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Abstract—In this paper a decentralized controller-observer schemédor

a multi-agent system is presented. The key idea is to develofor each
agent, an observer of the collective system’s state and a nian controller.

The observer is updated using only information from the agen itself
and from its neighbors; the motion controller is designed inorder to

allow the team’s weighted centroid to track an assigned timearying

reference. Convergence of the overall scheme is proven foiirdcted and
undirected communication graphs; moreover the extensionso the case
of switching communication topologies and to the presencef saturation

in the control input are discussed. Finally, numerical simuations are
illustrated to validate the approach.

Index Terms—Cooperative control; consensus algorithms; distributed
control; multi-agent systems; networked control systems

|. INTRODUCTION

Multi-agent systems have been deeply investigated in tisée
decades [12], due to their advantages with respect to samgats
in terms of flexibility, redundancy and fault tolerance. Example,
autonomous agents can be spread into the environment teaser
the coverage range of sensors, actuators and communickiices,
such that the overall team can better accomplish the askigission
in terms of time and efficiency. In the presence of limited oam
nication/sensing capabilities, the common goal has to theaed
in a cooperative way by using only local information. In fagach
agent can only rely on information coming from its on-boaedsors
or received from its direct neighbors, while the goal of therall
team usually depends on the global state of the system. 8egeent
studies dealt with the development of distributed contpgraaches
for multi-robot systems with the aim of achieving a globalkige.qg.,
controlling the geometrical centroid) by using distritiontrollers.
A wide overview on such problems can be found in [10], [16] ror i
the recent books [4], [19], [13].

A fundamental issue in the mentioned research is the cluitign

variance, and orientation is proposed in [3]. The work in] [irbvides
a significant contribution to the consensus literaturecesithe goal
is achieved for a more general class of agents’ dynamics raridei
absence of direct state measurement; hence, each agerd lszs
observer to estimate its state. In [15] a distributed lowspiter for
sensor networks is devised, where the goal is to reach csmsen
in the presence of distributed noisy measurements of aneexas
signal; if the signal is characterized by a bounded rates itacked
by each agent. The problem of tracking a time-varying refeeestate
for each agent has been deeply investigated in [17], [18],4% well,
where the reference state is assumed to be known by only &tsubs
of agents and the neighboring agents are required to exehtigg
derivative of the state. However, each agent is requireddbange its
control input with its neighbors; in order to avoid this digaic loop,
in [18] the velocity is estimated numerically and in [5] thgndmic
consensus problem is solved via a variable structure dtettro

A notable attempt to desiglocal control laws aimed at achieving
a given collective behavior of a multi-agent team can be found
in [6] and [21]; noticeably, the approach uses a distribstimator
of the actual collective behavior function, which is basead the
dynamic average consensus protocol proposed in [20]. licpkar,

I%e work in [20] is focused on average consensus for estmati

purposes: namely, the state of each agent tracks the aveahgeof
N time-varying exogenous signals characterized by spe@éitufes.
However, asymptotic tracking is not guaranteed unless t&
constant or has poles in the left half plane.

In this paper, a multi-agent system is required to coopeigti
track a certain class of global functions expressing a tmarging
common goal (i.e., the weighted centroid). Namely, eachntage
estimates the global state of the system via a properly dedig
observer, which uses only local information, i.e., the #@gestate
and information from its neighbors. Then, the estimatethglistate is
used by a local controller in charge of achieving asymptwticking
of a given time-varying reference for the weighted centroicthe
team. Convergence of both estimation and tracking erropsdsen
for both directed and undirected communication graphs.edeer,
the same observer is adopted to design a controller ensuiaoking
with bounded control inputs, or for switching topologiessisl worth
remarking that, as in [21], tracking is achieved by usingritiated

problem ofconsensusor multi-agent systems, i.e., reaching an agrégsstimation and control, although here, instead of the comgual
ment regarding a variable, either exogenous or dependingeostate  f,cfion, the whole collective state is estimated by eagmagn the

of single agents. The work in [9] shows how the consensus ean

used to achieve specific behaviors of the multi-agent systech as,
e.g., formation keeping and rendez-vous. The work in [8]sl@dth
the stability analysis of several decentralized stratetfiat achieve an
emergent behavior. In [2] non-linear protocols are progdsesolve
non-linear stationary consensus problems for networksyofchic
agents with fixed topologies.

am. Although the class of goal functions considered teefienited
to the generalized (weighted) centroid, global asymptoécking of
a time-varying collective behavior function is guaranteed

The current work extends preliminary results presented 1
by including the case of bounded control inputs, providiegsl
conservative conditions in the stability proofs and exiegdthe
simulation analysis. The rest of the paper is organized Hawfs:

—

The above cited papers mainly focus on stationary €onsensyiSction | introduces the system modeling and the probletestent:
problems, where the consensus must be reached on a giveliofunCsecion |11 introduces the proposed observer scheme:; itidBeby/

of the initial states of the agents or on a given exogenoumhiar
On the other hand, in many application fields the mission olu#im
agent system is usually expressed as a time-varying/coafign
dependent goal function (often termembllective behavior), e.g.,
describing the location and shape of a robotic team. A phrtia
decentralized algorithm aimed at controlling the netwoektooid,
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the motion control solution and a stability proof of the acotier-
observer scheme is presented. Finally, numerical sinoumstiand
some concluding remarks are provided in Sections V and \,
spectively.

Consider a system composed by agents, where théh agent’s
state is denoted by; € R". It is assumed that each agent is
characterized by a single-integrator dynamics

PROBLEM STATEMENT AND BACKGROUND

:i:i = Ui,

wherewu; € R" is the input vector. The collective state is given by

z =[x ac%]T € RM™ and the collective dynamics is then
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expressed as
@

T =u,

wherew = [u ... uy]

The control objective is the design of a distributed contsah-
nique for multi-agent systems to achieve an assigned gltasH,
encoded by a smooth function

o:xecR"" = o(x) eR”,

that will be detailed in the following.

The main requirements are to design for each agent:

. a state observer providing an estimdte, ¢ RV™, asymptoti-
cally convergent to the collective state, ast — oo;

. a feedback control lawu; = wu;(t,‘a), such thato(x)
asymptotically converges to a given (in general time-vayyi
referencepgq(t), ast — oo.

Both the observer and the controller can only la&al information,
i.e., the state and input of the agent itself, and infornmafiom its
neighboring agents. Moreover, each agent knows in advérecgdal,
encoded by the functioer4(¢), and its first derivative.

T e RV is the collective input vector.

whereQ,, denotes ther{ x n) null matrix andZ,, the (n x n) ldentity
one. It holdsy" Y | IT; = I nn.

The estimate of the collective state is computed byittieagent
(i=1,...,N) via the observer

=k [ > (7:): - :c) 1, (a: - :c) tia, (@)
JEN;
wherek, > 0 is a scalar gain to be properly selected and
u (t7 Z:%)
. . w2 (t7 7:%)
“at,'e) = e RN (3)
UN (t, Zi)

represents the estimate of the collective input availabléhe : th
agent. The exact expression fba(t, @) will be detailed in the
remainder depending on the specific control law. Notice, that
implement the observer (2), the agent uses only local indgion
since IT; selects only the th component of the collective state

Information exchange between the agents can be modeled agaqn state) exchanges the estimates with its neighbors.

network of agents described by a gragli€, V), characterized by

its topology [7], [13], i.e., the seV of the indexes labeling thév
vertices (nodes), the set of edges (a&€s} V x V, and the (V x N)
adjacency matrix
i1 o 1 if (4,7) € €
A={ag}: ai=0, ay= {O otherwise,

that is, a;; = 1 if there exist and arc from vertex to vertexi.

It is assumed that thé&h agent receives information only from its

For the sake of notation compactness, the state eQStimauebe:a
stacked into the vectof;* = ['&" NﬁcT}T € RN thus, a

stacked vector of estimation errors can be defined as well

neighbors\; = {j € V: (4,4) € £}, and it does not know the where the symbok represents the Kronecker product.

topology of the overall communication graph.

If all the communication links between the agents are bi-

directional, the graph is calledindirected (i.e., (¢,j) € & =
(j,1) € &), otherwise, the graph is calledirected Moreover, the

graph topology can be assumed either fixed or switching,(e.qg.

communication links may appear or disappear). A directeglyris

called strongly connectedf any two distinct nodes of the graph can

be connected via a directed path, i.e., a path that folloeglitection
of the edges of the graph. An undirected graph is catlednected
if there is an undirected path between every pair of distioztes. A
node of a directed graph is balanced if its in-degree (e number
of incoming edges) and its out-degree (i.e., the number tfadog
edges) are equal; a directed graph is cablathncedif each node of
the graph is balanced. Any undirected graph is balanced.

1z x— 1@
2z x— &
z* = = —ly®x— &, (4)
Nz z—Ng
The collective estimation dynamics is given by
&* = —k,L*&" + k JIT*2" + 4", (5)
whereL* = L ® Iny, IT* = diag {IT, ITy} and
La(t, &)
“a(t, &) 2
w(t, &) = : e R (6)
Na(t, V&)

Taking into account the properties of the Kronecker product
(L®Inn) (1y ® ) = L1y®x and of the Laplacial 1y = Ox,
the estimation error dynamics can be derived from (1) anch¢4)

= ko (L"+ IN&" +1nQu—a". (7)

The communication topology is commonly characterizes gy th

(N x N) Laplacian matrix defined as

N
L = {l”} : lii = Z Aij, lij = —Qij, 7 #]
J=1,5#i
The Laplacian exhibits at least a zero eigenvalue with spaading
right eigenvector théV x 1 vector of all onesl . Hence, rankL) <
N —1and L1y = Oy, whereOy is the (V x 1) null vector. For
a balanced directed graph (and, thus, for an undirectechjrap
is also a left eigenvector oL, i.e. 1YL = 0%. If the graph is

strongly connected rafit) = N — 1. If the graph is undirected, the

Laplacian is symmetric and positive semidefinite; moreoifethe
graph is connected) is a simple eigenvalue ak.

I1l. STATE OBSERVER
Let IT; be the (Vn x Nn) selection matrix
II; = diag{On

In O’n}7
~

i th node

Matrix L*+ IT* plays a central role to determine the convergence
of the estimation error dynamics. In the Appendix it is shatat
L*+ IT* is positive definite for connected undirected graphs, as wel
as for directed balanced and strongly connected topologies

IV. WEIGHTED CENTROID TRACKING CONTROL
The task considered in this paper is the weighted centroid

N
_ (AT
0'(93) = izzlazwz (a @ ITL) x,

wherea™ = [a; an] € R" is a non-null vector of weights.
The task function reduces to the geometric centroid whes 1/N.

Since it holdss = J&, whereJ = aT®1I, is the Jacobian matrix
of the task function, a centralized solution to the centroatking
problem can be achieved via the control law

u(t,z) = J' (Ga(t) + ke (oa(t) — o(2))),

(8)

9)
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Where ke > 0 is a scalar gain and/T = J7T (JJT)71 = Proof: The overall closed-loop system can be analyzed by

~ (a®I,,) is the pseudoinverse of the Jacobian matrix. Hencéesortlng to the positive definite and radially unboundeddddate
Jlexl? || Lyapunov function
sinceJJ' = I, the task tracking erra¥ = oy—o € R" is asymp- 1
totically driven to zero by the closed-loop dynamigs= —k.&. V@, o)=Vo+dVe= 5 T&* 4
Inspired by the centralized control (9), in the proposedrithisted
solution the control input of théth agent is computed according to:

Ta, (16)

o

ol

whered > 0 is not a design parameter and is used only for the
purposes of the proof.
wi(t, &) = i (dd(t) + ke (ad(t) - a(i;;;))) , (10) Notice thatV satisfies the following inequality

lex]|? )12 -
wherek. > 0 is a scalar gain to be properly selected. Cm {a;} <V(@*, o) <cm ﬁ;}
The input estimate in (3), used in (2), becomgs=(1, ..., N)
, ) ) for any ¢, <min{1,d}/2 andcar > max{1,4d}/2.
S « . T P ) ’
u;(t, ") = ||a]H2 (Ud + ke (O'd - (a ® In) w)) - (1) The time derivative of, along the system's trajectories is given by

Vo=—ko" (L*+II")&" —a&*" (A; — By)a", (18)

2

; 17

A. Closed-loop dynamics

Since (forj =1,...,N)
w (%) —us(t,'2) = ke "tz (a7 0 1) (2 - '2) . (12)
HCVH where A\, = ko,A\m. It is worth noticing that\,, is function of the

the following equality holds Laplacian (i.e., depends on the network topology); thusafgiven
network topology,\, can be arbitrarily tuned by choosirig.

that, sinceA} is positive semidefinite, can be upper bounded as

Vo < =Xo|l@*|> + 2 "By, (19)

u— =A%+ Box’, 13) In view of (12) and (13), inequality (19) yields
With A, = ugw (aa ®I,) € RY™ " and B, = ) i .
— _ * I
ke (ding{a} @ (T @ 1,)) € RNV Voo = =Al@l™+ 22121% HCR IO
I—Jence the estimation error dynamics can be finally rewrits H = H
. - ke ||o ®In
5" = ko (L* + IT") 3" — (A’ — B)&", (14) < @+ ZZ oo | 2| |2
where A}, = Iy ® A, and B} = 1y ® B,.
As shown in the Appendix, matrixL* + IT* is positive definite < =X lE? ke ZZ o | J:;JH
provided that the connectivity graph exhibits certain grips and llxl] ==
its smallest eigenvalue will be denoted hy,. Matrix A, is positive
semidefinite, since it is given by the product of positive mkafinite < =X E” 2 J@H ,

matrix, a™, and a positive definite matrid,,,; the same argument
leads to conclude that matriX is positive semidefinite. On the
other hand,B}, in general is not definite in sign.

In view of (8) and (10), it holds

where‘z; is the jth component of the estimate:, and where the
2-norm has been used for vectors and matrices. By complétieg
squares, the following chain of inequalities can be obthine

& = G4-0=04— ) . NN
d d , iTi V. < =\ H53*||2 +kczz %H
N o2 , i=1 j=1
= su= Yo (vat ke (00— o(2)) < A8+ NE P
=1 ~ %
k N . = 7(>‘07p0) ”m H27
= _kc& - || CHQ Z Oé? (aT ® In) (m B Zi’) Whel’ep = Nk
(e % .7 o — c-
k = N The time derivative oV, along the system’s trajectories is given by
= —k.&— —< T 2 i . .
= ke.o ”aHg (a ® In) ;az . V. = 6%%6=5" (—ke& — Bo#")
N
Thus, the tracking error dynamics can be finally written as — &7 <kc& ke . (aT ® In) a?ii>
& = —keo — Boi", (15) e i=1
where B, = i (a7 @ 1) (" diag{a} ® Inn). < ko) o | 6]l Zaz H
B. Convergence analysis < —ke||&|* + Nke ||| HUH 2|l
~ 112 ~ ~ %
< —keloll® + pellal 127,

In the following, the convergence of the overall controlbaserver
scheme will be proven in the case of an undirected commuartat \yhere . = Nk. ||a]|.
graph with connected and fixed topology. The extension to theHence, the overall time derivative of the candidate Lyapuno
saturated case and directed and/or switching topologidk b&i  function (16) can be upper bounded as follows
discussed in the following.

Theorem 1:There exists a choice of observer gakn, and con- ) 12" T | Ao — po _9pc 1"
troller gain, k., such that the equilibriun* = Oy2,,, & = 0,, of V< - {H&H] Spe 2 {H&H] : (20)
the error dynamics (14), (15) is globally exponentiallybéta 9 Oke
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Hence,V is negative definite i\, = koAm > po, i.€., The observer takes the form (2), whaig(t, ‘&) is computed as
k Amko — Nk izy— ¥ (g is
ko > N2 § < 42mPo < 21 u;(t,'x) = 64+ ketanh (oqg — (‘@) ) ) . (24)
Arm N2k, | 1) lle]|? ( ( ))

Formally, the collective estimation error dynamics is digsdl by

If X is the smallest eigenvalue of the matrix in (20), it holds . . . . ’ .
g (20) equation (7), since (14) is not valid in this case, while thskt

2

. o tracking error dynamics becomes
e HE o
o k,‘ N
X c 2 o 7 A
which, together with (17), yields exponential stability. 7= Ha||2 2“’ (tanh (ad 7 ( m))) ’ (25)

Notice that only the first of the conditions in (21) represent ) ) )
constraint on the design gaiks andk., while the second inequality 't ¢@n be proven that there exists a choice f’f observer gairand
can be satisfied for any choice of the gains for saime 0. controller gain,k., such that the equilibriune” = Oy2,, & = 0y

Remark 4.1:Interestingly, the above proof exploits the cascade%lf the error dynamics (7), (25) is globally asymptoticaltptse.
structure of the error dynamics (14), (15); thus, the sitglgbndition
essentially is enforced by the estimation error dynamics, by
V,. Since A, can be arbitrarily set vid,, eq. (21) can be always In the following, numerical simulation results related tfetent
satisfied by suitably choosink, for any givenk.. However, it must case studies are reported in order to validate the propggaach.
be remarked that condition (21) is only a, somewhat conteeya The team of agents is considered as a 2D/3D multi-robot syste
sufficient condition for convergence, i.e., gains not $gitig the characterized by different communication network top@eg(di-
condition may guarantee stability as well. Moreover, eiqma(21) rected/undirected, fixed/switching). The team is commeértdetrack
clearly shows that tuning of the observer and controllengaiannot a desired time-varying reference; the task function is eefias in (8)
be performed independently, i.e., a separation properg dot hold. With o, = 1/N, (fori = 1, 2 --- N), while the desired trajectory of

Remark 4.2:By looking at the stability proof, it can be concludedthe centroido 4 (t) is given by a cubic spline function interpolating
that the estimation error convergence is ensured for a memergl @ given set of via points. The parametétsand k. in (10) and (2)
class of control inputs. Namely, i (¢, ") is uniformly Lipschitz, have been set, respectively, foand 3 for all the case studies.
the inequality V,, < — (Ao — po) ||#||* still holds, wherep, will
depend on the Lipschitz constant. A. First case study: switching directed topology, 8 3D-dagemot

Remark 4.3:Let Ls = (L + L") /2 be the Laplacian of the saturated control law

irror graph [14] associated to a given directed graph. &inc As a first case study, a switching directed topology with Sisles

= (L* + L")+ " = Ls ® In, + IT* = L% + IT*, equations (N = 8) moving in the 3D-spacen(= 3) has been considered. The
(218) can be rewritten by replacinfy* + IT* with L5 + IT*. The network topology switches at = 2 andt = 4 among the three
latter matrix is positive definite, as shown in the Appendixthe configurations shown in Figure 1. Figure 2 shows the vetigiaths,
graphg is balanced and strongly connected. In fact, in this dage and the desired and actual task functions. Figure 3 showsirties
is the Laplacian of the mirror grapfis associated to a given directedhistories of the task error norm, and, for each agent, thenaton
graphg [14]. Thus, the same arguments can be used to prove glogafor norm (with a zoom in correspondence of the switchirgjant

V. NUMERICAL SIMULATIONS

exponential stability of the closed loop. of the communication topology) and the control inputs.
Remark 4.4:1t is reasonable to consider a time-varying network

topology, e.g., due to the failure of active communicatiimkd or to @ PN

the activation/deactivation of links due to the dynamigptiisement @*’ @ @‘ ; @

of the nodes. In such cases, the network topology can beibledcr / \ : \ \

via a finite collection,I", of K graphs of orderN. Hence, the @ Q @.\; B ‘@

adjacency matrix (and the associated Laplacian) can be lethds \ ] AN

a piecewise continuous function of timé = A, (L = L)), \\ / @

wheres(-) : t € R — I is a switching signal. The function defined @ @ @ . \®
in (16) is a Common Lyapunov Functions (CLF) for the overall % 5 4]
closed-loop system for any switching signdt), provided that each @\ R )
graph inI" is balanced and strongly connected (in the case of directed T~
topology) or simply connected (in the case of undirectedlagy) /
and (21) holds for any. To this aim, tuning ofk, and k. could be @(‘1@/’
perfor_m_ed according to the worst case scenario, i.e., byide“n.g Fig. 1. First case study: switching communication topasgiCommunica-
the minimum value of\,, over the finite set of_ network topologles.tion graphs fort < 2 (left), 2 < t < 4 (center) andi > ¢ (right).

Remark 4.5:In order to meet the constraints on control input
magnitude, it is possible to consider a saturated versiorthef
controller law in eq. (10) modified as follows

B. Second case study: directed topology, 5 2D-agents, wittpar-

(t,17) = L’Q (dd + k. tanh (Ud _ G(iﬁ)))) 7 (22) ison between saturated and not saturated control law
l[exll As a second case study, a comparison between the executen of
wheretanh(-) denotes the element-wise hyperbolic tangent. mission with a team of 5 agents applying or not a saturatioth¢o
The above control law ensures a bounded control inpyt, @ctuators is presented. The saturated input control lampteimented
provided thats 4 is bounded, i.e., using the control law

el <~ 1oa s + ke @ wt'e) = O (a0t hess (200 )
Tl Tl ¥
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where the scale factory is used to dynamically saturate the control 3 5 -1
input to the rangg—1.5 1.5]. Such a formulation is less conserva- -5 " = o
tive w.r.t. eq. (22) and it allows to optimize the usage of thput time [s] “time
signal without changing the stability properties. Fig. 6. Second case study: errors without (left) and witlghti actuator
Figure 4 and Figure 5 respectively show the graph of the comvnu saturation.
cation topology and the paths of the agents. Figure 6 shosvadhm
of the task error, the estimation errors and the controltifipuboth
the cases. Finally, Figure 7 shows a zoom on the control isignials
during the first seconds of the mission where, due to the atitim

and task initial errors, the control inputs reach the higvatues. Input zoom nput z00m
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Fig. 7. Second case study: zoom on the control input withiedt) @nd with
(right) actuator saturation.

Fig. 4. Second case study: directed communication graph.
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