
Behavior Research Methods & Instrumentation

1974. Vol. 6, No.2, 139-143

A decentralized computer network for

supervision of multiple psychological

laboratories"

KARL W. SCHOLZ and HENRY HALFF

University of Illinois. Champaign, Illinois 6 J820

The computer network described was designed to optimize the use of a number of independent
minicomputers as a single integrated system for process control of several research laboratories. The
implementation of the network required both the development of a special purpose interprocessor
interface and the design of a software support system to direct network operations. The network was
designed according to the familiar "star" configuration, with the exception that the central computer in
the star does not exercise exclusive supervisory control over the system. Rather, each computer on the
system "sees" the central computer as a peripheral similar in characteristics to a medium speed I/O
device. This design allows each computer to serve not only as a node in the network, but also as an
entirely independent process controller.

Doubtless many directors of computerized

laboratories find that the direction of growth of any

laboratory is not only the consequence of growing

demands but is also a consequence of the specific

existing resources. Although the growing demands in

themselves might justify adoption of an entirely new

laboratory automation scheme, financial considerations

and investment in existing equipment frequently dictate

the necessity for compromise.

The Illinois laboratory was faced with such a

situation. The existing IBM 1800 was shared by two user

communities, one using the machine for digitizing analog

physiological data, and the other using the process

control capabilities of the machine to control data

acquisition in real time. As each group's demand for

computer time increased, the necessity for a

corresponding increase in the capacity of the system

became apparent. One logical alternative might have

been the purchase of separate computers to satisfy the

needs of each user community, but this alternative

clearly involved prohibitive expense. Furthermore, other

researchers in the department who owned small special

purpose minicomputer installations expressed a desire to

interface their machines to the 1800 in order to gain

access to its peripheral equipment. In view of these

considerations, we finally decided to resolve the problem

by designing a single unified computer network centered

on the 1800.

Our design effort was directed toward satisfying the

following objectives: (1) permit simultaneous time

sharing of the 1800 by as many users as possible; (2)

permit maximum use of the existing 1800 system,

including 16K of core, two disks, mag tape, flatbed

digital plotter, and assorted printers and readers. (3)

'Requests for reprints should be sent to Karl W. Scholz,
Department of Psychology, University of Illinois, Champaign,
Illinois 61820.

keep interfacing costs and complexities to a minimum;

(4) avoid excessive dependence of any single component

of the network on any other component; and (5)

provide expandability to accommodate future users.

The results of our efforts will be described in two

sections, the first dealing with the hardware design of an

interprocessor controller and the second dealing with the

design of the system support software.

THE INTERPROCESSOR CONTROLLER

The interprocessor controller was designed to

decentralize the control of the network by allowing all

1/0 transfer between the central processor (CP) and the

peripheral processors (PPs) to be initiated by the PPs

rather than by the CP itself. Communication between

the CP and the controller uses two of the CP's data

channels, one for transfer in each direction.

Communication between the controller and each of the

PPs was designed to accommodate either data channel

transmission or interrupt-driven direct program control

transfer, whichever best conforms to the configuration

of a particular minicomputer.

As Fig. I indicates, the controller consists of two

major elements, a seven-channel input multiplexor and a

port-address controller. The input multiplexor can select

one of the seven 16-bit wide input ports for presentation

to the CP's input channel. The port-address controller

processes all the control signals for both the PPs and the

CP.

Port-address selection is under the control of the CP.

Whenever the system is idling (i.e., no transmission is in

progress), the CP selects Port-Address O. Whenever

Address 0 is selected, the port-address controller

assembles a l-l-bit status word and presents it

continuously on the CP's input bus. The status word

consists of two bits for each peripheral processor. The

139

140 SCHOLZ AND HALFF

I, 1100

Output Channal

toll••m 1100

'.,t Add,a.. ~ _ - I - __-+ Channal Sync
ond Control

Controll.r

Fig. 1. Block diagram of the
interprocessbr controller.

t. 1100

Input Channal

Input

Multiplexor

7

4
. S

Itatus

control lignall

,-- -, addr....elect

)ata and Control Lin ••

to I from P.P.',

transfer request bit (TRREQ) indicates a request for

transfer and the transfer direction bit (TRDIR) indicates

the intended direction of transfer (to or from the CP).

Whenever the CP software returns to idle, the status

word is checked, and processing initiated for any

nonzero TRREQ bits that were detected. The first step

in processing a transfer request requires initializing either

the input data channel or the output data channel,

depending on the status of the particular TRDIR bit.

Then, the address of the PP initiating the request is

transferred to the controller. Upon receiving this

address, the port-address controller establishes a data

path from the selected processor to the appropriate data
channel on the CPo Data transfer then continues to

completion under control of the CP data channel,

leaving the CP free to continue background processing.

It should be emphasized that, with respect to the CP,

the I/O transfer is initiated without the use of interrupts.

Rather, the initiation of any I/O transfer is contingent

on the CP polling the status word from the controller.

Thus, during periods of time when the CP is devoting its

full resources to some processing task which is unrelated

to interprocessor communication, it cannot be disturbed

in any way by peripheral processor activity.

From the point of view of the PPs, I/O transfer

appears much as it would for any other I/O device. If the

PP wishes to transmit data to the CP, it sets first the first

data word, secondly the TRDIR line, and finally the

TRREQ line. Once the CP has recognized the TRREQ,

the CP input channel will process the data word (or

byte) and then acknowledge receipt by way of an

acknowledge line to the PP. Typically, the acknowledge

line will interrupt the PP, causing it to fetch the next

data word. This "handshake" will continue until the

transfer process is complete, or until the PP drops

TRREQ. In the latter case, the CP may optionally be

interrupted in order to signal the requested termination

of a transfer. Note that this termination request

interrupt is the only interrupt generated by the

controller for the CPo

If a PP desires to receive data from the CP, a similar

sequence of events is initiated. First, the PP sets the

TRDIR line indicating that it wishes to receive data, and

then it sets the TRREQ line. Upon recognition of the

request, the CP selects its output data channel, and data

transmission to the PP continues until either the CP

exhausts the data table which is being transmitted, or

until the PP lowers its TRREQ line.

In summary, the interprocessor controller design

satisfies the objective of hardware simplicity, thus

reducing costs to a minimum, and yet maintains

flexibility by acting as the heart of an expansible
decentralized computer network.

SOFTWARE DESIGN FOR

SUPPORT OF THE NETWORK

The decentralized network supervisor (DNS)

operating system was designed to integrate the

supervision of the interprocessor controller with

supervision of all remaining CP I/O devices. The system,

which executes in a 16K CPU, includes a 3K resident

monitor and 13K of dynamically allocated buffers.

Nonresident system functions are executed from two

320-word overlay areas, while nonresident utilities are

executed when needed from a 3K partition within

dynamically allocated core. Thus, 10K of buffer storage

is guaranteed, while the remaining 3K is optionally

available whenever the services of a nonresident utility

are not required.

The I/O System

The major strength of DNS lies in its input/output

system, which is to some extent modeled after the

DECENTRALIZED COMPUTER NETWORK 141

Fig. 2. An overview of the input/output queuing system.

been located using the BRT, the word count of the

block is written into its actual first word, and the

appropriate BRT bits are set on indicating the block is in

use. When a block is returned to available storage, its

first word is interrogated to determine its size, and the

appropriate bit or bits in the BRT are reset to indicate

that the block is available for reassignment. All

program s, including system routines, use the dynamic

storage allocation system for all data storage, thus

insuring a highly efficient utilization of the limited

available core memory.

LIST C

[]
,-'--1r __.J

CALL I/O ROUTINE (*)

LIST B

LIST A

BUSY

LINK

FUNCTION

BUFFER

LIST CONTAINS

DEVICE TABLE

'OQU' EJ
d

Interprocessor Communication

A major purpose of the system is to allow the PPs to

communicate with the peripheral devices interfaced to

the CP. One of the simplest approaches might be to

make the CP as transparent as possible to the PPs by

attempting to simulate a direct interface between the

peripheral devices and each PP. Although this approach

has much to offer in terms of simplicity, it tends to lead

to inefficient use of the system in many cases. For

example, the simple operation of transferring a file from

magnetic tape to the disk would involve reading each

block from tape, transmitting the data to the PP, reading

it back from the PP, and finally writing the data on the

disk. In order to avoid such inefficient use of the system,

the PP must be able to take advantage of some of the

processing capacity of the CP. Our specific approach is

to use the CP to execute data transfer between devices

on a schedule determined by the PP.

The basic operational unit of the system is the

transfer request issued by the PP. A transfer request

Dynamic Storage Allocation

The second important feature of DNS is its dynamic

storage allocation. Since the primary function of the

system is to supervise data transfer among various PPs

and CP I/O devices, heavy demands are placed on the

system's data buffering capabilities. All of dynamically

allocated core is divided into a series of 160 82-word

buffers. The in-use status of each buffer is recorded by a

single bit in a 160-bit (10-word) block reservation table

(BRT). Buffers are assigned either singly (for devices

such as card reader punch or tyewriters) or in groups of

four (for disk or tape I/O). Allocation of either an

82-word or a 328-word block is performed by searching

the BRT for either a single zero-bit or four consecutive

zero-bits, whichever is appropriate. Once a block has

IBM MPX I/O structure. A uniform calling sequence is

used for all DNS I/O routines. As Fig. 2 indicates, each

routine is called with the address of a vector containing

four arguments. The first argument is a busy parameter

which is set to nonzero to indicate that the I/O is in

progress. This argument is returned to zero to signal the

completion of the requested operation. The second

argument is the link word used for I/O queue

management which will be explained below. The third

argument is a numeric parameter which indicates the

desired I/O operation (e.g., read, write). Finally, the

fourth argument is the address of the I/O buffer which is

to be used in the I/O operation.

One word in the device table associated with each I/O

routine is used as a listhead for the particular I/O device

queue. When the I/O routine is first called (i.e., the

device was previously nonbusy), 10QUE is set to the

address of the I/O list (i.e., the address of the four

arguments in the call which was passed to the I/O

routine). The link word in the I/O list is then set to zero,

and the busy parameter is set to nonzero. Next, the I/O

operation is initiated, and immediately control returns

to the calling program. If the same I/O routine is called

while the device is still busy, 10QUE will naturally still

be nonzero. The routine responds to a nonzero 10QUE

by investigating the LINK word in the list to which

IOQUE points. If LINK is found to be zero, it is set to

the address of the new I/O list. If LINK is nonzero, it is

assumed to be pointing to yet another I/O list, so its

LINK word is consulted. Thus the process of traversing a

linked list is continued until a zero LINK word is found,

and this word is set to the address of the new I/O list.

In summary, the I/O queue for each device consists of

a series of linked nodes, where each node is a four-word

block in a calling program. As the I/O operation

specified by a given list is completed, this four-word

block is removed from the linked chain by setting

10QUE to the value of LINK. In addition, the first word

of the block is set to zero to indicate completion. This

method of I/O management has the obvious advantage

of having no intrinsic limit (other than the size of

available core) on the size of the queues for any device.

142 SCHOLZ AND HALFF

SOURCE/l.lI':STlNATION:

Fig. 3. Format of transfer request and special blocks.

requests

j
10 ~ cOntr. buff., to typewrlt.,

COUNT 10

DATA . " load my card s , Sara! "

{
ID control buffer to storus

COUNT . 1

DATA allocate cord reader

{ ID reader to e a p .

COUNT , 1

{ ID ltotus 10 ex p.

COUNT 1

get card

reader

read
cord

check
status

Instruct
operator

Fig. 4. Example of control block use to initialize a card
reading operation.

CONTR OL BLOc K 1

Example of Request alock Usage

ID: exit. to contr, buff.r

COUNT. 19

request. If the CP encounters a request in which the

control block is designated as the source, the appropriate

amount of data is transferred directly from the locations

following that request in the block.

The status block is the second of the three areas

allocated to each PP. The status block contains

information on the status of certain external devices,

and on the status of certain external devices.

Specifically, the status block will contain the identifier

and count of the current request, and any information

relating to completion, cancellation, or abortion of the

request. Requests may be cancelled by a transfer request

specifying the status block as the destination. Also the

status block will be unconditionally set to the PPon any

error condition. The status block also contains the status

of certain external devices such as the card reader/punch

and magnetic tape drive. These devices must be disposed

to a PP before that PP can use them. By transferring

information to or from the status block, the PP may

change or determine the status of these devices.

The last special area which the CP maintains for each

PP is a data block consisting of the most recent block of

data transferred by a request from the PP. Thus, if the

amount of data transferred is less than one buffer, the

data block will contain all of the data transferred. The

data block may be used as a source or destination to

facilitate transfer of the same data to multiple devices.

The following example is presented to clarify the use

of the three blocks. Suppose a PP requires the data from

a deck of cards which will be read into the CPo To

initiate the reading process, the PPmust request that the

card reader be allocately appropriately, tell the operator

which deck of cards to load and then begin reading. The

initialization procedure may be accomplished by

queuing four transfer requests in the control block as

illustrated in Fig. 4. The first request asks the CP for the
card reader through a transfer from the control block to

the status block. The second request transfers the

message to the operator from the control block to the

CURRI':N'f RI:rjlll':S'f STATUS

STATUS RJ.OCK

IJATA

IlATA RLOO:

RLOCK IOr:NT

RLOCK COUNT

IIITI\RNAL: COIITROL IlUFi"ER

IlA'rA IlllF n:R

STATUS UUHr.R

Rr.QUI·:ST IlJl,N'f

REQUEST COUNT
(llATA)

RLOCK IDEIIT

BLOCK COUIIT

CmiTROL RLOCK

Rl;QUEST IIJt:1IT
REQUt:ST COIlN'f

(OA'fA)

EXTER NAI. : 0I 51;
CAI\1)

TAPl;

KEYROARll
PF.Rll'lIl;IlAL PROCESSOR

TRlINSFER REQUEST t'ORHAT: I n (SOURCE, lJESTlNATWN)

voao COUIIT

consists of an identifier specifying a source and a

destination, and a word count specifying the amount of

data to be transferred (see Fig. 3). Both the source and

destination may be the PP requesting the transfer, any of

the I/O devices, or one of three special purpose buffers

or "blocks" assigned to the PP by the CPo (The function

of these three blocks will be outlined below.) In
honoring any transfer request, the CP reads the specified

number of words from the source and writes them on

the destination. Within the dynamic allocation scheme

detailed above, the transfer operation is quite simple.

Buffers are allocated as the source presents the
information to the CP, the data are read into the buffers,

written to the destination, and the buffer is returned to

the pool of available space as the destination receives the

data.
There are two ways in which a PP can file a transfer

request with the CPo The simplest way is by directly

initiating the request. To directly initiate a transfer

request, the PP obtains the attention of the CP by

appropriate manipulation of the TRDIR and TRREQ

lines. The CP then reads the identifier and count words

from the PP and initiates the specified transfer.

Alternately, a transfer request may be initiated through

the use of one of the special blocks mentioned above.

The CP maintains three blocks for each PP. The first

of these, the control block, is used by the PP to queue

transfer requests. A PP adds one or more requests to a

queue by directly initiating a transfer from any source

(usually the PP) to the control block. That is, the
control block serves as the destination for a list of

requests to be queued. In addition, small amounts of

data transferred by a control block request may be

retained in the control block directly following the

console typewriter. The third request transfers a card

image from the card reader to the PP, and the fourth

request feeds the status block to the PP as a check on

the operation. Once these requests have been placed in

the control block, the PP will simply wait until the

appropriate data and status information are ret urned

from the CP The PP can then request reading or the
second card.

Behavior Research Methods & Instrumentation

1974, Vol. 6, No.2, 143-146

DECENTRALIZED COMPUTER NETWORK 143

In summary, the software system gives each PP a

flexible system for initiating and scheduling data

transfers between a variety of devices. By giving the PP

the ability to initiate, queue, and monitor the transfer of

data hetwen any two devices, the system provides

capabilities for the disposition of data which normally

exceed the capacity of an independent minicomputer

installation.

An experiment control computer system

time shared by several laboratories *
JOHN KNIGHTt, VICTOR COLBURN , DAVID OWENS,

LEE FREEMAN, DANIEL SYED, and WAYNE RASBAND

National Institute of MeII tal Health, Bethesda, Marylands 20014

An experiment control computer system, operational for more than 2 years, is discussed. The system
is multiprogammed, using a vendor supplied real-time operating system. Individual experiments employ
multitasking-fast response functions are implemented in core resident tasks while interactive and other
slow response functions are implemented in tasks that operate under time sharing. The areas of
psychological research currently supported are concept formation studies, EEG evoked response studies,
monitoring the autonomic nervous system, perception studies, and family interaction studies.

Since January 1971 the computer system discussed

has enjoyed a prominent role in support of intramural

research programs of the NIMH. The system, which is

built around a 32K word CPU and auxiliary disk storage,

provides the fast response times typical of a dedicated

single user system in a powerful multiprogrammed

time-sharing environment. This configuration can be

used concurrently to control and monitor a wide range

of standard psychological experiments.

A general purpose computer with standard peripherals

using vendor supplied software is at the heart of the

system. The hardware is summarized in Table I. The

software includes a real-time operating system, language

processors, and utilities.

Psychological protocols impose a range of differing

requirements to be met by a supportive computer. The

timeliness of required response varies from less than a

millisecond for stimulus control and physiological data

collection to several seconds for interactive parameter

entry and subject instruction. Flexibility of

input/output is required for the many types of

equipment employed in psychological research. Finally,

computational power extends from the capability to do

simple computations to the more sophisticated complete

'This project is a joint effort by the Computer Systems
Laboratory of the Division of Computer Research and
Technology and the Technical Development Section of the
National Institute of Mental Health in support of the intramural
research program of the National Institutes of Health.

tRequests for reprints should be sent to John Knight, Division
of Computer Research and Technology, National Institutes of
Health, Bethesda, Maryland 20014.

143

experiment control. Heavily utilizing vendor supplied

software, the system design accommodates these various

requirements for multiple simultaneous users.

The system is multiprogrammed; this means more

than one program can be run concurrently. If used as a

purely time-sharing system, the computer could run

perhaps 30 programs at once. The special demands of

experiment control reduce the number of programs

which can share the system by half. Time sharing is

implemented by swapping the time-shared tasks from

the desk for a time slice of execution on a round robin

basis. The core-to-disk and disk-to-core swap necessary

to interchange two tasks averages about 1/2 sec.

Varying response time requirements in the different

phases of each experiment have led to extensive use of

multitasking. The concept of multitasking is basic to the

system design. Each experiment control program is

reduced to a series of tasks; one task for each process

necessary to control an experiment. For example, a task

may control stimulus generation and data collection

while another task prompts the operator for S

ide n t ifica tion and the specification of runtime

parameters. Some processes require fast response and are

allocated to core resident tasks. Other processes are less

time dependent and can be controlled by tasks operating

under time sharing. Functions which depend on fast

response are not executed under time sharing. These

functions are isolated and given special treatment. By

allowing the associated task to remain in core while

awaiting an interrupt, it has been possible to insure that

