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ABSTRACT: Seascape genetics, a term coined in
2006, is a fast growing area of population genetics
that draws on ecology, oceanography and geography
to address challenges in basic understanding of mar-
ine connectivity and applications to management. We
provide an accessible overview of the latest develop-
ments in seascape genetics that merge exciting new
ideas from the field of marine population connectivity
with statistical and technical advances in population
genetics. After summarizing the historical context
leading to the emergence of seascape genetics, we
detail questions and methodological approaches that
are evolving the discipline, highlight applications to
conservation and management, and conclude with
a summary of the field’s transition to seascape ge-
nomics. From 100 seascape genetic studies, we assess
trends in taxonomic and geographic coverage, sam-
pling and statistical design, and dominant seascape
drivers. Notably, temperature, oceanography and geo -
graphy show equal prevalence of influence on spatial
genetic patterns, and tests of over 20 other seascape
factors suggest that a variety of forces impact connec-
tivity at distinct spatio-temporal scales. A new level of
rigor in statistical analysis is critical for disentangling
multiple drivers and spurious effects. Coupled with
GIS data and genomic scale sequencing methods, this
rigor is taking seascape genetics beyond an initial
 focus on identifying correlations to hypothesis-driven
insights into patterns and processes of population

An underwater seascape from the top of Steve’s Bommie in
the Great Barrier Reef, Australia.
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connectivity and adaptation. The latest studies are
 illuminating differences between demographic, func-
tional and neutral genetic connectivity, and informing
applications to marine reserve design, fisheries sci-
ence and strategies to assess resilience to climate
change and other anthropogenic impacts.
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INTRODUCTION

In 2013, the field of landscape genetics turned
10 years old (Manel & Holderegger 2013). Seascape
genetics could be viewed as a younger sibling,
recently passing its own 10 years mark and showing
an accelerating rate of publication, enabled in part
by rapid growth in GIS data and advances in statisti-
cal methods (Fig. 1) (Galindo et al. 2006, Fontaine et
al. 2007, Hansen & Hemmer-Hansen 2007). A major
emphasis for landscape and seascape genetics has
been taking an organismal perspective of the dis -
persal process, creating a need for new models and
methods (Manel et al. 2003, Storfer et al. 2007,
Holderegger & Wagner 2008, Balkenhol et al. 2015).
Many foundational population genetic and ecologi-
cal models assume that spatial heterogeneity is either
lacking or highly ordered and predictable. The rise of
landscape and seascape genetics as named disci-
plines reflects interest in overcoming these simplify-
ing assumptions to understand how movement of an
organism through the landscape or seascape impacts
realized dispersal and gene flow. These subdisci-
plines distinguish themselves within the field of
 population genetics by their focus on spatially
explicit processes and statistics (Dyer 2015), and a
focus on the linkages between environment, ecology
and genetics. The topic resonates widely, in part
because identifying landscape features critical to the
persistence and adaptation of populations is central
to effective strategies for conservation and resource
management (Wagner & Fortin 2013).

Our focus here is on detailing the approaches and
findings of seascape genetics for a wide audience
interested in the field of marine connectivity. While

many concepts and analyses are shared between
seascape and landscape versions of this discipline,
seascape genetics has unique challenges that stem
from the biology of marine taxa and the fluid medium
in which they disperse (Riginos & Liggins 2013,
Selkoe et al. 2015). For a majority of marine species,
dispersal is undertaken during a larval phase, and
trajectories of individual larvae, as well as long-term
patterns of dispersal, are difficult to predict (Siegel
et al. 2008). The seascape’s heterogeneity (e.g. in
bathymetry, current speeds and water chemistry) is
largely hidden from our view; little is known about
marine organisms’ behavior and ecological interac-
tions during the dispersive phase; and even the most
complex oceanographic models are limited to coarse
scales relative to a larva’s perspective (Levin 2006,
Woodson & McManus 2007, Cowen & Sponaugle
2009, Morgan et al. 2014, Mazzuco et al. 2015, Nick-
ols et al. 2015). Consequently, the organism’s view of
the dispersal process is easier to understand and
quantify in terrestrial settings compared to marine
systems (Marshall & Morgan 2011, Burgess et al.
2015). In some ways, these challenges and unknowns
of the marine environment increase the potential
contribution of seascape genetics to our understand-
ing of marine population connectivity.

THE RISE OF A SEASCAPE PERSPECTIVE

Genetic tools have long played an instrumental
role in the study of marine connectivity (e.g. Berger
1973, Waples 1987, Hellberg 1994, Palumbi 1996)
because they promise insights into the scale of mar-
ine larval dispersal that are simply not possible with
other natural or artificial tags (Berumen et al. 2010).
While this promise has not always been realized
(Waples 1998), population genetic approaches have
enabled tests of specific hypotheses about spatial
patterns of exchange (e.g. hierarchical or continuous)
and drivers of exchange (e.g. whether a biogeo-
graphic boundary serves as a boundary to gene
flow). Trends in hypotheses and study designs have
been shaped by recent changes in our understanding
of marine connectivity, as well as an increasing abun-
dance and variety of genetic and environmental data.

At the turn of the century, the paradigm of open
populations and uniform larval pools was beginning
to erode (Jones et al. 1999, Swearer et al. 1999, Kin-
lan & Gaines 2003, Palumbi 2003). Diverse evidence
solidified a new focus on complex dispersal kernels
(Siegel et al. 2003), local retention (Swearer et al.
2002) and quantifying genetic variation across larval

2

0

5

10

15

20

25

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

#
 p

a
p

e
rs

 p
u
b

lis
h
e
d

Fig. 1. Seascape genetic papers published between 2006
and 2015. See the Supplement at www.int-res.com/ articles/
suppl/m554p001_supp.pdf for details on paper collection 

and the full reference list
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cohorts (Hedgecock 1994, Selkoe et al. 2006). These
seminal works supported the emergence of seascape
genetics by motivating the exploration of the patterns
and drivers of nuanced spatial genetic variation
across populations, recruits and larval samples.

Following the first published use of the term in
2006, an early priority of seascape genetics was to test
the role of ocean currents in generating spatial ge-
netic patterns (e.g. Baums et al. 2006, Galindo et al.
2006, reviewed in Liggins et al. 2013). More recently,
seascape genetics has expanded to em brace a rich
suite of potential ecological and genetic forces dis-
cernable by spatial analysis of genetic data when
used in analytical frameworks borrowed from land-
scape genetics (Fig. 2). This more holistic ap proach
will aid the field of marine connectivity in continued
efforts to disentangle the relative effects of ocean cur-
rents, larval behavior and processes occurring at set-
tlement and recruitment in driving patterns of popu-
lation exchange. Current genetic technology enables
a range of spatio-temporal scales of inference on
 marine connectivity, including estimates of single
 dispersal events, recent and historical migration rates,
hybridization and speciation (see Box 1). The multi-
faceted perspective on spatial genetic structure
 summarized in Fig. 2 has helped the field of marine
population genetics overcome a few key pitfalls. For

example, some studies were misleading because they
interpreted genetic metrics to solely indicate differ-
ences in dispersal when other processes may con-
tribute to spatial patterns of allele  frequencies (e.g.
range expansions, see Hart & Marko 2010, Marko &
Hart 2011). Others mistakenly assumed very high
rates of larval exchange and long-distance dispersal
because of insufficient statistical power to detect
 spatial genetic structure, or methods that are inap-
propriate for the data (as discussed in Meirmans
2014, Richardson et al. 2016). Although genome se-
quencing advances are helping to address low power
by increasing locus sample size (Gagnaire et al.
2015), simply adding more genetic loci will not neces-
sarily improve inference of connectivity without a
change in analytical philosophy (Ryman et al. 2006,
Larsson et al. 2009, Bowen et al. 2014).

Landscape and seascape genetics have catalyzed a
shift from describing patterns of genetic structure in a
null-hypothesis testing framework to distinguishing
the many forces contributing to observed spatial pat-
terns, including interactions between ecology and ge-
netics, in a formal model selection framework (Manel
& Holderegger 2013, Wagner & Fortin 2013). While
many studies related seascape features to population
genetic data before the term ‘seascape genetics’ was
coined (e.g. Johnson & Black 1991, Riginos & Nach-

man 2001, Gilg & Hilbish 2003), there are
a variety of new and newly popularized
multivariate statistical ap proaches to
 integrating diverse data types that are
rapidly bringing the field of empirical
population genetics beyond an explor -
atory era (reviewed by Balkenhol et al.
2015, Rellstab et al. 2015). At the same
time, evolutionary geneticists have un-
covered strong linkages between rates of
selection, drift and gene flow that likely
impact connectivity inference, and dem -
onstrated how selection can strongly af-
fect neutral genomic regions (reviewed
by Nosil et al. 2009, Orsini et al. 2013).
The rising number of seascape genetic
studies using single nucleotide polymor-
phisms (SNPs) sampled across the
genome is improving our ability to ex-
plore these linkages (Fig. 3). Compared
to seascape genetics, seascape genomics
creates even greater imperative for
grounding ana lyses in model selection to
minimize spurious effects and ensure in-
terpretability of findings (Meirmans 2015,
Riginos et al. 2016).
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Fig. 2. Spatial genetic structure (SGS) of marine populations is the com-
bined result of a suite of interacting forces and traits that can be categorized
into topics (listed on sea star). These forces include demography, species’
life history traits, rates of migration influenced by spatial factors, lingering
signals of history, influences of local ecology and/or local adaptation, some
degree of noise and study design factors. Seascape genetics focuses on un-
covering support for effects of these forces on SGS. Examples of possible 

predictors of these varied effects are listed adjacent to each ray
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APPROACHES AND STUDY DESIGNS

There are almost always multiple potential causes
of genetic discontinuities (i.e. spatial shifts in allele
frequencies or diversity). These alternative factors
have often been treated in a post hoc or qualitative
way. Seascape genetics provides the tools and per-
spective needed to design a study a priori to identify
the drivers of genetic discontinuities, with a suite of
complementary methodologies (see Box 2). All sea-
scape genetic study designs should assess spatial co-
variation of seascape factors of interest, so that sites
for genetic sampling are chosen to maximally repre-
sent the full range of these gradients with minimal
confounding (Wang & Bradburd 2014, Riginos et al.
2016). Individual-based sampling designs may better
capture these gradients compared to highly clustered
‘population-based’ sampling, especially when many
loci are used (Prunier et al. 2013, Wang & Bradburd

2014). Choice of genetic metrics should be guided by
hypotheses about mechanisms generating the correl-
ative patterns tested, including effects on genetic
links, nodes, boundaries and neighborhoods, as de -
scribed in Wagner & Fortin (2013). These 4 terms are
defined below in sections that expand on their dis-
tinct value and applications in marine  settings.

Links: parsing drivers of genetic exchange

Link-based designs, which make up the majority of
empirical studies, focus on pairwise genetic distance
and address how seascape features either create
 discontinuities or promote gene flow between sites.
Within a rigorous alternative hypothesis testing frame -
work, multiple coincident or competing factors, e.g.
habitat patchiness, environmental gradients and/or
oceanographic flow fields, can be disentangled. Mar-

4

Box 1. Defining marine connectivity across spatial and temporal scales. A variety of terms distinguish key agents, time-scales 
and viewpoints of marine connectivity, and collectively contribute to a holistic understanding of connectivity

Alternative definitions of connectivity

In its broadest sense, ‘connectivity’ refers to any rela-
tionship between spatially or temporally distinct entities
(Kool et al. 2013). The field of marine connectivity largely
focuses on the materials and processes that connect eco-
logical communities across space and those that disrupt or
bound connectivity. 

Structural connectivity quantifies the physical relation-
ships of landscape elements, including spatial positioning
of habitat (e.g. Kool et al. 2013), geo-morphological fea-
tures of the seafloor and/or hydrodynamic flow features
impacting movements, pathways and boundaries. Struc-
tural connectivity creates potential for biological connec-
tivity.

Functional connectivity is a product of the organism
interacting with the landscape. It concerns the patterns
and rates of dispersal that result from the response of indi-
viduals to the structural matrix, mediated by behavioral
traits and dispersal success. Questions of functional con-
nectivity focus on whether landscape elements impede or
facilitate dispersal, given the species’ traits. Biophysical
oceanographic modeling of larval dispersal is commonly
used to predict functional connectivity (e.g. Treml et al.
2008, 2015, Kool et al. 2011).

Demographic connectivity relates the dispersal of indi-
viduals to their cumulative effects on population-level pro-
cesses such as population growth, extinction or recoloniza-
tion. Thus, measures require estimates of demographic
rates and the relative contributions of self-recruitment and
immigration to these rates (see Lowe & Allendorf 2010).

Genetic connectivity tracks the dispersal of genes (and
genomes), which only accounts for those individuals that
successfully reproduce after dispersing. Genetic connec-
tivity is the opposite of reproductive isolation. Like demo-
graphic connectivity, genetic connectivity is inherently a

population-level metric that reflects the cumulative impact
of functional connectivity on allele frequencies in a popu-
lation over one or more generations.

Adaptive genetic connectivity measures movement of
alleles with consequence to individual fitness. It can
diverge greatly from neutral genetic connectivity and
relates to the adaptive potential of a population.

Neutral genetic connectivity measures movement of
alleles that have no consequence to fitness. Neutral con-
nectivity estimates can be related to the long-term out-
come of demographic connectivity (Funk et al. 2012).

Relating genetics to connectivity

Typically, seascape genetic studies estimate metrics of
genetic connectivity; however, some methods may enable
the measurement of demographic connectivity (see Box 2)
(Lowe & Allendorf 2010). ‘Genetic tagging’ studies that
 distinguish individuals and kin using genetic markers are
used to discover dispersal events. Most other uses of
genetic markers use indirect inference to estimate genetic
connectivity. Indirect inference depends on theoretical
population genetic models with simplifying assumptions
about possible effects of mutation, selection and drift on
genetic patterns to be able to infer migration (Waples &
Gaggiotti 2006). Estimators based on Wright's fixation
index (FST) integrate over longer time-scales, possibly
 representing historical connectivity more than present day
because of response lags dependent on rates of marker
mutation and drift (Epps & Keyghobadi 2015). Landscape
and seascape genetic  studies commonly aim to estimate the
correlations among variables representing different types
of connectivity. This strategy can identify important physi-
cal features that influence multiple types of connectivity, or
important ways that the types of connectivity diverge.
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ine populations often have large effective population
sizes and relatively high rates of gene flow, resulting
in greater difficulty to assess population structure
than in terrestrial systems due to low genetic differen-
tiation between populations (Mills & Allendorf 1996,
Waples 1998). Sometimes, low differentiation is actu-
ally caused or enhanced by high mutation rates and
extreme marker heterozygosity that mask genetic
distinction among populations, so interpreting levels
of differentiation requires careful contextualization
(Hellberg 2007, Bird et al. 2011, Gagnaire et al.
2015). Importantly, recent seascape genetics studies
demonstrate that despite genetic estimates and ‘iso-
lation by distance’ (IBD) tests that are not statistically
distinguishable from zero, significant spatial pattern-
ing in differentiation is uncovered when seascape
features are used (1) to inform appropriate null
hypotheses, (2) as parameters in a Bayesian frame-
work, or (3) as pre dictors in model testing. For exam-
ple, Crandall et al. (2012) showed that despite very
low genetic structure for 4 neritid snails sampled
throughout the Pacific, incorporating gene flow pre-
dictions from oceanography into a Bayesian coales-

cent model revealed the effects of stepping-stone
versus long-distance dispersal in generating high
gene flow. Liggins et al. (2016) used a multiple-
regression model-testing approach to show that
 spatial genetic patterns of different species could be
attributed to the same seascape features despite little
congruence in spatial genetic patterns across spe-
cies. These and other studies provide important tests
of existing theories, such as the role of upwelling,
headlands and embayments in local retention of
 larvae (e.g. Mace & Morgan 2006, Banks et al. 2007,
Lotterhos & Markel 2012, Iacchei et al. 2013, Pfaff et
al. 2015). In sum, seascape studies are increasingly
able to overcome the obstacle of weak genetic signal
to help push forward concepts about the possible
mechanisms influencing larval production, emigra-
tion, dispersal and settlement.

Exploring the relationship between ocean currents
and link-based genetic data has been a cornerstone
of seascape genetics since its inception (see Liggins
et al. 2013 for an overview). Estimates of larval
exchange from biophysical transport models can be
directly compared to observed genetic patterns, or
first incorporated into population genetic simulations
that are then compared to empirical genetic data.
The latter is especially valuable for illuminating
how multi-generational, often asymmetrical stepping-
stone dispersal can lead to high genetic connectivity
despite a lack of direct larval exchange (Treml et al.
2008, Kool et al. 2010, White et al. 2010, Crandall et
al. 2012, Foster et al. 2012, Munguia-Vega et al.
2014). These simulations can also explore the effects
of spawning, life history and behavioral traits on
genetic connectivity and source–sink metapopula-
tion dynamics (Galindo et al. 2006, Lee et al. 2013,
Young et al. 2015, Selkoe et al. 2016). Continued
expansion of oceanographically informed genetic
simulations will help elucidate why and when gene
flow patterns are expected to diverge from transport
patterns. They can also uncover the limitations of
available oceanographic data (e.g. coarse spatial res-
olution, short time series, missing nearshore features)
that interfere with comparisons between empirical
genetic data and biophysical dispersal estimates
(Pineda et al. 2007, Pringle & Wares 2007).

Nodes: local effects on spatial genetic patterns

Node-based studies use metrics that characterize
a location, rather than pairwise differences between
locations. Node-based genetic metrics typically de -
scribe how allele frequencies or diversity of a site
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Box 2. Advances in methodology. We highlight select techniques that are bringing rigor and creativity to hypothesis formation 
and data analysis

Kinship analyses: relating dispersal to gene flow

Kinship analyses generate direct estimates of dispersal
distances, in contrast to indirect inference based on popu-
lation-level genetic data (see Box 1). Dispersal distances
can be reconstructed by linking individuals’ multi-locus
genotypes to natal populations (Hogan et al. 2012), parents
(Christie 2010) or sibling groups (Schunter et al. 2014). The
most popular kinship approach is parentage analysis in
which pools of potential parents and offspring are geno-
typed to assign offspring to parents (Christie 2013, D’Aloia
et al. 2015). Assuming minimal post-settlement movement,
the distance between parent and offspring is the net dis-
persal distance. Parentage studies can describe the magni-
tude and direction of dispersal between sites (Jones et al.
2005, Planes et al. 2009, Harrison et al. 2012), and with
intense sampling can estimate dispersal kernels (Almany
et al. 2013, D’Aloia et al. 2015). The emerging theme is that
most marine larvae disperse shorter distances than
inferred from estimates of genetic structure, supporting a
conclusion from the larval biology literature that  long-
distance marine dispersal may be maladaptive (e.g. Strath-
mann et al. 1981, Burgess et al. 2012). Importantly, the dis-
crepancy between direct and indirect dispersal estimates
may result from the fact that genetic structure is affected
by multiple generations of gene flow, and is influenced by
rare long-distance gene flow events that parentage meth-
ods do not capture. Comparison of kinship-derived disper-
sal kernels to genetic structure estimates will hone our
conceptual understanding of how to relate dispersal to
 various connectivity metrics, given their distinct temporal
and spatial scales.

Coalescent techniques: explicit treatment of history

Coalescent approaches consider demography and
meta population history separately (Rosenberg & Nord-
borg 2002), and thus can overcome the simplifying
assumptions necessary for estimating gene flow from F-
statistics (Whitlock & McCauley 1999). Coalescent models
can specify directional and asymmetric gene flow, distinct
population sizes and the timing of population divergence
(Hey & Machado 2003). By estimating effective popula-
tion size and proportion of migrants per generation sepa-
rately, coalescent models are able to estimate rates of
gene flow at much higher levels than F-statistics, and
with appropriate estimates of uncertainty. Coalescent
samplers such as Migrate or BEAST calculate a marginal
likelihood for any specified coalescent model, which may
then be compared to other modeled hypotheses using
standard information theoretic methods (Beerli & Pal-
czewski 2010, Baele et al. 2012). These methods have
been used to test hypotheses generated from biogeogra-
phy (Teske et al. 2011), biophysical dispersal models
(Crandall et al. 2012) and mark− recapture data (Jue et al.
2015). Approximate Bayesian computation (ABC) meth-
ods applied to coalescent modeling can handle hierarchi-
cal models, wherein parameter estimates for individual
species are nested within hyperparameters based on

summary statistics of the species' valaues (Hickerson et
al. 2006, Hickerson & Meyer 2008). Coalescent approaches
offer new opportunities for community-level seascape
genetics, but their application re quires considerable com-
puting resources, informed model design and careful
investigation of outputs. With these caveats, coalescent
analyses provide the opportunity to wring far more infor-
mation from hard won data than  traditional population
genetic statistics.

Analysis of pairwise data: moving beyond Mantel

Given the prevalence of link-based studies, a key statis-
tical issue is the treatment of non-independence for pair-
wise data. After decades of widespread use, the Mantel
test was recently shown to be an inappropriate way to
address non-independence for most population genetic
data (Legendre et al. 2015). We estimated that 63% of sea-
scape genetic studies have used Mantel tests, begging for
an assessment of how our understanding of isolation by
distance in the sea may be biased. Importantly, extensions
of the Mantel, such as multiple regression on distance
matrices, may also be prone to biased model selection
(Goldberg & Waits 2010, van Strien et al. 2012, Guillot &
Rousset 2013). In a recent review, Rellstab et al. (2015)
suggested that valid inference can still be obtained within
the Mantel framework if effect sizes are used to interpret
results, or if a rank-based partial Mantel test is utilized, as
in Bayenv2 (Günther & Coop 2013). Alternatively, instead
of using summary statistics like FST, populations’ allele fre-
quencies can be modeled as a linear function of environ-
mental  factors in a multiple linear regression framework,
or with multivariate frameworks like canonical correspon-
dence analysis (CCA) or redundancy analysis (RDA)
(Legendre & Legendre 2012).

Future directions for increasingly complex datasets

Mixed models, such as maximum-likelihood population-
effects (MLPE) models, may offer a robust way to evaluate
predictors of pairwise population genetic data (van Strien
et al. 2012, Row et al. 2015, reviewed in Rellstab et al. 2015).
Mixed models treat sampling location as a random effect,
and they can isolate neutral genetic structure when testing
for the influence of environmental factors on allele frequen-
cies (e.g. latent factor mixed models, Frichot et al. 2013)
New techniques based on Bayesian modeling of allele co-
variance structures, eigenvector mapping and others are
also gaining traction (reviewed in Wang & Bradburd 2014,
Gautier 2015). Whether you use well-known or cutting-
edge statistics, we urge researchers to carefully consider
model assumptions before applying them to seascape ge-
netic data sets, to test multiple approaches for concordant
results and to clearly describe the methods they adopt.



Selkoe et al.: A decade of seascape genetics

 differs from the mean of all sites, and node-based
seascape metrics assign values to each sampling site.
When the seascape is hypothesized to have effects on
current population size, rates of drift, local selection
and historical events, node-based studies may be
most appropriate and effective for analysis. So far,
node-based studies are less common, but arguably
they can be more powerful and reliable, as node-
based genetic metrics often have less sampling error
than most link-based metrics, and statistical testing is
comparatively unproblematic. A rigorous method for
node-based analyses is a Bayesian approach to asso-
ciating local (i.e. site-specific) estimates of FST with
node-based predictors in the software GESTE (Foll &
Gaggiotti 2006). Arizmendi-Mejía et al. (2015) used
local FST and other node-based metrics to test the
interplay between ecological and evolutionary fac-
tors in a Mediterranean gorgonian and define con-
servation units. The results showed genetic drift
linked to partial mortality to be a primary driver of
genetic structuring. Describing seascape effects on
patterns of local genetic diversity also fits a node-
based design. For example, Liggins et al. (2015)
assessed distributions of shared and private haplo-
types using measures of nestedness and partitioned
beta-diversity to support the hypothesis that the
southern limit of a damselfish’s range is a demo-
graphic ‘sink.’

Boundaries: uncovering lines in the sea

Boundary-based studies define genetic groups
across space and relate boundaries between groups
to seascape features. Understanding the forces creat-
ing genetic boundaries informs fundamental ques-
tions in biogeography, evolution and population
dynamics as well as marine management. The long
history of statistical approaches to boundary detec-
tion has resulted in a range of user-friendly software
(e.g. ARLEQUIN, STRUCTURE and BARRIER), but
relatively few studies have taken the next step in sta-
tistically testing for the relationship be tween bound-
aries and relevant seascape features. These few stud-
ies report temperature, salinity, irradiance, turbidity,
depth and sediment type as significant drivers (e.g.
González-Wangüemert et al. 2009, Roy et al. 2012,
Viricel & Rosel 2014, Johansson et al. 2015). For
example, a study of white hake in the Northwest
Atlantic found that depth was the only significant
environmental predictor of genetic group member-
ship in a highly fished population across time, so the
authors recommended a depth-based approach to

defining fisheries management units (Roy et al.
2012). An important study design issue for boundary-
level analyses is determining whether spatial gradi-
ents in genetic patterns occur in tandem with bound-
aries in genetic patterns, as gradients can affect the
output of barrier detection and clustering algorithms
(Manni et al. 2004, Meirmans 2012).

Neighborhoods: defining local scales

Neighborhood-based studies focus on how the
local seascape and habitat array influence the scale
of connectivity or, more generally, the scale of covari-
ation in genetic metrics across samples or patches
(Wagner & Fortin 2013). Investigations can take a
variety of formats and use an assortment of metrics.
For example, D’Aloia et al. (2015) compared kinship-
derived dispersal kernels to microhabitat character-
istics (e.g. depth) and local context (e.g. directional-
ity, latitude) to determine whether local features
predicted the spatial scale of dispersal for a coral reef
goby within a 41 km neighborhood. Munguia-Vega
et al. (2014) explored a variety of network metrics
derived from a biophysical dispersal model for leo -
pard grouper in the Gulf of California and found that
the topographic relationships of sites (i.e. the neigh-
borhood layout) is more critical than the rate of ex -
change among sites for explaining genetic patterns.
Employing biophysical models or simulated gene
flow outputs is a critical means of understanding the
influence of the spatial configuration of habitat
patches, spawning aggregations or marine reserves
on connectivity to inform marine management and
parameterize metapopulation models (e.g. Crandall
et al. 2012, Wood et al. 2014, Davies et al. 2015).

Multi-approach studies: relating pattern and process

Including more than one type of analysis is often
required for robust interpretation of correlative stud-
ies. Ecologically, feedbacks exist between processes
that take place at nodes, neighborhoods, links and
boundaries. For example, Dawson et al. (2014) found
that differences in population genetic structure
among intertidal species of the eastern North Pacific
were due to the combination of 2 node-based met-
rics—census size and fecundity of populations—and
species’ pelagic larval duration, a link-based metric
representing relative rates of migration. Importantly,
pairwise genetic differentiation will be amplified if
there are large differences in the genetic diversities

7
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of the focal populations, thus intertwining node-
based effects into a link-based analysis. Selkoe et al.
(2010) found that differences in local genetic diver-
sity primarily drove pairwise genetic structuring for
temperate reef species in Southern California. In
both these study systems, recolonization following
disturbance likely impacts standing genetic diversity
(although with distinct mechanisms and time-scales).
Because recolonization is influenced by life history
adaptations to environmental regimes, we can posit
that local selection may indirectly contribute to these
putatively neutral genetic patterns.

Selection is often considered separately from genetic
drift and gene flow. Importantly, however, the 3
forces are linked: strong selection can enhance rates
of drift by disrupting gene flow and increasing isola-
tion (Nosil et al. 2008, Bird et al. 2012). The large
effective population sizes typical of many marine
species generally allow selection to have a large
influence on the genome relative to drift, yet the role
of selection has historically been underappreciated
in marine genetic studies (Allendorf et al. 2010). One
example of how selection indirectly affects neutral
genetics is termed monopolization. Namely, a posi-
tive feedback between priority effects and local
adaptation during colonization events disrupts the
influence of oceanographic connectivity on neutral
population genetic structure by reducing the success
of later immigrants (De Meester et al. 2002, Waters et
al. 2013, Fraser et al. 2015). Drawing from the previ-
ous example, Selkoe et al. (2010) found that genetic
diversity of territorial predators like kelp bass and
lobster scaled inversely to kelp forest size. These spe-
cies cannibalize and exclude new recruits, and their
territory size expands as they age and grow. With
recolonization of a reef following storm disturbance,
the expanding size of territories and rate of cannibal-
ism may contribute to a winnowing of genetic diver-
sity in the site’s population, even as the kelp bed
itself expands and adds new habitat (Selkoe et al.
2010). Thus, an ecological process connected to life
history and recolonization may indirectly influence
neutral genetic diversity.

Many studies focus on detecting direct effects of
selection by assessing ‘isolation by environment’
(IBE), a pattern of positive correlation between
genetic metrics and environmental factors, both abi-
otic and biotic (reviewed by Wang & Bradburd 2014).
Related conceptualizations of IBE that focus on pro-
cess include ‘isolation by adaptation’ (i.e. due to
adaptive phenotypic divergence) and ‘isolation by
ecology’ (i.e. due to selective reduction in gene flow
resulting from fitness differentials) (Nosil et al. 2008,

Shafer & Wolf 2013, Wang & Bradburd 2014). Com-
parative analyses with neutral and non-neutral pan-
els of SNPs can elucidate the processes driving IBE
patterns. For instance, Tepolt & Palumbi (2015) com-
pared SNPs from the neutral genome and the cardiac
transcriptome to address questions about the roles of
colonization bottlenecks and local temperature adap-
tation in both the native and expanding ranges of an
invasive green crab. Marine populations may com-
monly harbor unique adaptations associated with
oceanographic features, temperature, productivity or
more subtle features like sand inundation (Teske et
al. 2011, Hecht et al. 2015, Young et al. 2015).
Increasingly, evidence is accumulating for genetic
impacts of anthropogenic threats to marine systems
(Puritz & Toonen 2011). Seascape genetic approaches
can elucidate these spatial patterns and drivers of
adaptation, which in turn can have important impli-
cations for marine conservation (see Box 3 for exam-
ple applications to marine management efforts).

SURVEY OF SEASCAPE GENETIC STUDIES

As the number of seascape genetic studies has
grown, we are gaining insight into the most common
drivers of genetic structuring. To foster a synoptic
perspective on the direction that the field has taken
so far and its potential insights, we conducted a liter-
ature search and retained 100 empirical studies from
2006 to 2015 that self-identified with ‘seascape’ or
‘marine landscape’ genetics (see the Supplement at
www.int-res.com/articles/suppl/m554p001_ supp. pdf
for details). From this survey, we assessed the taxo-
nomic and geographic coverage in the first genera-
tion of seascape genetic studies. The vast majority of
studies focused on chordates (primarily fishes) (48%)
and invertebrates (38%) as study organisms (Fig. 4a).
Far less attention has been paid to the seascape
genetics of algae (9%), marine angiosperms (5%)
and other marine phyla over the past 10 yr. A bias
towards temperate waters (68%) is partly driven by
intense study of temperate diadromous fishery
 species (despite likely underrepresentation of dia -
dromous studies with our search terms) (Fig. 4b).
Tropical studies (26%) concentrated on coral reef
seascapes, and polar studies are still rare (6%). Most
studies were subtidal (65%) (Fig. 4c); fewer studies
focused on intertidal (15%) or estuarine (14%) envi-
ronments, and the fewest focused on pelagic ecosys-
tems (5%), perhaps due to the mobile lifestyle of
many pelagic species. Although seascape genetic
studies have occurred in most of the world’s major
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oceans and seas (Fig. 4d), a bias exists towards the
Northern Hemisphere, and underrepresented regions
remain (e.g. the Southern Atlantic).

Emerging patterns in seascape effects

Using a sub-sample of 53 studies that tested for
multiple seascape predictors of spatial genetic pat-
terns (see the Supplement), we examined which study
designs and seascape factors have received the most
attention by the field. This sample size was insuffi-
cient to comment on how seascape drivers differ by

taxon, life history, geography and scale. Neverthe-
less, these studies provide a striking suggestion that
seascape  effects on genetics are varied and ubiqui-
tous. Link-based study designs were most prevalent.
A total of 43 studies with link-based designs tested
the influence of 2 to 9 seascape factors against pair-
wise genetic distance metrics. Considering each
unique combination of species, marker type, spatial
scale, statistical test and genetic response variable,
these 43 studies included 66 tests. Nearly two-thirds
of these tests were partial Mantel or multiple regres-
sion on distance matrices, which recent work has
shown to lead to inflated false positives (Legendre et

9

Box 3. Applied seascape genetics: building roadmaps for conservation and management. We highlight 3 arenas where seascape 
genetics brings unique value to conservation and management of marine populations and communities

Species-based management

Demographic parameter estimates such as lifetime
fecundity, self-recruitment and age-specific survival rates
can all be generated from neutral genetic data, and are
critical to marine reserve success (Mace & Morgan 2006,
Burgess et al. 2014, Bonin et al. 2016). Seascape genetics
can specifically identify ecological and biophysical attrib-
utes associated with high spill-over from marine reserves,
asymmetries in source−sink dynamics within reserve net-
works (Harrison et al. 2012, Young et al. 2015), and the
potential positive and negative effects of altered gene flow
(Richardson et al. 2016). Locations can be characterized by
key attributes such as high centrality or high outgoing con-
nectivity in prioritization algorithms for network design
(Beger et al. 2014, Mendez et al. 2014). Understanding the
spatial distribution of genomic variation and drivers of
local adaptation is critical to the protection of genetic
resources and population resilience of fisheries (e.g.
 Limborg et al. 2012). Pinsky & Palumbi (2014) showed a
decline in genetic diversity for numerous exploited marine
fishes, attributed to over-harvesting. These trends imply
widespread fisheries-induced evolution, and underscore
the idea that spatial patterns of human impacts on sea-
scapes can strongly influence genetic diversity and long-
term resilience.

Biodiversity conservation

When the target of management is protecting intact
habitats and biodiverse areas, a community genetics
approach to integrate genetic data across species is key.
Bayesian modeling can leverage multiple studies to assess
regional patterns in genetic diversity across many taxa by
accounting for spatial effects, species traits and disparate
sampling designs (Pope et al. 2015). Over the long term,
marine managers must consider how to maintain ecologi-
cal resilience in an uncertain future. Identifying seascape
features that promote persistence and diversity can inform
this goal. Neutral genetic diversity indicates a population’s
potential to resist inbreeding depression, recover from dis-
turbances and preserve adaptive potential (Young et al.
1996, Hughes & Stachowicz 2004, Reusch et al. 2005). In

Hawai‘i, an analysis of mitochondrial genetic diversity in
approximately 40 reef species identified large reef size
and high coral cover as key predictors of high diversity,
and these features could be used to select areas for long-
term protection (Selkoe et al. 2016). Genetic diversity and
species diversity often co-vary, indicating that ecological
resilience and genetic resilience are linked (Messmer et al.
2012, Wright et al. 2015, Selkoe et al. 2016). Syntheses of
genomic data across multiple species have the potential to
identify suites of species with similar local adaptations that
could lead to more nuanced delineation of conservation
units and habitat restoration plans (Funk et al. 2012). In the
future, using genetic tools to monitor biodiversity and
measure resilience holds promise to rapidly advance mar-
ine conservation and restoration (e.g. Port et al. 2016).

Climate adaptation

Climate-induced range shifts of individual species and
communities are becoming well documented (Beaugrand
2009). Studies are starting to investigate how these shifts
impact connectivity between populations (Andrello et al.
2015, Young et al. 2015) and reshape the overall genetic
structuring of species (Cossu et al. 2015), thereby impact-
ing conservation features (McLeod et al. 2009). Seascape
genetics can identify climate variables with the greatest
influence on both neutral and functional regions of the
genome. For example, an apparent negative correlation
between temperature stress and mean genetic diversity of
Hawaiian reef species highlights the potential for global
warming to compromise the genetic resilience of entire
communities (Selkoe et al. 2016). A seascape genetics per-
spective can inform strategies for genotype-based coral
restoration using trans-generation acclimatization, selec-
tion of either host or symbiont genotypes (van Oppen et al.
2015), and targeted gene flow that aims to increase adap-
tive variation and fitness in populations (Kelly & Phillips
2016). As genomic data become more widely available,
incorporating ecological niche models and projections of
climate-induced environmental extremes into genetic
studies will help identify marine populations most likely
to persist under future conditions (Sgrò et al. 2011, Fitz-
patrick & Keller 2015, Razgour 2015).
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al. 2015). With this caveat in mind, we report that for
25 types of seascape predictors, 20 were found to be
a significant driver in at least one test. This sample is
far from random—bias towards positive results is
expected from informed choice of important sea-
scape drivers, but biased reporting and false posi-
tives are also possible. We note that most studies
focused on abiotic predictors; only a handful of biotic
factors were apparent in the literature survey (e.g.
‘chlorophyll a’ and ‘presence of vegetation’). A vast
array of ecological interactions likely also play a role
in shaping marine species distributions and deserve
greater focus.

Nearly all link-based studies included geographic
distance as a predictor and nearly one-half of these
reported significance. For comparison, a previous re-
view of IBD in marine studies found that one-third of
sampled studies showed significant IBD; however,
study selection criteria differed (Selkoe & Toonen
2011). Several software programs such as Bayenv
(Coop et al. 2010)  assume and adjust for IBD before
testing effects of other factors. Given that only half of
seascape studies find significant spatial autocorrela-
tion in the genetic response variable, careful choice
and appropriate use of software is critical (i.e. only ad-
just for IBD if it is present). For the 32 link-based stud-
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Fig. 4. Taxonomic and geographic
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ies in our survey that lacked evidence of geographical
influence, half reported a significant influence of at
least one other seascape factor. Arguably, this indi-
cates that seascape effects may account for a substan-
tial number of cases of what is commonly called
‘chaotic genetic heterogeneity’—a lack of genetic
spatial autocorrelation  despite significant genetic
structuring (Johnson & Black 1982, Toonen & Gros-
berg 2011). The flipside of this view is that the cause
of spatial genetic structure in roughly one-quarter of
marine studies was unresolved, suggesting that there
is still much to be learned about the drivers of genetic
structuring in the sea. Addressing the role of time
alongside space may be key to gains in this arena. For
instance, by analyzing 3 successive years and over
2000 fish, R. Henriques et al. (unpubl.) show that
anomalous low oxygen water events contribute to
chaotic genetic patchiness of hake in the southern
Benguela system. Most seascape studies encompass
only 1 sampling event and so cannot illuminate how
natural fluctuations in  seascape drivers and genetic
patterns may  result in unexplained spatial genetic
variance.

A study’s selection of seascape predictors and
interpretation of findings depends on consideration
of how life history, ecology and environment influ-
ence gene flow. Our sample of multi-factor studies
showed that the most common seascape factors
tested were metrics of temperature and ocean trans-
port; 43% of tests of temperature were reported to be
significant, while only 31% of ocean transport met-
rics were significant (Table 1). These results suggest
that temperature may be as influential as geography
on regional scale population genetics of marine spe-
cies, and more so than ocean currents. However, it
may also be either easier or more common to design
effective sampling arrays across temperature gradi-
ents than across ocean transport gradients. A half-
dozen other categories of seascape factors were
tested 10 to 25 times across the sample of studies, and
all showed significant results in 40 to 80% of the tests
(Table 1). In light of these trends, the idea of using
patterns of potential connectivity based on ocean
flows as an informed null model may be no more
defensible than using geography, depth or tempera-
ture. Some of the driver metrics, such as habitat

11

Predictor All studies Link-based Node-based
Tests Significant (%) Tests Significant (%) Tests Significant (%)

Geography 86 40 62 48 22 18
Temperature 47 43 26 54 21 29
Ocean transport 35 31 26 27 9 44
Habitat patch size 25 48 10 60 15 40
Depth 23 65 15 73 8 50
Other climatic variables 18 50 10 70 8 25
Salinity 16 69 13 69 3 67
Precipitation 15 80 7 100 8 63
Biogeographic breaks/ecoregions 14 43 12 50 0 0
Chlorophyll a 11 45 10 50 1 0
Habitat continuity 9 89 9 89 0 0
Turbidity 8 75 6 67 2 100
Nutrients 7 25 6 33 2 0
Sediment type 7 86 4 100 3 67
Hydrodynamic regime 6 33 3 33 3 33
Habitat exploitation 5 20 1 0 4 25
Dissolved matter 4 50 3 67 1 0
Other hydrodynamic variables 4 100 3 100 1 100
Geological history (e.g. glaciation) 3 33 1 100 2 0
Oxygen 3 67 3 67 0 0
Solar irradiance 3 67 2 50 1 100
Tidal flux 3 67 3 67 0 0
pH 2 50 1 0 1 100
Coastal pollution 1 50 1 0 1 100
Presence of vegetation 1 0 0 0 1 0
Wave energy 1 0 1 0 0 0

Table 1. Number and outcome of tests that evaluated each type of driver studied, taken from 53 studies that statistically tested 
correlation of genetic metrics with at least 2 seascape drivers
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patch size, wave energy and sediment type, may be
more obviously related to mechanisms affecting pop-
ulations within sites than dispersal and gene flow
between sites, meaning that study designs focused
on node-based analyses may be more appropriate
than link-based analyses (Wagner & Fortin 2013).

Fewer significant drivers were identified in node-
based studies than in link-based studies, consistent
with the finding that the non-independence of link-
based data can lead to biased model selection and
spurious predictor variables (Wagner & Fortin 2015).
Alternatively, the seascape may influence migration
more strongly than drift and local adaptation,
although this is unlikely. Node-based studies showed
that geography was a significant predictor only 18%
of the time, and temperature 29% (Table 1). Ocean
transport metrics were more commonly significant in
node-based studies, at a 44% rate of significance.

Study design effects

Considering all multi-factor studies, an average of
3.6 drivers were tested, with statistical support for 1
or 2 of them. Interestingly, we found that when a
larger number of potential drivers was tested against
a single response variable, a smaller fraction of driv-
ers was found to be significant. This trend suggests
that only 1 or a few drivers tend to dominate genetic
structuring, or that variables are sometimes added
without strong rationale. Studies using nuclear mark-
ers found larger fractions of tested drivers to be sig-
nificant than those using mtDNA, with no difference
in apparent power for SNP versus microsatellite stud-
ies. Of course, these trends depend on choices of
study design, statistical testing and which drivers
and taxa are easily sampled in the marine environ-
ment. Nevertheless, they lend insight into the range
of seascape predictors reported in recent studies
and the effects of study design (see Fig. 2), and high-
light underrepresented predictors that deserve future
study.

THE ADVENT OF SEASCAPE GENOMICS

Genomic studies of non-model organisms are
becoming more accessible thanks to techniques that
cheaply and randomly sub-sample the genome, such
as restriction site associated DNA sequencing (RAD-
seq) (Miller et al. 2007, Baird et al. 2008, Toonen et al.
2013, Puritz et al. 2014a, Andrews et al. 2016). Bioin-
formatic pipelines specifically designed to handle

data from marine organisms are also improving
(Puritz et al. 2014b). Consequently, SNP-based sea-
scape genetic analyses are growing rapidly (Fig. 3).
Below we highlight examples demonstrating how
genomic sampling has 2 distinct benefits for sea-
scape analyses: (1) increased power and likelihood to
detect gene−environment interactions, and (2) the
ability to simultaneously investigate the roles of drift,
migration and selection in shaping genetic structure.

Power through replication

In the majority of seascape genetic studies, the
amount of sampled genetic variation is relatively low
compared to the potential number of seascape driv-
ers. Consequently, investigators are required to test
only a small number of seascape factors or to collapse
them down into coordinate axes to balance Type I
and II error. Scaling up to genomic data adds
response variation that can be parsed among addi-
tional factors and lead to more detailed interpreta-
tion. For example, 2 studies recently examined popu-
lation discontinuities in clown fish Amphiprion

bicinctus over a similar region in the Red Sea. Nan-
ninga et al. (2014) used 38 microsatellite loci and
Saenz-Agudelo et al. (2015) used 4559 SNPs with
partially overlapping population samples, and both
detected a pattern of IBE between clownfish popula-
tions above and below an oligotrophic–eutrophic tran-
sition zone, but no additional drivers of genetic dif-
ferentiation among the populations within each
sample regime. Nanninga et al. (2014) chose chloro-
phyll a concentrations as the best representative for
environmental distance and were able to evaluate a
hypothesis of IBE versus IBD using partial Mantel
tests and multiple matrix regressions with random-
ization. With an order of magnitude increase in
genetic variance, Saenz-Agudelo et al. (2015) used a
different powerful statistical approach including an
information theoretic model selection framework and
the evaluation of 49 different linear models of sea-
scape drivers including the presence of genetic
breaks. This approach greatly improved the overall
model fit, and revealed a new dimension (presence of
genetic discontinuities) that a simple IBD/IBE analy-
sis would have overlooked.

Parsing neutral and adaptive genetics

One of the key benefits of genome-level analyses
on populations is sampling more unlinked (i.e. inde-
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pendently sorting) portions of the genome. This
allows more robust characterization of a species’
demography that overcomes idiosyncratic gene his-
tories (i.e. differentiation between responses to envi-
ronmental selection, migration, drift, etc.). For exam-
ple, in a recent study on bonnethead sharks, Portnoy
et al. (2015) isolated the entire mtDNA control
region, and used RADseq to produce 5914 SNPs; 49
SNPs were outliers in their level of spatial genetic
structure compared to the other loci. Outlier SNPs
exhibited signatures of latitude-driven selection
while the mtDNA data, in conjunction with the rest of
the SNPs, showed a signature of female philopatry
and male-mediated gene flow among the sampled
populations. The non-outlier SNPs also supported a
classic biogeographic separation between the Gulf of
Mexico and the western Atlantic Ocean populations.
Importantly, the combination of multiple individual
unlinked gene genealogies enabled the characteri-
zation of population dynamics and historical bio-
geography of bonnethead sharks.

Outlier loci, especially those that are associated
with the environment, have special utility for sea-
scape analyses, but theory predicts that extreme
outlier loci should be rare. Importantly, complex
landscapes can lead to high rates of false positives
when studies are not properly designed (Lotterhos
&  Whitlock 2014, 2015, Forester et al. 2016). In
 general, false positives are a major challenge for
seascape genomics, given the deluge of genetic and
environmental data (De Mita et al. 2013, de Ville-
mereuil et al. 2014, Lotterhos & Whitlock 2014).
New analyses coupling outlier detection with envi-
ronmental gradients reduce false positives (de Ville-
mereuil & Gaggiotti 2015). Furthermore, a focus
on extreme outliers misses more common selective
actions that should be distributed as small selective
effects at multiple genomic regions responding to
similar environmental forcing in concert (Schwartz
et al. 2010). These polygenic effects would not
likely be detected via outlier analyses. For example,
Laporte et al. (2016) surveyed 23 659 and 14 755
SNPs in North Atlantic eels across ‘polluted’ and
control environments. Outlier detection revealed
only 2 outlier loci; however, a machine learning
technique (random forest algorithm) coupled with a
distance-based redundancy analysis detected over
140 loci under polygenic selection. Whether disen-
tangling the effects of demo graphy, life history and
migration, or detecting the subtle genetic effects of
environmental polygenic selection, genomic-scale
data sets will enhance the scope and power of sea-
scape analysis.

Future directions

The next challenge for seascape genomics is to
progress from pattern to process, i.e. from seascape
correlates of spatial genetic patterns to specific
mechanisms of population differentiation (reviewed
in Riginos et al. 2016). New analytical frameworks
will play a key role in uncovering selective forces.
For instance, linking shifts in allele frequencies to
adaptive phenotypes will require creative approaches
that draw on gene ontology databases and experi-
mental tests of fitness advantage (re viewed in de
Villemereuil et al. 2015, Pardo-Diaz et al. 2015, Rell-
stab et al. 2015). Research on re sponses of a sea
urchin model system to ocean acidification (e.g. Kelly
et al. 2013, Pespeni & Palumbi 2013, Pespeni et al.
2013, Evans et al. 2015) provides a glimpse of how
ecological experiments and genomic and transcrip-
tomic data together illuminate adaptive evolutionary
response across a seascape.

CONCLUSIONS

Fueled by GIS data, genomics and statistical
advances, the first wave of seascape genetic studies
has changed our conceptual understanding of the
multiple historical and contemporary processes shap-
ing dispersal and gene flow in the sea. Importantly, it
can be tempting to overlook potential false positives,
and over-interpret nuanced spatial patterns and
slight but significant explanatory power (Meirmans
2015, Richardson et al. 2016), but not all spatial
genetic structure has ecological meaning (Hedrick
1999). At present, we still largely lack the tools and
perspective needed to gauge where to limit inference
on the meaning of subtle effects. Complementing
empirical studies with simulations holds promise to
illuminate these boundaries.

In many ways, the rise of landscape and seascape
genetics represents the maturation of population
genetics, with a stronger emphasis on spatial ecolog-
ical predictors (Dyer 2015). Perhaps unsurprisingly,
we found that many seascape genetic studies have
been oriented towards the population genetic litera-
ture, as evidenced by the strong bias in journal pub-
lication (Fig. S1 in the Supplement at www.int-
res.com/articles/suppl/m554p001_supp.pdf). We pro -
pose that broadening the audience of seascape genetic
studies is a critical step in improving their utility and
value across disciplinary lines.

As the field of seascape genetics progresses, we
anticipate that the most exciting advances will come
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from a stronger integration with biological oceano -
graphy, metapopulation ecology, biogeography,  larval
ecology, physiology, evolution and other dis ciplines.
Finally, we emphasize that as marine eco systems
around the globe face anthropogenic impacts on
unprecedented levels, seascape genetics can play a
unique and powerful role in understanding effective
long-term conservation and management strategies.
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