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Multiagent goal recognition is important inmany simulation systems.Many of the existingmodelingmethods need detailed domain
knowledge of agents’ cooperative behaviors and a training dataset to estimate policies. To solve these problems, we propose a novel
decentralized partially observable decision model (Dec-POMDM), which models cooperative behaviors by joint policies. In this
compact way, we only focus on the distribution of joint policies. Additionally, a model-free algorithm, cooperative colearning based
on Sarsa, is exploited to estimate agents’ policies under the assumption of rationality, whichmakes the training dataset unnecessary.
In the inference, considering that theDec-POMDM is discrete and its state space is large, we implement amarginal �lter (MF) under
the framework of the Dec-POMDM, where the initial world states and results of actions are uncertain. In the experiments, a new
scenario is designed based on the standard predator-prey problem: we increase the number of preys, and our aim is to recognize
the real target of predators. Experiment results show that (a) ourmethod recognizes goals well even when they change dynamically;
(b) the Dec-POMDM outperforms supervised trained HMMs in terms of precision, recall, and F-measure; and (c) the MF infers
goals more e�ciently than the particle �lter under the framework of the Dec-POMDM.

1. Introduction

With the fast development of computational soware and
arti�cial intelligence techniques, agent-based simulation sys-
tems becomemore andmore popular for sta� training, policy
analysis and evaluation, and even entertainments. In devel-
oping these systems, people always need to create human-
like agents who can make decisions and have interactions
with other agents or humans autonomously. For example, in
the famous real-time strategy game Star-Cra, the AI players
have to construct buildings, collect resources, produce units,
and defeat their enemies [1]. Unfortunately, even though
many decision and planning algorithms have been applied to
improve the intelligence of these agents, they are still easily
defeated, especially when human players play with them in
the same scenario for several times. One important reason
for that is that these agents are unable to recognize the goal of
their opponents or friends.On the other hand, that is what the
human players usually do in the game [2]. Obviously, if agents

know the goal of others, they can make counter decisions
more e�ciently.

Because goal recognition is signi�cant for creating
human-like agents and decision support, many related mod-
els and algorithms have been proposed and applied in di�er-
ent �elds, such as hidden Markov models (HMMs) [3], par-
tially observable Markov decision processes (POMDPs) [4],
Markov logical networks (MLNs) [5], and particle �ltering
(PF) [6, 7]. However, most of the existing research focuses on
single agent scenarios. However, in some scenarios missions
are so complex that a number of agents have to constitute
a group and achieve their joint goal through cooperation.
And our aim is to identify the joint goal of the group but
not one member. In most cases, it does not work to directly
apply methods for recognizing the single agent in multiagent
goal recognition, because we have to consider the relations or
interactions between agents and the state space is usually very
large.
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ere are three fundamental components in the frame-
work of multiagent goal recognition: (a) modeling the agents’
behaviors, the environment, and the observations for the rec-
ognizer; (b) estimating the parameters of the model obtained
through learning or other methods, and (c) inferring the
goals from the observations. In the past, people have done
some works on all these aspects. However, we still have some
di�culties in recognizing multiagent goals in simulation
systems:

(a) For modeling behaviors, we usually have little knowl-
edge about the details of agents’ cooperation, such as
the decomposition of the complex task, the allocation
of the subtasks, the communication, and other details.
Even though this information is available, it is hard to
present all of them formally in a model in practice.

(b) For learning parameters, sometimes a training dataset
for supervised or unsupervised learning cannot be
provided. Even if we have a training set, the unsu-
pervised learning is still infeasible, because the state
space in multiagent scenarios is always very large.
Additionally, the supervised learningmay su�er from
the over�tting problem, which will be shown in our
experiments.

(c) For inferring goals, traditional exact �lters such as an
HMM �lter are infeasible because the state space is
large.
ewidely applied PF is available for computing
the posterior distribution of goals, but it may fail
when there are not su�cient particles, and increasing
the number of particles will consume much more
computing time.

To solve the problems above, we present a solution for
recognizing multiagent goals in simulation systems.
e core
of our method is a novel decentralized partially observable
Markov decision model (Dec-POMDM). Aer modeling the
agents’ behaviors, the environment, and the observations
for the recognizer by the Dec-POMDM, we use an existing
multiagent reinforcement learning (MARL) algorithm to
estimate the behavior parameters and a marginal �lter (MF)
to infer the joint goal of agents. Our method has several
advantages considering the above problems:

(a) For the modeling problem, the Dec-POMDM
presents the agents’ behaviors in a compact way. 
e
Dec-POMDM can be regarded as an extension of
the well-known decentralized partially observable
Markov decision process (Dec-POMDP) [8]. As in
theDec-POMDP, all details of cooperation are hidden
in joint policies in the Dec-POMDM. In this implicit
way of behavior modeling, we only need to concern
ourselves with the selection of primitive actions with
given goals and situations. Further knowledge on
interactions between agents is unnecessary. Another
advantage of the Dec-POMDM is that it can make
use of the large amount of existing algorithms for the
Dec-POMDP, which will be explained later.

(b) For the problem of estimating the agents’ joint pol-
icies, the MARL algorithm does not need a training

dataset. We borrow the de�nition of goals from the
domain of planning under uncertainty and associate
each goal with a reward function. 
en, we assume
that agents achieve their joint goal by executing
optimal policies, which can bring them themaximum
cumulative reward.
e optimal policies de�ne coop-
erative behaviorswell and can be computed accurately
or approximated by any algorithm for the Dec-
POMDP. In this way, the training dataset is unneces-
sary. In this paper, the cooperative colearning based
on the Sarsa algorithm is exploited, because it does
not need information of themodel, whichmay be dif-
�cult to get in complex scenarios [9]. Actually, heuris-
tic algorithms such as memory-bounded dynamic
programming (MBDP) and joint equilibrium-based
search for policies (JESP) may also work, if we have
enough information of the environment model [10,
11].

(c) For the inference, the MF outperforms the PF when
the state space is discrete and large, which has been
proved in [12, 13]. Additionally, we will also show
that the MF solves the inference failure problem of
the PF in our research. Another contribution is that
we implement the MF under the framework of Dec-
POMDM, in which �ltering process is di�erent from
the work in [12, 13].

To validate the Dec-POMDM together with the MARL
andMF inmultiagent goal recognition, wemodify the classic
predator-prey problem and design a new scenario [9]. In
this scenario, there are more than one prey, and predators
have to choose one prey and capture it by moving on a grid
map. Additionally, predators may change their goal on the
half way. Our method is applied to recognize the real goal
of predators based on the observed noisy traces. We also use
the simulation model to generate di�erent training datasets,
which consist of di�erent numbers of labeled traces. With
these datasets, we compare performances of our method and
the widely applied hidden Markov model (HMM), whose
transition matrix is obtained through supervised learning
(the MF is applied doing inference for both models). In the
inference part, results computed by the MF are compared
to those of PF with di�erent numbers of particles. All
performances are evaluated in terms of precision, recall, and
�-measure.


e rest of the paper is organized as follows: Section 2
introduces related work. Section 3 gives the formal de�nition
of the Dec-POMDM, the model’s DBN representation, the
cooperative colearning algorithm, and the baseline used
for comparison. Section 4 introduces how to use the MF
to infer the joint goal. Section 5 presents the scenarios,
settings, and results of our experiments. Subsequently, we
draw conclusions and discuss future works in Section 6.

2. Related Work

In many simulation systems such as training systems and
commercial digital games, e�ects of actions are uncertain,
which is usually caused by two reasons: (a) agents execute
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erroneous actions with a given probability; (b) environment
states are impacted by some events, which are not under
control of the agents. Because of this uncertainty in sim-
ulation systems, a goal cannot be achieved by a certain
sequence of primitive actions, as what we do in the classical
planning. Instead, we have to �nd a set of policies, which
de�ne the distribution of selecting actions within given
situations. Since policies essentially reveal the goal of plan-
ning, goals can be inferred as discrete parameters or hidden
states, aer knowing their corresponding policies, and this
process is usually implemented under the Markov decision
framework.

2.1. Recognizing Goals of a Single Agent. People have pro-
posed many methods for recognizing goals of a single agent;
some of them are foundations of methods for multiagent goal
recognition. Baker et al. proposed a computational frame-
work based on Bayesian inverse planning for recognizing
mental states such as goals [14]. 
ey assumed that the
agent is rational: actions are selected based on an optimal
or approximate optimal value function, given the beliefs
about the world, and the posterior distribution of goals is
computed by Bayesian inference. 
e core of Baker’s method
is that policies are computed by the planner based on the
standard Markov decision process (MDP), which does not
model the observing process of the agent. 
us, Ramırez and
Ge�ner extended Baker’s work by applying the goal-POMDP
in formalizing the problem [4]. Compared to the MDP, the
POMDP models the relation between real world state and
observation of the agent explicitly; compared to the POMDP,
the goal-POMDP de�nes the set of goal states. Besides,
Ramırez and Ge�ner also solved the inference problem even
when observations are incomplete. Works in [4, 14] are very
promising but both of them su�er two limitations: (a) the
input for goal recognition is an action sequence; however,
sometimes we only have observations of environment states
from real or virtual sensors, and translating observations of
states to actions is not easy; (b) the goal is estimated as a static
parameter; however, it may be interrupted and changed in
one episode.

Recently, the computational state space model (CSSM)
became more and more popular for human behavior model-
ing [15, 16]. In the CSSM, transitionmodels of the underlying
dynamic systemcan be described by any computable function
using compact algorithmic representations. Krüger et al.
also discussed the performances of applying the CSSM on
intention recognition in di�erent real scenarios [16, 17]. In
this research, (a) intentions as well as actions and envi-
ronment states are modeled as hidden states, which can
be inferred by online �ltering algorithm; (b) observations
re�ect not only primitive actions, but also environment states.

e limitation of the research in [17] is that goal inference
is not implemented in scenarios where results of actions
are uncertain. Another related work on human behavior
modeling under the MDP framework was done by Tastan et
al. [18]. By making use of the inverse reinforcement learning
(IRL) and the PF, they learned the opponent’s motion model
and tracked it in the game Unreal 2004. 
is work made

the following contributions: (a) the features for decision in
the pursuit problem were abstracted; (b) IRL was used to
learn the reward function of the opponent; (c) the solved
decision model was regarded as the motion function in
the PF. However, IRL relies on a large dataset, and Tastan’s
method is proposed for tracking but not for goal recognition.

2.2. Multiagent Goal Recognition Based on Inverse Planning.

e inverse planning theory can also be used in the multi-
agent domain. Baker et al. inferred relational goals between
agents (such as chasing and �eeing), by using multiagent
MDP framework to model interactions between agents and
the environment [19]. In this model, each agent selected
actions based on the world state, its goal, and its beliefs
about other agents’ goals. Mental state inference is done
by inverse planning, under the assumption that all agents
are approximately rational. Ullman et al. also successfully
applied this theory in more complex social goals, such as
helping and hindering, where an agent’s goals depend on
the goals of other agents [20]. In the military domain,
Riordan et al. borrowed Baker’s idea and applied Bayesian
inverse planning to inferred intents in multi-Unmanned
Aerial Systems (UASs) [21]. Additionally, IRL was also used
to learn reward function. Even though Baker’s theory is quite
promising, it can only work when every agent has accurate
knowledge of the world state, because the multiagent MDP
does not model the observing process. Besides, Bayesian
inverse planning does not allow the goal to change. Another
related work under the Markov decision framework in
multiagent settings was done by Doshi et al. [22]. Although
their main aim is to learn the agents’ behavior models,
without recognizing goals, the process of estimating mental
states is very similar to Bayesian approaches for probabilistic
plan recognition. In Doshi’s work, the interactive partially
observable Markov decision process (I-POMDP) was used to
model interactions between agents. I-POMDP is an extension
of POMDP formultiagent settings. Comparing to POMDP, I-
POMDP de�nes an interactive state space, which combines
the traditional physical state space with explicit models of
other agents sharing the environment in order to predict their
behavior. 
us, I-POMDP is applicable in situations where
agents may have identical or con�icting objectives. However,
I-POMDP has to deal with the problem “what do you think
that I think that you think,” which makes �nding optimal or
approximately optimal policies very hard [23]. Actually, in
many multiagent scenarios such as the football game or the
�rst person shooting game, the agents being recognized share
a common goal. 
is makes the Dec-POMDP framework
su�cient for modeling cooperation behaviors. Additionally,
the increasing interests/number of works of planning theory
based onDec-POMDP can provide us with a large number of
planners [24, 25].

2.3. Multiagent Goal Recognition Based on DBN Filtering. If
all actions and world states (the agent and the environment)
are de�ned as variables with time labels, the MDP can be
regarded as a special case of directed probabilistic graphical
models (PGMs). With this idea, some people ignore the
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reward function but only concern themselves with the poli-
cies and infer goals under the dynamic Bayesian framework.
For example, Saria and Mahadevan presented a theoretical
framework for online probabilistic plan recognition in coop-
erative multiagent systems. 
is model extends the Abstract
Hidden Markov Model and consists of a Hierarchical Mul-
tiagent Markov Process that allows reasoning about the
interaction among multiple cooperating agents. 
e Rao-
Blackwellized particle �ltering (RBPF) is also used for the
inference [26, 27]. Pfe�er et al. [28] studied the problem of
monitoring goals, team structure, and state in a dynamic
environment: an urban warfare �eld, where uncoordinated
or loosely coordinated units attempt to attack a target. 
ey
used the standard DBN to model cooperation behaviors
(communication, group constitution) and the world states.
An extension of the PF named factored particle �ltering is
also exploited in the inference. We also proposed a Logical
Hierarchical Hidden Semi-Markov Model (LHHSMM) to
recognize goals as well as cooperation modes of a team in
a complex environment, where the observation was noisy
and partially missing and the goal was changeable. 
e
LHHSMM is a branch of the Statistical Relational Learning
(SRL) method, which combines the PGM and the �rst order
logic; it also presents the team behaviors in a hierarchical
way. 
e inference for the LHHSMM was done by a logical
particle �ler. 
ese works based on directed PGM theory
have the advantage that they can use �ltering algorithm.
However, they su�er some problems: (a) constructing the
graph model needs a lot of domain knowledge, and we have
to vary the structure in di�erent applications; (b) the graph
structure will be very complex when the number of agents is
large, which will make parameter learning and goal inference
time consuming, sometimes even infeasible; (c) they need a
training dataset. Othermodels based on data-driven training,
such as the Markov logic networks and deep learning, have
the same problems listed above [29, 30].

3. The Model

We propose the Dec-POMDM for formalizing the world
states, behaviors, and goals in the problem. In this section,
we �rst introduce the formal de�nition of the Dec-POMDM
and explain relations among variables in thismodel by aDBN
representation. 
en, the planning algorithm for �nding out
the policies is given.

3.1. Formalization. One of foundations of our POMDM is the
widely applied Dec-POMDP. However, the Dec-POMDP is
proposed for solving decision problem, and there is no de�ni-
tion of the goal and the observation model for the recognizer
in the Dec-POMDP. Additionally, the multiagent joint goal
may be terminated because of achievement or interruption.

us, we design the Dec-POMDM as a combination of three
parts: (a) the standard Dec-POMDP; (b) the joint goal and
goal termination variable; (c) the observation model for the
recognizer. 
e Dec-POMDP is the foundation of the Dec-
POMDM.

A Dec-POMDM is a tuple ⟨�, �, �, �, �,Ω,
, �, ℎ, , �,
�, Υ, �, �, �, �⟩, where

(i) � = {1, 2, . . . , �} is the set of � agents;
(ii) � is a �nite set of world states �, which contains all

necessary information for making a decision;

(iii) � is the �nite set of joint actions;

(iv) � is the state transition function;

(v) � is the reward function;

(vi) Ω is the �nite set of joint observations for agents
making a decision;

(vii) 
 is the observation probability function for agents
making a decision;

(viii) � is the discount factor;

(ix) ℎ is the horizon of the problem;

(x)  is the initial state distribution at stage � = 0;
(xi) � is the set of possible joint goals;

(xii) � is the set of goal termination variables;

(xiii) Υ is the observation function for the recognizer;

(xiv) � is the �nite set of joint observations for the recog-
nizer;

(xv) � is the goal selection function;

(xvi) � is the goal termination function;

(xvii) � is the initial goal distribution at stage � = 0.
Symbols including �, �, �, Ω, 
, �, ℎ,  in the Dec-

POMDM have the same meanings as those in the Dec-
POMDP. More de�nition details and explanations can be
found in [9, 27]. 
e reward function is de�ned as � : � ×
� × � × � → R, which shows that the reward depends on the
joint goal; the goal set � consists of all possible joint goals;
the goal termination variable set � = {0, 1} indicates whether
the current goal will be continued in the next step (if � ∈ �
is 0, the goal will be continued; otherwise, a new goal will be
selected again in the next step); the observation function for
the recognizer is de�ned asΥ : �×� → [0, 1]:Υ(�, �) = �(� |
�) is the probability that the recognizer observes � ∈ � while
the real worlds state is � ∈ �; the goal selection function is
de�ned as � : � × � → [0, 1]: �(�, �� !) = �(�� ! | �) is the
conditional probability that agents select �� ! ∈ � as the new
goal while theworld state is �; the goal termination function is
de�ned as� : �×� → [0, 1]:�(�, �� !) = �(� = 1 | �, �� !) is
the conditional probability that agents terminate their �� ! ∈
� while the world state is �.

In the Dec-POMDP, the policy of the "th agent is de�ned

as Π� : Ω∗� × � � → [0, 1], where � � ∈ � is the set of possible
actions of agent "; Ω∗� is the set of observation sequences.


us, given an observation sequence {��1, ��2, . . . , ���}, the

agent " selects an action with a probability de�ned by Π�.
Since the selection of actions depends on the history of the
observations, the Dec-POMDP does not satisfy the Markov
assumption. 
is attribute makes inferring goals online very
hard: (a) if we precompute policies and store them o�ine, it
will require a very large memory because of the combination
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Figure 1: 
e DBN representation of the Dec-POMDM in two adjacent time slices.

of possible observations; (b) if we compute policies online, the
�ltering algorithm is infeasible because weights of possible
states cannot be updated with only the last observation. One
possible solution is to de�ne an interior belief variable for
each agent to �lter the world state, but it will make the
inferring process much more complex. In this paper, we
simply assume that all agents are memoryless as the work in

[9].
en, the policy of the "th agent is de�ned asΠ� : �×Ω�×
� � → [0, 1], where Ω� is the set of possible observations of
agent ". 
e de�nition of policies in the Dec-POMDM shows
that (a) an agent does not need the history of observations
for making decisions; (b) selection of actions depends on the
goal at that stage. In the next section, we will further explain
the relations of variables in the Dec-POMDM by its DBN
representation.

3.2. 
e DBN Representation. Aer estimating the agents’
policies by a multiagent reinforcement learning algorithm,
we do not need the reward function in the inference process.

us, in the DBN representation of the Dec-POMDM, there
are six sorts of variables in total: the goal, the goal termi-
nation, the action, observations for agents making decision,
state, and observations for the recognizer. In this section, we
�rst analyze how these variables are a�ected by other factors.

en, we give the DBN representation in two adjacent time
slices.

(A) Goal (�� !). 
e goal �� !� at time � depends on the goal
�� !�−1, the goal termination variable ��−1, and the state ��−1.
If ��−1 = 0, agents keep their goal at time �; otherwise, �� !� is
selected depending on ��−1.

(B) Goal Termination Variable (�). 
e goal termination
variable �� at time � depends on the goal �� !� and state ��
at the same time.
e �� !� is terminated with the probability
�(�� = 1 | ��, �� !�).

(C) Action ( ). 
e action  �� selected by agent " at time �
depends on the goal �� !� and its observation at the same

time, and the distribution of actions is de�ned by Π�.

(D) Observations for Agents Making Decision (�). 
e obser-

vation ��� of agent " at time � re�ects the real world state ��−1
at time � − 1, and the agent " observes ��� with the probability

�(��� | ��−1).

(E) State (�).
e world state �� at time � depends on the state
��−1 at time � − 1 and the actions of all agents at time �. 
e
distribution of the updated states can be computed by the
state transition function �.

(F) Observations for the Recognizer (�). 
e observation ��
for the recognizer at time � re�ects the real world state ��
at the same time, and the recognizer observes �� with the
probability �(�� | ��).


e DBN representation of the Dec-POMDM in two
adjacent time slices presents all dependencies among vari-
ables discussed above, as is shown in Figure 1.

In Figure 1, only actions and observations of agent " and
agent $ are presented for simplicity, and each agent has no
knowledge about others and can only make decision based
on its own observations. Although the Dec-POMDM has
a hierarchical structure, it models the task decomposition
and allocation in an inexplicit way: all information about
cooperation is hidden in the joint policies. From �ltering
theory point of view, the joint policies actually play the role
of the motion function. 
us, estimating policies is a key
problem for goal inference.

3.3. Learning the Policy. Because the Dec-POMDP is essen-
tially a DBN, we can simply use some data-driven methods
to learn parameters from a training dataset. However, the
training dataset is not always available in some cases. Besides,
when the number of agents is large, the DBN structure
will become large and complex, which makes supervised
or unsupervised learning time consuming. To solve these
problems, we assume that the agents to be recognized are
rational, which is reasonable when there is no history of
agents. 
en, we can use an existing planner based on
the Dec-POMDP framework to �nd out the optimal or
approximately optimal policies for each possible goal.
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Various algorithms have been proposed for solving Dec-
POMDP problems. Roughly, these algorithms can be divided
into two categories: (a) model-based algorithms, under the
general name of dynamic programming; (b) model-free algo-
rithms, under the general name of reinforcement learning [8].
In this paper, we select a multiagent reinforcement learning
algorithm, cooperative colearning based on Sarsa [9], because
it does not need a state transition function of the world.


e main idea of cooperative colearning is that at each
step one chooses a subgroup of agents and updates their
policies to optimize the task, given the rest of the agents
have �xed plans; then, aer a number of iterations, the joint
policies can converge to a Nash equilibrium. In this paper,
we only consider settings where agents are homogeneous.
All agents share the same observation model and policies.

us, we only need to de�ne one POMDP % for all agents.
All parameters of% can be obtained directly from the given
Dec-POMDP, except for the transition function ��. Later, we
will show how to compute �� from �, which is the transition
function of the Dec-POMDP.
e Dec-POMDP problem can
be solved by the following steps [9].

Step 1. We set � = 0 and start from an arbitrary policy Π0.

Step 2. We select an arbitrary agent and compute the state
transition function �� of % considering that policies of all
agents are Π�, except the selected agent that is re�ning the
plan.

Step 3. We computeΠ∗ which is the optimal policy of% and

set Π�+1 = Π∗.

Step 4. Weupdate the policy of each agent toΠ�+1, set � = �+1,
and return to Step 2.

In Step 2, the state transition function of the POMDP for
any agent can be computed by formula (1) (we assume that we
re�ne the plan for the �rst agent):

�� (�,  1, ��) = ∑
(�2 ,...,��)

� (�,  1, Π� (�2) , . . . , Π� (��) , ��)

⋅
�
∏
�=2


� (�, ��) ,
(1)

where 
� is the observation function de�ned in %,  � is the
action of the "th agent, �� is the observation of the "th agent,

�(�,  1, Π�(�2), . . . , Π�(��), ��) is the probability that the state
transits from � to �� while the action of the �rst agent is  1,
and other agents choose actions based on their observations
and policy Π�.

Unfortunately, computing formula (1) is always very
di�cult in complex scenarios. 
us, we apply the Sarsa
algorithm for �nding out the optimal policy of% (in Steps 2
and 3) [8]. In this process, the POMDP problem is mapped to
the MDP problem by regarding the observation as the world
state. 
en, agents get feedback from the environment and
we do not need to compute the updated reward function and
state transition function.

4. Inference

In the Dec-POMDM, the goal is de�ned as a hidden state
indirectly re�ected by observations. In this case, many �lter-
ing algorithms can be used to infer the goals. However, in the
multiagent setting, the world state space is large because of
combinations of agents’ states and goals. Besides, the Dec-
POMDMmodels a discrete system. To solve this problem, we
use a MF algorithm to infer multiagent joint goals under the
framework of the Dec-POMDM. It has been proved e�cient
when the state space is large and discrete.

Nyolt et al. discussed the theory of the MF and how
to apply it in a casual model in [12, 13]. 
eir main idea
can still work in our paper, but there are also di�erences
between the Dec-POMDM and the causal model: (a) the
initial distribution of states in our model is uncertain; (b)
the results of actions in our model are uncertain; (c) we do
not model duration of actions for simplicity. 
us, we have
to modify the MF for casual models and make it available for
the Dec-POMDM.

When the MF is applied to infer goals under the frame-
work of the Dec-POMDM, the set of particles is de�ned
as {5��}�=1:�� , where 5�� = ⟨�� !��, ���, ���⟩. 6� is the number
of particles at time �, and the weight of "th particle is

7��. 
e detailed procedures of goal inference are given in
Algorithm 1.

8� is the set of {5��, 7��}�=1:�� , which contains all par-
ticles and their weights at each stage. When we initialize

{5�0, 7�0}�=1:�0 , the weights are computed by

7�0 = � (��0 | �0) � (�� !�0) � (��0 | �� !
�
0, �
�
0) , (2)

�(�� !�0) and �(��0 | �� !�0, ��0) are provided by the model, and

�(��0 | �0) is computed by

� (��0 | �0) ∝ � (�0 | ��0) � (��0) . (3)

8 � is a temp memory of particles and their weights which
are transited from one speci�c particle. Because a world
state �� may be aer the execution of di�erent actions from
given ��−1, we have to use a LOOKUP operation to query
the record in 8 �, which covers the new particle 5�. 
e
operation LOOKUP(5�, 8 �) searches 5� in 8 �; if there
is a record ⟨5	� , 7

	
� ⟩ in 8 � which covers 5�, the operation

returns this record; otherwise, it returns empty. 
is process
is time consuming if we scan the 8 � for every query. One
alternative method is to build a matrix for each 8 �, which
records the indices of all reached particles. 
en, if the index
of 5� is null, we add a new record in 8 � and update the
index matrix; otherwise, we can read the index of 5� from the
matrix andmerge the weight directly. Aer we �nish building
8 �, its index matrix can be deleted to release memory. We
also need to note that this solution saves computing time but
needs extra memory.


e operation PUT(8 �, ⟨5�, 7�⟩) adds a new record
⟨5�, 7�⟩ in 8 � and indexes this new record. 
e generated
8 � contains a group of particles and correspondingweights.
Some of these particles may have been covered in 8�. 
us,
we have to use a MERGE operation to get a new 8� by
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Set � = 0,80 ← {5�0, 7�0}�=1:�0 % Initialization
For � = 1 : max �,8� ← 6<!! %We totally have max � + 1 observations
Foreach {5��−1, 7��−1} ∈ 8�−1
8 � ←> 6<!!
If ���−1 = 1
Foreach �� !� which satis�es that �(�� !� | ���−1) > 0

Foreach  ⃗ =  1,  2, . . . ,  � which satis�es that∏�
=1�( 
 | �� !�, ���−1) > 0
Foreach �� which satis�es that �(���−1,  ⃗, ��) > 0
Foreach �� which satis�es that �(�� | ��, �� !�) > 0

7� = 7��−1 ⋅ � (�� | ��, �� !�) ⋅ � (���−1,  ⃗, ��) ⋅
�
∏

=1

� ( 
 | �� !�, ���−1) ⋅ � (�� !� | ���−1)

5� ← {�� !�, ��, ��} % A temp memory of a particle

⟨5	� , 7
	
� ⟩ ← LOOKUP(5�, 8 �) % Find out the record which is equal to 5� in8 �

If ⟨5	� , 7
	
� ⟩ is not empty

⟨5	� , 7
	
� ⟩ ← ⟨5	� , 7

	
� + 7�⟩ %Merge the weight

Else
PUT(8 �, ⟨5�, 7�⟩) % Add a new record in8 �

Else

�� !� ←> �� !��−1
Foreach  ⃗ =  1,  2, . . . ,  � which satis�es that∏�
=1�( 
 | �� !�, ���−1) > 0

Foreach �� which satis�es that �(���−1,  ⃗, ��) > 0
Foreach �� which satis�es that �(�� | ��, �� !�) > 0

7� = 7��−1 ⋅ � (�� | ��, �� !�) ⋅ � (���−1,  ⃗, ��) ⋅
�
∏

=1

� ( 
 | �� !�, ���−1)

5� ← {�� !�, ��, ��} % A temp memory of a particle

⟨5	� , 7
	
� ⟩ ← LOOKUP(5�, 8 �) % Find out the record which is equal to 5� in8 �

If ⟨5	� , 7
	
� ⟩ is not empty

⟨5	� , 7
	
� ⟩ ← ⟨5	� , 7

	
� + 7�⟩ %Merge the weight

Else
PUT(8 �, ⟨5�, 7�⟩) % Add a new record in map

MERGE(8�, 8 �)
UPDATE(8�)
PRUNE(8�)
NORMALIZE(8�)
DELETE(8�−1)

Algorithm 1: Goal inference based on the marginal �lter under the framework of Dec-POMDM.

merging8 � and the existing8�. In this process, if a particle
5� in 8 � has not appeared in 8�, we directly put 5� and
its corresponding weight 7� into 8�; otherwise, we need to
add 7� into the weight of the record in 8� which covers 5�.
Similarly, an indexmatrix can also be used to save computing
time in the MERGE operation.

Under the framework of Dec-POMDM, we update 7�� by

7�� = 7�� ⋅ � (�� | ���) , (4)

where 7�� and 5�� = ⟨�� !��, ���, ���⟩ are the weight and particle,

respectively, "th of record in 8�, and �(�� | ���) is the
observation function for the recognizer in the model. 
e
details of PRUNE operation can be found in [13], and we can
use the existing pruning technique directly in our paper.

5. Experiments

5.1.
ePredator-Prey Problem. 
epredator-prey problem is
a classic problem to evaluate multiagent decision algorithms

[9]. However, it cannot be used directly in this paper because
predators have only one possible goal. 
us, we modify the
standard problem by setting more than one prey on the map,
and our aim is to recognize the real target of the predators
at each time. Figure 2 shows the grid-based map in our
experiments.

In our scenario, the map consists of 5 × 5 grids, two
predators (red diamonds: Predator PX and Predator PY),
and two preys (blue stars: Prey PA and Prey PB). 
e two
predators select one of the preys as their common goal and
move around to capture it. As is shown in Figure 2, the
observation of the predators is not perfect: a predator only
knows the exact position of itself and others which are in the
nearest 8 grids. If another agent is out of its observing range,
the predator only knows its direction (8 possible directions).
For the situation in Figure 2, Predator PX observes that none
is near to itself, Prey PB is in the north, Prey PA is in the
southeast, and Predator PY is in the south; Predator PY
observes that none is near itself, Prey PB and Predator PY
are in the north, and Prey PA is in the east. In each step,
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Figure 2: 
e grid-based map in the predator-prey problem.

all predators and preys can get into one of the four adjacent
grids (north, south, east, and west) or stay at the current
grid. When two or more agents try to get into the same
grid or try to get out of the map, they have to stay in the
current grid. 
e predators can achieve their goal if and only
if both of them are adjacent to their target. Additionally, the
predators may also change their goal before they capture a
prey. 
e recognizer can get the exact positions of the two
preys, but its observations of the predators are noisy.We need
to compute the posterior distribution of predators’ goals with
the observation trace.


e modi�ed predator-prey problem can be modeled by
the Dec-POMDM. Some important elements are as follows:

(a) �: the two predators;

(b) �: the positions of predators and preys;

(c) �: �ve actions for each predator, moving into four
directions and staying;

(d) �: Prey PA or Prey PB;

(e) Ω: the directions of agents far away and the real
positions of agents nearby;

(f) �: the real positions of preys and the noisy positions
of predators;

(g) �: predators getting a reward +1 once they achieve
their goal; otherwise, the immediate reward is 0;

(h) ℎ: in�nite horizons.

With the de�nition above, the e�ects of predator’s actions
are uncertain, and the state transition function depends on
the distribution of preys’ actions. 
us, actions of preys
actually play the role of events in discrete dynamic systems.

5.2. Settings. In this section, we provide additional details for
the scenario and the parameters used in the policy learning
and inference algorithm.

(A) 
e Scenario. 
e preys are senseless: they select each
action with equal probability. Initial positions of agents are

uniform. 
e initial goal distribution is that �(�� !0 =
CD���) = 0.6 and �(�� !0 = CD���) = 0.4.

We simplify the goal termination function in the follow-
ing way: if predators capture their target, the goal is achieved;
otherwise, the predators change their goal with a probability
of 0.05 for every state.
e observation for the recognizer �� ∈
� reveals the real position of each predator with a probability
of 0.5, and the observation may be one of 8 neighbors of the
current grid with a probability of 0.5/8. When the predator is
on the edge of the map, the observation may be out of the
map. 
e observed results of the agents do not a�ect each
other.

(B) Multiagent Reinforcement Learning. 
e discount factor
is � = 0.8. 
e predator selects an action  � given the

observation ��� with a probability

� ( � | ���) =
exp (H (���,  �) /J)

∑5�=1 exp (H (���,  �) /J)
, (5)

where J = 0.1 is the Boltzmann temperature. We set J >
0 as a constant, which means that predators always select
approximately optimal actions. In our scenario, the H-value
converges aer 750 iterations. In the learning process, if
predators cannot achieve their goal in 10000 steps, we will
reinitialize their positions and begin next episode.

(C) 
e Marginal Filter. In the MF inference, a particle
consists of the joint goal, the goal termination variable, and
the positions of predators and preys. Although there are 25
possible positions for each predator or prey, aer getting
new observation, we can identify the positions of preys and
there are only 9 possible positions for each predator. 
us,
the number of possible values of particles at one step never
exceeds 9 × 9 × 2 × 2 = 324 aer the UPDATE operation. In
our experiments, we simply set the max number of particles
as 324; then we do not need to prune any possible particles,
whichmeans that we exploit an exact inference.We alsomake
use of real settings in the Dec-POMDM and the real policies
of predators in the MF inference.
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Table 1: 
e details of two traces.

Trace number Durations Targets Interrupted

1
� ∈ [1, 7] Prey PA Yes

� ∈ [8, 13] Prey PB No

4 � ∈ [1, 10] Prey PB No

5.3. Results and Discussion. With the learned policy, we run
the simulation model repeatedly and generated a test dataset
consisting of 100 traces. 
ere are 11.83 steps averagely in one
trace, and the number of steps in one trace varies from 6
to 34 with a standard deviation of 5.36. We also found that
the predators changed their goals for at least once in 35%
of the test traces. To validate our method and compare it
with baselines, we did experiments on three aspects: (a) to
discuss the details of the recognition results obtained with
our method, we computed the recognition results of two
speci�c traces by our method; (b) to show the advantages of
theDec-POMDM inmodeling, we compared the recognition
performances when the problem was modeled as a Dec-
POMDM and as an HMM; (c) to show e�ciency of the MF
under the framework of the Dec-POMDM, we compared the
recognizing performances when the goal was inferred by the
MF and the PF.

In the second and the third parts, performances were
evaluated by statistic metrics: precision, recall, and �-
measure. 
eir meanings and computation details can be
found in [31]. 
e value of the three metrics is between 0
and 1; a higher value means a better performance. Since
these metrics can only evaluate the recognition results at
a single step, and traces in the dataset had di�erent time
lengths, we de�ned a positive integer O (O = 1, 2, . . . , 5).

e metric with Omeans that the corresponding observation

sequences are {�	∈1:100�∈1:⌈
∗����ℎ�/5⌉}. Here, �
	
�∈1:⌈
∗����ℎ�/5⌉ is the

observation sequence from time 1 to time ⌈O ∗ !����ℎ	/5⌉ of
the $th trace, and !����ℎ	 is the length of the $th trace. And
we need to recognize �� !� for each observation sequence.

us, metrics with di�erent O show the performances of
algorithms in di�erent phases of the simulation. Additionally,
we regarded the destination with largest probability as the
�nal recognition result.

(A)
e Recognition Results of the Speci�c Traces. To show the
details of the recognition results obtained with our method,
we selected two speci�c traces from the dataset (number 1
and number 4).
ese two traces were selected because Trace
number 1 was the �rst trace where the goal was changed
before it was achieved, and number 4 was the �rst trace
where the goal was kept until it was achieved. 
e detailed
information about the two traces is shown in Table 1.

In Trace number 1, predators selected Prey PA as their
�rst goal from � = 1 to � = 7. 
en, the goal was changed
to Prey PB, which was achieved at � = 13. In Trace number 4
predators selected Prey PB as their initial goal. 
is goal was
kept until it was achieved at � = 14. Given the real policies
and other parameters of the Dec-POMDM including �, 
,
Υ, , �, �, and �, we used the MF to compute the posterior

distribution of goals at each time. 
e recognition results are
shown in Figure 3.

In Figure 3(a), the probability of the real goal (Prey
PA) increases fast during the initial period. At � = 3, the
probability of Prey PA exceeds 0.9 and keeps a high value until
� = 7. When the goal is changed at � = 8, our method has
a very fast response, because predators select highly certain
joint actions at this time. In Figure 3(b), the probability of
the false goal increases at � = 2, and the probability of
the real goal (Prey PB) is low at �rst. 
e failure happens
because the observations support that predators selected joint
actions with small probability if the goal is Prey PB. Anyway,
the probability of the real goal increases continuously and
exceeds that of Prey PA aer � = 5. With the recognition
results of the two speci�c traces, we conclude that the Dec-
POMDM and MF can perform well regardless of the goal
change.

(B) Comparison of the Performances of the Dec-POMDM and
HMMs. To show the advantages of the Dec-POMDM, we
modeled the predator-prey problem as thewell-knownHMM
as a baseline. In the HMM, we set the hidden state 5 as the
tuple ⟨�� !, ��, ��, ��, ��⟩, where ��, ��, ��, and �� are
positions of Predator PX, Predator PY, Prey PA, and Prey
PB, respectively. 
e observation model for the recognizer in
the HMM was the same as that in the Dec-POMDM. 
us,
there were 25 × 24 × 23 × 22 × 2 = 607,200 possible states
in this HMM, and the dimension of the transition matrix
was 607200 × 607200. Since the state space and transition
matrix were too large, an unsupervised learning method
such as Balm-Welch algorithmwas infeasible in this problem.
Instead, we used a simple supervised learning: counting the
state transitions based on labeled training datasets. With
the real policies of predators, we run the simulation model
repeatedly and generated �ve training datasets. 
e detailed
information of these datasets is shown in Table 2.


e datasets HMM-50, HMM-100a, and HMM-200a
were generated in a random and incremental way (HMM-
100a contains HMM-50, and HMM-200a contains HMM-
100a). Since HMM-100a and HMM-200a both covered 79%
of traces of the test dataset, which might cause an over�tting
problem, we removed the traces covered by the test dataset
in HMM-100a and HMM-200a and compensated them by
extra traces. In this way, we got new datasets HMM-100b
and HMM-200b which did not cover any trace in the test
dataset. With these �ve labeled datasets, we estimate the
transition matrix by counting state transitions. 
en, the MF
was used to infer the goal. However, in the inference process,
we may reach some states that have not been explored in the
training dataset (HMM-200a only explores 492,642 states,
but there are totally 607,200 possible states). In this case, we
assumed that the hidden state would transit to a possible
state with a uniform distribution. 
e rest of the parameters
in the HMM inference were the same as those in the Dec-
POMDM inference. We compare performances of the Dec-
POMDMand theHMMs.
e recognitionmetrics are shown
in Figure 4.

Figure 4 shows that comparing the results of the Dec-
POMDM and the HMMs trained by di�erent datasets is
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Figure 3: Recognition results of two speci�c traces computed by the Dec-POMDM and MF.

Table 2: Information of training datasets for the HMM.

Name of the dataset Number of traces
Number of

explored states
Percentage of traces in the test dataset

covered by the training dataset

HMM-50 50,000 279,477 0

HMM-100a 100,000 384,623 79

HMM-100b 100,000 384,621 0

HMM-200a 200,000 492,642 79

HMM-200b 200,000 492,645 0

similar in terms of precision, recall, and �-measure. More
precisely, HMM-200a had the highest performance; HMM-
100a performed comparable to our Dec-POMDM, but Dec-
POMDM performed better aer O = 4; HMM-50 had the
worst performance. Generally, there was no big di�erence
between performances of the Dec-POMDM, HMM-100a,
andHMM-200a, even though the number of traces inHMM-
200a was twice as large as that in HMM-100a. 
e main rea-
son is that the training datasetswere over�tted.Actually, there
was a very serious performance decline aer we removed
the traces covered in the test dataset from HMM-200a and
HMM-100a. In this case, HMM-200b performed better than
HMM-100b, but worse than our Dec-POMDM. 
e results
in Figure 4 showed that (a) our Dec-POMDM performed
well on three metrics, almost as well as the over�tted trained
model; (b) the learnedHMMsu�ered an over�tting problem,
and there will be a serious performance decline if the training
dataset does not cover most traces in the test dataset.


e curves of HMM-50, HMM-100b, and HMM-200b
also showed that when we model the problem through
the HMM, it may be possible to improve the recognition
performances by increasing the size of the training dataset.
However, this solution is infeasible in practice. Actually, the
dataset HMM-200a which consisted of 200,000 traces only
covered 81.13% of all possible states, and only 71.46% of the
states in HMM-200a had been reached more than once.

us, we can conclude that HMM-200a will have a poor
performance if agents select actions with higher uncertainty.
Besides, there is no doubt that the size of the training dataset

will be extremely large if most states are reached a large
number of times. In real applications, it is very hard to obtain
a training dataset with so large size, especially when all traces
are labeled.

We also performed a Wald test over the Dec-POMDM
andHMMswith a di�erent training dataset to prove that their
recognition results came from di�erent distributions. Given
our test dataset, there were 100 goals to be recognized for
each value of O. Let �S be the set of samples obtained from
the Dec-POMDM; then we set �S� = 1 if the recognition
result of the Dec-POMDM is correct on the test case " (" =
1, 2, . . . , 100) and �S� = 0, otherwise; let �� be the set
of samples obtained from the baseline model (one of the
HMMs); then we set ��� = 1 if the recognition result of
the Dec-POMDM is correct on the test case " and ��� = 0,
otherwise. We de�ne ��� = �S� − ���, and let T = E(���) =
E(�S�) − E(���) = C(�S� = 1) − C(��� = 1); the null
hypothesis is T = 0, which means the recognition results
from di�erent models follow the same distribution. A more
detailed test process can be found in [32]. 
e matrix of �
values is shown in Table 3.


e � values in Table 3 show that recognition results of
theDec-POMDM follow di�erent distributions from those of
HMM-50, HMM-100b, and HMM-200b, respectively, with a
high con�dence. We cannot reject the null hypothesis when
the baseline is an over�tted trained model. 
e Wald test
results are consistent with the metrics in Figure 4. We also
performed the Wilcoxon test, and the test results showed the
same trend.



Discrete Dynamics in Nature and Society 11

HMM-50

HMM-100a

HMM-100b

HMM-200a

HMM-200b

Dec-POMDM

1 2 2.5 3 3.5 4 4.5 51.5

k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

re
ci

si
o

n

(a) Precision

HMM-50

HMM-100a

HMM-100b

HMM-200a

HMM-200b

Dec-POMDM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

1 2 2.5 3 3.5 4 4.5 51.5

k

(b) Recall

HMM-50

HMM-100a

HMM-100b

HMM-200a

HMM-200b

Dec-POMDM

1 2 2.5 3 3.5 4 4.5 51.5

k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
-m

ea
su

re

(c) �-measure

Figure 4: Recognition metrics of the Dec-POMDM and HMMs.

Table 3: 
e � values of the Wald test over the Dec-POMDM and HMMs.

O = 1 O = 2 O = 3 O = 4 O = 5
Dec-POMDM versus HMM-50 1 <0.01 <0.01 <0.01 <0.01
Dec-POMDM versus HMM-100 1 0.0412 0.0478 0.2450 <0.01
Dec-POMDM versus HMM-100b 1 <0.01 <0.01 <0.01 <0.01
Dec-POMDM versus HMM-200 1 0.3149 0.1929 0.4127 1

Dec-POMDM versus HMM-200b 1 <0.01 <0.01 <0.01 <0.01

(C) Comparison of the Performances of the MF and the
PF. Here, we exploited the PF as the baseline. 
e model
information used in the PF is the same as that in the MF.
We evaluated the PF with di�erent number of particles and
compared their performances to the MF. All inference was
done under the framework of Dec-POMDM.We have to note
that when the PF used weighted particles to approximate the
posterior distribution of the goal, it is possible that all weights
decrease to 0 if the number of particles is not large enough.
In this case, we simply reset all weights 1/Np to continue the
inference, where Np is the number of particles in the PF. 
e
recognition metrics of the MF and PF are shown in Figure 5.

In Figure 5, the red solid curve indicates themetrics of the
MF. 
e green, blue, purple, black, and cyan dashed curves

indicate the metrics of PF with 1000, 2000, 4000, 6000, and
16000 particles, respectively. All �lters had similar precision.
However, considering the recall and the �-measure, the MF
had the best performance, and the PFwith the largest number
of particles performed better than the rest of PF.We got these
results because an exact MF (without pruning step) is used
in this section, and the PF can approximate the real posterior
distribution better with more particles.

Similar to the testingmethod we used in Part (B), here we
also performed theWald test on theMF and PFwith di�erent
number of particles. 
e matrix of the � values is shown in
Table 4.


e null hypothesis is that the recognition results of the
baseline and the MF follow the same distribution. Generally,
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Table 4: 
e � values of the Wald test over the MF and PFs.

O = 1 O = 2 O = 3 O = 4 O = 5
MF versus PF-1000 1 0.0176 <0.01 <0.01 <0.01
MF versus PF-2000 1 0.3637 0.2450 0.0300 <0.01
MF versus PF-4000 1 1 0.0910 0.0412 0.0115

MF versus PF-6000 1 0.4127 0.1758 0.1758 0.0218

MF versus PF-16000 1 0.5631 0.0412 1 0.1531
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Figure 5: Recognition metrics of the MF and PF.

with larger O and smaller number of particles, we can
reject the null hypothesis with higher con�dence, which is
consistent with the results in Figure 5.

Since there was a variance in the results inferred by the
PF (this is due to the fact that the PF performs approximate
inference), we run the PFwith 6000 particles for 10 times.
e
mean value with 0.90 belief interval of the values of metrics
at di�erent O is shown in Figure 6.


e blue solid line indicates the mean value of the PF
metrics, and the cyan area shows the 90% belief interval.
We need to note that since we do not know the underlying
distribution of themetrics, an empirical distributionwas used
to compute the belief interval. At the same time, because we

run PF for 10 times, the bound of the 90% belief interval also
indicates the extremum of PF. We can see that the metrics
of the MF are better than the mean of the PF when O > 1,
and even better than the maximum value of PF except for
O = 4. Actually, the MF also outperforms 90% of the runs
of the PF at O = 4. Additionally, the MF only needs average of
75.78% of the time which is needed by the PF for inference at
each step. 
us, the MF consumes less time and has a better
performance than the PF with 6000 particles.

Generally, the computational complexities of the PF and
the MF are both linear functions of number of particles.
When there are multiple possible results of an action, the
MF consumes more time than the PF when their numbers of
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Figure 6: Metrics of the PF with 6000 particles and the MF.

particles are equal. However, since the MF does not duplicate
particles, it needs much less particles than the PF when the
state space is large and discrete. Actually, the number of
possible states in the MF aer UPDATE operation is never
more than 156 in the test dataset. At the same time, the PF has
to duplicate particles in the resampling step to approximate
the exact distribution, which makes it ine�cient under the
framework of Dec-POMDM.

6. Conclusion and Future Work

In this paper, we propose a novelmodel for solvingmultiagent
goal recognition problems of the Dec-POMDM and present
its corresponding learning and inference algorithms, which
solve a multiagent goal recognition problem.

First, we use the Dec-POMDM to model the general
multiagent goal recognition problem. 
e Dec-POMDM
presents the agents’ cooperation in a compact way; details
of cooperation are unnecessary in the modeling process. It
can also make use of existing algorithms for solving the Dec-
POMDP problem.

Second, we show that the existing MARL algorithm can
be used to estimate the agents’ policies in the Dec-POMDM
assuming that agents are approximately rational.
ismethod

does not need a training dataset and the state transition
function of the environment.


ird, we use the MF to infer goals under the framework
of the Dec-POMDM, and we show that the MF is more
e�cient than the PFwhen the state space is large and discrete.

Last, we also design a modi�ed predator-prey problem to
test our method. In this modi�ed problem, there are multiple
possible joint goals and agents may change their goals before
they are achieved. With this scenario, we compare our
method to other baselines including the HMM and the PF.

e experiment results show that the Dec-POMDM together
withMARL andMF algorithms can recognize themultiagent
goal well whether the goal is changed or not; the Dec-
POMDMoutperforms theHMM in terms of precision, recall,
and �-measure; and the MF can infer goals more e�ciently
than the PF.

In the future, we plan to apply the Dec-POMDM in more
complex scenarios. Further research on pruning technique of
the MF is also planned.

Competing Interests


e authors declare that there are no competing interests
regarding the publication of this paper.



14 Discrete Dynamics in Nature and Society

Acknowledgments


is work is sponsored by the National Natural Science
Foundation of China under Grants no. 61473300 and no.
61573369 andDFG research training group 1424 “Multimodal
Smart Appliance Ensembles for Mobile Applications.”

References

[1] G. Synnaeve and P. Bessière, “A Bayesian model for plan
recognition in RTS games applied to starcra,” in Proceedings of
the 7th AAAI Conference on Arti�cial Intelligence and Interactive
Digital Entertainment (AIIDE ’11), pp. 79–84, Stanford, Calif,
USA, October 2011.

[2] F. Kabanza, P. Bellefeuille, F. Bisson, A. R. Benaskeur, and
H. Irandoust, “Opponent behaviour recognition for real-time
strategy games,” in Proceedings of the 24th AAAI Conference on
Plan, Activity, and Intent Recognition, pp. 29–36, July 2010.

[3] F. Southey,W. Loh, and D.Wilkinson, “Inferring complex agent
motions from partial trajectory observations,” in Proceedings of
the 20th International Joint Conference on Arti�cial Intelligence
(IJCAI ’07), pp. 2631–2637, January 2007.

[4] M. Ramırez and H. Ge�ner, “Goal recognition over POMDPs:
inferring the intention of a POMDP agent,” in Proceedings of
the 22nd International Joint Conference on Arti�cial Intelligence
(IJCAI ’11), pp. 2009–2014, Barcelona, Spain, July 2011.

[5] E. Y. Ha, J. P. Rowe, B. W. Mott, and J. C. Lester, “Goal
recognition with markov logic networks for player-adaptive
games,” in Proceedings of the 7th AAAI Conference on Arti�cial
Intelligence and Interactive Digital Entertainment (AIIDE ’11),
pp. 32–39, Stanford, Calif, USA, October 2011.

[6] K. Yordanova, F. Krüger, and T. Kirste, “Context aware approach
for activity recognition based on precondition-e�ect rules,” in
Proceedings of the IEEE International Conference on Pervasive
Computing and Communications Workshops (PERCOM Work-
shops ’12), pp. 602–607, IEEE, Lugano, Switzerland, March 2012.

[7] Q. Yin, S. Yue, Y. Zha, and P. Jiao, “A semi-Markov decision
model for recognizing the destination of amaneuvering agent in
real time strategy games,” Mathematical Problems in Engineer-
ing, vol. 2016, Article ID 1907971, 12 pages, 2016.

[8] M. Wiering and M. van Otterlo, Eds., Reinforcement Learning:
State-of-the-Art, Springer Science and Business Media, 2012.

[9] B. Scherrer andC. François, “Cooperative co-learning: amodel-
based approach for solving multi-agent reinforcement prob-
lems,” in Proceedings of the 14th IEEE International Conference
on Tools with Arti�cial Intelligence (ICTAI ’02), pp. 463–468,
Washington, DC, USA, 2002.

[10] S. Seuken and Z. Shlomo, “Memory-bounded dynamic pro-
gramming for DEC-POMDPs,” in Proceedings of the 20th
International Joint Conference on Arti�cial Intelligence (IJCAI
’07), pp. 2009–2015, Hyderabad, India, January 2007.

[11] R. Nair, M. Tambe, M. Yokoo, D. Pynadath, and S. Marsella,
“Taming decentralized POMDPs: towards e�cient policy com-
putation for multiagent settings,” in Proceedings of the 18th
International Joint Conference on Arti�cial Intelligence (IJCAI
’03), pp. 705–711, Acapulco, Mexico, August 2003.

[12] M. Nyolt, F. Krüger, K. Yordanova, A. Hein, and T. Kirste,
“Marginal �ltering in large state spaces,” International Journal
of Approximate Reasoning, vol. 61, pp. 16–32, 2015.

[13] M. Nyolt and T. Kirste, “On resampling for Bayesian �lters in
discrete state spaces,” in Proceedings of the IEEE 27th Interna-
tional Conference on Tools with Arti�cial Intelligence (ICTAI ’15),
pp. 526–533, Vietri sul Mare, Italy, November 2015.

[14] C. L. Baker, R. Saxe, and J. B. Tenenbaum, “Action understand-
ing as inverse planning,” Cognition, vol. 113, no. 3, pp. 329–349,
2009.

[15] L. M. Hiatt, A. M. Harrison, and J. G. Traon, “Accommodating
human variability in human-robot teams through theory of
mind,” in Proceedings of the 22nd International Joint Conference
on Arti�cial Intelligence (IJCAI ’11), pp. 2066–2071, July 2011.
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