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A decentralized controller-observer scheme for
multi-agent weighted centroid tracking

Gianluca Antonelli, Filippo Arrichiello, Fabrizio Caccavale,
Alessandro Marino*

Abstract—In this paper a decentralized controller-observer schemefor
a multi-agent system is presented. The key idea is to develop, for each
agent, an observer of the collective system’s state and a motion controller.
The observer is updated using only information from the agent itself
and from its neighbors; the motion controller is designed inorder to
allow the team’s weighted centroid to track an assigned time-varying
reference. Convergence of the overall scheme is proven for directed and
undirected communication graphs; moreover the extensionsto the case
of switching communication topologies and to the presence of saturation
in the control input are discussed. Finally, numerical simulations are
illustrated to validate the approach.

Index Terms—Cooperative control; consensus algorithms; distributed
control; multi-agent systems; networked control systems

I. I NTRODUCTION

Multi-agent systems have been deeply investigated in the last
decades [12], due to their advantages with respect to singleagents
in terms of flexibility, redundancy and fault tolerance. Forexample,
autonomous agents can be spread into the environment to increase
the coverage range of sensors, actuators and communicationdevices,
such that the overall team can better accomplish the assigned mission
in terms of time and efficiency. In the presence of limited commu-
nication/sensing capabilities, the common goal has to be achieved
in a cooperative way by using only local information. In fact, each
agent can only rely on information coming from its on-board sensors
or received from its direct neighbors, while the goal of the overall
team usually depends on the global state of the system. Several recent
studies dealt with the development of distributed control approaches
for multi-robot systems with the aim of achieving a global task (e.g.,
controlling the geometrical centroid) by using distributed controllers.
A wide overview on such problems can be found in [10], [16] or in
the recent books [4], [19], [13].

A fundamental issue in the mentioned research is the challenging
problem ofconsensusfor multi-agent systems, i.e., reaching an agree-
ment regarding a variable, either exogenous or depending onthe state
of single agents. The work in [9] shows how the consensus can be
used to achieve specific behaviors of the multi-agent systemsuch as,
e.g., formation keeping and rendez-vous. The work in [8] deals with
the stability analysis of several decentralized strategies that achieve an
emergent behavior. In [2] non-linear protocols are proposed to solve
non-linear stationary consensus problems for networks of dynamic
agents with fixed topologies.

The above cited papers mainly focus on stationary consensus
problems, where the consensus must be reached on a given function
of the initial states of the agents or on a given exogenous variable.
On the other hand, in many application fields the mission of a multi-
agent system is usually expressed as a time-varying/configuration
dependent goal function (often termedcollective behavior), e.g.,
describing the location and shape of a robotic team. A partially
decentralized algorithm aimed at controlling the network centroid,
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variance, and orientation is proposed in [3]. The work in [11] provides
a significant contribution to the consensus literature, since the goal
is achieved for a more general class of agents’ dynamics and in the
absence of direct state measurement; hence, each agent usesa local
observer to estimate its state. In [15] a distributed low-pass filter for
sensor networks is devised, where the goal is to reach consensus
in the presence of distributed noisy measurements of an exogenous
signal; if the signal is characterized by a bounded rate, it is tracked
by each agent. The problem of tracking a time-varying reference state
for each agent has been deeply investigated in [17], [19], [18] as well,
where the reference state is assumed to be known by only a subset
of agents and the neighboring agents are required to exchange the
derivative of the state. However, each agent is required to exchange its
control input with its neighbors; in order to avoid this algebraic loop,
in [18] the velocity is estimated numerically and in [5] the dynamic
consensus problem is solved via a variable structure controller.

A notable attempt to designlocal control laws aimed at achieving
a given collective behavior of a multi-agent team can be found
in [6] and [21]; noticeably, the approach uses a distributedestimator
of the actual collective behavior function, which is based on the
dynamic average consensus protocol proposed in [20]. In particular,
the work in [20] is focused on average consensus for estimation
purposes: namely, the state of each agent tracks the averagevalue of
N time-varying exogenous signals characterized by specific features.
However, asymptotic tracking is not guaranteed unless the goal is
constant or has poles in the left half plane.

In this paper, a multi-agent system is required to cooperatively
track a certain class of global functions expressing a time-varying
common goal (i.e., the weighted centroid). Namely, each agent
estimates the global state of the system via a properly designed
observer, which uses only local information, i.e., the agent’s state
and information from its neighbors. Then, the estimated global state is
used by a local controller in charge of achieving asymptotictracking
of a given time-varying reference for the weighted centroidof the
team. Convergence of both estimation and tracking errors isproven
for both directed and undirected communication graphs. Moreover,
the same observer is adopted to design a controller ensuringtracking
with bounded control inputs, or for switching topologies. It is worth
remarking that, as in [21], tracking is achieved by using distributed
estimation and control, although here, instead of the common goal
function, the whole collective state is estimated by each agent in the
team. Although the class of goal functions considered here is limited
to the generalized (weighted) centroid, global asymptotictracking of
a time-varying collective behavior function is guaranteed.

The current work extends preliminary results presented in [1]
by including the case of bounded control inputs, providing less
conservative conditions in the stability proofs and extending the
simulation analysis. The rest of the paper is organized as follows:
Section II introduces the system modeling and the problem statement;
Section III introduces the proposed observer scheme; in Section IV
the motion control solution and a stability proof of the controller-
observer scheme is presented. Finally, numerical simulations and
some concluding remarks are provided in Sections V and VI, re-
spectively.

II. PROBLEM STATEMENT AND BACKGROUND

Consider a system composed byN agents, where theith agent’s
state is denoted byxi ∈ R

n. It is assumed that each agent is
characterized by a single-integrator dynamics

ẋi = ui,

whereui ∈ R
n is the input vector. The collective state is given by

x =
[
x

T
1 . . . x

T
N

]T
∈ R

Nn and the collective dynamics is then
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expressed as
ẋ = u, (1)

whereu =
[
u

T
1 . . . u

T
N

]T
∈ R

Nn is the collective input vector.
The control objective is the design of a distributed controltech-

nique for multi-agent systems to achieve an assigned globaltask,
encoded by a smooth function

σ : x ∈ R
Nn → σ(x) ∈ R

n,

that will be detailed in the following.
The main requirements are to design for each agent:

• a state observer providing an estimate,i
x̂ ∈ R

Nn, asymptoti-
cally convergent to the collective state,x, ast → ∞;

• a feedback control law,ui = ui(t,
i
x̂), such thatσ(x)

asymptotically converges to a given (in general time-varying)
reference,σd(t), ast → ∞.

Both the observer and the controller can only uselocal information,
i.e., the state and input of the agent itself, and information from its
neighboring agents. Moreover, each agent knows in advance the goal,
encoded by the functionσd(t), and its first derivative.

Information exchange between the agents can be modeled as a
network of agents described by a graphG(E ,V), characterized by
its topology [7], [13], i.e., the setV of the indexes labeling theN
vertices (nodes), the set of edges (arcs)E = V×V, and the (N×N )
adjacency matrix

A = {aij} : aii = 0, aij =

{
1 if (j, i) ∈ E
0 otherwise,

that is, aij = 1 if there exist and arc from vertexj to vertex i.
It is assumed that theith agent receives information only from its
neighborsNi = {j ∈ V : (j, i) ∈ E}, and it does not know the
topology of the overall communication graph.

If all the communication links between the agents are bi-
directional, the graph is calledundirected (i.e., (i, j) ∈ E ⇒
(j, i) ∈ E ), otherwise, the graph is calleddirected. Moreover, the
graph topology can be assumed either fixed or switching (e.g.,
communication links may appear or disappear). A directed graph is
calledstrongly connectedif any two distinct nodes of the graph can
be connected via a directed path, i.e., a path that follows the direction
of the edges of the graph. An undirected graph is calledconnected
if there is an undirected path between every pair of distinctnodes. A
node of a directed graph is balanced if its in-degree (i.e., the number
of incoming edges) and its out-degree (i.e., the number of outgoing
edges) are equal; a directed graph is calledbalancedif each node of
the graph is balanced. Any undirected graph is balanced.

The communication topology is commonly characterizes by the
(N ×N ) Laplacian matrix defined as

L = {lij} : lii =
N∑

j=1,j 6=i

aij , lij = −aij , i 6= j.

The Laplacian exhibits at least a zero eigenvalue with corresponding
right eigenvector theN×1 vector of all ones,1N . Hence, rank(L) ≤
N − 1 andL1N = 0N , where0N is the (N × 1) null vector. For
a balanced directed graph (and, thus, for an undirected graph), 1N

is also a left eigenvector ofL, i.e. 1T
NL = 0

T
N . If the graph is

strongly connected rank(L) = N − 1. If the graph is undirected, the
Laplacian is symmetric and positive semidefinite; moreover, if the
graph is connected,0 is a simple eigenvalue ofL.

III. STATE OBSERVER

Let Π i be the (Nn×Nn) selection matrix

Πi = diag{On · · · In
︸︷︷︸

i th node

· · · On},

whereOn denotes the (n×n) null matrix andIn the (n×n) Identity
one. It holds

∑N

i=1 Πi = INn.
The estimate of the collective state is computed by thei th agent

(i = 1, . . . , N ) via the observer

i ˙̂x = ko




∑

j∈Ni

(
j
x̂− i

x̂

)

+Πi

(

x− i
x̂

)



+ i
û, (2)

whereko > 0 is a scalar gain to be properly selected and

i
û(t, ix̂) =








u1(t,
i
x̂)

u2(t,
i
x̂)

...
uN (t, ix̂)







∈ R

Nn (3)

represents the estimate of the collective input available to the i th
agent. The exact expression fori

û(t, ix̂) will be detailed in the
remainder depending on the specific control law. Notice that, to
implement the observer (2), the agent uses only local information
sinceΠi selects only thei th component of the collective statex
(its own state) exchanges the estimates with its neighbors.

For the sake of notation compactness, the state estimates can be
stacked into the vector,̂x⋆ =

[
1
x̂

T . . . N
x̂

T
]T

∈ R
N2n; thus, a

stacked vector of estimation errors can be defined as well

x̃
⋆ =








1
x̃

2
x̃

...
N
x̃







=








x− 1
x̂

x− 2
x̂

...
x− N

x̂







= 1N ⊗ x− x̂

⋆, (4)

where the symbol⊗ represents the Kronecker product.
The collective estimation dynamics is given by

˙̂x⋆ = −koL
⋆
x̂

⋆ + koΠ
⋆
x̃

⋆ + û
⋆, (5)

whereL⋆ = L⊗ INn, Π⋆ = diag
{
Π1 . . . ΠN

}
and

û
⋆(t, x̂⋆) =








1
û(t, 1x̂)

2
û(t, 2x̂)

...
N
û(t,N x̂)







∈ R

N2n. (6)

Taking into account the properties of the Kronecker product
(L⊗ INn) (1N ⊗ x) = L1N⊗x and of the LaplacianL1N = 0N ,
the estimation error dynamics can be derived from (1) and (4)as

˙̃x⋆ = −ko (L
⋆ +Π

⋆) x̃⋆ + 1N ⊗ u− û
⋆. (7)

Matrix L
⋆+Π

⋆ plays a central role to determine the convergence
of the estimation error dynamics. In the Appendix it is shownthat
L

⋆+Π
⋆ is positive definite for connected undirected graphs, as well

as for directed balanced and strongly connected topologies.

IV. W EIGHTED CENTROID TRACKING CONTROL

The task considered in this paper is the weighted centroid

σ(x) =

N∑

i=1

αixi =
(

α
T ⊗ In

)

x, (8)

whereαT =
[
α1 . . . αN

]
∈ R

N is a non-null vector of weights.
The task function reduces to the geometric centroid whenαi = 1/N .

Since it holdsσ̇ = Jẋ, whereJ = α
T⊗In is the Jacobian matrix

of the task function, a centralized solution to the centroidtracking
problem can be achieved via the control law

u(t,x) = J
† (σ̇d(t) + kc (σd(t)− σ(x))) , (9)
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where kc > 0 is a scalar gain andJ† = J
T
(
JJ

T
)−1

=
1

‖α‖2
(α⊗ In) is the pseudoinverse of the Jacobian matrix. Hence,

sinceJJ† = In, the task tracking error̃σ = σd−σ ∈ R
n is asymp-

totically driven to zero by the closed-loop dynamics˙̃σ = −kcσ̃.
Inspired by the centralized control (9), in the proposed distributed

solution the control input of thei th agent is computed according to:

ui(t,
i
x̂) =

αi

‖α‖2

(

σ̇d(t) + kc
(

σd(t)− σ(ix̂)
))

, (10)

wherekc > 0 is a scalar gain to be properly selected.
The input estimate in (3), used in (2), becomes (j = 1, . . . , N )

uj(t,
i
x̂) =

αj

‖α‖2

(

σ̇d + kc
(

σd −
(

α
T ⊗ In

)
i
x̂

))

. (11)

A. Closed-loop dynamics

Since (forj = 1, . . . , N )

uj(t,
j
x̂)− uj(t,

i
x̂) = kc

αj

‖α‖2

(

α
T ⊗ In

)(
j
x̃− i

x̃

)

, (12)

the following equality holds

u− i
û = −Ao

i
x̃+Box̃

⋆, (13)

with Ao = kc
‖α‖2

(
αα

T ⊗ In

)
∈ R

Nn×Nn and Bo =

kc
‖α‖2

(
diag{α} ⊗

(
α

T ⊗ In

))
∈ R

Nn×N2n.
Hence, the estimation error dynamics can be finally rewritten as

˙̃x⋆ = −ko (L
⋆ +Π

⋆) x̃⋆ − (A⋆
o −B

⋆
o) x̃

⋆, (14)

whereA⋆
o = IN ⊗Ao andB⋆

o = 1N ⊗Bo.
As shown in the Appendix, matrixL⋆ + Π

⋆ is positive definite
provided that the connectivity graph exhibits certain properties and
its smallest eigenvalue will be denoted byλm. Matrix Ao is positive
semidefinite, since it is given by the product of positive semidefinite
matrix, αα

T, and a positive definite matrix,In; the same argument
leads to conclude that matrixA⋆

o is positive semidefinite. On the
other hand,B⋆

o in general is not definite in sign.
In view of (8) and (10), it holds

˙̃σ = σ̇d − σ̇ = σ̇d −
N∑

i=1

αiẋi

= σ̇d −
N∑

i=1

α2
i

‖α‖2

(

σ̇d + kc
(

σd − σ(ix̂)
))

= −kcσ̃ −
kc

‖α‖2

N∑

i=1

α2
i

(

α
T ⊗ In

)(

x− i
x̂

)

= −kcσ̃ −
kc

‖α‖2

(

α
T ⊗ In

) N∑

i=1

α2
i

i
x̃.

Thus, the tracking error dynamics can be finally written as

˙̃σ = −kcσ̃ −Bcx̃
⋆, (15)

whereBc = kc
‖α‖2

(
α

T ⊗ In

) (
α

T diag{α} ⊗ INn

)
.

B. Convergence analysis

In the following, the convergence of the overall controller-observer
scheme will be proven in the case of an undirected communication
graph with connected and fixed topology. The extension to the
saturated case and directed and/or switching topologies will be
discussed in the following.

Theorem 1:There exists a choice of observer gain,ko, and con-
troller gain,kc, such that the equilibrium̃x⋆ = 0N2n, σ̃ = 0n of
the error dynamics (14), (15) is globally exponentially stable.

Proof: The overall closed-loop system can be analyzed by
resorting to the positive definite and radially unbounded candidate
Lyapunov function

V (x̃⋆, σ̃) = Vo + δ Vc =
1

2
x̃

⋆T
x̃

⋆ +
δ

2
σ̃

T
σ̃, (16)

where δ > 0 is not a design parameter and is used only for the
purposes of the proof.

Notice thatV satisfies the following inequality

cm

∥
∥
∥
∥

[
x̃

⋆

σ̃

]∥
∥
∥
∥

2

≤ V (x̃⋆, σ̃) ≤ cM

∥
∥
∥
∥

[
x̃

⋆

σ̃

]∥
∥
∥
∥

2

, (17)

for any cm ≤ min {1, δ}/2 andcM ≥ max{1, δ}/2.
The time derivative ofVo along the system’s trajectories is given by

V̇o=−kox̃
⋆T(L⋆+Π

⋆) x̃⋆ − x̃
⋆T (A⋆

o −B
⋆
o) x̃

⋆, (18)

that, sinceA⋆
o is positive semidefinite, can be upper bounded as

V̇o ≤ −λo ‖x̃
⋆‖

2
+ x̃

⋆T
B

⋆
ox̃

⋆, (19)

whereλo = koλm. It is worth noticing thatλm is function of the
Laplacian (i.e., depends on the network topology); thus, for a given
network topology,λo can be arbitrarily tuned by choosingko.

In view of (12) and (13), inequality (19) yields

V̇o = −λo ‖x̃
⋆‖

2
+

kc

‖α‖2

N∑

i=1

N∑

j=1

αj
i
x̃

T
j

(

α
T ⊗ In

)
j
x̃

≤ −λo ‖x̃
⋆‖2 +

kc
∥
∥α

T ⊗ In

∥
∥

‖α‖2

N∑

i=1

N∑

j=1

|αj |
∥
∥
∥
i
x̃

∥
∥
∥

∥
∥
∥
j
x̃

∥
∥
∥

≤ −λo ‖x̃
⋆‖

2
+

kc
‖α‖

N∑

i=1

N∑

j=1

|αj |
∥
∥
∥
i
x̃

∥
∥
∥

∥
∥
∥
j
x̃

∥
∥
∥

≤ −λo ‖x̃
⋆‖

2
+ kc

N∑

i=1

N∑

j=1

∥
∥
∥
i
x̃

∥
∥
∥

∥
∥
∥
j
x̃

∥
∥
∥ ,

where i
x̃j is the jth component of the estimateix̃, and where the

2-norm has been used for vectors and matrices. By completingthe
squares, the following chain of inequalities can be obtained

V̇o ≤ −λo ‖x̃
⋆‖2 + kc

N∑

i=1

N∑

j=1

∥
∥
∥
i
x̃

∥
∥
∥

2

≤ −λo ‖x̃
⋆‖

2
+Nkc ‖x̃

⋆‖
2

= − (λo − ρo) ‖x̃
⋆‖2 ,

whereρo = Nkc.
The time derivative ofVc along the system’s trajectories is given by

V̇c = σ̃
T ˙̃σ = σ̃

T (−kcσ̃ −Bcx̃
⋆)

= σ̃
T

(

−kcσ̃ −
kc

‖α‖2

(

α
T ⊗ In

) N∑

i=1

α2
i
i
x̃

)

≤ −kc ‖σ̃‖
2 +

kc
‖α‖

‖σ̃‖
N∑

i=1

α2
i

∥
∥
∥
i
x̃

∥
∥
∥

≤ −kc ‖σ̃‖
2 +Nkc ‖α‖ ‖σ̃‖ ‖x̃⋆‖

≤ −kc ‖σ̃‖
2 + ρc ‖σ̃‖ ‖x̃

⋆‖ ,

whereρc = Nkc ‖α‖.
Hence, the overall time derivative of the candidate Lyapunov

function (16) can be upper bounded as follows

V̇ ≤ −

[
‖x̃⋆‖
‖σ̃‖

]T






λo − ρo −
δρc
2

−
δρc
2

δkc






[
‖x̃⋆‖
‖σ̃‖

]

. (20)
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Hence,V̇ is negative definite ifλo = koλm > ρo, i.e.,

ko > N
kc
λm

; δ < 4
λmko −Nkc

N2kc ‖α‖2
. (21)

If λ is the smallest eigenvalue of the matrix in (20), it holds

V̇ ≤ −λ

∥
∥
∥
∥

[
x̃

⋆

σ̃

]∥
∥
∥
∥

2

,

which, together with (17), yields exponential stability.
Notice that only the first of the conditions in (21) represents a

constraint on the design gainsko andkc, while the second inequality
can be satisfied for any choice of the gains for someδ > 0.

Remark 4.1:Interestingly, the above proof exploits the cascaded
structure of the error dynamics (14), (15); thus, the stability condition
essentially is enforced by the estimation error dynamics, i.e., by
V̇o. Sinceλo can be arbitrarily set viako, eq. (21) can be always
satisfied by suitably choosingko for any givenkc. However, it must
be remarked that condition (21) is only a, somewhat conservative,
sufficient condition for convergence, i.e., gains not satisfying the
condition may guarantee stability as well. Moreover, equation (21)
clearly shows that tuning of the observer and controller gains cannot
be performed independently, i.e., a separation property does not hold.

Remark 4.2:By looking at the stability proof, it can be concluded
that the estimation error convergence is ensured for a more general
class of control inputs. Namely, ifui(t,

i
x̂) is uniformly Lipschitz,

the inequality V̇o ≤ − (λo − ρo) ‖x̃‖
2 still holds, whereρo will

depend on the Lipschitz constant.
Remark 4.3:Let LS =

(
L+L

T
)
/2 be the Laplacian of the

mirror graph [14] associated to a given directed graph. Since
1

2

(

L
⋆ +L

⋆T
)

+Π
⋆ = LS ⊗ INn +Π

⋆ = L
⋆
S +Π

⋆, equations

(18) can be rewritten by replacingL⋆ + Π
⋆ with L

⋆
S + Π

⋆. The
latter matrix is positive definite, as shown in the Appendix,if the
graphG is balanced and strongly connected. In fact, in this caseLS

is the Laplacian of the mirror graphGS associated to a given directed
graphG [14]. Thus, the same arguments can be used to prove global
exponential stability of the closed loop.

Remark 4.4:It is reasonable to consider a time-varying network
topology, e.g., due to the failure of active communication links or to
the activation/deactivation of links due to the dynamic displacement
of the nodes. In such cases, the network topology can be described
via a finite collection,Γ , of K graphs of orderN . Hence, the
adjacency matrix (and the associated Laplacian) can be modeled as
a piecewise continuous function of time,A = As(t) (L = Ls(t)),
wheres(·) : t ∈ R → I is a switching signal. The function defined
in (16) is a Common Lyapunov Functions (CLF) for the overall
closed-loop system for any switching signals(t), provided that each
graph inΓ is balanced and strongly connected (in the case of directed
topology) or simply connected (in the case of undirected topology)
and (21) holds for anyt. To this aim, tuning ofko andkc could be
performed according to the worst case scenario, i.e., by considering
the minimum value ofλm over the finite set of network topologies.

Remark 4.5:In order to meet the constraints on control input
magnitude, it is possible to consider a saturated version ofthe
controller law in eq. (10) modified as follows

ui(t,
i
x̂) =

αi

‖α‖2

(

σ̇d + kc tanh
(

σd − σ(ix̂)
))

, (22)

wheretanh(·) denotes the element-wise hyperbolic tangent.
The above control law ensures a bounded control input,ui,

provided thatσ̇d is bounded, i.e.,

‖ui‖ ≤
αi

‖α‖2
‖σ̇d‖max+ kc. (23)

The observer takes the form (2), whereuj(t,
i
x̂) is computed as

uj(t,
i
x̂) =

αj

‖α‖2

(

σ̇d + kc tanh
(

σd − σ(ix̂)
))

. (24)

Formally, the collective estimation error dynamics is described by
equation (7), since (14) is not valid in this case, while the task
tracking error dynamics becomes

˙̃σ = −
kc

‖α‖2

N∑

i=1

α2
i

(

tanh
(

σd − σ

(
i
x̂

)))

. (25)

It can be proven that there exists a choice of observer gain,ko, and
controller gain,kc, such that the equilibrium̃x⋆ = 0N2n, σ̃ = 0n

of the error dynamics (7), (25) is globally asymptotically stable.

V. NUMERICAL SIMULATIONS

In the following, numerical simulation results related to different
case studies are reported in order to validate the proposed approach.
The team of agents is considered as a 2D/3D multi-robot system
characterized by different communication network topologies (di-
rected/undirected, fixed/switching). The team is commanded to track
a desired time-varying reference; the task function is defined as in (8)
with αi = 1/N , (for i = 1, 2 · · · N ), while the desired trajectory of
the centroidσd(t) is given by a cubic spline function interpolating
a given set of via points. The parametersko andkc in (10) and (2)
have been set, respectively, to5 and3 for all the case studies.

A. First case study: switching directed topology, 8 3D-agents, not
saturated control law

As a first case study, a switching directed topology with 8 vehicles
(N = 8) moving in the 3D-space (n = 3) has been considered. The
network topology switches att = 2 and t = 4 among the three
configurations shown in Figure 1. Figure 2 shows the vehicles’ paths,
and the desired and actual task functions. Figure 3 shows thetime
histories of the task error norm, and, for each agent, the estimation
error norm (with a zoom in correspondence of the switching instant
of the communication topology) and the control inputs.

Fig. 1. First case study: switching communication topologies. Communica-
tion graphs fort < 2 (left), 2 ≤ t < 4 (center) and4 ≥ t (right).

B. Second case study: directed topology, 5 2D-agents, with compar-
ison between saturated and not saturated control law

As a second case study, a comparison between the execution ofa
mission with a team of 5 agents applying or not a saturation tothe
actuators is presented. The saturated input control law is implemented
using the control law

ui(t,
i
x̂) =

αi

‖α‖2

(

σ̇d + kcsf tanh

(
σd − σ(ix̂)

sf

))
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Fig. 2. First case study: task and vehicles’ paths.
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Fig. 3. First case study: task error norm (top), estimation error norm for
each agent (middle) and control inputs for the agents (bottom).

where the scale factorsf is used to dynamically saturate the control
input to the range[−1.5 1.5]. Such a formulation is less conserva-
tive w.r.t. eq. (22) and it allows to optimize the usage of theinput
signal without changing the stability properties.

Figure 4 and Figure 5 respectively show the graph of the communi-
cation topology and the paths of the agents. Figure 6 shows the norm
of the task error, the estimation errors and the control input for both
the cases. Finally, Figure 7 shows a zoom on the control inputsignals
during the first seconds of the mission where, due to the estimation
and task initial errors, the control inputs reach the highest values.
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Fig. 4. Second case study: directed communication graph.
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Fig. 5. Second case study: trajectories without (top) and with (bottom)
saturation.
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Fig. 6. Second case study: errors without (left) and with (right) actuator
saturation.

0 0.2 0.4 0.6 0.8 1
−6

−4

−2

0

2

4
Input zoom

u
i

[m
/s

]

time [s]
0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

1.5
Input zoom

u
i

[m
/s

]

time [s]

Fig. 7. Second case study: zoom on the control input without (left) and with
(right) actuator saturation.



A DECENTRALIZED CONTROLLER-OBSERVER SCHEME FOR MULTI-AGENT WEIGHTED CENTROID TRACKING 6

VI. CONCLUSIONS

In this paper, a decentralized controller-observer approach for a
multi-agent system has been developed. Each agent estimates the
collective state of the system by using only local information. The
estimated state is then used by the individual agents to cooperatively
track a global assigned time-varying task function. Convergence of
the approach has been proved for the cases of connected undirected
graphs and strongly connected balanced directed graphs; extensions
to the cases of saturated control inputs, as well as to switching
topologies is also discussed. The approach has been validated by
numerical simulations in the different case studies. Future work will
be focused on extending the class of achievable task functions to
a wider domain, on how to make the proposed approach robust to
dynamic lost or addition of agents to the team, and on how to improve
the scalability of the approach reducing the overall information
exchange.
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[2] D. Bauso, L. Giarrè, and R. Pesenti. Non-linear protocols for optimal
distributed consensus in networks of dynamic agents.Systems & Control
Letters, 55:918–928, 2006.

[3] C. Belta and V.K. Kumar. Abstraction and control of groups of robots.
IEEE Transactions on Robotics, 20(5):865–875, 2004.

[4] F. Bullo, J. Cortés, and S. Martı́nez.Distributed Control of Robotic
Networks. Applied Mathematics Series. Princeton University Press,
2009.

[5] Y. Cao and W. Ren. Distributed coordinated tracking withreduced
interaction via a variable structure approach.IEEE Transactions on
Automatic Control, 57(1):33, 2012.

[6] R.A. Freeman, P. Yang, and K.M. Lynch. Stability and convergence
properties of dynamic average consensus estimators. InDecision and
Control, 2006 45th IEEE Conference on, pages 338–343, San Diego,
CA, December 2006.

[7] C. Godsil and G. Royle.Algebraic graph theory. Graduate Texts in
Mathematics, Springer, New York, 2001.

[8] A. Jadbabaie, J. Lin, and A.S. Morse. Coordination of groups of mobile
autonomous agents using nearest neighbor rules.IEEE Transactions on
Automatic Control, 48(6):988–1001, 2003.

[9] M. Ji and M. Egerstedt. Distributed Coordination Control of Multia-
gent Systems While Preserving Connectedness.IEEE Transactions on
Robotics, 23(4):693–703, 2007.

[10] V. Kumar, D. Rus, and S. Sukhatme.Springer Handbook of Robotics,
chapter Networked Robots, pages 943–958. B. Siciliano, O. Khatib,
(Eds.), Springer-Verlag, Heidelberg, D, 2008.

[11] Z. Li, Z. Duan, G. Chen, and L. Huang. Consensus of multiagent systems
and synchronization of complex networks: A unified viewpoint. IEEE
Transactions on Circuits and Systems–I, 57(1):213–224, 2010.

[12] N.A. Lynch. Distributed algorithms. Morgan Kaufmann, 1996.
[13] M. Mesbahi and M. Egerstedt.Graph theoretic methods in multiagent

networks. Princeton Univiversity Press, 2010.
[14] R. Olfati-Saber and R.M. Murray. Consensus problems innetworks of

agents with switching topology and time-delays.IEEE Transactions on
Automatic Control, 49(9):1520–1533, 2004.

[15] R. Olfati-Saber and J.S. Shamma. Consensus filters for sensor networks
and distributed sensor fusion. InProceedings of the 44th IEEE Confer-
ence on Decision and Control, pages 6698–6703, 2005.

[16] L.E. Parker. Springer Handbook of Robotics, chapter Multiple Mobile
Robot Systems, pages 921–941. B. Siciliano, O. Khatib, (Eds.), Springer-
Verlag, Heidelberg, D, 2008.

[17] W. Ren. Multi-vehicle consensus with a time-varying reference state.
Systems & Control Letters, 56(7-8):474–483, 2007.

[18] W. Ren. Consensus tracking under directed interactiontopologies:
Algorithms and experiments.IEEE Transactions on Control Systems
Technology, 18(1):230–237, 2010.

[19] W. Ren and R.W. Beard.Distributed Consensus in Multi-vehicle Co-
operative Control. Communications and Control Engineering. Springer,
Berlin, G, 2008.

[20] D.P. Spanos, R. Olfati-Saber, and R.M. Murray. Dynamicconsensus on
mobile networks. InIFAC World Congress, 2005.

[21] P. Yang, RA Freeman, and KM Lynch. Multi-agent coordination by
decentralized estimation and control.IEEE Transactions on Automatic
Control, 53(11):2480–2496, 2008.

APPENDIX: ANALYSIS OF THE MATRIX (L⋆ +Π
⋆)

Matrix L
⋆ = L ⊗ INn is symmetric and positive semidefinite

when the communication graph is undirected and connected. In fact,
in such a case,L admitsN − 1 positive eigenvalues and one simple
zero eigenvalue. Thus,L⋆ is positive semidefinite, since bothL and
INn are symmetric and positive (semi)definite; moreover, it admits
Nn(N−1) positive eigenvalues andNn zero eigenvalues with equal
algebraic and geometric multiplicity. In addition,Π⋆ is a diagonal
matrix withNn non-null (unitary) elements along the main diagonal;
thus, it is symmetric and positive semidefinite as well and admits
Nn eigenvalues equal to1 andN2n−Nn zero eigenvalues. Hence,
the sum of the two matrices is positive semidefinite as well, and is
positive-definite if and only if their kernel subspaces are disjoint, i.e.:

ker (L⋆) ∩ ker (Π) = {0N2n} . (26)

Given the Laplacian properties recalled in Section II, it can be
easily recognized that, for connected graphs,

rank (L⋆) = rank (L⊗ INn) = rank (L) rank (INn) = Nn(N−1) ,

anddim (ker (L⋆)) = dim (ker (L ⊗ INn)) = Nn. The null space
of L⋆ can be parameterized as follows

ker (L⋆) = span (1N ⊗ INn) . (27)

Thus, a vector belonging toL⋆ has the form

v=
[

ν
T. . .νT

]T

∈R
N2n, ∀ ν∈R

Nn. (28)

Moreover, beingΠ⋆ a diagonal matrix withNn non-null (uni-
tary) elements along the main diagonal,rank (Π⋆) = Nn and
dim (ker (Π⋆)) = Nn(N − 1). The null space ofΠ⋆ can be
parameterized as follows

ker (Π⋆) = span (IN2n −Π) , (29)

where(IN2n −Π
⋆) is a diagonal matrix withNn(N −1) non null

elements on the main diagonal.
Thus, a vector belonging toker (Π⋆) has the form

v =
[
v
T
1 . . . v

T
N

]T
∈ R

N2n,

vi =
[
v
T
i,1 . . .v

T
i,N

]T
∈ R

Nn : ∀vi,j ∈ R
n, vi,i = 0n. (30)

Comparing eqs (28)–(30) it is possible to observe that a non-null
vector in ker (L⋆) cannot belong toker (Π⋆) and viceversa. This
implies that (26) holds, and thus(L⋆ +Π

⋆) is positive definite.
In the case of directed graphs, the LaplacianL is not symmetric.

However, in such a case amirror graph, GS , associated toG can be
defined as the undirected graph having the same set of nodes and
same set of edges, but considered undirected, asG [14]. It can be

shown that the symmetric part of the Laplacian,LS =
L+L

T

2
, is a

valid Laplacian forGS , if and only if G is balanced [14]. In addition,
if G is strongly connected, thenGS is connected.

Moreover, sinceGS is connected, the same arguments used above
lead to prove positive definiteness ofL

⋆
S +Π.


