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Abstract—The electric vehicle (EV) industry has been rapidly
developing internationally due to a confluence of factors, such as
government support, industry shifts, and private consumer de-
mand. Envisioning for the future connected vehicles, the popular-
ity of EVs will have to handle a massive information exchange for
charging demand. This inevitably brings much concern on net-
work traffic overhead, information processing, security, etc. Data
analytics could enable the move from Internet of EVs to optimized
EV charging in smart transportation. In this paper, a mobile edge
computing (MEC) supporting architecture along with an intelli-
gent EV charging recommendation strategy is designed. The global
controller behaves as a centralized cloud server to facilitate ana-
lytics from charging stations (CSs) (service providers) and charg-
ing reservation of on-the-move EVs (mobile clients) to predict the
charging availability of CSs. Besides, road side units behave as
MEC servers to help with the dissemination of the CSs’ charging
availability to EVs, and collecting their charging reservations, as
well as operating decentralized computing on reservations min-
ing and aggregation. Evaluation results show the features of the
MEC-based charging recommendation system in terms of com-
munication efficiency (low cost for information dissemination and
collection) and improvement of charging performance (reduced
charging waiting time and increased fully charged EVs).

Index Terms—Charging recommendation, electric vehicle (EV),
mobile edge computing (MEC), Vehicle-to-Infrastructure.

I. INTRODUCTION

T
HE introduction of electric vehicles (EVs) [1] will have

a significant impact on the sustainable economic develop-

ment of urban cities. However, even if there have been charging

service providers available, the utilization of charging infras-

tructures is still in need of significant enhancement. Such a

situation certainly requires the popularity of EVs toward the
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sustainable, green, and economic market. Enabling the sustain-

ability requires a joint contribution from each domain, e.g., how

to schedule charging services for EVs being parked within the

grid capacity, how to optimally recommend EV drivers toward

the charging station (CS) with the least waiting time, and how

to guarantee accurate information involved in decision making.

Unlike many previous works [2] that investigate “charging

scheduling” (referred to when/whether to charge) for EVs al-

ready been parked at CSs, a few recent works focus on “charging

recommendation” (refer to where/which CS to charge) [3] for

on-the-move EVs. The latter case has been the most important

feature of improving the charging Quality of Experience (QoE),

as applied by operators. Thus, it is important to optimally rec-

ommend EV drivers regarding where to charge, concerning the

service waiting time.

Literature works [4]–[8] have addressed the charging recom-

mendation to improve the charging QoE (e.g., to reduce the

service waiting time for charging). Usually, the local condition

of CSs (e.g., number of EVs being parked and their remaining

charging time) [7] is considered to make a charging recommen-

dation decision. Further advanced solutions utilize the EV’s

charging reservation [1], [9]–[11] to align with the local con-

dition of CSs. By doing so, it can be predicted at what time

and which CS will be congested, so as not be recommended

for charging. Here, the charging reservation includes the arrival

time (when an EV will arrive at the recommended CS) and the

expected charging time at the selected CS (how long its charging

time will be).

Practically, EV drivers would also have their parking dead-

line [11] at CSs (e.g., drivers might be impatient to wait for a

long time, or have another daily agent after a certain period of

charging). Particularly, in the case of charging during peak time,

already deployed charging slots at CSs may not be sufficient to

handle such an urgent charging demand (due to limited parking

duration). Inevitably, an inappropriate charging recommenda-

tion would degrade the charging QoE, as some EVs will have to

leave after the deadline even though they have not been charged.

Consequently, charging will involve additional effort and energy

consumption; such an inconvenience would, however, discour-

age the willingness to switch from traditional vehicles to EVs.

The centralized cloud (CC) based system [12] is widely ap-

plied in the literature for charging recommendation. Such a sys-

tem generally relies on ubiquitous cellular network and real-time

information for optimization. For example, previous work [11]

adopted a cloud-based global controller (GC) connecting to all
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CSs. Whenever an EV requires charging, it will send a request

to the GC through the cellular network seeking the best CS

recommendation, and further reports its charging reservation.

By facilitating the anticipated EV charging recommendation,

the charging availability of the CS can be predicted, so that the

cloud will not recommend a CS with low availability.

However, by seamlessly collecting information from EVs and

CSs, it is very time consuming for the GC to achieve optimiza-

tion. The complexity and computation load of the cloud server

increases exponentially (depends on those who currently request

charging and those who have made charging reservations) with

the number of EVs. Moreover, the cellular network is costly

and sometime overcongested due to massive accesses, which

degrades the quality of communication. The rapid growth of

mobile applications has placed severe demands on the cloud

infrastructure, which has led to moving computing and data ser-

vices toward the edge of the cloud, resulting in a novel mobile

edge computing (MEC) [13] (also known as fog computing)

architecture being developed by the European Telecommuni-

cations Standards Institute (ETSI) and creating a new Industry

Specification Group in 2014 for this purpose. MEC could reduce

data transfer times, remove potential performance bottlenecks,

and increase data security and enhance privacy while enabling

advanced applications.

As such, in the case of EV charging, a decentralized charging

recommendation with the assistance of MEC servers positioned

close to EVs is desirable. Apart from the cellular network,

a cheaper solution nowadays is the deployment of fixed road

side units (RSUs) [14] based on license-free spectrum such as

Wi-Fi, but only with limited network coverage. Future in-

telligent transportation systems (ITS) [15] will necessitate

infrastructure-assisted communication for EV charging perspec-

tive in addition to road safety perspective. In [10], a decentral-

ized MEC-based information communication technology (ICT)

framework has been proposed where it facilitates the RSUs

(with MEC servers) to perform information caching, aggrega-

tion, and lightweight processing (e.g., access control and infor-

mation mining); system level communication cost within the

charging recommendation system can be reduced. Besides, by

cooperating with the cloud server GC, deployed RSUs also help

to disseminate and collect information between CSs and EVs

ubiquitously.

Understandably, the integration of ICT, transport, and energy

is important for the attainability of EV charging [16], [17]. This

paper mainly tackles a joint study of former transport planning

and ICT, whereas the integration of energy substainability (e.g.,

smart charging, scheduling of renewable energy) is out of the

scope. Beyond the ICT effort investigated in [10], we further

take the impact of parking deadline and the decentralized ICT

framework into account for the EV charging recommendation

decision. More specifically, the EV’s parking deadline will in-

fluence the estimation of CSs’ charging queueing and prediction

of their charging availability (in line with EVs’ charging reser-

vations collected through the positioned MEC architecture).

In particular, the proposed solution on predicting the charging

availability is decoupled and associated with a number of time

intervals (within a dynamically updated time window). Such a

feature benefits the accuracy of the charging recommendation,

bounded by a prediction time window and EV mobility.

II. RELATED WORK

A. Cloud/Mobile Edge Computing in Smart Transportation

Smart transportation can fundamentally change urban lives

at many levels. Data from service providers and users bridged

via a ubiquitous, dynamic, scalable, and sustainable ecosystem

would offer a wide range of benefits and opportunities. Most

of the existing techniques require a high processing time using

conventional methods of data processing [18]. Therefore, the

techniques are desirable to efficiently process the data generated

from stakeholders, ideally from a distributed manner through

ubiquitously disseminated and collected information.

The major difference between cloud computing [12] and

MEC [13] is in the location awareness to support application

services. This is because the cloud server locates in a central-

ized place and behaves as a centralized manager to perform

computation tasks. Note that MEC servers at different locations

can be owned and managed by separate operators and owners.

With the collaboration among different operators, they can form

a collaborative and decentralized computing system in a wide

region.

B. EV Charging Recommendation

As reviewed by the most recent survey [3], fruitful lit-

erature works have addressed “charging scheduling” [2],

via regulating the EV charging, such as minimizing peak

load/cost, flattening aggregated demands, or reducing frequency

fluctuations.

In recent years, the “charging recommendation” problem has

started to gain interest from industries thanks to the popularity

of EVs. The generic solutions [4], [7] make decisions based on

the queueing information at CSs, and the one with the minimum

queueing time is recommended. This feature has been evalu-

ated in [5] against the charging recommendation just taking the

closest distance to the CS; the former is deemed as an effective

guidance in an urban city with limited charging infrastructures.

The charging recommendation solution in [8] adopts a pricing

strategy to minimize congestion and maximize profit, by adapt-

ing the price depending on the number of EVs charging.

Beyond that, the integration of the ICT and energy network is

of importance for the sustainability of EV charging, where a set

of works have addressed the constraint of energy network and

study its impact. From the ICT aspect, additional communica-

tion signaling is built to support the advanced charging recom-

mendation and brings the anticipated EVs mobility information

(charging reservations). The work in [9] concerns a highway

scenario where the EV will pass through all CSs. The expected

charging waiting time is calculated for the EV passing through

the entire highway, by jointly considering the charging waiting

time at a CS where the EV needs charging for the first time and

the time spent at subsequent CSs, before exiting the highway.

Other works [1], [10], [11] focus on urban city scenarios, where

the EV travels toward a single geographically distributed CS for
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charging. The expected waiting time for charging is associated

with that CS, rather than a subsequent charging in the case of

the highway.

III. PROVISIONING OF MEC-BASED CHARGING

RECOMMENDATION SYSTEM

In this section, we mainly introduce entities and system sig-

naling of the proposed MEC-based system, together with an

analysis on its advantage.

A. Charging System Cycle

Driving: This happens when the EV is traveling on the road

(following a route in the city).

Charging Recommendation: If an EV’s remaining electricity

is below the state of charge (SOC) threshold value, the charging

recommendation is required to guide it on where to charge.

Charging Scheduling: This happens when EVs have reached

a CS. The CS implements a certain policy to schedule which

EV is to be charged. Here, the first come first serve (FCFS)

is widely applied in the problem of charging recommendation,

where the EV with the earliest arrival time is scheduled as the

highest priority.

Battery Charging: This phase reflects a continuous procedure

to charge EVs, until they are fully charged. After that, those fully

charged EVs will resume to the Driving Phase.

Typically, the system is a status transfer within four phases,

while the Charging Scheduling has been extensively covered by

the literature. The focus of this paper is on Charging Recom-

mendation with interdisciplinary efforts from ICT.

B. Network Entities

1) Stakeholders: The EV below the SOC threshold (a value

under which the EV should seek charging) needs to find a

CS for charging. As long as the EV has been recommended

to charge at a CS, the EV further reports its charging

reservation associated with that CS.

The CS is equipped with a number of plug-in charging

slots to charge multiple EVs in parallel. Particularly, its

local queuing information is monitored by the cloud server

GC to compute the charging availability. This refers to the

earliest time when a charging slot of the CS is unoccupied.

2) Cloud server: It is a logical server that is built and deliv-

ered through a cloud computing platform over CSs and

EVs. Here, the GC manages the CSs’ charging availabil-

ity, based on the monitored CSs’ local queueing informa-

tion, and EVs’ charging reservations (collected by MEC

servers).

3) MEC server: The MEC servers collected at RSUs provide

a set of middle-ware services associated with applications,

wherein it implements two key operations as follows.

a) Disseminate CSs’ charging availability (computed

by the GC) to EVs.

b) Enable information mining and aggregation (com-

plementarily with authentication) for opportunisti-

cally collected EVs’ charging reservations.

Fig. 1. Signaling process for the MEC-based system.

TABLE I
COMMUNICATION TECHNOLOGIES IN MEC- AND CLOUD-BASED SYSTEMS

C. Communication Technologies

As shown in Fig. 1, the communication technology applied

between GC and CSs can be simply based on reliable Internet

or cellular network, mainly because they are fixed network en-

tities. However, there is a necessity to scalably and ubiquitously

disseminate CSs’ charging availability (computed by the GC) to

EVs, and collect EVs’ charging reservations. Although 3G/LTE

can be applied thanks to ubiquitous coverage, EVs’ charging

requests are just on-demand, whereas CSs charging availability

is fluctuated within certain periods (e.g., minutes level). Be-

sides, EVs’ charging reservations are generated only when they

have been given the charging recommendation. This motivates

the application of short-range and on-demand communication

with EVs. Motivated by the above-mentioned discussion, the

opportunistic communication paradigm, e.g., delay/disruption

tolerant networking [19], between EVs and MEC servers is de-

sirable, which alleviates the burden of solely relying on the cel-

lular network. Table I summarizes communication technologies

in MEC- and cloud-based systems.

Furthermore, rather than using the point-to-point-based

communication, the topic-based communication (e.g., pub-

lish/subscribe pattern [20]) mainly offers communications

decoupled in space that subscribers do not need to know the
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TABLE II
TOPICS DEFINED IN THE MEC-BASED SYSTEM

location and address of publishers and vice versa. It is poten-

tially in time as the system is able to store events for clients who

are temporally disconnected.

The solutions to achieve trusted message exchange for the

case of EV charging is to encrypt the sensitive information and

hide the real identity. One development aspect of the encryption

involves the light-weight and highly secured encryption algo-

rithm, while another one is to design an efficient and scalable

key management scheme. As for the privacy, a pseudonym is

proposed to hide the identities. This includes the pseudonym

changing algorithms and pseudonym reuse schemes, both are

required to be implemented in efficient and scalable manners.

The future challenges based on the MEC system are considered

based on the nature of a large number of connected EVs, high

mobility, wide coverage area, and heterogeneous communica-

tion systems.

D. Proposed MEC-Based System

It is assumed that the locations of all CSs are already known

by EVs, e.g., through the vehicle on-board unit. Here, EVs ac-

cess CSs’ charging availability from MEC servers, make a local

charging recommendation, and further report charging reser-

vations (through MEC servers to the GC). The GC analyzes

the EVs’ charging reservations together with CSs’ local queu-

ing information to predict the CSs’ charging availability. Fig. 1

illustrates a typical procedure.

Step 1: The GC periodically (with time interval ∆) dissem-

inates its computed CSs’ charging availability to all legitimate

MEC servers (positioned at RSUs), via “CA_Update” topic de-

fined in Table II. RSUs further aggregate the information from

all CSs and get cached. Note that the information disseminated

at the previous ∆, which to be further cached at MEC servers,

will be replaced with the one that associates with the current ∆.

This guarantees the information accuracy involved for charging

recommendation. The RSU receiving the dissemination from all

CSs will aggregate and cache their information.

Steps 2 and 3: Upon encountering an RSU, the EV would sub-

scribe to the cached information from the RSU through the P/S

system. In particular, the EV only subscribes to the information

that is recently published using the “Aggregated_CA_Update”

topic. This reduces the redundant access signaling, particularly

when an EV frequently encounters several RSUs in a short time

(still within the current dissemination interval ∆). For example,

if an EV has already obtained information from RSU1 within

Fig. 2. Signaling process for the CC-based system.

interval ∆, its subscription will be denied by RSU2 within the

same interval.

Step 4: The EV makes a charging recommendation in the

case of low energy status and publishes its charging reserva-

tion to any encountered MEC server along the road. Here, the

“Charging_Reservations_Update” topic is applied, with the EV

as publisher and RSUs (MEC servers) as subscribers. Each RSU

mines the valid EV’s charging reservation and aggregates them.

The valid charging reservation refers to that of which EV’s

arrival is supposed to be later than (∆ + P), where P is the

time slot of the previous dissemination. This is because an EV’s

reservation will be deleted by its selected CS when it is parked

therein. Then, any arrival occurring before the next dissemina-

tion will be removed from RSUs; this potentially reduces the

size of data to be uploaded to the GC.

Steps 5 and 6: At the GC side, it sets two separate topics to

collect information from CSs and RSUs.

1) The local condition of CSs includes the number of EVs

being parked and their required battery charging time.

This is accessible by sending a subscription via the “Lo-

cal_Queuing_Update” topic.

2) The GC also accesses the aggregated EVs’ charg-

ing reservations from all RSUs, using the “Aggre-

gated_Charging_Reservations_Update” topic.

Step 7: The GC then predicts the charging availability of CSs

and pushes them for dissemination at the following time slot,

using the “CA_Prediction” topic.

E. Other Alternative Systems

1) CC-Based System: It is implemented in a centralized

manner in the cloud system, as shown in Fig. 2.
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Fig. 3. Signaling process for the DC-based system.

Step 1: The EV, which needs charging, sends its charging

recommendation request to the GC through the cellular network.

Step 2: Upon receiving the request from an EV, the GC makes

a charging recommendation based on the intelligence proposed

in Section IV, and further replies back to the pending EV.

Step 3: The EV that accepts the decision, then starts a journey

toward the recommended CS. Meanwhile, it reports its charging

reservation to the GC, so that the GC can estimate the occultation

of the reserved CS in the near future.

2) Decentralized Cloud (DC) Based System: This is the dis-

tributed version of the CC-based system (based on cellular net-

work), as shown in Fig. 3.

Step 1: Each CS periodically (with interval ∆) broadcasts

its charging availability to all EVs, also through the cellular

network communication. This mechanism also equals the case

that each EV subscribes to CS’s charging availability from the

GC, through topic-based P/S communication, where there is no

RSU involved to help decentralize the global computation.

Step 2: The EV individually makes charging recommenda-

tion and reports its charging reservation to the GC through the

same communication channel. Upon directly receiving the EV’s

charging reservations and continuously monitoring the CSs’

local queuing information, the GC predicts the charging avail-

ability of CSs and notifies them for dissemination the next time

around.

F. Discussion

Denoting Nev, Nmec, and Ncs as the number of EVs, MEC

servers, and CSs, respectively, the communication costs of the

MEC- and cloud-based systems are analyzed as follows.

MEC-Based System: As shown in Fig. 1, the delay is mainly

from the time for the EV to encounter an RSU, as the com-

munication between RSUs and GC is through cellular net-

work or Internet. Therefore, the dissemination cost is scaled

by O(Θ × Nev); recall that Θ is the possibility that an EV en-

counters at least one of Nmec RSUs [10]

Θ ≤ 1 −

Nmec
∏

i=1

{

1 −

[

(i − 1)X + F + R

S · ∆

]}

(1)

where X is the distance between adjacent RSUs, and S is the EV

speed, R is the V2I communication range, while F is a constant

that shows the distance from the EV to the first RSU. Note

that R depends on the transmission power and other practical

configurations at the EV side, as it is the initiator to establish

communication with the RSU for information subscription.

Next, concerning aggregated EVs’ reservations uploading

to the GC before (∆ + P), the reservation cost is scaled by

O(Nmec

∆
), as the communication is established from Nmec RSUs

within interval ∆. As such, excluding the deployment of RSUs,

in nature, a larger Nev drives the sustainable communication

efficiency for the long-term popularity of EVs.

CC-Based System: The GC experiences a cost of O(Nev) for

handling the charging requests/reservations from Nev EVs.

DC-Based System: The GC experiences a cost of O(N ev

∆
) for

periodically disseminating the CS’s charging availability, and

O(Nev) for handling EVs’ charging reservations.

The CC-based system suffers from privacy concerns, in which

the driving behavior (e.g., location) has to be included when

communicating with the GC (see Step 1 in Fig. 2). Besides,

the DC-based system does not involve MEC servers; it, how-

ever, relies on the broadcast communication feature under the

environment of a ubiquitous cellular network. This is much ex-

pensive than the MEC-based system, as the latter just requires

a short-range wireless communication network between MECs

servers and a large number of EVs. In reality, the number of

RSUs is less than that of EVs, given by (Nmec ≪ Nev). How-

ever, the number of charging services is higher than the actual

number of EVs Nev. This is because each EV needs to charge

more than once. This claims the communication efficiency of

MEC-based system over CC-based system.

IV. DESIGN OF CHARGING RECOMMENDATION

Previous works [9], [11] have proposed the formulation on

how to minimize the charging waiting time for all EVs in the

network. Generally, an even distribution of EVs among CSs

contributes to the minimized charging waiting for EVs. In the

following part, the proposed charging recommendation solution

is presented through the decentralized manner that is appli-

cable to the MEC-based ICT framework. Note that the pro-

posed solution focuses on how to distribute EVs among all

CSs in a decentralized manner (through the ICT framework),

while any user-driven solution by taking into consideration

the trip destination and pricing will be of interest in further

studies.

In Fig. 4, the CS’s charging availability is predicted with-

out/with EVs’ charging reservations (shown in Table IV), as

detailed in Algorithm 3 (requires the estimation of CS’s lo-

cal queuing from Algorithm 2) and Algorithm 4, respectively.

Then, Algorithm 1 will produce the CS’s charging availability

associated with each time slot, where these time slots are decou-

pled from an estimation time window W . With this knowledge

disseminated from CSs, the EV locally makes a charging rec-

ommendation, via the output of Algorithm 5.

As the estimation of charging availability per CS depends on

whether there have been EVs remotely reserved for charging,

such complexity is O(N 2
ev) since both the EVs locally parked

and those remotely reserved are considered in Algorithm 4.

In Algorithm 3, the complexity is O(Nev) as there is no EV

reserved for charging. All notations are defined in Table III.
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Fig. 4. Process flow of charging recommendation.

TABLE III
LIST OF NOTATIONS

TABLE IV
CHARGING RESERVATION FORMAT

A. EV’s Charging Reservation

The EV’s charging reservation is generated from the EV that

had made the charging recommendation and relayed through

the MEC servers to the GC. As an example in Table IV, such

information normally includes the ID of the recommended CS,

the EV’s parking deadline, arrival time at that CS, and the EV’s

expected charging time there, specifically as shown.

Algorithm 1: CA-Dissemination.

1: for (i = 1; i ≤ H; i + +) do

2: Ki =
(

Tcur + (i − 1) × W
H

)

3: if (NR �= 0) then

4: sort the queue of NR according to FCFS

5: for (j = 1; j ≤ NR ; j + +) do

6: if
(

T arr
ev( j )

< Ki

)

then

7: add EVj into RLIST

8: end if

9: end for

10: if (|RLIST| �= 0) then

11: CAKi
= CA-Prediction (RLIST,Ki) via

Algorithm 4

12: else

13: CAKi
= CA-Prediction (Ki) via Algorithm 3

14: end if

15: else

16: CAKi
= CA-Prediction (Ki) via Algorithm 3

17: end if

18: add < Ki , CAKi
> in entry i

19: end for

Arrival Time: The arrival time T arr
ev reflects the time when an

EV reaches the recommended CS, where the value counts for

the traveling time T tra
ev from the current location of EV to the

recommended CS

T arr
ev = Tcur + T tra

ev . (2)

Expected Charging Time: The expected charging time T cha
ev

at the selected CS is given by

T cha
ev =

Emax
ev − Ecur

ev + Sev × T tra
ev × α

β
. (3)

Here, (Sev × T tra
ev × α) is the energy consumed for the move-

ment traveling to the selected CS, based on a constant α (depend-

ing on a certain type EV) measuring the energy consumption

per meter.

Parking Deadline: Dev is defined as a limitation on how long

an EV will stay to wait for charging at the recommended CS.

B. Charging Availability Dissemination

Upon receiving EVs’ charging reservations, each GC com-

putes the charging availability for all connected CSs, associated

with a number of time slots K that is beyond the interval ∆.

Here, given that there are predefined H time slots associated

within W , the gap between adjacent K time slots is calculated

by W
H .

Algorithm 1 is implemented by the GC and disseminates

information formatted in Table V. The time slot at the ith entry

is calculated by Ki =
(

Tcur + (i − 1) × W
H

)

, where Tcur is the

current time in the network. Understandably, Ki indicates a time

slot beyond the current network time Tcur. An entire process of

CS’s information dissemination is presented as follows.
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TABLE V
FORMAT OF CS’S CHARGING AVAILABILITY DISSEMINATION

1) The EVj (in the queue of NR ), which has reported charg-

ing reservation to the recommended CS (while its arrival

time T arr
ev( j )

is earlier than Ki), will be recorded into a

list, namely RLIST. Here, we consider that there will be

other EVs (in the queue of NR ) that reserve and reach

at the same CS before the time slot Ki as the condition
(

T arr
ev( j )

< Ki

)

at line 6. In this context, the charging avail-

ability estimated at Ki , as denoted by CAKi
, is calculated

via Algorithm 4.

Note that, at line 11, the prediction of the CS’s charging

availability via Algorithm 4 requires an input of charging

reservations of those EVj with an earlier arrival time than

Ki . This is given by the condition at line 10 in Algorithm 1.

Otherwise, Algorithm 3 is applied by only examining the

local conditions of CSs (e.g., number of EVs being parked

and remaining charging time).

2) Alternatively, Algorithm 3 is also applied if there are no

EVs’ charging reservations, as presented between lines 15

and 16.

Then, a pair of 〈Ki , CAKi
〉 stating the “〈time slot,

charging availability at time slot〉” will be prepared for dissemi-

nation. The information is then disseminated as shown in Step 1

in Fig. 1.

C. Dynamic Update of W

Note that W is updated based on a dynamic adaption mech-

anism. This is triggered by the event that an EV is making

charging reservations at the recommended CS within a time

slot K, then the traveling time T tra
ev of the EV is compared with

the value of estimation window W that is currently applied in

the charging system. The larger value is updated as the new

estimation window of W .

The advantage is to gradually learn the charging demand

distribution of EVs. This is to say, if most of EVs are with

shorter T tra
ev toward CSs recommended to them, a much urgent

charging will be prepared. As such, the way to predict the CSs’

charging availability will be with a tight W (or say smaller W),

such that the accuracy is adjusted with W
H .

D. Prediction of Charging Availability Without EVs’

Charging Reservations

Here, as no EVs’ charging reservations are available, the

charging availability is computed solely based on the CSs’ local

queueing information. A set QLIST is defined to represent the

available time of all charging slots locally at a CS.

Algorithm 2: Generation of QLIST.

1: for (i = 1; i ≤ NC ; i + +) do

2: if

((

Tcur − T arr
ev( i )

+
E max

ev( i )
−E cur

ev( i )

β

)

≤ Dev( i )

)

then

3: add

(

E max
ev( i )

−E cur
ev( i )

β
+ Tcur

)

into QLIST

4: else

5: add
(

T arr
ev( i )

+ Dev( i )

)

into QLIST

6: end if

7: end for

8: if (NC < δ) then

9: for (j = 1; j ≤ (δ − NC ); j + +) do

10: add (Tcur) into QLIST

11: end for

12: end if

13: sort the queue of NW according to FCFS

14: for (k = 1; k ≤ NW ; k + +) do

15: sort QLIST in an ascending order

16: if
((

QLIST1 − T arr
ev(k )

)

< Dev(k )

)

then

17: if

((

QLIST1 − T arr
ev(k )

+
E max

ev(k )
−E cur

ev(k )

β

)

≤ Dev(k )

)

then

18: T fin
ev(k )

=

(

QLIST1 +
E max

ev(k )
−E cur

ev(k )

β

)

19: else

20: T fin
ev(k )

=
(

T arr
ev(k )

+ Dev(k )

)

21: end if

22: replace QLIST1 with T fin
ev(k )

in LIST

23: sort QLIST in an ascending order

24: end if

25: end for

26: return QLIST

1) Generation of QLIST: As each CS has δ charging slots to

charge parked EVs in parallel, we consider two types of queues

localized at the CS. Here, EVs being charged are included in

the queue of NC , while those waiting for charging (due to all

δ charging slots of a CS have been occupied by other EVs for

charging) are characterized in the queue of NW .

From line 1 at Algorithm 2, for each EVi being charged,

the time length (
E max

ev( i )
−E cur

ev( i )

β
) to fully recharge its battery

(in the queue of NC ), will be compared with its parking du-

ration Dev( i )
. The comparison outcome is applied to estimate

the time that EVi will take to finish its charging.

1) In one case, the condition ((Tcur − T arr
ev( i )

+
E max

ev( i )
−E cur

ev( i )

β
) ≤ Dev( i )

) implies that EVi can be fully

recharged before departure. Here, (Tcur − T arr
ev( i )

) is the

time duration to wait for charging since the arrival of

EVi . As such, at line 3, the charging finish time (about

when the charging of EVi will finish) T fin
ev( i )

of EVi is

given by a summation of (
E max

ev( i )
−E cur

ev( i )

β
+ Tcur) only.

2) In another case, T fin
ev( i )

is given by (T arr
ev( i )

+ Dev( i )
) at line 5,

as the time slot that EVi leaves from CS.
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Algorithm 3: CA-Prediction (K).

1: sort QLIST from Algorithm 2 in an ascending order

2: if QLIST1 > K then

3: return QLIST1

4: else

5: return K
6: end if

Furthermore, the presentation between lines 8 and 12 reflects

a case that not all δ charging slots have been occupied by other

EVs for charging. Therefore, it is easy to determine that there

are still (δ − NC ) slots that can be reserved by incoming EVs

for charging. As such, the available charging time for these

unoccupied charging slots is all unified as Tcur.

Then, Algorithm 2 first sorts the queue of NW based on the

FCFS order, by following the charging scheduling in Section III.

Besides, QLIST that includes those EVs under charging will be

sorted in an ascending order. Here, the earliest available time

for charging at a CS is deemed as the first element in QLIST,

and we denote that time as QLIST1 (the first element of sorted

QLIST).

In detail, to calculate the charging finish time T fin
ev(k )

of each

EVk (in the queue of NW ), the earliest available time of charg-

ing slots is required to be known. In principle, it is crucial to

consider EVk that at least will be charged during its parking

duration Dev(k )
to involve calculation. This constraint is defined

by ((QLIST1 − T arr
ev(k )

) < Dev(k )
) at line 16.

1) Then from lines 17 and 21, either (QLIST1 +
E max

ev(k )
−E cur

ev(k )

β
) or (T arr

ev(k )
+ Dev(k )

) calculates T fin
ev(k )

, in par-

ticular, (QLIST1 − T arr
ev(k )

) is referred for EVk to wait for

charging.

2) Upon T fin
ev(k )

been given, QLIST1 will be replaced with

T fin
ev(k )

. Then, QLIST will be re-sorted in an ascending

order upon processing each EVk in the loop.

The aforementioned loop operation is finished when all EVk

(in the queue of NW ) have been processed and updated QLIST

is generated.

2) Charging Availability Computing: Based on Algorithm 2

with QLIST being generated, the CS’s local queueing informa-

tion is computed to predict the charging availability associated

with K in Algorithm 3. Here, as QLIST1 is later than K, the

charging availability is represented as QLIST1 , and otherwise

as K. This depends on whether the CS will be available for

charging at the time slot K.

E. Prediction of Charging Availability With EVs’

Charging Reservations

Recall that Algorithm 1 has already included a number of

EVs into RLIST, which is an input for Algorithm 4. This guar-

antees that the charging availability of the CS is predicted by

tracking the EVs that will reach the reserved CS within W
H and

the charging time of EVs that are parked there. Here, the latter

information is provided by QLIST generated via Algorithm 2

and sorted in an ascending order.

Algorithm 4: CA-Prediction (RLIST,K).

1: sort the queue of NR according to FCFS

2: sort QLIST returned by Algorithm 2, in an ascending

order

3: for (i = 1; i ≤ NR ; i + +) do

4: if RLIST contains EVi then

5: if
(

QLIST1 > T arr
ev( i )

)

then

6: if
((

QLIST1 − T arr
ev( i )

)

< Dev( i )

)

then

7: if
((

QLIST1 − T arr
ev( i )

+ T cha
ev( i )

)

≤ Dev( i )

)

then

8: T fin
ev( i )

=
(

QLIST1 + T cha
ev( i )

)

9: else

10: T fin
ev( i )

=
(

T arr
ev( i )

+ Dev( i )

)

11: end if

12: end if

13: else

14: if
(

T cha
ev( i )

≤ Dev( i )

)

then

15: T fin
ev( i )

=
(

T arr
ev( i )

+ T cha
ev( i )

)

16: else

17: T fin
ev( i )

=
(

T arr
ev( i )

+ Dev( i )

)

18: end if

19: end if

20: replace QLIST1 with T fin
ev( i )

21: sort QLIST in an ascending order

22: end if

23: end for

24: if (QLIST1 > K) then

25: return QLIST1

26: else

27: return K
28: end if

At line 5 in Algorithm 4, for each EVi (in the queue of NR )

with its T arr
ev( i )

prior to the earliest available time for charging

QLIST1 , EVi will be taken into account for the update of QLIST.

This means that only those EVs (in the queue of NR ) arriving

later than QLIST1 will not have an influence on QLIST. Note

that QLIST has been previously sorted in an ascending order.

This guarantees that the earliest time that one of the charging

slots will be free, it is ready for taking the subsequent EV’s

charging.

1) In one case, the condition (QLIST1 > T arr
ev( i )

) at line 5 im-

plies that T arr
ev( i )

is prior to the earliest available time LIST1 .

This causes the charging finish time T fin
ev( i )

to be calculated

by summating QLIST1 and the expected charging time

T cha
ev( i )

.

In particular, at line 7, the condition ((QLIST1 − T arr
ev( i )

+

T cha
ev( i )

) ≤ Dev( i )
) implies that within the parking dura-

tion Dev( i )
, EVi could be fully recharged. Recall that

(QLIST1 − T arr
ev( i )

) is the time to wait until the charging

is started. In this context, given by the cases at lines 7 and

9, T fin
ev( i )

is given by (QLIST1 + T cha
ev( i )

) or (T arr
ev( i )

+ Dev( i )
).
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Algorithm 5: Charging Recommendation Strategy.

1: for (i = 1; i ≤ (H− 1); i + +) do

2: if
(

Ki ≤ T arr
ev( r )

)

&&
(

Ki+1 > T arr
ev( r )

)

then

3: A =

(

CAK( i )
+

T arr
ev( r )

×
(

CAK( i + 1 )
−CAK( i )

)

K( i + 1 )

)

4: end if

5: end for

6: if
(

K1 > T arr
ev( r )

)

then

7: A = CAK( 1 )

8: else if
(

KH ≤ T arr
ev( r )

)

then

9: A = CAK(H)

10: end if

11: if
(

A > T arr
ev( r )

)

then

12: if
(

A− T arr
ev( r )

+ T cha
ev( r )

≤ Dev( r )

)

then

13: return A− T arr
ev( r )

+ T cha
ev( r )

14: else

15: return Dev( r )

16: end if

17: else

18: if
(

T cha
ev( r )

≤ Dev( r )

)

then

19: return T cha
ev( r )

20: else

21: return Dev( r )

22: end if

23: end if

Note that as the condition given by ((QLIST1 − T arr
ev( i )

) <

Dev( i )
) at line 6, we only consider that EVi could be

charged before Dev( i )
to involve the calculation.

2) In another case, T fin
ev( i )

is calculated by considering T arr
ev( i )

,

T cha
ev( i )

, and Dev( i )
following the calculations at lines 15 and

17. This only happens when (QLIST1 ≤ T arr
ev( i )

), meaning

that the CS has already been available for charging when

EVi arrives.

By replacing QLIST1 with each T fin
ev( i )

in each loop round,

QLIST will be dynamically updated. Furthermore, QLIST will

be sorted in an ascending order after processing each EVi , such

that the first element QLIST1 is updated. The loop operation

ends when all EVi (in the queue of NR ) have been processed.

F. Charging Recommendation

Here, EVr is denoted as the EV that needs to make a charg-

ing recommendation, other than those EVs that are either being

parked or on the move. Two bounding time slots can be ob-

tained via the condition at line 2 of Algorithm 5, such that the

arrival time of EVr , denoted as T arr
ev( r )

, is between these two

time slots Ki and Ki+1 . In this case, the outcome of the charg-

ing availability is then passed to a temporary variable A, with

A = (CAKi
+

T arr
ev( r )

×(CAKi + 1
−CAKi

)

Ki + 1
) at line 3, considering a

ratio between T arr
ev( r )

and Ki+1 . From this calculation, it is aimed

to capture the charging availability upon its arrival time EV(r)

that is between Ki and Ki+1 .

Fig. 5. Helsinki city scenario.

There are also two cases if T arr
ev( r )

is out of the bound of the

estimation window W .

1) Due to that T arr
ev( r )

is earlier than the earliest estimation time

slot in entries H, denoted as K1 , the charging availability

upon the arrival of EVr is given by CAK( 1 )
at line 7.

2) Besides, due to that T arr
ev( r )

is later than the latest time slot

in entries H, the charging availability in this case is given

by CAK(H)
at line 9.

Next, EVr will predict an expected time for which it would

stay at the recommended CS before the parking deadline by

considering its parking duration Dev( r )
.

1) Basically, if EVr arrives later than A, this means it still

needs to wait for additional time until a charging slot

is available. In this case, the condition (A− T arr
ev( r )

+

T cha
ev( r )

≤ Dev( r )
) indicates EVr can be fully recharged

within the parking deadline Dev( r )
; thus, its expected stay-

ing time is calculated by (A− T arr
ev ( r )

+ T cha
ev ( r )

) at line 13.

Otherwise, only Dev( r )
is referred as the staying time at

line 14.

2) Such a policy between lines 18 and 22 can be also applied

to the case if EVr arrives no later than A. In this case,

as EVr does not need to wait for additional time to start

charging, the comparison is just between T arr
ev( r )

and Dev( r )
.

V. PERFORMANCE EVALUATION

A. Scenario Configuration

The entire system for EV charging is built in Opportunis-

tic Network Environment [21]. In Fig. 5, the default scenario

with 4500 × 3400 m2 area is shown as the downtown area of

Helsinki city in Finland. Nev = 300 EVs with Sev = [30 ∼ 50]
km/h variable moving speed are initialized considering road

safety in a city. The configuration of EVs follows the charging

specification of Hyundai BlueOn, with a maximum electricity

capacity of 16.4 kWh, max traveling distance 140 km, and SOC

[15 ∼ 45]%. Besides, Ncs = 5 CSs are provided with sufficient

electric energy and δ = 5 charging slots through entire simula-

tion, using the fast charging rate of β = 62 kW. R = 300 m ra-

dio coverage is applied for Nmec = 7 RSUs and Nev = 300 EVs.
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Fig. 6. Influence of CS dissemination interval ∆. (a) ACWT. (b) Fully charged EVs. (c) TRC. (d) TDC.

The default dissemination interval of CS’s charging availability

is ∆ = 120 s, and the simulation time is 43 200 s = 12 h.

The following schemes are evaluated for comparison.

1) MEC: The proposed charging recommendation scheme in

Section IV, based on the MEC framework in Section III.

2) CC and DC: They are with the same charging recom-

mendation scheme with MEC, but with centralized and

distributed cloud computing framework.

3) Reservation [10]: Previous works take the EVs’ charging

reservation to predict the CSs’ charging availability, how-

ever, not addressing the EVs’ parking deadline. Here, the

cloud computing framework is positioned.

4) Deadline [11]: Previous works taking the parking dead-

line into the account of charging recommendation, based

on the cloud computing framework. This scheme differs

from the CC for the computation intelligence to predict

CSs’ charging availability.

The simulation evaluates metrics at the EV and CS sides as

well as communication costs at the system level.

1) Average Charging Waiting Time (ACWT): The average

period between the time an EV arrives at the recommended

CS and the time it finishes (full) recharging its battery. This

is the performance metric at the EV side.

2) Fully Charged EVs: The total number of fully charged

EVs; this is the performance metric at the CS side.

3) Total Reservation Cost (TRC): The total number signaling

reported for EV’s charging reservations to the GC. In

MEC, this counts for the signaling from RSUs to the GC,

whereas other schemes count from EVs to the GC.

4) Total Dissemination Cost (TDC): In MEC, this counts for

the signaling from RSUs to the EVs, whereas in DC, this

counts from GC to EVs.

B. Performance Results

1) Influence of CS Dissemination Interval ∆: Results in

Fig. 6(a) and (b) show that a frequent dissemination interval

helps to maintain the optimality of the charging recommenda-

tion. This means that as the information is replaced at RSUs

frequently, EVs that have passed by would fetch the cached

information that is more fresh. In comparison to DC, the CC

achieves the better performance by making decision using a

seamless cellular network communication, compared to the

opportunistic communication between RSUs and EVs as ap-

plied in the MEC system. Furthermore, concerning the feature

of charging recommendation, the CC outperforms reservation

and deadline, thanks to decoupling the decision making within

a small-time interval W . It is also observed that the deadline

outperforms reservation, as the former takes the EVs’ parking

deadline into account.

In Fig. 6(c), the MEC-based system is with decreased TRC,

which follows the analysis in Section III. However, other com-

pared charging recommendations with the cloud-based system

are with a much higher TRC. The benefit of reduced TRC is

from the aggregation and mining functions at RSUs, which fil-

ter invalid EVs’ charging reservations (which to be not uploaded

to the GC) for computation. Besides, the dissemination cost is

shown in Fig. 6(d), where the cost in MEC is lower than in

DC-based systems (with ∆ = 120 s). This shows the efficiency

of using on-demand and short-range wireless communication in

the MEC-based system together with access control, compared

to the long-range cellular link and broadcasting communica-

tion in the DC-based system. In the following sections, DC is

excluded, while only the nature of charging recommendation

solutions is discussed.

2) Influence of Parking Deadline Dev : In Fig. 7(b), a longer

parking deadline Dev increases the fully charged EVs. This is

generally referred to the situation that EVs being parked at CSs

will have much chance to be fully charged, compared to the

case with 1200 s parking deadline, while such increase brings

increased ACWT in Fig. 7(a) as well. In Fig. 7(c), it is observed

that a shorter parking deadline leads to a much higher TRC. This

is because of those EVs that are not fully charged and would

subsequently need charging after a shorter period. As such, the

charging reservation is increased corresponding to such frequent

charging demands.

Apart from the above-mentioned general observation, further

details are comparable in the cases of 5 and 7 charging slots. The

latter case alleviates the charging congestion at CSs; as such, it

delivers a lower AWCT and higher fully charged EVs as well

as reduced TRC (more significant in the case of 1200 s parking

deadline).

3) Influence of EV Density Nev: In Fig. 8(a), the AWCT is

increased from the case of 100 EVs, as more EVs will be fully

charged (with 300 and 500 EVs). However, Fig. 8(b) shows that

the fully charged EVs are first increased from 100 to 300 EVs

cases, and then decreases from 300 to 500 EVs cases. This

reflects the 500 EVs case results in severe charging congestion,

so some EVs are not fully charged. Such an outcome is also

associated with the TRC, wherein Fig. 8(c) shows the TRC in
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Fig. 7. Influence of EVs’ parking deadline Dev. (a) ACWT. (b) Fully charged EVs. (c) TRC.

Fig. 8. Influence of EVs’ density Nev, with δ = 5 charging slots. (a) ACWT. (b) Fully charged EVs. (c) TRC.

Fig. 9. Influence of EVs’ density Nev, with δ = 7 charging slots. (a) ACWT. (b) Fully charged EVs. (c) TRC.

the case of 500 EVs, is much higher than the fully charged EVs

in the same case of Fig. 8(b). The mismatch is because of the

EVs that were not fully charged but later need charging (with

additional charging reservations sent).

If setting 7 charging slots at each CS, where the fully charged

EVs is increased in Fig. 9(b), along with increased ACWT in

Fig. 9(a). Compared with that in Fig. 8(b) where there is a

decrease of fully charged EVs from 300 to 500 EVs cases, the

situation here implies the effect of parking deadline with limited

charging infrastructures. Of course, the MEC-based system still

achieves the lowest TRC in Fig. 9(c), similar to the previous

observation.

VI. CONCLUSION

This paper investigated EV charging recommendation via

MEC architecture, with RSUs positioned physically and MEC

functions virtually to help with information dissemination and

collection. The information access control, aggregation, and

mining are enabled at MEC servers, while the charging recom-

mendation takes the EV’s charging reservation and its parking

deadline into account. Results show that the proposed solu-

tion achieves a comparable performance in terms of charging

waiting time as a benefit to the user, and a number of fully

charged EVs as a benefit to the service provider. Future works

would be on integration of the power network.

With the ever increasing penetrations in EVs, the resultant

charging energy imposed on the electricity network could lead

to grid issues, such as voltage limits violation, transformer

overloading, and feeder overloading at various voltage levels.

Coordination of the charging energy with a renewable energy

source provides a more straightforward approach to cope with

the potential network issues as mentioned previously. Future

works would be on the integration of power network to achieve

an interdisciplinary work on ICT, route planning, and energy

integration.
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