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ABSTRACT of effort is now being focused on structures and applications of de-

In many large network settings, such as computer networks, social centralized Peer-to-Peer (P2P) petworks [19, 20, 23, 25]. .
networks, or hyperlinked text documents, much information can be " @l of these cases, the (weighted) network structure contains
obtained from the network’s spectral properties. However, tradi- much information that could be beneficial to the nodes._ For the
tional centralized approaches for computing eigenvectors struggle_router graph of the Internet or P2P networks, we may be |n_terested
with at least two obstacles: the data may be difficult to obtain (both I SParse cuts, as these may lead to network traffic congestion, or —
due to technical reasons and because of privacy concerns), and thd! the extreme case — network partitioning. For linked web pages,
sheer size of the networks makes the computation expensive. AMOSt useful measures of relevance or relatedness (such as Page-
decentralized, distributed algorithm addresses both of these obstaRank [6] or hub and authority welqhts [15]) are defined in terms
cles: it utilizes the computational power of all nodes in the network ©f the eigenvectors of the network’s adjacency matrix. In social
and their ability to communicate, thus speeding up the computation networks, individuals may be interested in questions such as: Is

with the network size. And as each node knows its incident edges, ;h_er% a natural cIIl_JkstFringbamong mberiendz? r:Nhlighhtwofof mg/
the data collection problem is avoided as well. riends are most likely to be compatible, and should therefore be

Our main result is a simple decentralized algorithm for com- introduced? Which of my friends belong to social circles different

puting the topk eigenvectors of a symmetric weighted adjacency from milr:e,farr]ld CObUId therefqre introduge mle .to new pegplet’.; ined
matrix, and a proof that it converges essentiallyifriy log? 1) For all of the above questions, good solutions can be obtaine

rounds of communication and computation, whare. is the mix- by spectral analysis of the underlying graph structure, as nodes on
ing time of a random walk on the network. An additional con- different sides of a sparse cut tend to have very different entries
tribution of our work is a decentralized way of actually detecting N the second eigenvector [9]. In addition, several recent results

convergence, and diagnosing the current error. Our protocol scaled'ave also shown .hOW. to use spectral techniques for _clusterln_g [13’
well, in that the amount of computation performed at any node in 18, 17], characterization [8, 15, 1], and recommendation/prediction

any one round, and the sizes of messages sent, depend polynomit=!- h . v th hni he | K
ally on k, but not at all on the (typically much larger) numbeof . When trylng to apply these techniques to the arge r_1etwo_r set-
nodes. tings described above, one encounters several difficulties. First and

foremost, the very size of the networks may be prohibitively large

for (efficient, but superlinear) spectral algorithms. Second, the ac-
1. INTRODUCTION tual network data may be difficult to collect. This may be a result

One of the most stunning trends of recent years has been theof either technological obstacles (such as implementing an efficient

emergence of very large-scale networks. A major driving force be- web crawler), or of privacy concerns: users of a P2P network may
hind this development has been the growth and wide-spread usagevant to keep their identity concealed, and users of IM or other so-
of the Internet. The structure of hosts and routers — in itself a large cial network systems may be reluctant to share their social connec-
network — has facilitated the growth of the World Wide Web, con- tions.
sisting of billions of web pages linking to each other. Thisinturn A solution to both of these problems is to perform the compu-
has allowed or helped users to take advantage of services such atation in the network. This leverages the computational power of
Instant Messaging (IM) or various sites such as Friendster, Orkut, the individual nodes. At the same time, nodes only communicate
or BuddyZoo to explore their current social network and develop and share data with their neighbors in the network, which may go a
new social ties. Beyond Internet-based applications, a large amountong way toward alleviating privacy concerns. Last but not least, a
decentralized design may be more desirable solely on the grounds
*Supported by an NSF PostDoctoral Fellowship that it does not offer a single point of failure, and the system as a

whole can continue to function even when many of the nodes fail.

1.1 Our Contributions

Permission to make digital or hard copies of all or part of this work for e present a decentralized algorithm for computing eigenvectors
personal or classroom use is granted without fee provided that copies areof a symmetric matrix, and singular vectors of arbitrary matrices
not made or distributed for profit or commercial advantage and that copies (corresponding to the adjacency matrices of undirected resp. di-
bear this notice and the full citation on the first page. To copy otherwise, to rected graphs). We assume that associated with each edge of the
reput_)lis_h, to post on servers or to redistribute to lists, requires prior specific network is a weightz;;, which is known to both endpoints. This
g?rén(':s,ggbﬁgdllgﬁg?gbolk Chicago, lllinois, USA. weight may be the bandwidth available between two machines, the
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strength of a social tie between two individuals. the eigenvalue characterizatidn( — L) = maxz &, %

Our algorithm considers each node of the network as an inde- wherez; denotes the principal eigenvector4f The second eigen-
pendent computational entity that can communicate with all of its vector is the attaining the maximum. By increasing; for nodes
neighbors. (This assumption is certainly warranted for social net- ¢, j with opposite signs in the vectaf (and decreasing.; for
works, P2P networks, or the autonomous systems in the Internet;nodes with equal signs), the ratio on the right-hand side is reduced,
it can also be simulated fairly easily for web graphs.) The sizes of corresponding to the above intuition that the bandwidth should be
messages passed between nodes, as well as the computation peincreased between nodes with different signs in their eigenvector

formed at each node, are nominal; when computingcthencipal entries. Notice that this will not necessarily reduegl — L), as
eigenvectors (or singular vectors), they &ék®) in each round. the maximum may be attained by a different vectarow. How-
The number of rounds to achieve ereds O(log?(n/€) - Tmix (G)), ever, at worst, this is a good practical heuristic; in fact, we con-

wheremix (G) denotes the mixing time of the random walk on the  jecture that by extending this technique to multiple eigenvectors,
networkG. As many of the above-mentioned networks have good A;(I — L) can be provably reduced. As all non-zero entries of
expansion (either by design or empirical observation), this time will I — L coincide with non-zero entries &f, they correspond to edges
essentially be logarithmic in the numberof nodes, hence expo-  of the network, and the computation can thus be performed by our
nentially faster than the centralized algorithms for spectral analysis. decentralized algorithm.

Our algorithm is based on a decentralized implementati@rof
thogonal lteration a simple method for computing eigenvectors. 1.2.2  Social Engineering and Weak Ties
Let A = (ai;) denote the weighted adjacency matrix of the graph  The importance of spectral methods in the analysis of networks
under consideration. In the Orthogonal Iteration mettagndom in general, and social networks in particular, results from the fact
vectors are chosen initially. In each iteration, all vectors are first hat it assigns to each point a vector® for some smalk, and
multiplied by A; then, the resulting vectors are orthonormalized, that proximity in this spac®” corresponds to a similarity of the
and serve as the starting vectors for the next iteration. We show twq nodes in terms of their positions within the network. For social
how to approximately implement both the multiplication and or- networks, this means that individuals with similar (or compatible)
thogonalization phases of an iteration in a decentralized fashion. As social circles will be mapped to close points.

this implementation introduces additional errors, we analyze how A first application of this observation would lie in link prediction

errors propagate through future iterations. or “social engineering”: introducing individuals who do not know
‘Our analysis of a single orthogonal iteration shows that the error each other (do not share an edge), even though their mappings into
with respect to a centralized implementation dropswathin time R are close. This requires the existence of a node to observe the

O(log ; - Tmix). One feature of our approach is that nodes need proximity. This could be a “common friend” (a node adjacent to
not (and usually do not) know the entire network structure, and poth); a more sophisticated solution might let a node broadcast its
in particular will usually not know the value of.ix. Hence, we  1_dimensional vector to other nodes, and let them choose to contact
also show how nodes can detect convergence to within efroa this possibly compatible node (with small inner product of the two
decentralized way without more than a constant factor in overhead. yectors 12D.
. . A second, and perhaps more interesting, application is the de-

1.2 Appllcatlons tection of weak tiez. Socpiologists have long distinguished between

We elaborate briefly on some of the previously mentioned poten- “strong” and “weak” social ties — see the seminal paper by Gra-
tial applications of spectral methods in a decentralized setting. We novetter [12] on the subject. The notions of weak and strong ties
restrict our discussion to applications where nodes can make deci-refer to the frequency of interaction between individuals, but fre-
sions or draw inferences locally, by comparing their dwtuples quently coincide with ties between individuals of similar resp. dif-
to those of their neighbors. This precludes more global uses of ferent social circles. The distinction of social ties into different
eigenvectors, including the prediction of non-existing links (except classes is important in that [12] reports that a disproportionately
perhaps when the two nodes are at distance 2, and the comparisofarge fraction of employment contracts are the result of weak tie

could thus be performed by a common neighbor). interaction. One may expect similar phenomena for other aspects
. . of life. An individual may therefore want to discover which of his
1.2.1 Network Engineering ties are weak, in order to seek introduction to potential employers,

One of the main challenges in designing and maintaining net- new friends, etc.
works is to ensure a high bandwidth for concurrent flows between  Using the mapping int®®*, we can define a precise notion of
arbitrary sources and sinks. This usually involves detecting bottle- a weak tie, by comparing the distance between the two endpoints
necks, and removing them by increasing the bandwidth along bot- of an edge. (A weak tie between individuals will thus correspond
tleneck edges, or by adding more edges. Bottlenecks can often bentuitively to adjacent nodes on different sides of a sparse cut in
detected by considering the principal eigenvectors of the network’s the sense discussed above.) What is more, the two endpoints them-
adjacency matrix, as the components of nodes on different sides ofselves can determine whether their tie is weak, and act accordingly.
a sparse cut tend to have different signs in these eigenvectors.

More formally, by combining the Theorem of Leighton and Rao 1.3  Related Work
[16], on the maximum amount™ of flow that can be concurrently For a general introduction to spectral techniques, see [7]. There
routed between source/sink paiks, ¢;), with results relating the  has been a large body of work on parallelizing matrix operations
expansion of a graph to the second-largest eigenvector of its Lapla-— see for instance [10] for a comprehensive overview. These ap-
cian matrixZ, maximum concurrent flow and eigenvalues relate as proaches assume a fixed topology of the parallel computer which
follows: O(%ﬁf”) < f* < O(ny/An—1(L)). Hence, to in- is unrelated to the matrix to be decomposed; our approach, on the
crease the amount of flow that can be concurrently sent, it suffices other hand, has a network of processors analyze its own adjacency
to increase\,—1(L) — or equivalently, to decrease the second- matrix.
largest eigenvalue df — L. Our work relates to other recent work that tries to infer global

One approach to attempt to minimiag(I — L) is to consider properties of a graph by simple local processes on it. In particular,



Benjamini and Lowasz [3] show how to determine the genus of a node: can compute its row; as a linear combination (with coef-

graph from a simple random walk-style process. ficientsa;;) of all vectorsQ; received from its neighborg The
Our implementation of Orthogonal Iteration is based on a recent key aspect of the decentralization is therefore how to perform the

decentralized protocol for computing aggregate data in networks, orthonormalization o¥” in a decentralized way.

due to Kempe, Dobra, and Gehrke [14]. Here, we show how to . i .

extend the ideas to compute significantly more complex properties 2.2 ~Decentralized Orthonormalization

of the network itself. The orthonormalization in Orthogonal Iteration is typically per-
Both the above-mentioned paper [14] and our paper draw con- formed by computing thé R factorization ofl/, i.e. matrice®), R

nections between computing the sum or average of numbers, andsuch that’ = QR, thek columns ofQ are orthonormal, and the

the mixing speed of random walks. In recent work, Boyd et al. [S] k& x k matrix R is upper triangular. Orthonormalization is thus per-

have made this connection even more explicit, showing that the two formed by applying?—* to V/, yielding Q. If each node had access

are essentially identical under additional assumptions. to R, each could locally compute the inver& ' and apply it to
The equivalence between averaging and Markov Chains suggeststs copy ofV;. The resulting collection of vectors would then form

that in order for these decentralized algorithms to be efficient, they an orthonormaty.

should use a Markov Chain with as small mixing time as possi-  However, it is not obvious how to compukdirectly. Therefore,

ble. Boyd, Diaconis, and Xiao [4] show that the fastest mixing we use the factthat ik = V7V, thenR is the uniquek x k upper

Markov Chain can be computed in polynomial time, using semi- triangular matrix withk = R”R. This holds because if) is

definite programming. For the special case of random geometric orthonormal, theQ” Q is the identity matrix, so

graphs (which are reasonable models for sensor networks), Boyd et T i -

al. [5] show that the fastest mixing Markov Chain mixes at most by K = V'V = RQQR = RR

a constant factprfasterthan the random _walk, ir_l e > logn) (Here, we are using the fact that the QR-factorizaion= QR
(where alln points are randomly placed in a unit square, and con- o4 the Cholesky factorizatioli — R” R are both unique.) Once

sidered adjacent if they are within distance In essence, this each node has access to the x k matrix &, each can compute
shows that slow convergence is inherent in decentralized averag-tha Cholesky factorizatiof = R” R locally. ,invertR and apply

ing algorithms on random geometric graphs. R~ toits rowV..
Unfortunately, it is unclear how to provide each node with the
2. THE ALGORITHM precise matrixK . Instead, each node computes an approximation

_ Ty, -
We consider the problem of computing the eigenvectors of a ©© X To see hOW" obsiirve tha%f =2, ViVi. Each noda. Is
weighted graph, where the computation is performed at the nodes incapable of producindg<™* = V;" V; locally, and if we can, ina
the graph. Each node has access to the weights on incident edgegiecentralized manner, sum up these matrices, each node can obtain

and is able to communicate along edges of non-zero weight, ex-a copy ofK.

changing messages of small size. The goal is for each node to In order to compute this sum of matrices in a decentralized fash-
compute its value in each df principal eigenvectors. For sim-  ion, we employ a technique proposed in [14]: the idea is to have the
plicity, we will assume that each node can perform an amount of Value (or, in this case, matrix) from each node perform a determin-
computation and communication proportional to its degree in each istic simulation of a random walk. Once this “random walk” has

round. mixed well, each nodéwill hold roughly arn; fraction of the value
from each other nodg Hence, if we also compute and divide by
2.1 Orthogonal Iteration it, then each node calculates approximately the sum of all values.

(For matrices, all of this computation applies entry-wise.) Hence,
let B = (bs;) be an arbitrary stochastic matrix, such that the cor-
responding Markov Chain is ergodic and reversipndb;; = 0
whenever there is no edge fraio j in the networké Then, the
algorithm for summing can be formulated as follows:

Our algorithm emulates the behavior of Orthogonal Iteration, a
simple algorithm for computing the tdpeigenvectors of a graph.

Algorithm 1 Orthogonal Iteration4)

1: Choose a random x k matrix Q.

2: loop , 0

3. LetV = AQ. Algorithm 2 Push-SumB, (K'*))

4:  Let@ = OrthonormalizéV). 1. One node starts withw; = 1, all others withw; = 0.
5: end loop . All nodes setS; = K,

6: Return@ as the eigenvectors. : loop

2
3
4. SetS; = ZjEN(i) bJLSJ
5

. Setw; = ZjeN(i) bﬁw]-
6: end loop
7: Return2:.

Once the eigenvectors have been computed, it is easy to obtain
from them the projections of each node onto the eigenspace, asitis
captured by the rows df .

Orthogonal Iteration converges quickly: the error in the approx-

imation to the truel) decreases exponentially in the numbesf At each node, this ratig: converges to the the supi, K ) at

iterations, as characterized by Theorem 3.2. essentially the same speed as the Markov Chain defindgldmyn-
We adapt Orthogonal Iteration to a decentralized environment. !Recall that a Markov Chain is callagversibleif it satisfies the

Each node takes full responsibility for the rows df and@ asso- detailed balance condition; B;; = 7; B;; for all ¢ andj.

ciated with it, denoted; and@;. The choice of a random matrix  ?A natural choice is the random walk on the underlying network,

is easy to implement in a decentralized fashion. Similarly, when i.e.b;; = @. However, our results hold in greater generality,

the matrixQ is already known, thelv = AQ can be computed  and the additional flexibility may be useful in practice when the
locally: each node sends its row); to all of its neighbors; then, random walk on the network itself does not mix well.



verges to its stationary distribution. The exact bound and analysis The convergence of Orthogonal Iteration itself has been analyzed

are given as Theorem 3.4. extensively in the past (see [11] for references); the relevant results
Combining this orthonormalization process with the decentral- are stated as Theorem 3.2.

ized computation ofAV, we obtain the following decentralized

algorithm for eigencomputation, as executed at each fode THEOREM 3.2. Let P, describe the projection onto the space

spanned by the top eigenvectors of a symmetric matrix and let

P, be the projection onto the space spanned by the approximate

Q' obtained aftert iterations of Orthogonal Iteration. With high

probability,

Algorithm 3 DecentralizedOIX)

1: Choose a randordimensional vecto@);.
2: loop

3: SetV; = EjEN(i) az-ij. >\k+1 .

4:  ComputeK™® = VTV, [Po — Pyl < O(\Tk| “n)

5. SetK = Push-SuriB, K®).

6: Compute the Cholesky factorizatidn = R™ R. Interpreted, this theorem implies that the space found by orthogonal
7. SetQ; =ViR™%. iteration is close to the true space, so the projectigns AQ; are

8: end loop nearly perfect. Furthermore, not many iterations are required to

9: Return@®; as theith component of each eigenvector. achieve good accuracy. To bring this error bound,tewe need to

performt = log(2)/ log(] Xizl |) iterations.

We have been fairly casual about the number of iterations that
should occur, and how a common consensus on this number is3.1  Error of Orthogonal Iteration
achieved by the nodes. One simplistic approach is to have the ini-  The main focus of our analysis is to deal with the approximation
tiator specify a number of iterations, and keep this amount fixed grrors introduced by the Push-Sum algorithm. In Section 3.2, we
throughout the execution. A more detailed analysis, showing how show that the error for each entry of the matfixat each node
nodes can estimate the approximation error in a decentralized way,drops exponentially in the number of steps that Push-Sum is run.
is given as Section 3.3. Still, after any finite number of steps, each nads using a (dif-

ferent) approximatiork’; to the correct matrixx’, from which it

3. ANALYSIS computesk; ! and then its new vectap;. We therefore need to

In this section, we analyze the convergence properties of our de- gnalyze the effects that the error introduced into the matsixvill
centralized algorithm, and prove our main theorem. We describe naye on future (approximate) iterations, and show that it does not
the subspace returned by the algorithm in terms of projection ma- hinder convergence. Specifically, we want to know how many iter-
trices, instead of a specific set of basis vectors. This simplifies the gtions of Push-Sum need to be run to make the error so small that
presentation by avoiding technical issues with ordering and rota- even the accumulation over the iterations of Orthogonal Ilteration

tions among the basis vectors. For a subsgawath orthonormal
basis{bi, ..., bx}, theprojection matrixontoS'is Ps = 3, bib?! .

THEOREM 3.1. Let A be a symmetric matrix, andy, Ao, ...
its eigenvalues, such thak,| > |A2| > .... Let Pg denote the
projection onto the space spanned by the kopigenvectors ofA
and let Py denote the projection onto the space spanned by the
eigenvectors computed afteiterations of Decentralized Orthogo-
nal Iteration.

If DecentralizedOl runs Push-Sum f@(t7mix -log(8k|| A||2¢))
steps in each of its iterations, anidz " |» is consistently less than
¢, then with high probability,

<

Ak
1Po — Parlla < O m) + 36"

REMARK (VECTOR AND MATRIX NORM NOTATION) For any
probability distributioniz, we write || Z|,,z = (3, |2:|P - 1:)*/?,
and||Z|| oo,z = max; |z;|. Wheng is omitted, we mean the norm
1Z]lp = (32 |:l?) 7. .

For vector normg|-||a, ||-||s, the matrix operator norm of a ma-
trix A is defined ag|Al|a—» = maxz, =1 || AZ]||s. We most fre-
quently use|A||2 := ||Al|2—2. In addition to the operator norms
induced byL, norms on vectors, we define tReobenius nornof
amatrix A as||A||r := (3, ; af;)'/?. These two norms relate
in the following useful ways: for all matriced, B, we have that
1All2 < |A]lp < v/rank(A)[|All2, and]|AB||r < [|A]l2]|B] .

The proof of Theorem 3.1 must take into account two sources of

keeps the total error bounded by

In order to bound the growth of error for the decentralized Or-
thogonal Iteration algorithm, we first analyze the effects of a single
iteration. Recall that a single iteration, in the version that we use to
decentralize, looks as follows: It starts with an orthonormal matrix
Q, determined’ = AQ andK = VTV, and from this computes
a Cholesky factorizatiods = RT R, whereR is ak x k matrix.
Finally, the output of the iteration 9’ = VR™!, which is used as
input for the next iteration.

The decentralized implementation will start from a mak@x
which is perturbed due to approximation errors from previous iter-
ations. The network comput@é = A@, and we can hence define
KE=VTV. However, due to the approximate nature of Push-Sum,
nodei will not use &, but instead use a matrik; = K + E;,
for some error matrix&;. Node i then computesk; such that
K; = RTR;, and appliesk; ! to its row V; of the matrix V.
Hence, the resulting matr@’ has as its*" row the vecto@ﬁ;l.

LEMMA 3.3. LetQ and@ be matrices wherg) is orthonor-
mal, and|Q — Q|| r +ek < (2||Al2||R™]]2) 3. If Q" andQ’ are
respectively the results of one step of Orthogonal Iteration applied
to @ and Decentralized Orthogonal Iteration appliedcfb and the
number of steps run in Push-Sunt is- Q (7. log(1/¢)), then

IR =Q'llr < K2@IAIR )" (1Q - Qllr + ek)

error: (1) The Orthogonal lteration algorithm itself does not pro- Proof. The proof consists of two parts: First, we apply perturba-
duce an exact solution, but instead converges to the true eigenveciion results for the Cholesky decomposition and matrix inverse to
tors, and (2) Our decentralized implementation DecentralizedOl in- derive a bound off R~' — R; !||o. Second, we analyze the effect

troduces additional error.

of applying the (different) matric@; ! to the rows of/.



Throughout, we will be making repeated use of the relationship  In the second part of the proof, we want to analyze the effect

between the matrix norms of, V, R, K. Because)" is orthonor- obtained by each nodeapplying its own matrixR; * to its row
mal, we have thaf V|| = = |[R|» and[|V]> = [|R]2. For A, V; of the matrixV. Notice that this is a non-linear operation, so
this does not hold with equality; however, becaise= AQ, we cannot argue in terms of matrix products as above. Instead, we

the submultiplicativity of norms gives thaftV’|s < ||Al|. and

X ; X erform the analysis on a row-by-row basis. We can wpife- A;
|[VIF < ||A||r. Finally, becausék = R R, its norms satisfy P y y vate- Q

as
K2 = | R3, and|| K7 < [|R]|%. L, L e
Simply fLom the deflnltlonsI/A: AQ e_de.: AQ, we.have _ ‘/'L_(Rfl _ §;1) F (Vi ‘7_)34
that ||V — Vl]|r < |A]2]|Q — Q|F- Using this bound with the
Triangle Inequality, we obtain We letC be the matrix whos&™ row is (V; — %)R ,andD the
. I e matrix whose'" row is V; (R~ — R; '). We bound the Frobenius
K=Kl = V'V _Y Vir ~ o norms||C||r, || D||r separately. To bouniC|| », observe that
< WY -V |E+ VIV VTV R Sl
. - IC: = DN - VR 3
< WVIEIVE = Ve + VIV = Ve :
]2 is submultiplicative sa = [[RR ]2 < [|R[2][R™"|-- < S Ivi-ViIBIE 3
Therefore,|R™ |2 > HRH > Tar, and our assumed bound i
2 [All2? |
<

B S IV - Tl
1

on|[|Q — Q|| is bounded by:. Hence/|V |2 < 2[|V||2, yielding mZaXIIJSLi_ |

IK - K|r <

TIVIIV =Vir < FIAIBIQ - Qll#. = max RV -V

Next, we want to bound the distance betwé€and the approxi-
mation’X; used by nodé. By our choice of, Theorem 3.4 implies N
that||[K; — K||r < €||M||r, whereM,. = 3, |(ViEVi)rc|. Ap- IDIF = D ViR =R
plying the Cauchy-Schwartz Inequality after expanding the defini- i
tion of ||| » bounds| M || » < || V|3 Inturn, [V]|3 < (2)*[V 1%,
and||V'[[% < rank(V) - [[V]3 < K[| A3, so

Similarly, to bound the Frobenius norm bX.

IN

IV - max |R™" = B3

We take square roots on both sides of these bounds, and combine

1K~ Killr < HK —K|r+]|IK - IA{-HF them using the Triangle Inequality, getting
< *||A||2||Q QHF—I—( )2ek||All3 Q" =Q'|lr < ||‘7,V||F,m?x|‘§;1”2
1 ~_ 1
s §||A||2'(\|Q—Q||F+ek). +IVIle - max||[R™" = B2

Finally, inserting our bounds dpR; '||» and||R~" — R; '||, yields

We apply two well-known theorems to bound the propagation that
a

of errors in the Cholesky factorization and matrix inversion steps.

Flrst a theorem by Stewart [22] states thathif = RT R and 1Q — @'HF < ||A||2||@ —Qlr- \/§\|R_1||2
K = RTR are Cholesky factorizations of symmetric matrices, - 31 o114 ~
+8Vk || All2|| A3 R - + ek
then||R — R||r < || K~ Y2||R|2||K — K| . Applying this the- I 7!2! ”2! HQ(ﬂQ Qllr + k)
orem to our setting, and using thak ~'|s < ||[R™'||, yields < 16VE|RTY2A2(I1Q — Qllr + k),
that completing the proof. [ ]
—~ . ~
IR = Rillr < K [2l|Rl2lK - KillF Proof of Theorem 3.1. Lemma 3.3 shows that the approximation
< IR - (1@ = lle + b error|| — Q| grows by a factor of'/*(2| R !|l2]lAl2)" with
8 each iteration, plus an additiongt error. While this exponential

Next, we apply Wedin's Theorem [24], which states that for non- 9rowth is worrisome, the initial error i ande decreases exponen-
singular matrices, R, tially with the number of Push-Sum steps performed. By perform-

iNg Q(tTmix log(8k||A||2€)) steps of Push-Sum in each iteration,
IR™* — R Y2 < 5| R — Rillamax{||[R7|3, | R, |3} the difference|Q — Q|| is bounded by** aftert iterations.

To transform this bound to a bound @, — P r, note that
1Po = Palle = [QQ" —QQ"|r

10Q" -~ QQ" I + 1QQ" — QQ"|Ir
(IQllz + 1Ql2)1Q - @l r

N By the argument in Lemma 3.3, the first factor is at midsts, and
Therefore,||R;*||2 < 2||[R™"||3, and using this bound in Wedin’s  we achieve the statement of Theorem 3.1. |
Theorem, we obtain

Tobound|R; |2, recall tha ;72> — HR | < |R - Ri|r.

Using our bound off R — R; || » and our assumptlon aeQ — QHF,
we obtain that

INIA

[ S W RS N
IR=1[2 IR M2 — 320R M2

1.2 ~ The main assumption of Theorem 3.1, th& |2 is bounded,
(1+ \/5)HR 12| R — Ril|2 raises an interesting poinf| R || becoming unbounded corre-

(L T P
< SJAIBIRT'S - (1Q — Qllr + €k). sponds to the columns ¢f becoming linearly dependent, an event



that is unlikely to happen outside of matricdsof rank less than LEMMA 3.6. Let B be a stochastic matrix whose associated
k. Should it happen, the decentralized algorithm will deal with this Markov Chain is ergodic and reversible, with stationary probabil-
in the same manner that the centralized algorithm does: The finaljyy 2 Then max; | ey B2 7T lloo < (max; | e BT 2.2)? for
column of @ will be filled with garbage values. This garbage will anyt. " - " ’
then serve as the basis for a new attempt at convergence for this
column. The difference between the centralized and decentralizedproof. First, by substituting the definition df || ., and noticing
approaches is precisely which garbage is used. Clearly if the ermor a1 7 — 27777 we can rewrite the quantity to be bounded as
is adversarial, the new columns@fcould be chosen to be orthog-
onal to the topk eigenvectors, and correct convergence will not
occur.

Notice that even iff R™!||2 is large for some value &, it may
be bounded for smaller valués. Orthogonal iteration is a nested
process, meaning that the results hold¥ox k, where we exam-
ine the matrices restricted to the fidsteigenvectors. This means
that while we can no longer say that the fikal- k¥’ columns nec-
essarily track the centralized approach, sa@ say that the first’

max; ; & (B* — I77)%. Then, itis easy to see that this quantity
is equal tomax |z, .—1 [|(B* — I7")&] - (as the maximum in
the second version is attained when only one coordinatéifion-
zero). This is, by definition, the operator nofil — 177 (|1 #—co-
BecauseB (and henceB?) is stochastic with stationary proba-
bility 7, we have thag” - Bt = #7, andB* - T = I. Furthermore,
the fact that is a probability measure implies tha&{'T = 1, so
we obtain thatB** — 177 = (B' — T7#7)2. Now, the submulti-

are still behaving properly. plictativify;)f operator nozmsgivTes us thaB? — 177 |1 700 <
. [B* = 17" l17 2,7 - [|1B" = 17" [[2,7—c0-
3.2 Analy3|s of Push-Sum For ease of notation, we writh’ = B* — 177. BecauseB
Next, we analyze the error incurred by the Push-Sum protocol, satisfies the detailed balance conditie;; = =;b;; for all 4, j,
proving the following theorem. We define the mixing timgix so doesB* (which can be shown by a simple inductive proof).
of the Markov Chain associated wifB in terms of thej|-||2 norm, Therefore, K also satisfies the detailed balance condition. Using
namely as the smallessuch that|e} B — 77| < 1 for all 4. the factthaf| K1 z 2,z = maxz, =17, =1 2 (KZ)iyimi

(one direction of which is proved using the Cauchy-Schwartz In-
equality, the other by appropriate choicezandy), the detailed
balance property oK yields || K||1,7—2,7 = || K||2,7— - Finally,

THEOREM 3.4. Let S;; be thek x k matrix held by node
after thet™® iteration of Push-Sumy, ; its weight at that time,
and S the correct matrix. Defind/ = ", |So ;| to be the matrix 2 Tt T
whose(r, ¢) entry is the sum of absolute values of the initial matri- || Kl1,7—2,7 = max; (3, ?;'7)1/2 = max; || “—=——||2,#, again

cesSo,; at all nodesi. Then, for any, the approximation error is by the detailed balanced condition. |
|25 — §||p < €| M]|F, aftert = O(7mix - log 1) rounds.

Wi By combining Lemma 3.5 and Lemma 3.6, we can prove Theo-
The proof of this theorem rests mainly on Lemma 3.5 below, re- rem 3.4.

lating the approximation quality for every single entry of the matrix

to the convergence d8" to the stationary distribution dB. In the Proof of Theorem 3.4. Given a desired approximation quality
formulation of the lemma, we are fixing a single engryc) of all definee’ = - BY definition of the mixing timeryix, the
matrices involved. We write; = K9, ands;,; = (St,i)re- ||-|l2 distance at timeny;x is at most||é; B™ix — 77| < % for
Tt = anyi. Therefore, by a simple geometric convergence argument, at

LEMMA 3.5. Lett be such thaf| ~—— || < 5= forall 5. time ¢t = O(log 5 Tmix) = O(log ¢ Tmix), the error is at most
Then, for any node, the approximation errow%i -, % at |eF Bt — 7T ||, < V€, for anyi.
. . T g2t _=T
timet is at moste 3, |z;]. Lemma 3.6 now yields thahax; || “2=—"— || < ¢ = =
Proof. Let s; andw; denote the vector of ai; ; resp.w; ; values For any node and eaclir, c) pair, Lemma 3.5 therefore shows that

at timet. Thus,so = &, andwy = &;, for the special nodé. \% =225 <€ X2, |z;| = eMrc. Hence, we can bound

Then, it follows immediately from the definition of Push-Sum that the Frobenius norm

5L = 37 B, andw{,, = @{ B. By induction, we obtain that

sT=3"B' =Y ;-¢ B andw = & B'. IS2ei = Sllr < /5,22, ME = €|M]p,
Nodei's estimate of the sum at times ;tt =>,%" % completing the proof. -

Because both the numerator and denominator converge, tihe . .

right-hand side converges }5; z;. Specifically, let: be such that 3.3 Detecting Convergence in Push-Sum

erpt -7 . . i i i -
[E B,? loo < 5% for all j. Then, a straightforward calculation Inour dlscus_s_,lon“thus far, we have gl_ossed over the issue of ter
(@ B, e mination by writing “Run Push-Sum until the error drops beloiv
shows thall — e < Z57- < 1+ eforalli,j. We have yet to address the issue of how the nodes in the network
A simple application of the Triangle Inequality now gives that know how many rounds to run. If the nodes knew, the prob-

, completing the proof. [ ] lem would be easy — however, this would require knowledge and

ot =il < el C _ _
] ) ~ adetailed analysis of the graph topology, which we cannot assume
The lemma gives bounds on the error in terms of the mixing podes to possess.

speed of the Markov Chain, as measured in|the. norm. Most Instead, we would like nodes to detect convergence to within
analysis of Markov Chains is done in terms of the} = norm, errore themselves. We show how to achieve this goal under the as-
or the total variation distance. For this reason, we give the discrete sumption that each node knows (a reasonable upper bound on) the
time analogue of Lemma (2.4.6) from [21], which relatels.. and diameterdiam(G) of the graphG. In order to learn the diameter
|||, for reversible Markov Chains. to within a factor of 2, a node may simply initiate a BFS at the be-

3When we write a fraction of vectors, we mean the vector whose ginning of the computation, and add the length of the two longest
entries are the component-wise fractions. paths found this way.



Assume now that nodes know an upper bodhdn the diam-
eter, as well as a target upper boundn the relative error. For
the purpose of error detection, the nodes, in addition to the ma-
trices S; from before, compute the sum of the non-negative ma-
trices A;, with (A;)rc = |(Si)re|. When the nodes want to test
whether the error has dropped belewthey compute the values

Ai)re i . Ai)re Si)re
= max; Usdze gmin — ip, Golee | gmas (Sire
K 7

ands™™ = min; (S )re - (Notice that the maximum and minimum
can be computed by using flooding, and only sending one value for
each positior{r, ¢), as both operations are idempotent.) The nodes
decide to stop if the values for all matrix positiofis c) satisfy
amin > 1+€a£“g”‘ andsmax — gmin < Trelre Otherwise, the
nodes continue with Push-Sum.

We will show in Theorem 3.7 below that this rule essentially
terminates when the maximum error is less thams the com-
putation of the maximum and minimum takes titédiam(G)),
testing the error after each iteration would cause a slowdown by a
multiplicative factor of© (diam(G)). However, the BFS need only
be performed every steps, in which case at most an additiodal

max

[ = Imax;

rounds are run, while the amortized cost is at most a constant factor.

Wheneverd = ©(diam(G)), the overall effect is only a constant
factor.

For our theorem below, we focus only on one matrix eltty:),
as taking the conjunction over all entries does not alter the problem.
We letx; denote the value held by nodéefore the first iteration,
and writes; = (Si)rc, anda; = (A;)r. for the entries at the time
under consideration. We defind®*, ™", s™**, ands™™" in the
obvious way. In line with the error analysis above, we say that the
error at node is bounded by if |2t ;T < €d2; |zl The
error is bounded by if it is bounded bye at all nodes.

THEOREM 3.7.
at moste.

1. When the computation stops, the error is

2. After the numbet of steps specified in Lemma 3.5 to obtain

error at most; =, the computation will stop.

Notice that there is a gap 11+6) between the actual desired er-
ror and the error bound that ensures that the protocol will terminate.
However, this is only a constant factor, so only a constant number
of additional steps is required (after the actual error has dropped
belowe) until the nodes actually detect that it is time to terminate.

Proof. 1. When the computation stops, the stopping require-

ment ensures that

; 1
min > max 1
- 1+e @)
; €
max _ min < max 2
s s < 17 6a 2)

. a;

Because)_, w; = 1, we obtainthad_, a; = >, w1

in fact a convex combination of~ terms, and in particular
J

a™ir < >, ai < o™, A straightforward calculation using
Inequality (1) now shows that™** < 1i€ ~Zj aj.

Substituting this bound oa™** into Inequality (2) gives us
that s™** — s™" < €37 a;. The same convexity argu-
ment, applied this time t3 °; s;, as well as the facts that
;a5 = Y|zl and}] s; = 30, x;, now ensures that
|“—1 -2 ;z:]| <e > |xj| for all nodeSz i.e. the desired
erfor bound.

2. For the second part, we first apply Lemma 3.5, yielding for

all nodes: that
€
|*—Z|$JH m;\lﬂ
€
2(1+¢) XJ: &l

By the Triangle Inequality and the above convexity argu-
ment,

®)

A

(4)

max min € max
a —a

1+ea ’

25079 2y lmsl <
so the first stopping criterion is satisfied. Similarly,
2507 2 |2l

so the second criterion is met as well, and the protocol will
terminate. ™

€ max

< 1+€ )

<

4. CONCLUSIONS

In this paper, we have presented and analyzed a decentralized
algorithm for the computation of a graph’s spectral decomposition.
The approach is based on a simple algorithm called Push-Sum for
summing values held by nodes in a network [14].

We have presented a worst-case error analysis; one that is far
more pessimistic than those performed in bounding the (similar) ef-
fects of floating point errors on numerical linear algebra algorithms.
Nonetheless, our analysis shows thagrations of orthogonal iter-
ation can be performed without central control in @€ 7y ),
whererix is the mixing time of any Markov Chain on the network
under consideration.

We believe that our algorithm represents a starting point for a
large class of distributed data mining algorithms, which leverage
the structure and participants of the network. This suggests the
more general question of which data mining services really need to
be centralized. For example, Google’s primary service is not the
computation of Pagerank, but rather computing and serving a huge
text reverse-index. Can such a task be decentralized, and can a web
search system be designed without central control?

Above, we argue informally that one of the advantages of our
algorithm is a greater protection of nodes’ privacy. An exciting di-
rection for future work is to investigate in what sense decentralized
algorithms can give formal privacy guarantees.

The convergence of our algorithm depends on the mixing speed
of the underlying Markov Chain. For a fixed network, different
Markov Chains may have vastly different mixing speeds [4]. Boyd
et al. [4] show how to compute the fastest mixing Markov Chain by
using semi-definite programming; however, this approach requires
knowledge of the entire network and is inherently centralized. An
interesting open question is whether this fastest Markov Chain can
be computed (approximately) in a decentralized way, perhaps by
analyzing the eigenvectors. This would have applications to rout-
ing of concurrent flows (by removing bottlenecks), and allow the
network to “self-diagnose” and speed up future invocations of our
decentralized algorithm.

Another question related to self-diagnosis is the error estimate in
the Push-Sum algorithm. At the moment, we assume that all nodes
know the diameter, and can run an error estimation protocol after
appropriately chosen intervals. Is there a decentralized stopping
criterion that does not require knowledgeddfm(G) or n?
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