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A Decentralized Approach to Formation Maneuvers
Jonathan R. T. Lawton, Randal W. Beard, Senior Member, IEEE, and Brett J. Young

Abstract—This paper presents a behavior-based approach to
formation maneuvers for groups of mobile robots. Complex for-
mation maneuvers are decomposed into a sequence of maneuvers
between formation patterns. The paper presents three formation
control strategies. The first strategy uses relative position infor-
mation configured in a bidirectional ring topology to maintain the
formation. The second strategy injects interrobot damping via pas-
sivity techniques. The third strategy accounts for actuator satura-
tion. Hardware results demonstrate the effectiveness of the pro-
posed control strategies.

Index Terms—Behavioral methods, coordinated control, forma-
tions, mobile robots, passivity.

I. INTRODUCTION

COOPERATIVE robots can be used to perform tasks that
are too difficult for a single robot to perform alone. For

example, a group of robots can be used to move large awkward
objects [1], [2], or to move a large number of objects [3]. In ad-
dition, groups of robots can be used for terrain model acquisi-
tion [3], planetary exploration [4], or measuring radiation levels
over a large area [5]. In [6], a group of robots are used for path
obstruction. This could be used to impede the motion of an in-
truder in a battlefield scenario.

There are roughly three approaches to multivehicle coordi-
nation reported in the literature: leader following; behavioral
methods; and virtual structure techniques. In leader following,
some robots are designated as leaders, while others are
designated as followers [7]–[10]. In behavior-based control
[11]–[16], several desired behaviors are prescribed for each
agent, and the final control is derived from a weighting of the
relative importance of each behavior. In the virtual structure
approach, the entire formation is treated as a single entity
[17]–[20]. Desired motion is assigned to the virtual structure
which traces out trajectories for each member of the formation
to follow.

The virtual structure and leader-following approaches
require that the full state of the leader or virtual structure be
communicated to each member of the formation. However,
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Fig. 1. Nonholonomic differentially driven mobile robot.

behavior-based approaches are decentralized and may be
implemented with significantly less communication. The
disadvantage of behavior-based approaches is that they are
difficult to analyze mathematically. Therefore, it is difficult
to guarantee that the formation has converged to the desired
configuration, or to guarantee formation keeping during a
maneuver.

In this paper, we will consider three behavioral control
strategies. Hardware results will be presented, demonstrating
the effectiveness of the approach on differentially driven mobile
robots. The position of each robot is measured using a combi-
nation of dead reckoning and an overhead camera system. The
fact that we use differentially driven mobile robots complicates
the coordination problem, due to the nonholonomic constraints.
In the well-known paper by Brockett [21], it was shown that
nonholonomic systems cannot be stabilized with continuous
static state feedback. The implication for differential-drive
mobile robots is that the position and orientation of the center
of the robot cannot be simultaneously stabilized with a time-in-
variant, stabilizing control strategy. Both discontinuous control
laws [22], [23] and time-varying [24], [25] control laws have
been found to stabilize the center of rotation and the orientation
of a single robot. The multiple robot case is naturally more
complex.

Define the “hand” position of the robot to be the point
that lies a distance along the line that is normal to

the wheel axis and intersects the wheel axis at the center point
, as shown in Fig. 1. The kinematics of the hand po-

sition are holonomic for . In this paper, we consider the
problem of coordinating the hand position of the robots. While
this assumption simplifies the control problem, it is of impor-
tance since the hand position may, in fact, be the point of in-
terest. For example, if the robots are equipped with a gripper lo-
cated at the hand position and the coordination task is to move
an object from one location to another, then the objective is to
move the gripper locations in a coordinated fashion. Another ex-
ample is when the group objective is the coordinated placement
of sensors that are located at the hand position.
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The objective of this paper is to introduce the coupled
dynamics approach to formation control, which is a be-
havior-based strategy. The paper provides a rigorous analysis
of formation keeping and convergence, which is a contribution
to the behavior-based literature. Furthermore, our approach has
the advantage that it can be implemented when only neighbor
position information is available (i.e., velocity information is
not required), thereby reducing the communication overhead.

In Section II, we derive the equations of motion for the hand
position and show that the internal dynamics are stable in the
sense of Lyapunov. In Section III, we define the formation con-
trol problem as motion between a sequence of formation pat-
terns. In Section IV, we present three coupled dynamics control
strategies. The first strategy uses the global and relative position
of each robot to move the robot formation from one position to
another while maintaining the robots in formation during the
maneuver. In the absence of relative velocity information, the
relative motion among robots can be oscillatory when controlled
by the coupled dynamics approach. The second control strategy
introduces passivity-based interrobot damping to significantly
reduce interrobot oscillations. The third strategy considers for-
mation control subject to robot actuator constraints. Section V
presents hardware results for each of these control strategies,
and Section VI offers some concluding remarks.

II. ROBOT DYNAMICS

The objective of this paper is formation control for a group
of mobile robots, each of which have the following equations of
motion:

(1)

where is the inertial position of the th
robot, is the orientation, is the linear speed, is the
angular speed, is the applied torque, is the applied
force, is the mass, and is the moment of inertia. Letting

, and , the equations
of motion can be written as

(2)

where the definitions of and can be inferred from (1).
In this paper, we will focus on formation control of the robot

hand position. As shown in Fig. 1, the hand position is a point
located a distance along the line that is perpendicular to the
wheel axis and intersects. The hand position is given by the
equations

(3)

Differentiating (3) with respect to time gives

Differentiating again gives

Since

the system (2) with output (3) has constant relative degree equal
to two and can, therefore, be output feedback linearized [26]
about the hand position. Toward that end, define the map

as

(4)

The map is a diffeomorphism, and its inverse is given by

In the transformed coordinates, (2) and (3) are given by

The output feedback linearizing control [26] is given by

(5)

which gives

The last equation represents the internal dynamics which are
rendered unobservable and uncontrollable by the transformation
(4). The zero dynamics [26] are found by setting
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Fig. 2. Bottom right member of the formation is initially too far to the right.

to get . Therefore, the zero dynamics are stable,
but not asymptotically stable. Since and
represent the velocity of the hand position, this implies that the
angle will stop moving when the hand position stops moving.

In the remainder of the paper, the input–output dynamics of
each robot will be represented by the double integrator system

(6)

Feedback linearization about the hand position was used in [25]
for kinematic models. This section has extended the approach
to dynamic models, and has explicitly defined the internal dy-
namics.

III. FORMATION MANEUVERS

In this section, we describe the types of formation maneuvers
that will be considered in this paper. Let be the number of
mobile robots in the formation. Aformation patternis defined
to be a set

where is the desired location of the hand position of theth
robot. We will consider the class of formation control problems
where the group of robots is required to transition through a se-
quence of formation patterns , where we as-
sume that the sequence of formation patterns are designed in
such a way as to avoid robot collisions. We assume that during
the transition from one formation pattern to another, it is desir-
able to maintain the robots in the same shape as the destination
pattern.

There are two competing objectives. The first objective is to
move the robots to their final destination as specified in the for-
mation pattern. The second objective is to maintain formation
during the transition. Consider a simple translation as shown in
Fig. 2. The left triangle represents the formation pattern at the
start of the maneuver, and the right triangle represents the de-
sired formation pattern. Suppose that initially the bottom right
robot leads the formation, as shown in Fig. 2. The robot has
two conflicting objectives: move right to arrive at the final goal,
and move left to regain formation. If it moves left it will likely
overshoot the formation, which is moving to the right, and if it
moves right, it will take longer to regain formation as the others
are required to catch up.

To incorporate these two competing objectives, we will define
error functions for both. Let be the total error between the
current position of the robots and the desired formation pattern

where is a symmetric positive definite matrix, and
(see Fig. 2). Similarly, define as the formation error

where , and where the robot index is defined
modulo , i.e., , and . The notation

is used to indicate summation around the ring defined
by the formation pattern. By maintaining small during the
maneuver, the robots will equalize the distance that they need
to go to reach the final formation pattern. Note that if
and only if for all . This is equivalent to saying that

, which will only be true if the robots
are in the same relative formation that they will have at the end
of the maneuver. Therefore, when , the robots will be
keeping formation, but they will not necessarily be at the final
formation pattern.

The total error for the formation coordination problem is the
sum of and

(7)

where and weight the relative importance of formation
keeping versus goal convergence. The formation control objec-
tive is to drive asymptotically.

IV. FORMATION CONTROL

In this section, we propose three control strategies for driving
defined in (7) to zero, given the dynamics (6). The first

approach is thecoupled dynamics formation controlderived
in Section IV-A. The coupled dynamics approach couples the
dynamics of the robots by incorporating relative position and
velocity information between neighbors in the control strategy.
This approach requires that each robot knows the relative
position and velocity of two other robots (its neighbors in
the communication ring), as well as their desired positions in
the target formation pattern. The second approach, derived in
Section IV-B, is thecoupled dynamics formation control with
passivity-based interrobot damping. This formation control
strategy is identical to the coupled dynamics approach, except
the requirement for relative velocity is removed. The third
approach, derived in Section IV-C, is thecoupled dynamics
approach with saturated control. This strategy modifies the
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coupled dynamics approach so that convergence ofis
guaranteed under actuator saturation constraints.

A. Coupled Dynamics Formation Control

In this section, we derive the coupled dynamics formation
control strategy. The proposed control law is given by

(8)

where and are symmetric positive semidefinite matrices,
and and are symmetric positive definite.

The first two terms in (8) drive the robot to its final position in
the formation pattern. The second two terms maintain formation
with the robot, and the last two terms maintain formation
with the robot.

Theorem IV.1: If the robot formation (1) is subject to the con-
trol strategy defined in (5) and (8), then the error function (7)
converges to zero asymptotically.

Furthermore, if the formation is initially at rest, i.e.,
, then the formation error is bounded by

(9)

The proof of this theorem andTheorem IV.2are simplified
by the use of Kronecker product notation [27]. The following
Lemma serves to establish our notation and makes the deriva-
tions in the proofs ofTheorems IV.1andIV.2 more transparent.

Lemma IV.1: Let be the Hankel matrix defined by the row
vector

then is symmetric positive definite. If
where , then

where denotes the Kronecker product of two matrices. If the
terms are stacked in a column vector,
the resulting vector can be written as . In addition, if

is positive definite, then is
positive definite.

Proof: By direct substitution, it can be verified that the
matrix can be factored as , where is
defined by

otherwise.
(10)

It is clear that is full rank, therefore, is symmetric and
positive definite.

The second fact is verified as follows:

... ...
...

...

...

...

...

The third claim is again shown by direct manipulation

...

...
...

...

The last claim follows from the fact that the Kronecker product
of two positive definite matrices is positive definite [27].

Proof of Theorem IV.1:Letting

Lemma IV.1can be used to write as

Consider the Lyapunov function candidate

(11)

which can be written as

The time derivative of is
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where . Noting that the control law (8) can
be written in stacked form as

(12)

we get that

which is negative semidefinite byLemma IV.1.
Consider the set , and let be the

largest invariant set in . On we have , which implies
from (12) that

Since and , the proof follows fromLemma IV.1
and LaSalle’s invariance principle [28].

The second statement follows by noting that implies
that and

where the third equality follows from the fact that the formation
is initially at rest.

Equation (9) provides a bound on the error function .
While the bound is very conservative, it implies that during a
maneuver, the error will never be worse than the initial error.
It is interesting to note that the bound becomes tighter as the
velocity of the robots increase. Hardware results demonstrating
the effectiveness of (8) are contained in Section V.

B. Coupled Dynamics Formation Control With Passivity-Based
Interrobot Damping

The control strategy given in (8) requires that the relative ve-
locity between neighbors is known. If relative velocity informa-
tion is not known, then one possible strategy is to set .
Unfortunately, this choice results in relative motion that is oscil-
latory, despite smooth transition of each of the individual robots
to their desired formation pattern. To eliminate this oscillation,
we use passivity techniques [29]–[31] to inject relative damping
into the system. The proposed control strategy is given by

(13)

where and are positive definite, is positive semidefi-
nite, is Hurwitz, and is the positive definite solution to the
Lyapunov equation , where is positive
definite.

The state of the dynamic controller is and represents, in a
sense, the estimate of the relative velocities between neighbors.

Note the presence of the robot velocity. Since this informa-
tion is required for feedback linearization, we assume that it is
also available to the controller.

Theorem IV.2: If the robot formation (1) is subject to the con-
trol strategy defined in (5) and (13), then the error function (7)
converges to zero asymptotically.

Furthermore, if the formation is initially at rest, i.e.,
, and the passivity filter is initialized as

then the formation error is bounded by

(14)

Proof: Defining , and usingLemma
IV.1, the control strategy (13) can be written as

Consider the Lyapunov function candidate

The time derivative of is given by

where . Using the fact that
, we get

Application of the control law (13) gives

which is negative semidefinite.
Let , and let be the largest in-

variant set in . On , we have , therefore, (13) implies
that the following two equalities hold:

Combining these two equations gives

from which asymptotic stability follows by application of
LaSalle’s invariance principle.



938 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 19, NO. 6, DECEMBER 2003

The second statements follows from the same argument used
in Theorem IV.1.

C. Saturated Control

Our experience is that (8) and (13) work well in the pres-
ence of actuator saturation, however, convergence is not neces-
sarily guaranteed. In this section, we derive a coupled dynamics
strategy that explicitly accounts for actuator saturation.

The saturation control problem appends the additional con-
straints and , to the dynamics (1). For
the robots used in our testbed, these bounds are N
and Nm. Unfortunately, force and torque bounds
cannot be applied directly to the feedback linearized dynamics
(5), since the feedback linearization explicitly depends on the
tangential and angular velocity of each robot. However, since
each formation maneuver prescribes a finite motion, we can as-
sume, that given the bounded acceleration of the system, the
robot velocity will also be bounded, and thereby derive bounds

on the feedback linearized forces. The saturation problem is
solved by modifying the error function (7) to have linear, rather
than quadratic, growth. Accordingly, let

Similar to (7), the total error function is defined as

(15)

The proposed control strategy is

(16)

where , and , and where is applied
element wise. The first two terms move the robot toward the de-
sired formation pattern, and the last two terms cause the robots
to move into, and maintain, formation.

Theorem IV.3: If the robot formation (1) is subject to the con-
trol strategy defined in (5) and (16), then the control satisfies the
saturation constraint

and the error function (15) converges to zero asymptotically.
Furthermore, if the formation is initially at rest, then the for-

mation error (15) satisfies

Proof: Since each component of is bounded by one,
each component of the control law will be bounded by

.
Consider the Lyapunov function candidate

where is given by (15). Using the fact that
, the time derivative of

is given by

which, using the fact that is an odd function, can be rear-
ranged as

Substituting from (16), we get

which implies that is a valid Lyapunov function candidate.
Let , and let be the largest invariant set
contained in . On , we know that , which implies that

which can be written as

(17)

We will show that this equation implies that thecomponent of
is equal to zero. Similar arguments show that thecompo-

nent is also zero. Apply the identity (see [32])

to the component of (17) to obtain

which may be written in matrix form as

...
(18)
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where

Since if and only if to prove that
for all , it is sufficient to show that

is full rank.
To do this, calculate the induced two-norm . Letting

be an arbitrary nonzero vector, gives Fig. 3. Robots from the BYU MAGICC laboratory used to obtain experimental
results.

TABLE I
PARAMETERS USED TOOBTAIN EXPERIMENTAL RESULTS

Since the choice of was arbitrary, it follows that the induced
two-norm satisfies

Since is nonsingular with minimum singular value
, and since the maximum singular

value of is , a sufficient condition for
to be full rank is , which is always true, since

.

V. HARDWARE RESULTS

This section describes experimental results using the control
strategies described in Section IV. Experimental results were ob-
tained on three robots at the Brigham Young University (BYU)
MAGICC1 laboratory which are shown in Fig. 3. The physical
parameters of the robots shown in Fig. 3 are listed in Table I.

1Multiple AGent Interactive Coordination and Control
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Fig. 4. Robot hand positions for coupled dynamics control strategy (8).

The robots are commanded to transition through the series of
formation patterns given by

where the units are given in feet. The test facility at the BYU
MAGICC lab is a 15-foot square. The robots are initially in the
formation pattern given by

Fig. 4 shows the robots transitioning between the formation
pattern using control strategy (8) and the gains given in Table I.
The desired formation patterns are shown by “x” marks. Notice
that the robots move into the formation specified by the target
formation pattern, at the beginning of each maneuver. The for-
mation maneuver is defined to be complete when .
For all of the results shown in this paper, m. When
the formation maneuver is complete, the robots begin to ma-
neuver to the next formation pattern. This accounts for the fact
that the robots do not exactly reach the formation patterns shown
in Fig. 4.

Fig. 5 shows the robots transitioning between the formation
patterns using control strategy (13) and the gains given in
Table I.

Fig. 6 shows the robots transitioning between the formation
patterns using control strategy (16) and the gains given in
Table I. For this experiment, the formation gains have been
tuned to cause the robots to move into formation quickly, before
transitioning to the desired formation pattern.

Fig. 5. Robot hand positions for coupled dynamics with passivity control
strategy (13).

Fig. 6. Robot hand positions for coupled dynamics with input saturation
control strategy (16).

VI. CONCLUSION

In this paper, we have considered the problem of transitioning
a group of robots through a sequence of formation patterns. The
group objective is to maintain the same formation as the desired
formation pattern during the transition. Three control strategies
were considered and were shown to meet the formation objec-
tives. Hardware results demonstrate the effectiveness of the pro-
posed strategies.
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