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Abstract—Compressive sensing (CS), as a new sens-
ing/sampling paradigm, facilitates signal acquisition by reducing
the number of samples required for reconstruction of the original
signal, and thus appears to be a promising technique for
applications where the sampling cost is high, e.g., the Nyquist
rate exceeds the current capabilities of analog-to-digital con-
verters (ADCs). Conventional CS, although effective for dealing
with one signal, only leverages the intra-signal correlation for
reconstruction. This paper develops a decentralized Bayesian
reconstruction algorithm for networked sensing systems to jointly
reconstruct multiple signals based on the distributed compressive
sensing (DCS) model that exploits both intra- and inter-signal
correlations. The proposed approach is able to address networked
sensing system applications with privacy concerns and/or for
a fusion-centre-free scenario, where centralized approaches fail.
Simulation results demonstrate that the proposed decentralized
approaches have good recovery performance and converge rea-
sonably quickly.

I. INTRODUCTION

RECENTLY developed compressed sensing (CS) theory

and principles [2], [3] enable sampling and processing

of analog signals at rates far below the Nyquist rate. Therefore,

it has been proposed for applications where the sampling

cost is high, e.g., wideband spectrum sensing for cognitive

radio [4], [5], multipath channel identification with a high time

resolution [6], super-resolution radar [7], imaging systems [8]–

[10], and air quality monitoring [11].

CS exploits the intra-signal correlation, i.e., the sparse

structure of a signal, to reconstruct the original signal from

a few random measurements. In addition to the intra-signal

correlation, signals in a network may have high spatial

correlation. Such spatial correlation, which represents inter-

signal correlation, has not been considered in the conventional

CS framework. In [12], Quer et al. propose to adaptive-

ly update the sparsifying basis to capture the spatial and

temporal characteristics of the network signal via principal

component analysis (PCA), and reconstruct the signal by CS

under this basis. Another widely used type of approach is

to jointly reconstruct of a group of signals to leverage inter-

signal correlation. For example, considering a cognitive radio
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sensor network application with CS measurements taken at

different positions, one could improve the spectrum detection

accuracy by jointly recovering all the nodes’ spectra. The

most straightforward way for modeling multiple measurement

vectors (MMVs) [13], [14] is to assume that all signals share

a common support, which is however too strict in many

applications. In [15] a method to statistically characterize

real world signals in space and time is provided. As an

extension of CS, distributed compressive sensing (DCS) is

proposed in [16], [17] to model the intra-signal and inter-

signal correlations. In this paper, we consider a particular

signal model, namely the Type-1 joint sparse model (JSM-1),

which is one of the three generative models for joint sparse

signals introduced in the context of DCS [16], [17]. This

DCS model involves a common component and an innovation

component for modelling the global factors and local factors

corresponding to distinct signals, respectively.

For the centralized approach to joint signal reconstruction in

DCS, all the data needs to be communicated to a fusion centre

(FC) for processing. However, this scheme has the following

drawbacks: i) the pressure on storage and computation load

at the FC tends to increase as the number of nodes grows;

ii) sensitive or private local sensor data is exposed to the

FC; iii) it cannot be applied in a fusion-centre-free scenario.

Decentralized processing in networked sensing systems avoids

these drawbacks, and thus is attractive for applications in-

volving sensitive data, those lacking a FC, or for a big data

scenario. While most CS reconstruction algorithms operate in

a centralized manner, some decentralized sparse reconstruction

algorithms [18], [19] have been proposed for CS applications

when a centralized approach is not possible or desirable. A

survey of the state-of-the-art in CS for distributed systems

is given in [20]. However, these decentralized algorithms are

designed for the CS rather than the DCS setting that involves

multiple distinct signals.

In this paper, a decentralized Bayesian algorithm is pro-

posed for joint reconstruction of multiple sensor signals which

follow the JSM-1 DCS model. In contrast to centralized

algorithms where CS measurements are reported to a FC

and the reconstruction is performed at the FC, the proposed

algorithm is performed at each node with some inter-node

communication. To achieve the goal of decentralized process-

ing, we first decouple the common component from innovation

components by applying variational Bayesian approximation.

Then we cast the decoupled reconstruction problem as a set

of decentralized problems with consensus constraints, where
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each node exchanges limited non-sensitive information with its

neighbors and recovers its own innovation component by using

local data. Therefore, in the proposed approach, the innovation

components, that reflect the intra-node correlations of different

nodes, and which can be considered as sensitive data are

not shared, and the common component, which reflects the

inter-node correlation, is jointly reconstructed. For example

consider a distributed air quality monitoring application that

runs on a peer-to-peer network of smartphones. In this case

the sensing cost is high, e.g., nondispersive infrared (NDIR)

or metal oxide based gas sensors consume energy several

orders of magnitude greater than that owing to inter-node

communication, consequently the energy consumption per

node can be reduced using the proposed distributed technique

while also maintaining privacy for the sensitive local data

at each device. Experimental results show that the proposed

decentralized algorithm permits a good reconstruction quality

in comparison to other existing approaches, and exhibits a

good convergence rate.

The rest of the paper is organized as follows: Section II

describes the background of CS and DCS. In Section III, we

develop variational Bayesian inference for JSM-1 DCS. In the

sequel, the proposed decentralized Bayesian DCS approach

is provided in Section IV. Numerical results are presented in

Section V, followed by conclusions in Section VI.

The following notation is used. Lower-case letters denote

numbers, boldface upper-case letters denote matrices, and

boldface lower-case letters denote column vectors. The super-

scripts (·)T , (·)−1 and (·)† denote the transpose, the inverse

and the pseudoinverse of a matrix, respectively. rank(X)
and |X| denotes the rank and the determinant of matrix X,

respectively. xi denotes the ith element of x and Xi,i denotes

the ith diagonal element of X. diagm(x) and diagv(X)
denote a diagonal matrix corresponding to the vector x and a

vector corresponding to the diagonal matrix X, respectively.

Ep(x)(·) denotes expectation with respect to p(x), i.e., the

distribution of x. N (x;µ,Σ) denotes that x follows the multi-

variate normal distribution with mean vector µ and covariance

matrix Σ. In denotes the n×n identity matrix. The ℓ0 norm,

ℓp norm (0 < p ≤ 1) and the ℓ2 norm of vectors, are denoted

by ∥ · ∥0, ∥ · ∥p and ∥ · ∥2, respectively. The Frobenius norm

of a matrix X is denoted by ∥X∥F .

II. BACKGROUND

In this section, we first briefly introduce the background of

CS and sparse Bayesian learning (SBL) [21], [22], which is

a centralized CS algorithm. Then the JSM-1 DCS model is

presented that is an extension of CS for joint reconstruction

of multiple signals with both sparse structures and inter-signal

correlation.

A. CS Model

For the CS data acquisition, a signal f ∈ R
n is measured

as

y = Φf + e, (1)

where y ∈ R
m is the measurement vector, Φ ∈ R

m×n

denotes the sensing matrix, and e ∈ R
m denotes the noise

term for the measuring process. It is assumed that f has a

sparse representation x ∈ R
n on some basis Ψ ∈ R

n×n, so

that f = Ψx. The basis can be a predefined one, e.g., a wavelet

transform or a Fourier transform, depending upon the signal

characteristics. The signal is said to be sparse over the basis

when ∥x∥0 = s ≪ n. Therefore, we can rewrite (1) by

y = Ax+ e, (2)

where A = ΦΨ ∈ R
m×n denotes the equivalent sensing

matrix.

The CS recovery procedure corresponds to the solution of

the optimization problem given by:

min
x

∥x∥0, s.t. ∥Ax− y∥2 ≤ ϵ, (3)

where ϵk > 0 is an estimate of the measurement noise level.

As solving (3) is NP-hard, the typical signal reconstruction

process behind conventional CS approaches involves solving

the following optimization problem:

min
x

1

2
∥Ax− y∥2 + λ∥x∥p, (4)

where 0 < p ≤ 1, and λ > 0 is a penalty parameter.

When p = 1, the problem in (4) becomes a convex problem,

which is often referred to as the least absolute shrinkage

and selection operator (LASSO). The ℓ1-type regularizer often

achieves suboptimal performance as it is a convex relaxation

of the ℓ0-type one, while the regularizer with p < 1, which

is non-convex but a closer approximation of sparsity, shows

superior performance [23], [24].

SBL formulates the CS problem from a Bayesian perspec-

tive, and its close relationship to a non-convex ℓp-norm (p < 1)

minimization problem is unveiled in [25], [26]. The SBL

framework considers a zero-mean Gaussian prior distribution

p(x;Γ) = N (x;0,Γ) (5)

where Γ ∈ R
n×n is a diagonal matrix composed of n

hyperparameters γi (i = 1, . . . , n). The rationale for the using

this prior to model sparse signals is provided in [21], [22],

[26]. With uniform hyperpriors p(γi) and p(σ2), the value of

these hyperparameters can be inferred by

max
Γ,σ2

log p(Γ, σ2|y) ∝ max
Γ,σ2

log p(y;Γ, σ2)

= max
Γ,σ2

log

∫

p(y|x;σ2)p(x;Γ)dx

∝ min
Γ,σ2

log |Σ|+ yTΣ−1y,

(6)

where Σ = σ2Im + AΓAT . In [21], the expectation-

maximization (EM) algorithm is employed to solve (6). Given

these hyperparameters, x can be inferred by maximizing the

posterior distribution

x = argmax
x

p(x|y;Γ, σ2)

= argmax
x

p(y|x;σ2)p(x;Γ)

= ΓATΣ−1y.

(7)

The effectiveness of SBL for solving sparse reconstruction in

comparison to many other algorithms has been demonstrated

in [22], [26].
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Fig. 1. A generic network structure.

B. DCS Model

We now consider a network with K nodes modeled by an

undirected graph G = (V, E), where V = {1, . . . ,K} is the

set of nodes and E ⊂ V × V is the set of edges that describe

the communication links among the nodes. Each node is able

to process locally stored data and exchange messages with its

neighbors. See Fig. 1 for an example graph.

Assume each node performs sampling based on the CS

principle, and the samples are corrupted by some noise. Then

we have

yk = Akxk + ek, (8)

where yk ∈ R
mk , Ak ∈ R

mk×n, xk ∈ R
n and ek ∈ R

mk

denote the measurement vector, the sensing matrix, the sparse

signal representation, and noise of node k, respectively.

Conventional CS only exploits the intra-signal correlation

that is reflected in the sparse signal structure, while DCS pro-

vides a means to further leverage the inter-signal correlation

and to jointly recover multiple signals. For the JSM-1 DCS

setting, the sparse signal representation xk (k = 1, . . . ,K)

can be decomposed as

xk = zc + zk, (9)

where zc ∈ R
n with ∥zc∥0 = sc ≪ n denotes the common

component of the sparse representation xk, which captures

the inter-signal correlation and is common to all signals, and

zk ∈ R
n (i = 1, . . . ,K) with ∥zk∥0 = sk ≪ n denotes the

innovations component of the sparse representation xk, which

captures the intra-signal correlation and is specific to the signal

k.

In [16], Baron et al. propose to jointly reconstruct multiple

signals with the JSM-1 DCS model by solving the following

optimization problem:

min
z̃

1

2
∥Az̃− ỹ∥2F + λ∥z̃∥1 (10)

where λ > 0, z̃ =
[

zTc zT1 . . . zTK
]T ∈ R

(K+1)n is the ex-

tended signal vector, ỹ =
[

yT
1 . . . yT

K

]T ∈ R

∑K
k=1

mk is the

extended measurements vector and A ∈ R

∑K
k=1

mk×(K+1)n is

the extended sensing matrix given by:

A =







A1 A1 0 0 · · · 0
...

. . .
...

AK 0 0 0 · · · AK






.

In [27], a Fréchet mean approach is proposed for joint recon-

struction of multiple correlated signals with a reduced compu-

tational complexity. Instead of solving (10) with concatenated

measurements ỹ, a crude estimate of the common component

is inferred directly from the measurements, and then those

signals are recovered one by one with the use of the estimate

of the common component. The Fréchet mean of K sparse

signals, i.e., z̃c ∈ R
n, can be obtained from the measurements

as follows:

z̃c = argmin
z̃c

K
∑

k=1

λkd
2(Akz̃c,yk), (11)

where λk > 0 denotes the contribution weight of the kth signal

and d(Akx̃,yk) denotes the distance function between the

vector Akz̃c and yk. By using the Euclidean distance function,

the Fréchet mean is given by:

z̃c = (ÂT Â)−1ÂT ŷ, (12)

where the extended sensing matrix Â ∈ R
(
∑K

k=1
mk)×n

and the extended measurement vector ŷ ∈ R

∑K
k=1

mk

are given by Â =
[√

λ1A
T
1 , · · · ,

√
λKAT

K

]T
and ŷ =

[√
λ1y

T
1 , · · · ,

√
λKyT

K

]T
respectively.

III. VARIATIONAL BAYESIAN INFERENCE FOR DCS

In this section, we develop variational Bayesian inference

for solving the joint reconstruction problem for the JSM-1

DCS setting. This approach decouples the reconstruction of the

common component, that characterizes inter-node correlation,

from the innovation components, that represent intra-node

correlation, and thus facilitate our decentralized algorithm

design, which is presented in Section IV.

A. Variational Sparse Bayesian Inference

Akin to the SBL framework [21], we adopt zero-mean

Gaussian prior distributions for the common component and

innovation components, respectively, which are given as

p(zc;Γc) = N (zc;0,Γc) (13)

and

p(zk;Γk) = N (zk;0,Γk), (14)

where Γc ∈ R
n×n is a diagonal matrix with hyperparameters

γc,i (i = 1, . . . , n), and Γk ∈ R
n×n is a diagonal matrix

with hyperparameters γk,i (k = 1, . . . ,K; i = 1, . . . , n).

Assuming elements of the measurement noise vector ek are

drawn from independent and identically distributed (i.i.d.)

zero-mean Gaussian distributions with variance σ2, we can

write the likelihood function as

p(yk|zc, zk;σ2) = N (yk;Ak(zc + zk), σ
2Imk

). (15)

We now adopt the variational approximation in the Bayesian

formulation of JSM-1 DCS to find separable functions that

approximate the posterior of zc and zk, which facilitates

the development of a decentralized algorithm. The essence

of variational inference is to find some distribution which

usually has a factorized form and closely approximates the

true posterior distribution. Variational approximation provides

a method to bypass the requirement of exactly knowing the

posterior.
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To simplify the notation, here we define Y = {y1, . . . ,yK},

Z = {zc, z1, . . . , zK} and θ = {Γc,Γ1, . . . ,ΓK , σ2}. Our

goal is to estimate the value of the hyperparameters, i.e., θ,

which maximize the following log-likelihood

log p(Y;θ) = F (q(Z),θ) + KL(q(Z)∥p(Z|Y;θ)), (16)

where

F (q(Z),θ) =

∫

q(Z) log

(

p(Z,Y;θ)

q(Z)

)

dZ, (17)

and

KL(q(Z)∥p(Z|Y;θ) = −
∫

q(Z) log

(

p(Z|Y;θ)

q(Z)

)

dZ

(18)

is the Kullback-Leibler (KL) divergence between the true

posterior p(Z|Y;θ) and a variational distribution q(Z). The

KL divergence KL(q(Z)∥p(Z|Y;θ)) ≥ 0 and equality holds

only when q(Z) = p(Z|Y;θ). Therefore, F (q(Z),θ) can be

viewed as a lower bound of the log-likelihood log p(Y;θ).
The maximization of the log-likelihood involves iterations

involving two steps: i) the maximization of the lower bound

F (q(Z),θ) with respect to θ; ii) updating q(Z) so that the

approximation of log p(Y;θ) by F (q(Z),θ) is tight.

For the JSM-1 DCS setting, we can assume q(Z) has a

factorized form:

q(Z) = q(zc)q(z1) . . . q(zK), (19)

which is a common assumption in variational approximation.

By applying similar techniques to that used in [28], to yield a

tight approximation of log p(Y;θ) by F (q(Z),θ), we derive

the following variational distributions:

q(zc) ∝ exp
(

Eq(z1),...,q(zK)

[

ln p(y1, . . . ,yK ,

zc, z1, . . . , zK ;Γc,Γ1, . . . ,ΓK , σ2)
])

∝ exp
(

Eq(z1)

[

ln p(y1|zc, z1, σ2)
]

+ . . .

+Eq(zK)

[

ln p(yK |zc, zK , σ2)
]

+ ln p(zc|Γc)
)

∝ N (zc;µc,Σc),
(20)

where µc = σ−2Σc

K
∑

k=1

AT
k (yk − Akµk), Σc =

(

K
∑

k=1

A
T
k Ak

σ2 + Γ−1
c

)−1

and µk = Eq(z1)

[

zk
]

, and

q(zk) ∝ exp
(

Eq(zc),q(zj),j ̸=k

[

ln p(y1, . . . ,yK ,

zc, z1, . . . , zK ;Γc,Γ1, . . . ,ΓK , σ2)
])

∝ exp
(

Eq(zc)

[

ln p(yk|zc, zk, σ2)
]

+ ln p(zk|Γk)
)

∝ N (zk;µk,Σk),
(21)

where µk = σ−2ΣkA
T
k (yk − Akµc) and Σk =

(

A
T
k Ak

σ2 + Γ−1
k

)−1

.

According to (20) and (21), it can be confirmed that

q(zc) and q(zk) are Gaussian distributions, i.e., q(zc) =
N (zc;µc,Σc) and q(zk) = N (zk;µk,Σk) (k = 1, . . . ,K).

Now given q(zc) and q(zk) (k = 1, . . . ,K), the hyperparame-

ters can be updated by θ = argmax
θ

F (q(Z),θ). Specifically,

we have

γnew
c,i = (Σc)i,i + µ2

c,i, (22a)

γnew
k,i = (Σk)i,i + µ2

k,i, (22b)

(σ2)new =
1

K
∑K

k=1 mk

(

K
∑

k=1

∥yk −Ak(µc + µk)∥22+

(σ2)old

K
∑

k=1

n
∑

i=1

(

1− (γold
k,i)

−1(Σk)i,i
)

+

(σ2)old

n
∑

i=1

(

1− (γold
c,i )

−1(Σc)i,i
)

)

. (22c)

The variational optimization proceeds by iteratively updat-

ing (20), (21) and (22) until convergence to stable hyperpa-

rameters θ. Finally, we can obtain the reconstructed signal by

applying the maximum a posteriori estimation

xk = arg max
zc+zk

p(Z|Y;θ)

= argmax
zc

q(zc) + argmax
zk

q(zk)

= µc + µk.

(23)

The proposed variational Bayesian algorithm for solving the

JSM-1 DCS problem can be summarized by the following

steps:

1) Initialize Γc and Γk (k = 1, . . . ,K) by identity matri-

ces, and µk (k = 1, . . . ,K) by vectors composed of

zero entries;

2) Compute Σc =

(

K
∑

k=1

A
T
k Ak

σ2 + Γ−1
c

)−1

and µc =

σ−2Σc

K
∑

k=1

AT
k (yk −Akµk), i.e., the variational distri-

bution for the common component;

3) Compute Σk =
(

A
T
k Ak

σ2 + Γ−1
k

)−1

and µk =

σ−2ΣkA
T
k (yk − Akµc) for k = 1, . . . ,K, i.e., the

variational distributions for the innovation components;

4) Update the hyperparameters as in (22);

5) Iterate steps 2, 3 and 4 until convergence occurs to fixed

hyperparameters;

6) Output xk = µc + µk for k = 1, . . . ,K.

Note that although the proposed variational Bayesian algo-

rithm operates in a centralized manner, it facilitates our design

of a distributed algorithm that we will present in Section IV.

B. Analysis

1) Comparison with the Fréchet mean approach: The pro-

posed variational Bayesian algorithm for JSM-1 DCS is de-

rived directly from a Bayesian perspective, however it exhibits

some similarities to the Fréchet mean approach [27] in the

estimation of the common component. Specifically, in each

iteration of the proposed algorithm, the mean of the common

component is updated by

µc =

(

K
∑

k=1

AT
kAk + σ2Γ−1

c

)−1 K
∑

k=1

AT
k (yk−Akµk), (24)
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while the Fréchet mean approach using equal weights and

the Euclidean distance function gives a crude estimate of the

common component as

z̃c =

(

K
∑

k=1

AT
kAk

)−1 K
∑

k=1

AT
k yk. (25)

Comparing (24) (25), we note that the Fréchet mean ap-

proach employs least squares estimation and ignores the im-

pact of innovation components, while the proposed approach

essentially applies minimum mean square error estimation

with previous estimate of innovation components.

Given the estimated mean and covariance of the common

component, the innovation components are updated separately

in the proposed algorithm, which is similar to the process

used by the sparse Bayesian learning and the Fréchet mean

approach.

2) An Iterative Reweighting Algorithm for DCS: While

replacing the ℓ0 norm with the convex ℓ1 norm is well

justified for sparse signal recovery, recent research has been

able to show great advantages from the use of the iterative

reweighting algorithms for sparse signal processing [25], [29].

For conventional CS reconstruction of the kth SN’s signal, the

iterative reweighted ℓ2 minimization algorithm computes

xk = argmin
xk

∥yk −Akxk∥22 + νxT
kWkxk

=
(

AT
kAk + νWk

)−1
AT

k yk

(26)

in each iteration, where Wk is a diagonal weighting matrix

and ν is a tradeoff parameter balancing the two terms. Then

the weighting matrix Wk is updated based on xk in order to

achieve a more accurate estimate of xk in the next iteration.

The motivation behind this approach relates to the fact that

the term xT
kWkxk in (26) is a better approximation to the ℓ0

norm than the ℓ1 norm in (4) because xT
kWkxk ≈ ∥xk∥0 for

a good weighting matrix Wk.

In the previous subsection, the proposed algorithm emerges

from a Bayesian model and a variational Bayesian Inference

for JSM-1 DCS. However, based on its update procedure, it

can also be seen as an extension of the iterative reweighted

ℓ2 minimization algorithm from the CS case to the JSM-1

DCS case. In each iteration of the proposed algorithm, we

update the common component and innovation components

separately, that are given by

zc = argmin
zc

K
∑

k=1

∥yk −Akzk −Akzc∥22 + σ2zTc Γ
−1
c zc

=

(

K
∑

k=1

AT
kAk + σ2Γ−1

c

)−1 K
∑

k=1

AT
k (yk −Akzk),

(27)

and

zk = argmin
zk

∥yk −Akzc −Akzk∥22 + σ2zTkΓ
−1
k zk

=
(

AT
kAk + σ2Γ−1

k

)−1
AT

k (yk −Akzc)
(28)

for k = 1, . . . ,K. Here, Γc and Γk (k = 1, . . . ,K), which

can be seen as weighting matrices, are then updated based on

the value of zc and zk (k = 1, . . . ,K), as given in (22).

3) Convergence Analysis: As the variational Bayesian ap-

proach is essentially an EM update, the proposed algorithm is

guaranteed to converge [28], i.e., each iteration is guaranteed

to increase the log-likelihood p(Y;θ) until a fixed point

is reached. By comparing the update rule of the proposed

algorithm and the EM update rule for the SBL [22], it is

observed that the solution Γk of the proposed algorithm is

a minima of the following cost function:

L(Γk) = (yk −Akµc)
T (

σ2Imk
+AkΓkA

T
k

)−1
(yk −Akµc)

+ log |σ2Imk
+AkΓkA

T
k |,

(29)

and the solution Γc is a minima of the following cost function:

L̃(Γc) =b̃T
(

σ2I∑K
k=1

mk
+ ÃΓcÃ

T
)−1

b̃ +

log |σ2I∑K
k=1

mk
+ ÃΓcÃ

T |,
(30)

where Ã =
[

AT
1 , · · · ,AT

K

]T
and b̃ =

[

yT
1 − µT

1 A
T
1 , · · · ,yT

K − µT
KAT

K

]T
. Therefore, the

proposed framework involves a multi-objective optimization

problem and the multiple cost functions are linked

via constraints µc = σ−2Σc

K
∑

k=1

AT
k (yk − Akµk) and

µk = σ−2ΣkA
T
k (yk −Akµc) (k = 1, . . . ,K).

We have the following result on the global minimum of the

cost functions (29) and (30).

Theorem 1: In the limit as σ2 → 0, assuming sc + sk,

i.e., the sparsity level of the maximally sparse solution x̂k =
ẑc+ ẑk to yk = Akxk, satisfies sc <

∑K
k=1 mk and sk < mk

for ∀k, then {Γ̂k} and Γ̂c, i.e., the global minima of (29)

and (30), respectively, lead to a source estimate that equals

{ẑc, ẑ1, . . . , ẑK}.

Proof: See Appendix A.

This theorem ensures the global minimum of our algo-

rithm is achieved at the most sparse signal representation in

the noiseless case. The global minimum property guarantees

structural correctness, i.e., the proposed algorithm converges

to a minimum (possibly global) with a cost function value

no smaller than the value of the most sparse one, while the

LASSO, a widely used convex optimization algorithm for

sparse signal reconstruction, does not have a guarantee on the

structural correctness.

Now we discuss the local minimum property. Similarly to

the SBL, the cost functions of the proposed algorithm can

potentially have many local minima. For the cost function in

(29), we have the following result, which ensures all local

minima Γk of our algorithm are sparse.

Theorem 2: Every local minimum of the cost function

in (29) with respect to Γk is achieved at a solution with

∥diagv(Γk)∥0 ≤ mk, regardless of the values of σ2 and

Γc.

Proof: See Appendix B.

For the cost function in (30), if
∑K

k=1 mk < n, akin

to Theorem 2 and using the same techniques in Appendix

B, it can be proved that all local minima Γc are sparse. If
∑K

k=1 mk ≥ n, solving Γc by minimizing (30) is equivalent

to obtaining sparse solutions in regression problems via the
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relevance vector machine (RVM) [21] where the size of the

training data is larger than the number of variables, and thus

our algorithm has the same capability as the classic RVM to

converge to a highly sparse Γc.

We note that although the global minima of the cost

functions in (29) and (30) is equivalent to the global minima

of independently solving a sparsity maximization problem

for each task, the entire cost function landscapes are not

identical. We observe that our approach exploits the inter-

signal structure, which could be advantageous in avoiding

distracting local minima.

IV. A DECENTRALIZED BAYESIAN ALGORITHM FOR DCS

In this section, we propose a decentralized Bayesian algo-

rithm for JSM-1 DCS, which exploits the variational Bayesian

inference developed previously. By casting the decoupled

reconstruction problem as a set of decentralized problems with

consensus constraints, the variational Bayesian inference is

carried out in a decentralized way without sharing sensitive

information with respect to the innovation component.

For a centralized scenario, both steps 2) and 3) of the

variational Bayesian inference is carried out at a FC, which

collects all the nodes’ measurements and performs the compu-

tation. However, for a decentralized scenario, we assume all

the computation should be performed at the nodes and that

each node has no knowledge of other nodes’ sensing matrices

and measurements. In view of the fact that the computation

of innovation components (step 3) are decoupled from the

common component in the variational SBL algorithm, the

nodes can work in parallel to execute step 3) and update (22b).

Therefore, we now only need to decentralize the computation

of the common component in step 2) and the update of

hyperparameters in (22a) and (22c).

According to the definition of Σc and µc, we have

σ2

K

(

Σ−1
c − Γ−1

c

)

=
1

K

K
∑

k=1

AT
kAk (31)

and

σ2

K
Σ−1

c µc =
1

K

K
∑

k=1

AT
k (yk −Akµk), (32)

which are the average of AT
kAk and the average of AT

k (yk−
Akµk) (k = 1, . . . ,K), respectively. The two averages can be

obtained by solving the following couple of average consensus

problems

min
W

K
∑

k=1

∥

∥W −AT
kAk

∥

∥

2

F
, (33)

and

min
r

K
∑

k=1

∥

∥r−AT
k (yk −Akµk)

∥

∥

2

2
, (34)

respectively.

The optimization problems in (33) can be reformulated into

min
W1,...,WK

K
∑

k=1

∥

∥Wk −AT
kAk

∥

∥

2

F

s.t. Wk = Wjk , ∀jk ∈ Nk, ∀k ∈ {1, . . . ,K},
(35)

where Wk denotes the local estimate of W = 1
K

K
∑

k=1

AT
kAk

at node k, respectively, and Nk denotes the neighbors of node

k. Two nodes are called as neighbors if they can communicate

with each other to interchange information. Optimization

problems (33) and (35) are equivalent if their neighborhood

relationship can lead to a connected graph. Similarly, the

optimization problems in (34) can be reformulated into

min
r1,...,rK

K
∑

k=1

∥

∥rk −AT
k (yk −Akµk)

∥

∥

2

2

s.t. rk = rjk , ∀jk ∈ Nk, ∀k ∈ {1, . . . ,K}.
(36)

We employ the alternating direction method of multipliers

(ADMM) [30] to solve (35) and (36) in a decentralized

manner. Note that (35) only needs to be solved for consensus

once, while (36) needs to be performed in each iteration of

the variational SBL when µk (k = 1, . . . ,K) are updated.

According to [18], the simplified ADMM form of (35) consists

of the following iterations

(Pk
w)

new = (Pk
w)

old + ρ
∑

jk∈Nk

(

(Wk)old − (Wjk)old
)

,

(Wk)new =
1

2 + 2ρ|Nk|

(

2AT
kAk − (Pk

w)
new+

ρ
∑

jk∈Nk

(

(Wk)old + (Wjk)old
)

)

(37)

for ∀k ∈ {1, . . . ,K}, where ρ > 0 is a preselected penalty

coefficient. Note that nodes can execute (37) in parallel with

the information concerning Wjk passed from their neighbors.

In addition, it has been proved that iteratively executing the

steps in (37) will converge to the global solution W for any

ρ > 0 [18]. Similarly, the ADMM form of (36) consists of the

following iterations

(pk
r )

new = (pk
r )

old + ρ
∑

jk∈Nk

(

(rk)old − (rjk)old
)

,

(rk)new =
1

2 + 2ρ|Nk|

(

2AT
k (yk −Akµk)− (pk

r )
new+

ρ
∑

jk∈Nk

(

(rk)old + (rjk)old
)

)

.

(38)

Given Wk and rk, according to (31) and (32), each node

can execute step 2 of the variational SBL by computing

Σc =

(

K

σ2
Wk + Γ−1

c

)−1

(39)

and

µc = σ−2Σcrk, (40)
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Algorithm 1 A Decentralized Bayesian Algorithm for DCS

Input: A set of signals {xi} (i = 1, . . . , L), a dictionary Ψ

and a positive value β.

Output: The common component zc and the innovation

components zi (i = 1, . . . , L).

Process: Do

1) Initialize Γc and Γk (k = 1, . . . ,K) by identity

matrices, and µk (k = 1, . . . ,K) by 0;

2) Initialize Pk
w, and Wk (k = 1, . . . ,K) by 0, and

iteratively compute (37) in parallel at each node until

a predefined stopping criterion is satisfied;

3) Initialize pk
r and rk (k = 1, . . . ,K) by 0, and

iteratively compute (38) in parallel at each node until

a predefined stopping criterion is satisfied;

4) Compute (39) and (40) at each node;

5) Compute Σk =
(

A
T
k Ak

σ2 + Γ−1
k

)−1

and µk =

σ−2ΣkA
T
k (yk −Akµc) in parallel at each node;

6) Compute (22a) and (22b) in parallel at each node;

7) Compute (22c) in a distributed manner until a prede-

fined stopping criterion is satisfied;

8) If halting condition is true, return zc and zi (i =
1, . . . , L); otherwise go to step 3;

which directly enable the update of the hyperparameter in

(22a) locally at each node. The hyperparameter in (22c)

can also be computed in a distributed manner using the

same ADMM technique. The pseudo-code of the proposed

decentralized variational SBL algorithm is given in Algorithm

1.

V. NUMERICAL SIMULATIONS

In this section, we compare the performance of the proposed

decentralized Baysian algorithm for DCS reconstruction with

other existing approaches by experiments with synthetic sig-

nals and real temperature signals.

The following approaches are compared:

1) Decentralized Proposal: signals are reconstructed at

each node in a decentralized manner by the proposed

algorithm, which exploits both intra- and inter-signal

correlations;

2) Independent SBL: signals are reconstructed indepen-

dently at each node by SBL, which only exploits the

intra-signal sparse structure;

3) Centralized SBL: signals are jointly reconstructed at a

FC by SBL, and both intra- and inter-signal correlations

are exploited;

4) Centralized Fréchet mean approach: Joint signal re-

construction by the Fréchet mean approach [27] at a

FC, where both intra- and inter-signal correlations are

exploited.

For the Fréchet mean approach, we use CVX, a package

for specifying and solving convex programs [31]. Note that

the independent SBL considers the CS setting and acts as a

baseline, while the other three approaches consider the JSM-1

DCS setting.
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Fig. 2. Reconstruction quality vs. number of measurements (n = 50, K =

10, sc = 8 and Harary graph model with L = 3).

In the comparison, the reconstruction quality is measured

by averaged relative error, which is defined as the average of∑K
k=1

∥x̂k−xk∥
2

2∑
K
k=1

∥xk∥2

2

, where x̂k denotes the reconstructed signal k.

We conduct 100 trials for each experiment setting and provide

the averaged result.

In addition, two different networks are considered. The first

network is an L-connected Harary graph, where each node is

only available to communicate with L adjacent neighbors to

exchange information. For the other network, the Erdös-Rényi

model [32] is applied to generate the neighborhood relation-

ship, where the probability of any two nodes being connected

is p. In the proposed decentralized algorithm, parameter ρ of

the ADMM step is set to 0.3 in our simulations.

A. Experiments With Synthetic Data

We consider a set of K correlated signals following the

JSM-1 DCS model. Without loss of generality, we let m = mk

(k = 1, . . . ,K), i.e., all signals have the same number

of measurements, and sI = sk (k = 1, . . . ,K), i.e., the

innovation components of different signals have the same

sparsity level. We first generate the sparse common component

zc randomly for all signals and then generate the sparse

innovation component zk (k = 1, . . . ,K) randomly for each of

the signals independently, where the non-zero components of

both zc and zk are drawn from i.i.d. Gaussian distributions

N (0, 1). The sensing matrices Ak are generated randomly

for different signals, where the elements are drawn from the

i.i.d. Gaussian distribution N (0, 1), followed by a column

normalization. The received measurements are corrupted by

additive zero-mean Gaussian noise to yield signal noise ratio

(SNR), i.e.,
∥Akxk∥

2

2

∥ek∥2

2

, of 20dB.

The reconstruction quality for different approaches is given

in Fig. 2 and 3, where we have compared the averaged

relative error against the number of measurements and the

innovation component sparsity level, respectively. Our numer-

ical simulation results confirm that joint signal reconstruction
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Fig. 3. Reconstruction quality vs. innovation component sparsity level (n =

50, m = 25, K = 10, sc = 8 and Harary graph model with L = 3).

algorithms have better performance than independent signal

reconstruction, i.e., independent SBL that neglects inter-signal

correlation. The proposed decentralized approach outperforms

the centralized Fréchet mean approach, which can be explained

by our analysis regarding the comparison between the two

approaches, i.e., the Fréchet mean approach ignores the im-

pact of innovation components in the estimation of common

component. In Fig. 3, it is noted that the reconstruction quality

of the proposed decentralized approach is slightly degraded in

comparison with the centralized SBL. This behaviour is caused

by the fact that the proposed decentralized algorithm employs

variational Bayesian approximations to facilitate decentralized

computation, while the centralized SBL employs EM updates.

However, the decentralized approach avoids sharing sensitive

or private local data and is more robust to attacks, since if

the FC is compromised, the entire centralized system will fail.

More performance comparisons with various settings are given

in Table I, which further confirms our observations.

Fig. 4 illustrates the convergence rates of the proposed

algorithm with different network settings for a single instance,

and Fig. 5 shows the convergence of the inner consensus loop,

i.e., iteratively solving optimization problem (35) by ADMM.

It is observed that for all the three different network settings,

both the outer loop and the inner loop of the algorithm exhibit

reasonably fast convergence. In particular, the algorithm has

converged after 30 outer loop iterations with 20 inner loop

consensus iterations. In addition, the communication costs of

the consensus loop in a single instance for different network

settings are provided in Table II, where the numeric val-

ue indicates the number of transmissions of a single node.

Considering the communication cost, the proposed approach

potentially can be beneficial for the following two scenarios: i)

the Nyquist rate of the signal exceeds the current capabilities

of analog-to-digital converters (ADCs) so that the main bot-

tleneck of the system is in the sampling rate and the commu-

nication cost introduced by the proposed distributed algorithm

can be tolerated; ii) the cost of sampling is much higher than
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Fig. 4. Convergence rate of the outer loop (variational Bayesian inference
loop) of proposed algorithm for a single instance. (n = 50, m = 25, sc = 8

and sI = 2).
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Fig. 5. Convergence rate of inner consensus loop (ADMM loop) in the
proposed algorithm for a single instance.

communication. For example, vibrating wire strain-gauges that

are used in civil engineering applications, and NDIR or metal

oxide sensors that are used to measure the concentration

of a gas or gasses of interest in the atmosphere, consume

energy several orders of magnitude greater than that required

for communication. For instance, it is indicated in [33] that

metal oxide based sensors for measuring ozone concentration

typically consume in excess of 90 mW.

B. Experiments With Real Data

We now investigate the effectiveness of the proposed de-

centralized algorithm with real signals which could be nearly

sparse rather than exactly sparse as in the synthetic data exper-

iment. To do this, we use the temperature signals obtained the

Intel Berkeley Research lab [34]. In the following evaluations,

we use the discrete cosine transform (DCT) as the sparsifying

domain. Instead of uniform sampling, we assume each SN
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TABLE I
THE COMPARISON OF AVERAGED RELATIVE ERROR WITH DIFFERENT SETTINGS. (n = 100, sc = 8 AND sI = 2)

K = 20 K = 20 K = 20 K = 50 K = 50 K = 50

m = 10 m = 15 m = 20 m = 10 m = 15 m = 20

Independent SBL 0.8925 0.8046 0.6182 0.8746 0.8017 0.6006

Centralized SBL 0.1862 0.0556 0.0100 0.1921 0.0506 0.0072

Centralized Fréchet mean approach 0.5635 0.3385 0.2253 0.5242 0.3470 0.2078

Proposed decentralized algorithm,
Harary graph model (L=5) 0.2185 0.0663 0.0212 0.2153 0.0517 0.0152

Proposed decentralized algorithm,
Erdös-Rényi model (p=0.25) 0.1815 0.0467 0.0194 0.2037 0.0491 0.0148

TABLE II
THE COMMUNICATION COST OF THE CONSENSUS LOOP (ADMM LOOP) IN THE PROPOSED ALGORITHM. (n = 50, sc = 8 AND sI = 2)

K = 20 K = 20 K = 20 K = 50 K = 50

m = 15 m = 20 m = 25 m = 15 m = 25

Harary graph model (L=2) 136 130 121 192 168

Harary graph model (L=4), 54 43 46 159 130
Erdös-Rényi model (p=0.3) 18 23 16 28 28
Erdös-Rényi model (p=0.5) 20 20 20 39 41
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Fig. 6. Environmental temperature signal detected by one node and
reconstruction results. (m = 50, K = 10 and Harary graph model with
L = 5).

independently and randomly collects a small portion of the

original samples. Therefore, the sensing matrices Ak become

random partial DCT matrices. All the signals we employ in

the following study have a length of n = 256.

Fig. 6 demonstrates the effectiveness of the proposed ap-

proach by comparing the original temperature signal with the

reconstructed results for one of the nodes. In this experiment,

the temperature signals from K = 10 nodes are reconstructed

by different algorithms, and one of these signals and its

reconstruction results are shown in the figure. It is observed

that both the proposed decentralized Bayesian algorithm and

the centralized SBL successfully recover the temperature sig-

nals with only 50 measurements, while the independent SBL

and the centralized Fréchet mean approach have significant

visible errors in the reconstructed results. We report that

the reconstructed temperature signals of other nodes show a

similar result. For the centralized SBL, all the nodes’ samples

needs to be gathered at a FC for joint reconstruction, while the

proposed decentralized algorithm enables joint reconstruction

without a FC and in addition the reconstructed signal at a

particular node is only available to that node itself. Table III

gives more performance comparisons with different settings,

and similar trends are observed.

VI. CONCLUSION

In this paper, we propose a decentralized Bayesian DC-

S algorithm to efficiently reconstruct multiple signals in a

networked sensing system. Both the intra- and inter-signal

correlations are exploited by the proposed approach with the

JSM-1 DCS model, and thus it possess advantages beyond

conventional independent CS algorithms, that neglect inter-

signal correlations. The decentralized characteristics of the

proposed algorithm make it suitable for applications needing

enhanced privacy and for those that require fusion-centre-

free operation. Experimental results demonstrate good recov-

ery performance and convergence properties of the proposed

decentralized algorithm.

APPENDIX A

PROOF OF THE THEOREM 1

As the proposed variational sparse Bayesian framework

extends the SBL framework to the JSM-1 DCS model, many

of the following proofs are based on the theoretic work in [22].

However, some essential modifications are required.

According to the formulations of the cost functions in (29)

and (30), the minimum occurs when

|σ2Imk
+AkΓkA

T
k | = 0, |σ2I∑K

k=1
mk

+ ÃΓcÃ
T | = 0,

(41)
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TABLE III
THE AVERAGED RELATIVE ERROR OF THE RECONSTRUCTED ENVIRONMENTAL TEMPERATURE SIGNAL FOR DIFFERENT APPROACHES.

m = 50 m = 40 m = 50 m = 40 m = 50

K = 10 K = 10 K = 6 K = 6 K = 15

Independent SBL 1.4 ∗ 10
−3

3.6 ∗ 10
−3

6.2 ∗ 10
−4

1.4 ∗ 10
−3

2.3 ∗ 10
−3

Centralized SBL 7.4 ∗ 10
−4

9.8 ∗ 10
−4

1.2 ∗ 10
−4

1.9 ∗ 10
−4

8.7 ∗ 10
−4

Centralized Fréchet mean approach 1.2 ∗ 10
−3

3.4 ∗ 10
−3

1.1 ∗ 10
−3

4.4 ∗ 10
−3

1.1 ∗ 10
−3

Proposed decentralized algorithm,

Harary graph model (L=5) 1.1 ∗ 10
−3

2.4 ∗ 10
−4

4.6 ∗ 10
−4

7.8 ∗ 10
−4

1.9 ∗ 10
−3

Proposed decentralized algorithm,

Erdös-Rényi model (p=0.5) 1.0 ∗ 10
−3

2.1 ∗ 10
−3

5.1 ∗ 10
−4

1.2 ∗ 10
−3

1.6 ∗ 10
−3

and

(yk −Akzc)
T
(σ2Imk

+AkΓkA
T
k )

−1 (yk −Akzc) ≤ ρ

b̃T
(

σ2I∑K
k=1

mk
+ ÃΓcÃ

T
)−1

b̃ ≤ ρ,

(42)

for k = 1, . . . ,K, where ρ > 0 denotes some finite bound.

Now, all that is required is to prove that the solutions, which

lead to accurate signal reconstruction, satisfy these conditions.

When σ2 = 0, following results from linear algebra as given

in [22], the solutions of the cost functions (29) and (30) lead

to the estimate such that

ẑk = Γ̂
1/2

k (AΓ̂
1/2

k )†(yk −Aẑc), (43)

and

ẑc =
1

K
Γ̂
1/2

c (ÃΓ̂
1/2

c )†b̃, (44)

which suggests that the support of ẑc is the same as the support

associated with Γ̂c, and the support of ẑk is the same as the

support associated with Γ̂k. Since sc <
∑K

k=1 mk and sk <

mk, the conditions in (41) are satisfied. In addition, we have

lim
σ2→0

(yk −Aẑc)
T
(σ2Im +AΓkA

T )−1 (yk −Aẑc)

= lim
σ2→0

ẑTk Γ̂
−1/2

k Γ̂
1/2

k AT (σ2Im +AΓkA
T )−1AΓ̂

1/2

k Γ̂
−1/2

k ẑk

=ẑTk Γ̂
−1

k ẑk ≤ 1

δ
∥ẑk∥22,

(45)

where δ > 0 is the minimum nonzero entry of Γ̂k.

Using the same procedures, we can also prove that

b̃T
(

σ2I∑K
k=1

mk
+ ÃΓcÃ

T
)−1

b̃ is bounded, which com-

plete the proof.

APPENDIX B

PROOF OF THE THEOREM 2

Now before discussing the local minimum property, we

provide two lemmas, which are given in [22] and are needed

in proving our results.

Lemma 1: log |σ2Imk
+AkΓkA

T
k | is concave with respect

to Γk.

This lemma can be proved by the composition property of

concave functions [35].

Lemma 2: Let rk = yk − Akµc. Then

rTk
(

σ2Imk
+AkΓkA

T
k

)−1
rk equals a constant ck when Γk

satisfies the linear constraints

b = Gdiagv(Γk), (46)

with

b , rk − σ2vk

G , Akdiagm(A
T
k vk),

(47)

where vk is any fixed vector such that (yk −Akµc)
T
vk =

ck.

This lemma can be proved by rewriting the equation

rTk
(

σ2Imk
+AkΓkA

T
k

)−1
rk = ck with rTk vk = ck, where

vk =
(

σ2Imk
+AkΓkA

T
k

)−1
rk. Then we have

rk − σ2vk = AkΓkA
T
k vk

= Akdiagm(A
T
k vk)diagv(Γk).

(48)

The proof of the Theorem 2 follows along the line of

Theorem 2 in [22] with the use of the above two lemmas.

Consider the following optimization problem:

min
Γk

log |σ2Imk
+AkΓkA

T
k |

s.t. b = Gdiagv(Γk)

diagv(Γk) ≥ 0,

(49)

where b and G are defined in Lemma 2. According to Lemma

1 and Lemma 2, the optimization problem (49) optimizes a

concave function over a closed, bounded convex polytope.

From the Theorem 7.5.3 in [36], the minimum of (49) is

achieved at an extreme point. In addition, the Theorem 2.5

in [36] suggests that the extreme point is a basis feasible

solution to b = Gdiagv(Γk) and diagv(Γk) ≥ 0, which

indicates ∥diagv(Γk)∥0 ≤ mk.
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