of each map neuron n from the input vector I is calculated

according to Equation 10.

An = exp

(−2||Ii − Wi,n||2
ǫ2

)

(10)

where ǫ is a radial.

The ESOM learning algorithm is based on the concept

of dynamically forming spatial clusters, and is presented in

Figure 4.

An optional additional step to the learning algorithm is

to prune the weakest connections after a certain number of

examples have been presented, and also to prune neurons that

have had all of their connections pruned. Since ESOM does

not perform vector quantisation as a conventional SOM does,

Sammon projection [144] must be used to visualise the clusters

that are formed.

for each input vector I do

Find the set of neurons N such that ai ∈ N > Sthr

if N = ∅ then

Insert a neuron w

Connect w to its two nearest neighbours k

Set N = (w, k)
else

Set w to the most activated neuron

Update connection weights from input to map neurons

h ∈ N according to ∆Wi,h = γah(Ii − Wi,h)
end if

Set connections from w to k according to Wn,k =
anak

max(an,ak)
end for

where γ is the learning rate parameter.

Fig. 4. ESOM learning algorithm

E. Dynamic Evolving Neural-Fuzzy Inference Systems

The Dynamic Evolving Neural-Fuzzy Inference System

(DENFIS) is an application of the ECoS principles to an

ANN that implements a Takagi-Sugeno fuzzy inference system

[152]. DENFIS was first described in [86], [147] and was more

completely described in [87].

DENFIS heavily utilises the so-called Evolving Clustering

Method (ECM) [149]. This is based on the concept of dy-

namically adding and modifying the clusters as new data is

presented, where the modification to the clusters affects both

the position of the clusters and the size of the cluster, in

terms of a radius parameter associated with each cluster that

determines the boundaries of that cluster. ECM has only one

parameter, which drives the addition of clusters, known as

the distance threshold Dthr. When new clusters are added,

their centres are set to equal the example that triggered their

creation, and the radius R of a new cluster is initially set to

zero. R grows as more vectors are allocated to the cluster. Due

to the mechanism by which R is updated, it cannot exceed

Dthr. The ECM algorithm is shown in Figure 5.

When cluster a is updated, its centre is shifted closer to In

and its radius Ra(t + 1) is set according to Equation 11

Ra(t + 1) =
Si,a

2
(11)

The new centre of a, Ca(t + 1) is set so that its distance is

on the line between Ca(t) and In at a distance of Ra(t + 1).

Although ECM appears to be a useful clustering method in

and of itself, its primary function is to support the inference of

fuzzy rules from data in DENFIS. This is done in two phases,

firstly forming the antecedents, followed by the consequent

functions. The antecedents are formulated by finding which

combination of input membership functions (MF) activate the

most highly for the centre of the cluster, that is, the values

represented by the cluster centre are fuzzified by the input

MF set and the winning, most highly activated, MF are taken

as the antecedents for that rule. This is very similar in concept

to the way in which fuzzy rules are extracted from EFuNN

and SECoS (Subsections II-H1 and II-H2). The consequent
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Create the first cluster centre C0 from the first example I0

for each subsequent vector In do

Find the minimum distance Dmin between In and each

cluster centre Cn

if Dmin is less than any cluster radius then

Add In to the nearest cluster

else

Find the cluster a with minimum value of Si,j , where

Si,j = Di,j + Ri, Di,j is the distance between the

cluster centre and vector j, and Ri is the radius of

cluster i

if Si,a > 2Dthr then

Create a new cluster

else

Update a

end if

end if

end for

Fig. 5. ECM algorithm

functions are then found using a Least Means Estimation pro-

cess over the examples within the cluster. Thus, each cluster is

used as the basis of a single rule. Clustering and reformulation

of the rules is performed whenever a new training example is

presented to the network. For any input vector I the output of

the DENFIS in calculated as the combined output of the most

strongly activated m rules. There is no adjustment of the MF

during training.

F. Other ECoS Algorithms

The previous sections have reviewed the major ECoS algo-

rithms, that is, those algorithms that are significantly different

to one another, or that are more widely used. This subsection

briefly reviews ECoS algorithms that are less frequently found

in the literature.

Nominal-scale Evolving Connectionist Systems (NECoS)

were introduced in [164]. These extend the ECoS algorithm

to allow it to deal with nominal-scale data [151]. In a NECoS

network, the connections from the input to evolving layer

represent nominal-scale class labels, and the distance measure

is a simple similarity measure. The learning algorithm was

modified so that the labels would change during training to

reflect the more common classes seen for each input variable.

Temporal extensions to ECoS, based on the Jordan-Elman

Simple Recurrent Network (SRN) [34], [102], have also been

proposed [90]. These extensions add a second evolving layer

(analogous to the context layer in SRN) to the ECoS, which

is solely connected to the main evolving layer. Connections

between the context layer and the evolving layer were modified

by Hebbian learning.

The Evolving Clustering Method for Classification (ECMC)

was described in [148]. ECMC is ECM with class labels, that

is, each cluster has a class label associated with it. Unknown

examples are classified according to which cluster they are

assigned to, that is, they are classified according to which

class prototype they are closest to.

The Evolving Classifier Function (ECF) [77] uses a similar

algorithm to ECMC. Parallels to EFuNN and SECoS are

obvious and expected, although there are still differences

between the ECMC and SECoS learning algorithms. The

addition of fuzzy membership functions to ECM yielded the

Evolving Fuzzy Clustering Method (EFCM ) [140].

The Evolving Fuzzy Inference System (EFIS) [133] is a

derivative of DENFIS that includes attributes of the Hybrid

Fuzzy Inference System HyFIS [95], and utilises an enhanced

version of ECM called ECMm (although the origins of the

acronym ECMm are not clearly laid out). Another algorithm

derived from DENFIS is the Dynamic Evolving Computation

System (DECS) which was proposed in [23]. DECS is quite

similar to DENFIS, but includes a genetic algorithm to evolve

and tune the rules.

A Weighted EFuNN (WEFuNN) was reported in [21]. In

this model, each input has a weighting factor associated with

it, and a weighted Euclidean distance function is used in the

evolving layer. An exponential, as opposed to saturated linear,

transfer function was used for the evolving layer neurons and

the k-nearest evolving layer neurons were allowed to propagate

their activations to the action layer (see the m-of-n activation

strategy in Subsection II-A). When evaluated over a case study

problem of laying out printed circuit boards, WEFuNN was

more accurate than EFuNN.

G. ECoS Optimisation Algorithms

Optimisation of ECoS is taken to mean the creation of an

ECoS network that fulfils the following criteria. The network

should:

• Exhibit good memorisation of the training data

• Exhibit good generalisation to data it has not previously

experienced

• Be parsimonious, that is, be of the smallest size that can

fulfil the previous two criteria.

ECoS optimisation algorithms fall into two broad groups. The

first is based on combining, or aggregating, evolving layer

neurons. The second is based on evolutionary algorithms.

1) Neuron Aggregation: Evolving layer neuron aggregation

is the process of combining several adjacent neurons into one

neuron that represents all of the previous exemplars for that

spatial region. During the aggregation process, the distance

between the incoming and outgoing weight vectors of two

neurons is calculated. If the distances are below specified

thresholds, the two neurons are either aggregated together, or

added to a set of neurons that are all aggregated into one

[159], [165]. The rationale behind aggregation is to reduce

the size of the evolving layer of the ECoS, while retaining

the knowledge stored within the connections to each neuron.

Connection weights of the resulting neuron are set to the

arithmetic mean of the weights of the aggregated neurons. Two

kinds of aggregation have been developed: online, which takes

place during training; and offline, which takes place when

training over a data set is complete.

Online aggregation is carried out when neuron connection

weights are modified. After the weight changes have been

applied, the incoming and outgoing distances between the
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modified neuron and its immediate neighbours are measured.

If both distances are below the aggregation thresholds, then the

neurons are aggregated together. There is no need to measure

the distance between any other neurons, as only one neuron

at a time is ever modified under the canonical ECoS training

algorithm. Note that this algorithm assumes that new neurons

are allocated spatially, that is, new neurons are inserted next

to the existing neurons they are closest to in space.

Online aggregation has the advantage of modifying the

network as training is under way: there is no need to halt

training at any point to perform a global (offline) aggregation,

and there is no need to examine every neuron in the evolving

layer as there is with offline aggregation.

The offline aggregation strategy exhaustively compares each

neuron to every other neuron, which requires 1
2n(n − 1)

comparisons for n neurons. This strategy is very thorough: all

neurons that are close together will be aggregated together, no

matter where they are in the evolving layer. Offline aggregation

requires that training be halted before optimisation can be

carried out. However, experiments have shown [159] that it is

able to reduce the size of the target network more effectively

than online aggregation.

2) Evolutionary Methods: The majority of the optimisation

methods developed thus far for ECoS involve some form of

evolutionary computation (EC) [37]. Types of EC used include

genetic algorithms (GA) [27], [55], [58], [124] and evolution

strategies (ES) [15], [57].

Although EA have been used in many ways to optimise

ANN (see for example the excellent review by Yao [181])

the applications to ECoS have been largely limited to the

optimisation of the training parameters of the ECoS. This

optimisation is done in either an on-line manner (that is, as

training was under way) or in an off-line or batch mode (where

the parameters were optimised with respect to a specific data

set).

Evolution strategies were used to optimise the parameters

on-line in both [166] and [20]. While [166] used a simple

(1+1) ES to optimise all four basic training parameters for

each training example, [20] used a (µ, λ) ES to optimise

the learning rates only, with respect to a sliding window of

data where the window was moved though the training data

stream. A similar windowing-of-data approach was used in

[89], although in this case a GA was used instead of an ES.

The GA optimised all learning parameters and the fitness was

evaluated as a function of the error over the training data

window.

Genetic algorithms were used for off-line optimisation of

both training parameters and the order of training examples

in [167], [159]. The justification for optimising the order of

the examples was that the overall size and performance of

the ECoS network is determined by the values of the training

parameters and the order in which examples are presented. The

fitness function in this case was based on minimising both the

error over the provided data set, and the overall change in the

size of the evolving layer of the ECoS. A similar approach was

taken in [119], although the order of the training examples was

not optimised. A GA was also used for off-line optimisation

of the training parameters in [88], where the fitness function

was based entirely on the error over the training data set. A

co-evolutionary GA was used to evolve ensembles of EFuNN

in [122], where data was first clustered, and each cluster split

into a training and a testing data set. The GA optimised an

individual EFuNN over each training and testing set, where the

optimisation was with respect to the accuracy and size of the

network. The overall result was that the ensemble performed

better than a single EFuNN trained over the entire data set. A

clustering method similar to ECM was used in [120], [121],

where the same GA-based ensemble approach was used.

An unusual approach to off-line optimisation was reported

in [14]. In this work, a GA was used to optimise the fuzzy rules

and membership functions that were extracted from a trained

EFuNN. The modified rules and MF were then re-inserted into

the EFuNN for testing. Thus, the GA was really optimising

a fuzzy system, although the close-coupling between EFuNN

and their associated rules and MF made it an useful approach.

H. Knowledge Discovery with ECoS Networks

Rule extraction from ANN is the process of formulating,

from a trained artificial neural network (ANN), a set of

symbolic rules that mimic the behaviour of the ANN [13],

[63], [125]. Six motivations for extracting rules from ANN are

given in [13]: Provision of a user explanation capability, that

is, elucidating what the ANN has learned; Extension of ANN

systems to safety-critical problem domains, by increasing

confidence in the ANN via explanation; Software verification

and debugging of ANN components in software systems, by

elucidating the internal state of the ANN; Improving the

generalisation of ANN solutions, by providing a means to

predict where the ANN may fail (via examination of the rules);

Data exploration and the induction of scientific theories, by

extracting rules from an ANN trained over a data set for

which the processes are unknown; Knowledge acquisition for

symbolic AI systems, by providing a method of automatically

acquiring rules.

Since ECoS learn by partitioning the input space into

regions, and fuzzy rules can be visualised as methods of

associating regions of input space with consequents, the fit

between the two models is quite natural [75], [78]. Rule

extraction is simply a matter of mapping the two sets of

regions together and by so doing finding the antecedents and

consequents.
1) Fuzzy Rule Extraction from EFuNN: The Rule Ex-

traction from EFuNN (RE-EFuNN) algorithm for extracting

Zadeh-Mamdani fuzzy rules [113] as described in [75], [91],

is presented in Figure 6.

2) Fuzzy Rule Extraction from SECoS: Although SECoS

do not have fuzzy logic elements within their structure, it

is possible to extract fuzzy rules from them using external

MF [162]. The rationale behind this approach was that there

is no practical difference between the fuzzy exemplars in an

EFuNN, where those exemplars have been fuzzified by the

EFuNN internal MF, and using external MF to fuzzify the

crisp exemplars stored within a SECoS. The SECoS Fuzzy

Rule Extraction algorithm (SECoS-FRE) for extracting Zadeh-

Mamdani fuzzy rules from trained SECoS networks is as in

Figure 7.
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for each evolving layer neuron h do

Create a new rule r

for each input neuron i do

Find the condition neuron c with the largest weight

Wc,h

Add an antecedent to r of the form “i is c Wc,h” where

Wc,h is the confidence factor for that antecedent

end for

for each output neuron o do

Find the action neuron a with the largest weight Wh,a

Add a consequent to r of the form “o is a Wh,a” where

Wh,a is the confidence factor for that consequent

end for

end for

Fig. 6. EFuNN fuzzy rule extraction algorithm

for each evolving layer neuron h do

Create a new rule r

for each input neuron i do

Find the MF µ associated with i that activates the most

strongly for Wi,h

Add an antecedent to r of the form “i is µ µ(Wi,h)”,

where µ(Wi,h) is the confidence factor for the an-

tecedent

end for

for each output neuron o do

Find the MF µ associated with o that activates the most

strongly for Wh,o

Add a consequent to r of the form “o is µ µ(Wh,o)”,

where µ(Wh,o) is the confidence factor for the conse-

quent

end for

end for

Fig. 7. SECoS fuzzy rule extraction algorithm

Functionally, this algorithm is equivalent to the RE-EFuNN

algorithm. The RE-EFuNN algorithm chooses antecedent MF

based on the highest magnitude weights from the condition to

rule neurons, which are really crisp exemplar values that have

been fuzzified by the EFuNNs internal MF. The SECoS-FRE

algorithm chooses antecedent MF based on the fuzzified values

of the weights, which while representing crisp exemplars, are

fuzzified using the provided external MF.

The advantage of this algorithm is that, since the member-

ship functions are not an integral part of the network, the

number of MF, their type and their parameters can all be

optimised before the rule extraction process is carried out. If

the rules extracted with a particular set of MF are not optimal,

then the MF can be changed and fresh rules generated, without

altering the SECoS. This fact was exploited in [163], where

evolutionary programming (EP) [37] was used to optimise sets

of MF used to extract rules from SECoS.

I. Output Space Expansion in ECoS

ECoS networks are intended to be used in an online, life-

long learning situation. In such situations, it is entirely possible

that new target classes will be introduced that must be handled

by the existing system. In these cases, there are three possible

solutions. Firstly, the existing system can be thrown away and

a new network created from scratch. This is not satisfactory,

for two reasons: Firstly, the amount of time required may be

significant. Secondly, the data that has been seen and must be

accommodated by the existing network may not be available

for retraining.

The second option is to retain the existing network and

create a new network specifically to handle the new class.

This avoids the problem of training time, but the problem of

missing data remains: if the new network is to handle the new

class, then it must be trained on negative examples as well as

positive examples.

The third option is to modify the existing network to

accommodate the new class. This has the advantage of only

requiring additional training on the new class, obviating both

the time and data availability problems of the previous two

options. For conventional ANN such as MLP this is a very

difficult thing to do, but ECoS are inherently suited to this

problem; whereas neurons in MLP learn with respect to the

entire input space (global learning), neurons in ECoS learn

only with respect to a small patch of the problem space (local

learning).

The method of adding new outputs to ECoS networks is re-

ferred to as output space expansion, because each class added

increases the dimensionality of the output space. Algorithms

for adding output classes have been developed for both EFuNN

and SECoS.

1) EFuNN Output Expansion: Expansion of the output

space of EFuNN was introduced in [53]. Addition of a new

output neuron effects the output neuron layer, the action

layer and the rule to action layer connections. When a new

output and its action neurons are inserted into the EFuNN, the

connections from the existing rule neurons to the new action

neurons are set to the fuzzified value of the crisp output zero,

using the fuzzy membership functions defined for the new

action neurons. This has the effect of making all existing rule

neurons represent negative examples for the new output, that

is, if any of the existing rule neurons fire, then the new output

will be inactive by default. The network is then further trained

on examples of the new class, allowing new rule neurons to

be constructed to represent the class.

2) SECoS Output Expansion: As befits the simplicity of the

SECoS model, the algorithm for the addition of new output

classes to a SECoS network is also simple. A new output

neuron is inserted into the network, and the connection weights

from the evolving layer to the new output are set to zero. This

again has the effect of making all existing examples negative

by default. This approach was used in [52] to expand the

vocabulary of a spoken word recognition system.

III. SIMILARITIES OF ECOS TO OTHER CONSTRUCTIVE

ANN

There are many other constructive neural network algo-

rithms apart from ECoS in existence [103]. While older con-

structive algorithms such as Cascade Correlation [35], Tiling
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[115] or Upstart [40] have very little similarity to ECoS, a

few algorithms have sufficient features in common that some

comments on their similarities and differences are informative.

This comparison is necessarily qualitative, as there seems to

be no published empirical results comparing ECoS networks

to any of the algorithms discussed here.

The Resource Allocating Network (RAN) [137] has several

common elements with ECoS. The addition of new neurons

in both RAN and ECoS are based upon the novelty of each

training example and the network error over each training

example and the neurons that are added will themselves rep-

resent these examples. In cases where a neuron is not added,

then the parameters (connection weights or neuron parameters)

are adjusted, in such a way as to optimise performance

of the network over the current training example. Finally,

while RAN and ECoS both use a distance-based function to

calculate the activation values of the growing neuron layer, the

activation of the output neurons in RAN is based on a more

conventional multiply and sum operation. Differences between

the algorithms are principally related to the complexity of the

algorithm and its intended means of application. Firstly, RAN

uses Gaussian functions to explicitly represent a region of

input space, where the region is defined by the parameters

of Gaussian functions in the growing layer of the network.

Conversely, each neuron in the evolving layer of an ECoS

network defines a point in input space, where the point is

defined by the connection weight vector of that neuron. ECoS

neurons do define regions in the input space, but they do

so implicitly rather than explicitly. Secondly, RAN performs

an exponential post-processing on the output values of the

inputs, and has a “bias” function attached to the output layer,

which is adjusted to perform the function mapping. RAN is

therefore a more complex system, as it has more parameters to

adjust and requires more complex calculations. Finally, ECoS

training is based on the idea of a one-pass, continuous, life-

long learning algorithm, whereas RAN is not. Specifically,

RAN has a “resolution” parameter that determines how finely

the RAN matches the function being learned, which decays

as learning progresses. This means that RAN is unlikely to be

useful in life-long learning applications.

As with RAN, at first glance the Zero Instruction Set

Computer ZISC [145] looks very similar to ECoS. Both

activate their neurons based on the distance between input

vectors and neurons and both divide the input space into

regions. There, however, the similarities end. Whereas an

ECoS network will always have one neuron that activates

for any particular example, with ZISC it is possible that no

neuron at all will activate for an example. Alternatively, several

neurons may activate in response to the same example. This

will require some form of conflict resolution strategy, but at

present this situation is dealt with by simply labelling the

example as unidentifiable. The final difference between ECoS

and ZISC is that ZISC is intended for classification purposes

only.

The ECoS algorithm, and SECoS in particular, is most

similar to the Grow and Learn (GAL) constructive algorithm

[11]. Both use a distance based activation function, and deal

with the input data one example at a time. The addition of

neurons in both algorithms is driven by the error of the network

over each training example, and when a neuron is added, its

incoming connection weights are set to the input vector of

the current training example. The “fine-tuning” of incoming

connection weights in GAL is identical to the learning rule

used in the first layer of adjustable connections in EFuNN and

SECoS, where the intention of both is to modify the exemplar

represented by the neuron into a prototype that represents

several examples in a cluster. Interestingly, it is explicitly

stated that “a large number of iterations will be necessary” [11,

pg407] , while ECoS is touted as a one-pass algorithm. The

differences between the two are quite informative, however.

Firstly, GAL was designed for classification applications only

[103], even though extensions were suggested [11] that would

allow it to learn function approximation problems. Because of

this restriction, the connection weights in the hidden to output

connection layer are used only as class labels. This means that

there is no learning in the second layer, as a class either exists,

or not. Although there is an equivalent to the error threshold

parameter from ECoS training, there is no equivalent to the

sensitivity threshold parameter. This may be because of the

restriction to applications to classification.

A comparison of ESOM and the Growing Self-Organising

Map (GSOM) [10] is also informative. Firstly, GSOM per-

forms vector quantisation, as the original SOM does, whereas

ESOM does not. This obviates the need to perform a Sam-

mon projection on the trained network when visualisation is

required. Secondly, the GSOM is generally initialised with

several neurons (usually four) before the start of training,

whereas ESOM has no neurons initially. The criteria for adding

neurons is also different: ESOM adds a neuron immediately

if the error is unacceptable, while GSOM accumulates error

over multiple passes over the training set. Finally, GSOM adds

neurons only at the edges of the map, while ESOM can add

neurons to any part of the output map.

A comparison of ECoS with the Growing Cell Structure

(GCS) Network algorithm [41], which has a large number of

similarities with ECoS. Both algorithms are a winner-take-all

kind of network, where the activation of neurons is based on

the distance between the neuron and the current input vector.

GCS networks partition the input space into Voronoi regions,

as ECoS do [159], and the winning neuron during training

is adjusted to be spatially nearer to the current example.

Both algorithms allow for continuous, life long learning. The

differences between the two algorithms are quite significant,

however. Firstly, neurons in a GCS are connected together by

‘edges’. Signal counters are attached to each neuron, and these

counters are used to measure the performance and importance

of each neuron. Rather than adding neurons when an example

requires them, neurons are added after a set number of exam-

ples has been presented. Also, new neurons do not represent

training examples: the connections of new neurons are set to

the means of the two parent neurons, and the neurons are

inserted with the goal of optimising the partitioning of the

input space, rather than optimising the representation of the

input data. Although both ECoS and GCS adjust the weights

of the winning neuron, GCS will adjust the weights of the

winners neighbours also. This means that GCS is not a local
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learning algorithm, while ECoS is purely local. GCS are also

more computationally complex than ECoS, as a large number

of calculations must be made at each step, such as updating

and tracking signal counters and calculating the local resources

of each neuron.

The Growing-And-Pruning Radial Basis Function (GAP)-

RBF network [61] also has some similarities with ECoS.

(GAP)-RBF adds and prunes neurons based on their ‘signifi-

cance’ to the network, where significance is calculated by an

approximation of the effect of the neuron over several training

examples. Neurons are only added if their significance exceeds

a threshold value, whereas existing neurons are pruned if their

significance is less than that threshold. The addition of neurons

is thus similar to the way in which the error threshold drives

neuron addition to ECoS: neurons are added to ECoS if they

will reduce the error of the network. Also, in those cases where

a neuron is not added to (GAP)-RBF, the network parameters

are adjusted, analogous to the way in which the connection

weights in ECoS are changed. The authors of [61] also used a

piecewise linear approximation of the Gaussian functions that

are used in RBF networks, which substantially reduced the

computational complexity of the algorithm. The algorithm is

still more complex than ECoS, however, and the use of radial

basis functions sets it apart from ECoS, which uses simple

distance-based functions. Finally, the significance of neurons

in (GAP)-RBF is calculated over several examples, whereas

ECoS is a purely local-learning algorithm that considers only

one example at a time.

While there are many more constructive algorithms in exis-

tence, the algorithms described above are the ones most similar

to ECoS. An important future step is the performance of a

rigorous, quantitative comparison between these algorithms

and the appropriate ECoS algorithms.

IV. EMPIRICAL EVALUATIONS OF ECOS OVER

BENCHMARK DATA SETS

Although, there is a relatively large number of publications

in existence that evaluate ECoS networks over a wide range

of applications (see Section V), only a few have presented

results over well-established benchmark data sets. These data

sets include: iris classification [36]; Box-Jenkins Gas Furnace

[19] time-series data set; Mackey-Glass chaotic time-series

function [24]; and the waste water flow problem [92].

The authors of [5] reviewed a variety of algorithms over the

Mackey-Glass data set and found that EFuNN, while not the

most accurate, was still fairly accurate and was the fastest of

the algorithms they examined.

The model “nonlinear autoregressive moving average with

exogenous inputs” (NARMAX) [46] was compared with DEN-

FIS over Mackey-Glass time-series. NARMAX was found to

be more accurate.

In [134] EFuNN was compared with the proposed algorithm

Adaptive Resource Allocating Neural Fuzzy Inference System

(ARANFIS) over iris classification and Mackey-Glass time

series. ARANFIS was found to be more accurate.

In [1] and [2] an algorithm hybridising evolutionary and

local learning was compared to EFuNN over the gas furnace,

Mackey-Glass and waste water flow data sets. This algo-

rithm Meta Learning Evolutionary Artificial Neural Network

(MLEANN) [2] was shown to be more accurate than EFuNN,

although EFuNN was faster.

The work reported in [127], [128] compared EFuNN with

the model ANFIS [62] over a handwriting recognition prob-

lem, and found that EFuNN was faster to train, more accurate

and better at adapting to new data. However, it also found that

EFuNN was slower to recall and needed more memory, due

to its larger network size.

A review of methods of evolving Takagi-Sugeno fuzzy rules

was presented in [138], [139]. The authors compared EFuNN

and DENFIS over the Mackey-Glass function. While DENFIS

had fewer rules and was more accurate than EFuNN, neither

DENFIS nor EFuNN was the most accurate model evaluated.

A more rigorous evaluation of ECoS networks over iris,

gas furnace, and Mackey-Glass data sets was carried out in

[159]. In these experiments, ten-fold cross validation was used,

where the data sets were split into two training sets and a

single testing set. The second data set was used to evaluate the

ability of the tested networks to adapt to new data after training

over the first training set had finished. EFuNN networks were

compared to backpropagation-trained FuNN, and SECoS were

compared to backpropagation-trained MLP. In all cases, the

ability of the networks to learn, generalise and adapt were

evaluated.

The results showed that for each of the data sets, SECoS

and EFuNN were able to learn and generalise with an accuracy

that was not significantly different to either MLP or FuNN.

Furthermore, while MLP and FuNN uniformly exhibited sig-

nificant levels of forgetting after further training on the second

training set there were no significant levels of forgetting

exhibited by either SECoS or EFuNN. All statistical tests of

significance were done to the 99% level of confidence.

V. ECOS APPLICATIONS

A. Speech Processing

Automatic speech recognition (ASR) [111] is a challenging

problem and ANN have been fruitfully applied to it many

times in the past [12], [18], [39], [54], [56], [59], [98],

[104], [107], [110], [136], [141], [143], [146], [153]–[155],

[157], [158]. ECoS networks are well suited to applications

in ASR [94], as they can more effectively adapt to changes

in pronunciation and speakers (which is the major source of

variation in ASR) than other ANN.

In [69] EFuNNs were applied to spoken phoneme recog-

nition. EFuNNs were again applied to this problem in [160],

and were shown to be both accurate and highly adaptable.

The efficiency of SECoS networks in this application area

was demonstrated in [165], where a comparison with MLP

showed that they were faster training, more adaptable and

more accurate than MLP.

Speech recognition via whole word recognition has also

been done using ECoS networks. EFuNNs were used in [53],

while SECoS were adopted in [52], for speech-control of a

robot, and in [50], for control of a home-automation system.

SECoS were again used to recognise whole-words in [51].
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The goal of this paper was to test a speech de-noising method

in an in-car environment. A noise-cancellation approach was

also demonstrated in [83], where the speech recognition was

done by EFuNN. In each case, ECoS networks were able to

accurately recognise the words, and the adaptation capability

of ECoS, through further training and output space expansion,

made them far more useful for this task than alternative ANN.

Finally, in [105] ECM was used to cluster English and

Māori words together, based on their acoustic properties.

These “bilingual acoustic clusters” were intended to highlight

similarities and differences between the two languages.

B. Bio-Medical Applications of ECoS

Bioinformatics and medicine are strongly related areas

where ANN have been widely applied [16], [25], [178]. ECoS

networks have been applied to several different problems in

this area [79], [116].

Prediction of RNA initiation sites, that is, sites on RNA

strands where protein transcription beings, was accomplished

in [42]. Comparisons between EFuNN and MLP were carried

out, and EFuNN was found to be able to detect unique RNA

patterns that other methods could not. EFuNN was used to

model gene regulatory networks in [80]. The data for the

model were gene expression levels captured from micro-

arrays. Useful rules describing the development of the cells

through time were discovered.

Using EFuNN, the work in [43] identified cancer tissues

from gene expression in micro arrays and used rule extraction

to identify cancer genes. No comparison with other algorithms

was done, but this was not an issue because knowledge

discovery via rule extraction was the goal of the work. Useful

rules were extracted from the trained EFuNN.

Clinical and micro array genetic data was combined using

EFuNN in [44], [45] to generate patient prognoses, where the

outcomes were either that the patient would die, or the patient

would recover. A multi-modular approach was used, where

clinical data was modelled by one module and genetic data

by another. The reported accuracies of EFuNN were higher

than those reported by earlier researchers (87.5% as opposed

to 77.6%).

Another application of EFuNN was presented in [106].

In this paper, an EFuNN was used to classify the stimulus

received by a subject based on the electrical activity of the

brain, as read by an EEG. Although the purpose of the

paper was to demonstrate an Independent Component Analysis

(ICA) based approach to denoising the EEG data, EFuNN was

found to be quite accurate.

The work reported in [114] modelled kidney function from

blood levels of the metabolic by-product creatinine. The mo-

tivation of this work was that being able to accurately model

the function of a patient’s kidneys allows the commencement

of dialysis treatment to be optimally timed, which improves

the patient’s long-term prognosis. In this application, DENFIS

was found to be more accurate than the algebraic formulae

that had been previously used.

The relationship between the setting of a ventilator machine

used to support patient breathing and patient blood oxygen

levels was investigated using several fuzzy neural network

models in [112], including EFuNN and DENFIS. When the

results of EFuNN and DENFIS were compared with other

fuzzy neural models such as ANFIS, it was shown that while

both EFuNN and DENFIS had low errors, they were not the

lowest reported in the study (a method based on merging

fuzzy sets according to their Hebbian importance, followed

by tuning fuzzy membership functions using the Least-Mean-

Squares algorithm, yielded the greatest accuracy). The number

of rules produced by EFuNN, however, was one of the largest.

C. Image Processing

Although ECoS networks in general could be expected to

lend themselves well to image processing problems, especially

problems involving image recognition, EFuNN has so far been

used to the exclusion of all other ECoS algorithms in this area.

The problem investigated in [84], [93] was to classify

vegetation and ground cover images taken from orbit by SPOT

satellites: EFuNN was compared to FuNN in this work. It was

found that EFuNN was more accurate and faster training than

FuNN for this problem.

Classifying motion vector patterns, or the changes from one

frame to the next in an MPEG video stream was the application

in [100]. The task was to classify a frame from a compressed

video stream as one of six classes: static; panning; zooming;

object motion; tracking; and dissolve. This work compared

the performance of EFuNN against the LVQ algorithm [97],

as well as analysing the effect of varying the number of

membership functions on performance.

The performance of MLP and EFuNN were compared in

[150], where the application was the classification of images

of textures. EFuNN was found to be more accurate and to

have a much lower computational load than MLP. The lower

computational load presumably came about from EFuNNs

faster training algorithm.

Horticultural applications were the subject of [33], [174],

[175], [177]. The problem dealt with here was classification

of pest damage on apple tree leaves. This involved presenting

full colour images to an EFuNN that then had to identify which

of three insect pests - Codling Moth, Leafroller and Appleleaf

Curling Midge - had caused the damage in the image. EFuNN

were found to be more accurate at classifying images than k-

means, MLP and SVM. The ability to extract fuzzy rules was

also considered to be an advantage in this application area

EFuNN were used to classify images of handwritten digits

in [129], where an extensive exploration of the parameters of

the EFuNN and the problem itself was carried out. Accuracies

ranged from 94-99%, showing how effective EFuNN was for

this problem.

D. Applications in Information Technology

With the exception of [180], which dealt with robot signal

control, applications of ECoS networks in information tech-

nology (IT) have focussed entirely on network management

applications. EFuNN was used in [29] predicting the availabil-

ity of resources in a heterogeneous network for Voice over IP

(VoIP) applications, while ESOM was used in the same paper
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to assist in visualising the network quality. A comparison of

the accuracy of the EFuNN-based approach with a MLP-based

approach found that while MLP generalised better, EFuNN

adapted much faster to the changing dynamics of a real-life

network. EFuNN was again used in [60], where the application

was to optimise a Bluetooth routing protocol. It was found

that EFuNN reduced the number of useless packets in the

piconet and improved the reply time between devices within

the piconet. EFuNN was used to predict places to hand-off

service in a Multi-Protocol Label Switching (MPLS) network

in [49], where EFuNN was found to give superior network

quality.

The remaining IT applications of ECoS were in network

security. In [3], [4] EFuNN were used for network intrusion

detection, where they achieved a detection accuracy of 100%.

Incoming network packets were analysed by EFuNN in [22]

to determine whether or not the packets represented an attack.

A comparison with MLP showed that the rapid adaptation

capability of EFuNN made it the better choice for this ap-

plication. The work reported in [108], [109] used ESOM to

detect anomalous network activity to attempt to detect network

intrusions, and [132] used ECM and EFIS, a hybrid of HyFIS

[95] and DENFIS to profile network traffic to detect network

anomalies. Again, the adaptivity of ECoS networks were a

major advantage. Finally, [179] used an improved ESOM

algorithm to cluster together multiple network intrusion alerts,

thus reducing the number of alerts the operator had to deal

with. The improvement to ESOM was an improved method of

selecting the initial connection weights.

E. Economics

Economic and financial data is a rich application area

for connectionist systems [171]. Despite this, relatively few

applications in economics have been investigated using ECoS

networks.

In [82] the task was to predict the New Zealand stock

market index the SE40. Comparison of the results of EFuNN

with a FuNN showed that EFuNN was both more accurate

and more adaptable than FuNN. EFuNN were also applied to

predicting the SE40 in [156], although no comparison with

other models was presented. The NASDAQ-100 stock index

was modelled in [7], where an EFuNN was used to predict

whether or not stocks were going to go up or down. The

results were described in the paper as ‘promising’, although

no comparison with other predictive methods was reported.

In [30] an ESOM was used to generate a world macroe-

conomic map, which clustered together countries of similar

economic performance. EFuNN and ESOM were used in [81]

to perform a risk analysis of the European monetary union,

with the results showing that EFuNN in particular was useful

for this application.

F. Other Applications

In this subsection, other applications of ECoS networks are

presented.

The work presented in [6] compared MLP and EFuNN

for predicting electricity demand in the Australian state of

Victoria, finding that EFuNN was more accurate. In follow-up

work [17], the predictive power of linear genetic programming

was also investigated, but EFuNN was still found to be

superior.

EFuNN was used in [8], [9] to predict rainfall in the south-

ern Indian state of Kerala. Comparisons with MLP trained via

conjugate gradient and backpropagation showed that EFuNN

was more accurate and much faster. A similar application,

modelling rainfall in Switzerland, was presented in [173],

[176], where the goal was to learn more about the rainfall

phenomenon by extracting fuzzy rules from EFuNN.

EFuNN was again used in [28] for on-line evaluation

of trainee performance in a virtual reality training task. A

comparison with MLP showed that EFuNN was marginally

more accurate (98.6% compared with 95.6%).

The problem of detecting abnormal behaviour by the oc-

cupants of an intelligent environment was addressed in [142],

where they used a SECoS network to integrate the data from

18 different sensors in a single room. While the accuracy of

SECoS was equivalent to other methods that were investigated,

the fast training speed and adaptability of SECoS made it more

useful.

Time-delay neural networks and EFuNN were used to

classify the outputs of an artificial nose in [184], where it

was shown that EFuNN was faster and more accurate.

A method of identifying people by combining speech and

image information, using ECoS, was presented in [185] which

used ECF to identify speakers and a modified ZISC [145] to

identify faces.

An entry in the RoboCupRescue competition was described

in [183], where EFuNN was used to integrate sensors on a

rescue robot and determine whether or not a building was on

fire. Fuzzy rule extraction was heavily used in this application.

[168]–[170] used SECoS networks to predict the abundance

of aphids in Canterbury, New Zealand, from climate variables.

The superior training speed of SECoS made it possible to in-

vestigate which of the climate variables were more significant

to aphid abundance, by iteratively removing variables from the

data set and examining the effects on prediction accuracy.

EFuNN and ANFIS were compared over the problem of

modelling the social effects of anti-smoking legislation on

young smokers in [135]. The results showed that while both

algorithms were capable of modelling the problem, and that

EFuNN was faster, ANFIS was more accurate.

VI. FUTURE DIRECTIONS

A. Input Significance

Many methods have been proposed for determining the

importance of each of the input neurons of an MLP [47],

[48], [117], [130]. These methods are useful for identifying

redundant variables in the data set and for data mining,

where the identification of important variables can be useful

in determining what the MLP has learned. So far, however,

no work has come to light in objectively determining the

significance of ECoS inputs. Such a technique would be very

useful for ECoS, as apart from the advantages of removing

redundant variables, the greater learning speed of ECoS would
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allow an input significance analysis technique to contribute

greatly to data mining with ECoS.

Although a method using incremental principal components

analysis was reported in [131] for selecting inputs for ECM

/ DENFIS, it is unclear if this method is applicable to other

ECoS algorithms such as EFuNN. A method for determining

input significance by analysing the connection weights in an

ECoS network is therefore considered to be an important

avenue of future research.

B. Optimisation

A number of methods for optimising ECoS networks using

EC have been discussed in this review. All of these meth-

ods used single-objective algorithms, whereas multi-objective

algorithms [38] may be more suitable, as the goal is to not

only improve the performance of the ECoS but also to reduce

the size (or rate of growth) of the network. However, EC is

in many ways unsatisfactory as an optimisation technique,

for a number of reasons. Firstly, EC algorithms are costly

in terms of the computing power required. This conflicts

with the motivation of ECoS as a fast, on-line algorithm.

Secondly, EC-based algorithms optimise the ECoS to a specific

set of data, which is unsuitable for life-long learning. While

non-evolutionary algorithms exist for automatically adjusting

the parameters of back-propagation training [126], such algo-

rithms have not yet been developed for ECoS. Plainly, if such

a technique were possible, it would be very advantageous,

as the automatic selection of ECoS training parameters, as

training were under way, would be a significant advantage, as

it would allow the rapid training advantages of ECoS to be

retained. It seems likely that a formalisation of ECoS, such as

is discussed in the following subsection, would point towards

methods of automatically determining at least the two learning

rate parameters.

C. Formalisation

Traditional ANN are supported by a large body of theory

[26], [99], [101], [123]. This body of theory describes: How

the ANN training algorithms behave, given the settings of their

training parameters; How the training algorithms allow the

network to capture knowledge; And how this knowledge is

represented by the ANN.

This theory assists the neural network practitioner in both

applying these algorithms and in optimising and extending

them. A theoretical basis is also useful in assisting the

acceptance of a new algorithm: other researchers are more

likely to utilise a new algorithm if its theoretical grounding

is known. More importantly, a formalisation would almost

certainly point to methods of addressing the previous two

issues in this section.

It is for these reasons that a theoretical basis to ECoS

is desirable. Any theory, or formalisation, that describes the

ECoS algorithm must cover two distinct aspects. Firstly, the

behaviour, or state, of the network at any time t. Secondly,

the way in which the state of the network changes as it trains,

which includes the effect each training parameter has on the

changes made to the ECoS by the training algorithm.

Kasabov [66], [69], [77] suggests a formalisation based on

hyper-spheres, where there is one hyper-sphere in input space

and one hyper-sphere in output space for each evolving layer

neuron. The radius of the input hyper-sphere is defined by

the sensitivity threshold parameter Sthr, and any example that

falls within this hyper-sphere will not cause a new neuron to

be added to the network.

This theory, however, does not describe the effects of the

other training parameters. Although experimental results [160]

show that the parameters have different effects upon the

behaviour of an ECoS network, this theory does not tackle

parameter optimisation.

While an attempt at a formalisation based on Voronoi

regions was made in [159], this was incomplete in that it was

restricted to uniformly distributed data and did not suggest any

ways in which the training parameters could be optimised. A

complete, testable formalisation of ECoS networks is therefore

required as a matter of urgency.

VII. CONCLUSION

The first ten years of evolving connectionist systems have

shown that they are fast and efficient learning algorithms that

are able to adapt to new data without forgetting the old. These

years have also seen the creation of an exciting variety of

algorithms. Each of these algorithms has certain advantages

or disadvantages, and areas of application. While it does not

seem likely that the basic algorithms will significantly change,

it is likely that further refinements and improvements to these

algorithms will be developed in the future. The real-world

effectiveness of these algorithms has also been shown, by the

wide variety of applications to which they have been applied. It

is also likely that more applications will be fruitfully addressed

with the use of ECoS networks. The next decade is sure to see

interesting developments in both algorithms and applications.

APPENDIX

LIST OF ABBREVIATIONS AND ACRONYMS

ANFIS – Adaptive Neural Fuzzy Inference System

ANN – Artificial Neural Networks

ARANFIS – Adaptive Resource Allocating Neural Fuzzy

Inference System

ASR – Automatic Speech Recognition

DENFIS – Dynamic Evolving Neuro-Fuzzy Inference System

DECS – Dynamic Evolving Computation System

ECF – Evolving Clustering Function

ECM – Evolving Clustering Method

ECMC – Evolving Clustering Method for Classification

ECoS – Evolving Connectionist System

EFCM – Evolving Fuzzy Clustering Method

EFIS – Evolving Fuzzy Inference System

EFuNN – Evolving Fuzzy Neural Network

ES – Evolution Strategy

ESOM – Evolving Self-Organising Map

FuNN – Fuzzy Neural Network

GA – Genetic Algorithm

GAL – Grow and Learn Network

(GAP)-RBF – (Growing and Pruning) Radial Basis Function
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GSOM – Growing Self-Organising Map

HyFIS – Hybrid Fuzzy Inference System

ICA – Independent Component Analysis

IIS – Intelligent Information Systems

MF – Membership Function

MLEANN – Meta Learning Evolutionary Artificial Neural

Network

MPLS – Multi-Protocol Label Switching

NARMAX – nonlinear autoregressive moving average with

exogenous inputs

NECoS – Nominal-scale Evolving Connectionist System

RAN – Resource Allocating Network

RBF – Radial Basis Function

RE-EFuNN – Rule Extraction from EFuNN

SECoS – Simple Evolving Connectionist System

SECoS-FRE – SECoS Fuzzy Rule Extraction

SOM – Self Organising Map

SRN – Simple Recurrent Network

TDNN – Time Delay Neural Network

VoIP – Voice over IP

WEFuNN – Weighted EFuNN

ZISC – Zero Instruction Set Computer
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