
1

A Decentralized Self-Adaptation Mechanism For
Service-Based Applications in The Cloud

Vivek Nallur, Rami Bahsoon

Abstract—Cloud computing, with its promise of (almost) unlimited computation, storage and bandwidth, is increasingly becoming the
infrastructure of choice for many organizations. As cloud offerings mature, service-based applications need to dynamically recompose
themselves, to self-adapt to changing QoS requirements. In this paper, we present a decentralized mechanism for such self-adaptation,
using market-based heuristics. We use a continuous double-auction to allow applications to decide which services to choose, amongst
the many on offer. We view an application as a multi-agent system, and the cloud as a marketplace where many such applications self-
adapt. We show through a simulation study that our mechanism is effective, for the individual application as well as from the collective
perspective of all applications adapting at the same time.

Keywords—Self-Adaptation, Market-Based, Multi-Agent Systems

✦

1 INTRODUCTION

Self-adaptation, as a concept, has been around for many
years, in several domains like biology, chemistry, logis-
tics, economics etc. Self-adaptivity in computer-based
systems is relatively newer. Some of the first references
to self-adaptive software systems are from [41], [35], [34]
and [31] (where they are referred to, as autonomic sys-
tems). By self-adaptivity in software systems, we mean
software that monitors itself and the operating environ-
ment, and takes appropriate actions when circumstances
change. In web-applications, service-oriented architec-
ture has often been used as a mechanism for achiev-
ing self-adaptivity [19]. Web-services allow for dynamic
composition, which enables applications to switch ser-
vices, without going offline. A common instance of using
web-services dynamically, is applications living on the
cloud, asking for computing power and bandwidth to
be scaled up or down, depending on demand. However,
one of the cloud’s major selling points, operational flex-
ibility is of little use, if applications (or organizations)
have to indicate at sign-up time, the kind of services that
they intend to use. On Amazon, for instance, a customer
specifies during sign up whether she wants a Hi-CPU
instance or a Standard On-Demand instance or a Hi-
Memory instance. This assumes that an application is
able to forecast its demand for computing and storage
resources accurately. However, this inability to forecast
is precisely what the cloud claims to address through
elasticity in computing power. This is not to say that
there are no flexible, demand-based pricing schemes
available. Amazon’s Spot Instances [29] is an example of
how cloud providers are trying to flexibly price their
services, in response to fluctuating demand over time.
Applications that can adapt to fluctuating prices will
be able to ensure a better return on investment. In the
future, we surmise that service-pricing will depend not
only on demand but also on additional attributes like

performance, availability, reliability, etc.
Current implementations of public clouds mainly focus
on providing easily scaled-up and scaled-down comput-
ing power and storage. We envisage a more sophisticated
scenario, where federated clouds with different special-
ized services collaborate. These collaborations can then
be leveraged by an enterprise to construct an application,
that is self-adaptive by changing the specific web-service
it utilizes. The notion of utilizing collaborative services
to satisfy a business need, is not new in itself. The
recognition of Agile Service Networks (ASN) that spring
up in modern business practices, is testament to this.
As ASNs mature and dynamic composition becomes the
norm, we posit that applications that are composed of
other applications will routinely adapt to changing QoS
requirements. In this paper, we propose a decentralized
mechanism to address the problem.

1.1 Problem Statement

Composite web-services are services that are composed
of other web-services. Several web-applications are made
by composing web-services together. The effective QoS
provided by such an application is a function of the QoS
provided by the individual web-services. Hence, if the
application wishes to exhibit a different level of QoS,
it can do so by changing its constituent web-services.
However this is not an easy task. Identifying the optimal
web-service, for each task that the application performs,
is a hard problem. To illustrate, consider an application
composed of five tasks, and its choices of web-services:
In Table 1, if the application wanted to opti-

mize on Price, the set of selected services would be
[S15, S21, S32, S41, S52]. On the other hand, if it wanted
to optimize on Latency, the selected services would be
[S11, S22, S34, S42, S54]. The calculations become more
difficult if the optimizations need to be done on mul-
tiple QoS simultaneously, for e.g., Latency and Price



2

Task Web-Service Latency Availability Price

S1 S11 100 0.95 105
S12 180 0.92 66
S13 230 0.79 65
S14 170 0.73 90
S15 250 0.96 60

S2 S21 200 0.98 58
S22 150 0.93 80
S23 200 0.97 65

S3 S31 250 0.96 70
S32 240 0.91 50
S33 230 0.79 65
S34 150 0.73 80
S35 210 0.89 68

S4 S41 260 0.94 59
S42 225 0.91 60

S5 S51 150 0.82 54
S52 140 0.71 49
S53 130 0.93 76
S54 120 0.73 81
S55 190 0.86 77

TABLE 1: Choice of services available

or Latency and Availability. As the number of tasks in
the workflow increase, the number of combinations also
increase correspondingly.
The problem arises from the fact, that for each of

these tasks (AbstractService) in the application’s work-
flow, there are several services (ConcreteService), that
can be used. Each of these ConcreteServices exhibits
different values of QoS, and each is priced differently.
Determining the best combination of services to achieve
the application’s overall target QoS, is an NP-Hard
problem [3]. There is a further complication. As dif-
ferent jobs arrive, depending on the priority and QoS
demanded, the application has to either scale up or
down, on each of those QoS attributes. Not only does
it have to re-calculate the best value-for-money services,
but the set of ConcreteServices that are available, also
change with time. Since these services (possibly) belong
to third-parties, they may or may not be available or,
are available with different QoS or, for a different price.
Thus, the application has to deal with all of these factors,
while adjusting to the changed demand for QoS. Self-
Adaptation, in this case, is the problem of dynamically
selecting services, from the pool of services currently
available. There are two conditions where an application
that has started off with a satisfactory level of QoS, needs
to start adapting:

1) External Adaptation Stimulus: When a QoS violation
is detected at any of the services, the application
needs to search for a new service to replace the
old one.

2) Internal Adaptation Stimulus: When the application’s
QoS target changes, the application needs to trigger
an adaptation, to ensure that its constituent services
are able to meet the target QoS level.

From the cloud provider’s perspective, any service that
could potentially be used by an application, but is idle
instead, represents lost revenue. According to [9], in
the future, the cloud provider will have to invest in

self-managing resource management models that can
adaptively service new QoS demands as well as exist-
ing QoS obligations. It is this scenario, of self-adaptive
applications on one side, and dynamic service provision
from the cloud provider on the other, that we address
in this paper. Current static models of provisioning and
pricing will prove inadequate, as self-adapting applica-
tions mature.

1.2 Contributions of this paper

In [38], we had proposed a preliminary design of a
market-mechanism for service-based application to self-
adapt to changing QoS requirements. In this paper, we
explicate on the adaptation mechanism, its design in
terms of implementation units, and its efficacy. In this
paper, we also detail the adaptive generation of bids, and
the decentralized mechanism for selection of services.
We then show that this approach scales to hundreds of
applications, with thousands of services being evaluated
and selected. We show that the services thus selected,
meet the QoS criteria of the application, and stay within
budget.

2 OUR APPROACH

We would like to create a mechanism that allows mul-
tiple applications, constructed across a federation of
clouds, to self-adapt. We chose a market-based approach
to self-adaptation, not only because it is decentralized,
but also due to its easy applicability to the problem do-
main. Services in the cloud are moving from a fixed-price
package to a more flexible, auction-based approach [29].
This enables a self-adaptive application to change the
QoS exhibited, by switching to a different ConcreteSer-
vice.

2.1 Market-Based Control
Market-Based Control (MBC) essentially involves mod-
elling the system as a marketplace, where self-interested
agents use economic strategies to compete for resources.
Self-interested competition, along with well-designed
utility functions, allow for a decentralized means of
decision making. These agents, via their competitive
need to get resources, perform a parallel search through
the space of decision points. MBC has been used in
several contexts, as a mechanism for computing a good
solution in a decentralized manner. Notable examples
include Clearwater’s bidding agents to control the tem-
perature of a building [16], Ho’s center-free resource
algorithms [52] and Cheriton’s extension to operating
systems to allow programs to bid for memory [25].
Wellman’s WALRAS system [49], which is highly dis-
tributed, reports high scalability. More examples include
distributed Monte-Carlo simulations [47], distributed
database design using market-methods for distributing
sub-parts of queries [45] and proportional-share resource
management technique [48]. All of these systems provide
evidence of market-based control being a good candidate
for distributed decision making.



3

2.2 Auctions

Auctions, specifically Double Auctions (DA), have in-
creasingly been studied in Computer Science, as a mech-
anism of resource allocation. Daniel Friedman [22] re-
ports on experiments where traders even with imperfect
information, consistently achieve highly efficient alloca-
tions and prices. The rise of electronic commerce natu-
rally creates a space for efficient exchange of goods, and
services. There has been much work on the design space
of market-institutions [51], [39], bidding strategies [17],
[43], agent-based implementations of traders [30], [26],
[27], [40], etc. Gupta et al [24] argue that network man-
agement, specifically for QoS issues, must be done using
pricing and market dynamics. According to them, the
flexibility offered by pricing mechanisms offers bene-
fits of decentralization of control, dynamic load man-
agement and effective allocation of priority to differ-
ent QoS attributes. The continuous-time variant of a
DA, called Continuous Double Auction (CDA), is used
in stock-markets and commodity exchanges around the
world [32]. In a CDA, the market clears continuously.
That is, instead of waiting for all bids and asks to be
made, matches are made as the bids and asks come in.
A new bid is evaluated against the existing asks and the
first ask that matches, is immediately paired off for a
transaction. A CDA is known to be highly allocatively
efficient [23], i.e., it achieves a very high percentage of all
the possible trades, between buyers and sellers. The most
important property of the work in [23], is that a CDA’s
efficiency results from the structure of the mechanism
used, rather than intelligence of the agents involved in
trading. This is a very important result, since it provides
us with encouragement regarding the efficiency of our
mechanism.

2.3 Use of MDA for QoS adaptation

We view an application as a directed graph of Ab-
stractServices. A ConcreteService corresponds to a piece
of functionality described by the AbstractService, along
with associated QoS levels. Thus, a data-mining appli-
cation can be visualised as a directed graph of abstract
data-filtering service, a data-transformation service, a
clustering service and visualization service. The total
QoS actually exhibited by the application, is a function
of the individual QoS exhibited by each of the Concrete-
Services that have been used in the composition. We
design a marketplace that allows individual applications
to select ConcreteServices. The cloud is designed to be
an ultra-large collection of applications, web-services
and raw computing power. Given this large scale, any
solution that is implemented, must not rely on central
knowledge or coordination. A market populated with
self-interested trading agents is therefore suitable for
our purpose. The design of the market that we chose,
is the CDA. However, we are mindful of Eymann’s
criticism [21] with regard to implicit centralization of
auctions, and hence we create multiple double auctions

(MDA), for each AbstractService. That is, each Abstract-
Service is traded in multiple markets, and trading agents
can move amongst these markets to find the Concrete-
Service they need. Each market is homogeneous, in the
sense that all ConcreteServices trading in that market,
pertain to one AbstractService only. This is analogous to
commodity markets in the real world. Thus, in a market
for clustering web-services, each seller provides a Con-
creteService that performs clustering, but offers varying
performance and dependability levels. Varying levels of
QoS require different implementations, and depending
on the complexity of the implementations, will be either
scarce, or common. This leads to a differentiation in
pricing based on QoS levels.

2.3.1 Description of Agents
BuyerAgent: A trading agent that is responsible for
fulfilling one AbstractService. The BuyerAgent bids for,
and buys a ConcreteService. The amount that the Buyer-
Agent is prepared to pay is called the bid price and this
is necessarily less than or equal to its budget. The combi-
nation of bid price and the QoS attributes demanded, is
called the Bid.
SellerAgent: A trading agent that sells a ConcreteSer-
vice. A SellerAgent is responsible for only one Concrete-
Service. Based on demand and supply, the SellerAgent
adjusts the price at which it is willing to sell the Con-
creteService. The amount that a SellerAgent is prepared
to accept, is called the ask price. This is necessarily greater
than or equal to its cost. The combination of ask price and
the QoS attributes offered, is called the Ask.
MarketAgent: A trading agent that implements trading
rounds for a Market. It accepts Bids from BuyerAgents,
and Asks from SellerAgents. It performs matching of
Bids and Asks.
ApplicationAgent: An agent responsible for ensuring
that an application meets its QoS requirements. It
is responsible for distributing the budget, calculating
achieved QoS, and instructing BuyerAgents to start/stop
adaptation.

2.3.2 Structure of the Auction
A CDA works by accepting offers from both buyers and
sellers. It maintains an orderbook containing both, the
Bids from the buyers and the Asks from the sellers. The
Bids are held in descending order of price, while the
Asks are held in ascending order, i.e., buyers willing to
pay a high price and sellers willing to accept a lower
price are more likely to trade. When a new Bid comes
in, the offer is evaluated against the existing Asks in
the orderbook, and a transaction is conducted when the
price demanded by the ask is lower than the price the
Bid is willing to pay and all the QoS attributes of the
Ask are greater than or equal to all the QoS attributes in
the Bid. After a transaction, the corresponding Bid and
Ask are cleared from the orderbook.
Table 2 shows the state of the orderbook at some time

t0. Maximizing the number of transactions would lead to



4

Bids Asks

[B1, 107, ssl=yes, framerate=24fps, latency=99ms] [S1, 97, ssl=yes, framerate=24fps, latency=99ms]
[B2, 105, ssl=yes, framerate=32fps, latency=105ms] [S2, 98, ssl=no, framerate=24fps, latency=99ms]
[B3, 98, ssl=yes, framerate=24fps, latency=99ms] [S3,103,ssl=yes,framerate=32fps,latency=105ms]
[B4, 91, ssl=yes, framerate=24fps, latency=105ms] [S4, 105, ssl=yes, framerate=24fps, latency=99ms]
[B5, 87, ssl=yes, framerate=24fps, latency=110ms] [S5, 110, ssl=no, framerate=32fps, latency=99ms]

TABLE 2: Orderbook at time t0

Bids Asks

[B1, 107, ssl=yes, framerate=24fps, latency=99ms] [S1, 97, ssl=yes, framerate=24fps, latency=99ms]
[B2, 105, ssl=yes, framerate=32fps, latency=105ms] [S2, 98, ssl=no, framerate=24fps, latency=99ms]
[B3, 98, ssl=yes, framerate=24fps, latency=99ms] [S3, 103, ssl=yes, framerate=32fps, latency=105ms]
[B4, 91, ssl=yes, framerate=24fps, latency=105ms] [S4, 105, ssl=yes, framerate=24fps, latency=99ms]
[B5, 87, ssl=yes, framerate=24fps, latency=110ms] [S5, 110, ssl=no, framerate=32fps, latency=99ms]

TABLE 3: Orderbook at time t1

a possible set like: [B1−S4, B2−S3, B3−S1]. Calculating
this optimal set, however, quickly becomes infeasible as
the number of Bids and Asks increase, since the number
of pairwise comparisons increases exponentially. With
a CDA, the set of transactions is: [B1 − S1, B2 − S3].
This is so because a CDA evaluates Bids and Asks, as
they appear, and the first possible match is set up as
a transaction. Thus, [B1 − S1] is immediately matched
and removed from the orderbook, and then [B2−S3] is
matched. Since this procedure is carried out for every
offer (Bid/Ask) that enters the market, the only Bids
and Asks that remain on the orderbook are those that
haven’t been matched (figure 3) yet. This procedure is
much faster, and easily parallelizable. Although counter-
intuitive, it has been shown that even when buyers and
sellers have Zero-Intelligence, the structure of the market
allows for a high degree of allocative efficiency [23].
Zero-Intelligence refers to a strategy, where the agents in-
volved, do not consider any historical information about
trades, and nor do they possess any learning mechanism.
Thus, Zero-Intelligence marks the lower limit of the
efficiency of a CDA market.
There are many variations on the implementation of

a CDA, and each variation introduces changes in the
behaviour of both, markets as well as the trading agents.
We now list the structural axes of a CDA, and our
position on each of those axes:

1) Shout Accepting Rule: Bids and Asks are referred
to, as shouts. When a shout is received, the market
evaluates it for validity. If valid, a shout is inserted
in the appropriate place in the orderbook. The
most commonly used shout accepting rule is the
NYSE rule. According to the NYSE rule, a shout is
only accepted, if it makes a better offer than that
trader’s previous offer [46]. We modify this rule to
allow BuyerAgents to submit multiple Bids. This
modification allows the BuyerAgents to explore the
QoS-cost search space in a more efficient manner
(see section 2.4).

2) Information Revelation Rule: This refers to the
market information that is available to the BuyerA-

gents and the SellerAgents. In our case, all market
participants have access to the last k transactions.

3) Clearing Rule: The market can either clear contin-
uously, or at periodic time intervals. A market that
clears with periodic time interval of 1 time unit
is equivalent to clearing continuously. A market
that clears with a time interval of greater than 1,
is also called a Clearing House. As soon as an Ask
meets all the QoS constraints specified in a Bid,
and its ask-price≤ bid-price, a potential transaction
is identified. For a given Bid, all the Asks that
could be potential transactions are called Candi-
dateServices. The BuyerAgent is given the option
of choosing one amongst the CandidateServices,
while rejecting the rest. Again, this is a departure
from typical CDAs, but essential to our mechanism
(see section 2.5). Once a transaction takes place, the
corresponding Bid and Ask are deleted from the
orderbook.

4) Pricing Rule: This determines the price at which a
transaction takes place. The most commonly used
mechanism is k-Pricing. The value of k determines
which entity makes more profit, the buyer or the
seller. We use k = 0.5 (i.e., 0.5∗bid price+(1−0.5)∗
ask price) as the transaction price.

2.3.3 QoS Calculation

There are three types of QoS constraints that we consider
in our services:

1) Numeric: These constraints pertain to those QoS
attributes that are either numeric inherently (e.g.,
Cost) or, are easily reducible to a scale such that nu-
meric comparisons are possible (e.g. performance,
reliability, etc.)

2) Boolean: Refers to those QoS attributes that are
required to be definitely either present or absent
(e.g., secure socket layer support = yes/no)

3) Categoric: Refers to those QoS attributes that are
again required to be definitively picked out of a
list, but may end up being more than one (e.g.,



5

possible values for framerate = 16fps, 24fps, 32fps,
48fps and acceptable ones are: 32fps and 48 fps)

We also allow each constraint to be tagged as hard or
soft. This allows the application to indicate that it prefers
a certain QoS attribute value, but that the value is not
critical. For example, an application might specify a
boolean QoS attribute, say SSL support = yes, as a soft
constraint. This means that given a choice, it would
prefer a CandidateService which has SSL support, but
it is not an essential criterion. On the other hand, an
application in the banking domain could specify SSL as
a hard constraint, which means that a ConcreteService
that does not support SSL, is not a CandidateService at
all.
Stochastic Workflow Reduction: Depending on the

pattern of the Workflow involved in the application,
the same individual services with their corresponding
QoS values, could result in differing end-to-end QoS
exhibited by the application. To compute the QoS metrics
for the entire application, we employ Stochastic Workflow
Reduction(SWR) [11]. Using this method, the Workflow
is viewed as a graph which is reduced using a series of
reduction steps. Each time a reduction rule is applied,
the structure of the graph changes, and the QoS metrics
for the affected nodes are aggregated. The reduction
continues in an iterative manner, until only one task
remains in the graph. The QoS metrics aggregated for
this task represents the QoS metrics corresponding to the
application Workflow. In Figure 1, we see that a set of
parallel tasks t1, t2, t3...tn, a split task (ta) and a join task
(tb) can be reduced to a sequence of three tasks, ta, tN , tb.
The incoming transitions of task ta and the outgoing
transitions of task tb remain the same. The reduction for
the QoS of the parallel tasks is computed as follows:

Cost(tN ) =
∑

1≤i≤n

Cost(ti) (1)

Reliability(tN) =
∏

1≤i≤n

Reliability(ti) (2)

t

t

t

t

t t t t

(a)

(b)

a b

1

2

n

Na b

Fig. 1: Reduction of parallel tasks(reproduced from [12]).
For additive QoS, the attributes are summed up, while
for multiplicative QoS, the attributes are multiplied to-
gether

Thus, if the cost for each of the parallel tasks (t1...tn)
is 5 units each, then the cost of tN would be 5 ∗ n.

Likewise, if the reliability for (say) three tasks (t1...t3)
is 0.9 each, then the reliability for tN would be 0.729.
Similar reduction formulae [12] are used for other types
of tasks, such as sequential tasks, loop tasks, conditional
tasks, etc.

2.3.4 Decomposing End-to-End constraints

QoS constraints are usually specified on an application-
wide basis. That is, performance for an entire application
(end-to-end) or a cost constraint that must be met. To
achieve these constraints in a decentralized manner, we
decompose the end-to-end constraints, into local ones
(the reverse process of SWR). Local constraints can can
be handed over to individual BuyerAgents. Amongst
the three type of QoS that we consider, Boolean and
Categoric constraints do not need to be decomposed at
all. They are given to all agents, as is. For example, if
there is a Boolean constraint like: For all services,
SSL=yes, then every agent can be given the constraint,
without any processing. On the other hand, Numeric
constraints like total cost ≤ C need to be decom-
posed on a per-Agent basis. Numeric constraints are
decomposed, as shown in Algorithm 1. It may happen
that none of the markets offer a service with the QoS
needed to satisfy a particular application’s constraints.
In such a case, the mechanism terminates, and signals
a failure. The ApplicationAgent does not take decisions
about overriding constraints imposed by the application
designer. We assume that the human designer modifies
the constraints, or takes any other suitable action.

Algorithm 1: Decomposition of Numeric Constraints

Data: Numeric Constraints Limit
Result: Numeric Constraints Decomposed
begin

foreach Agent a do
Find list of markets (M) corresponding to
afx

Choose m ∈M

Register in m

a←− mlast k transactions

foreach ω ∈ NumericConstraints do
calculate aω m

low , aω m
median, aω m

high

foreach ω ∈ NumericConstraints do
Apply SWR ←− 〈ωf1 , ωf2 , ωf3 . . .〉
if constraintMet then

foreach Agent a do
aω

bid ∝ SWRω

Choose different m

if allMarketsExhausted then
TerminateWithFailure



6

2.4 Adaptation Using Bid Generation

Bids are the mechanism by which BuyerAgents explore
the search space of QoS-cost combinations that are
available. Depending on the bids, potential transactional
matches are identified by the MarketAgent. Thus, there
needs to be a systematic way to generate Bids. The
relevant aspects in a Bid are given in Table 4.
The most important part of deciding on a value for a

QoS attribute, is the constraint on each attribute. If the
constraint is hard, then, in each of the generated Bids,
the value inserted into the Bid will remain the same.
Else, the value inserted into the Bid is varied. The varied
values depend on the type of QoS attribute. The rules for
generating QoS values, on the basis of type of attribute
are as follows:
Boolean: In case of soft constraints, two Bids will be
generated for a particular QoS attribute. For example,
for QoS attribute SSL support, one Bid is generated with
the value: yes and another with the value: no
Categoric: In case of soft constraints, the number of Bids
will depend on the number of acceptable alternatives.
For example, for QoS attribute framerate, the acceptable
alternatives are: 24fps and 32fps. Therefore, two Bids will
be generated.
Numeric: In case of soft constraints, the number of Bids
will be three. The BuyerAgent makes one Bid at its target
value, one at the median value obtained from the market,
and the third Bid at the mid-point between the target and
the median value.
Thus, the total number of Bids that a BuyerAgent

generates is given by:

Num(buyerbids) =2 ∗Num(BooleanQoS)

∗Num(AcceptableAlternatives)

∗3 ∗Num(NumericQoS) (3)

Thus, if a BuyerAgent has the QoS and preferences as
given in Table 5:
The total number of bids that it would generate would

be:

Num(buyerbids) = 2 ∗Num(SSLSupport)

∗Num(FrameRate)

∗3 ∗Num(Latency)

= 2 ∗ 2 ∗ 3

= 12

2.5 Decentralized Decision-Making Using Ask-
Selection

According to the market mechanism that we have out-
lined, a BuyerAgent can make multiple Bids. This is
how it searches the space of possible services, for its
stated budget. There might be multiple Asks in the
market that match these multiple Bids. To deal with this,
the market mechanism moves on to its second-stage,

where the BuyerAgent has to select amongst the Can-
didateServices. Since the mechanism for Bid-generation
precludes Bids that will violate hard constraints, none
of the CandidateServices will violate the application’s
hard constraints either. The task facing the BuyerAgent,
is to choose amongst the possible transactions, in such
a way that the decision maximizes the possible benefits,
while taking care to minimize the possible downsides.
We use a multiple criteria decision making approach
called PROMETHEE [6]
The BuyerAgent needs to rank all the CandidateSer-
vices, that have been returned by the MarketAgent as
a potential transaction. Thus, for a transaction set (TS),
the BuyerAgent needs to select one CandidateService
that it will actually transact with. The preference of
CandidateService a over CandidateService b is calculated
by aggregating the preferences over each QoS attribute
(and its weightage). The preference value (π) of a Can-
didateService a over CandidateService b is calculated as:

π(a, b) =

n
∑

i=1

Pi(a, b)wi (4)

where P is a preference function over a QoS attribute
(see example in equations 8, 9 and 10). Using this prefer-
ence value, each CandidateService is ranked vis-a-vis the
other CandidateServices in the possible transaction set.
Ranking is done by calculating the positive outranking
(ø+) and the negative outranking (ø−):

ø+(a) =
∑

x∈TS

π(a, x) (5)

ø−(a) =
∑

x∈TS

π(x, a) (6)

Finally, the net outranking (ø) is created to get a
complete ranking of all the CandidateServices:

ø(a) = ø+(a)− ø−(a) (7)

Choice of the CandidateService is based on the follow-
ing heuristic:

1) Based on the net outranking flow, choose the best
CandidateService.

2) If there is a tie, choose the cheaper CandidateSer-
vice out of the pool of best CandidateServices

3) If using cost still leads to a tie, choose randomly
amongst pool of best CandidateServices

2.6 A Worked-out Example

Suppose that the MarketAgent returns the 4 Asks (as
shown in Table 7), as possible transaction matches.
Ranking amongst multiple asks is done on a per-QoS

attribute basis. That is, each ask is ranked on each QoS
attribute.
This effectively means that CandidateServices will be

evaluated on their QoS attributes as follows:

1) In case of a boolean attribute, a CandidateService
A will be preferred over CandidateService B, if



7

Category Value

Types of QoS attributes Boolean, Categoric and Numeric
Constraint on each attribute Hard, Soft
Direction on each attribute Maximize, Minimize, N.A.
Bid Price Numeric

TABLE 4: Elements in a Bid

Name Type Median Target Direction

SSL Support Boolean No Yes/No N.A.
FrameRate Categoric 24fps 24fps, 32fps Maximize
Latency Numeric 99ms 95ms Minimize
Budget Hard Constraint (From Market) 100 N.A.

TABLE 5: QoS preferences for a BuyerAgent

Attribute Value

Bid-Price 80
SSL Yes
Framerate 24fps
Latency 99

Attribute Value

Bid-Price 80
SSL No
Framerate 32fps
Latency 99

TABLE 6: Sample Bids

Attribute Value

Ask-Price 74
SSL Yes
Framerate 24fps
Latency 99

(a) CandidateService A

Attribute Value

Ask-Price 78
SSL Yes
Framerate 24fps
Latency 95

(b) CandidateService B

Attribute Value

Ask-Price 80
SSL No
Framerate 24fps
Latency 90

(c) CandidateService C

Attribute Value

Ask-Price 76
SSL Yes
Framerate 32fps
Latency 92

(d) CandidateService D

TABLE 7: Asks returned by MarketAgent as potential transactions

it has a desired boolean value. Else, there is no
preference.

2) In case of a categoric attribute, a CandidateService
A will be preferred over CandidateService B, if
the categoric value of A is better by k over the
categoric value of B. Else, there is no preference.
The value of k is adjusted based on whether the
attribute is a hard constraint or a soft constraint.
For hard constraints, k is taken to be zero, i.e., the
CandidateService with the better categoric value is
strictly preferred over the other.

3) In case of a numeric attribute, a CandidateService
A will be increasingly preferred over Candidate-
Service B, as the difference between their numeric
value approaches some m. After m, A is strictly
preferred. Again, the value of m is adjusted based
on whether the attribute is a hard constraint or a
soft constraint.

The preference functions for the three QoS attributes
can be given as follows:

Pssl(x) =

{

0 if x = (ssl = no),

1 if x = (ssl = yes)
(8)

Pframerate(x) =

{

1

32
x if x < 32fps,

1 if x ≥ 32fps
(9)

Platency(x) =











0 if x > 103ms,
1

2
if 103 > x > 95ms,

1 if x ≤ 95

(10)

Based on the preference functions given (in 8, 9 and
10), we can calculate the relative values of the 4 Candi-
dateServices, as given Table 9 Once we have a relative

TABLE 8: Values of π(xi, xj)

A B C D

A — 0 + 0 + (-0.5) 1 + 0 + (-0.5) 0 + (-0.25) + (-0.5)
B 0 + 0 + 0.5 — 1 + 0 + 0 0 + (-0.25) + 0
C (-1) + 0 + 0.5 (-1) + 0 + 0 — (-1) + (-0.25) + 0
D 0 + 0.25 + 0.5 0 + 0.25 + 0 1 + 0.25 + 0 —



8

per-attribute value, we can calculate the outranking val-
ues based on equations 5, 6 and 7 (see Table 9).

A B C D

ø+ 0.5 1.5 0 2.25

ø− 1.25 0.25 2.75 0

ø -0.75 1.25 -2.75 2.25

TABLE 9: Calculation of outranking values

It is clear from Table 9, that CandidateService D is the
best amongst the potential transactions, and Candidate-
Service C is the worst. The BuyerAgent now accepts the
transaction with CandidateService D, and rejects all the
others.

2.7 Post-Transaction

The BuyerAgent reports back to the ApplicationAgent,
the cost and QoS being made available for the
transaction. The ApplicationAgent then performs a
SWR calculation to ensure that the QoS of the service
being bought, does not violate any of the application’s
end-to-end constraints. Note that the ApplicationAgent
needs to calculate SWR for the numeric constraints
only. The other types of constraints (boolean and
categoric) are specified in the bid prepared by the
BuyerAgent, and therefore do not need checking. This
greatly reduces the computational effort required on the
part of the Application agent. The best case scenario,
from a computational perspective, is when all the
QoS attributes of the Application are either boolean
or categoric. However, in the worst case scenario, all
the QoS attributes could be numeric. In this case, it
has to perform an SWR calculation for each of the
QoS attributes and the distribution of computation to
BuyerAgents is minimal.

In Figure 2, we show the various steps in the CDA as
activities carried out by the principal agents.

2.8 Re-starting Conditions

Once an application reaches a satisfactory level of QoS,
all its agents will withdraw from the market. The agents
will re-enter the market, only in case of an adaptation
stimuli. There are two kinds of adaptation stimuli:

1) External Stimuli: When a QoS violation is detected
at any of the CandidateService, the ApplicationA-
gent informs the BuyerAgent that it needs to re-
start its search for a new CandidateService. This
event is not propagated to all the BuyerAgent,
but only to the particular one responsible for that
AbstractService.

2) Internal Stimuli: When the application’s end-to-
end QoS target or available budget changes, the
ApplicationAgent informs all of its BuyerAgents,
and restarts the adaptation. The agents stay in the

Fig. 2: Activity diagram for principal agents

adaptation phase, until the stopping criteria are
met.

Both these stimuli occur at different time scales. The
external check for QoS violation is a continuous check
and concerns itself with performance of the web-service
across relatively shorter periods of time. The internal
stimulus, on the other hand, typically happens when
budgets for operation change drastically or external
events cause change in performance or reliability re-
quirements. This happens at relatively rarer intervals.
Hence, typically once an application reaches close to its
desired level of QoS, the BuyerAgents stop trading.

2.9 Design and Implementation

We call our implementation of the proposed mechanism,
clobmas (Cloud-based Multi-Agent System). We docu-
ment clobmas using the object-oriented paradigm for all
of the internal components of an agent. Thus, we show
the static structure of the system through package, com-
ponent and class diagrams. We show agent-interaction
using Agent-UML (AUML). We envision our mechanism
as a middleware, between service-based applications
and multiple SaaS clouds. In Figure 3, we show clobmas
as a middleware between two OpenStack-based clouds
and SOA-based applications. Note that OpenStack1 is
currently an IaaS cloud solution. We envision the ad-
dition of a UDDI-based Service Registry communicating
with the Cloud Controller, to enable OpenStack to serve
services as well.

2.9.1 Architectural Style
The design of clobmas is based on the publish-subscribe
architectural style. This style was chosen for its de-

1. www.openstack.org



9

SOA-based
Application A

SOA-based
Application B

OpenStack Layer

Market-based
Middleware Layer

Application Layer

Compute
Controller

Network
Controller

Volume
Controller

Scheduler
Controller

Cloud
Controller

Service
Registry

Compute
Controller

Network
Controller

Volume
Controller

Scheduler
Controller

Cloud
Controller

Service
Registry

BuyerAgent BuyerAgent BuyerAgent BuyerAgent

SellerAgent SellerAgent SellerAgent SellerAgent

MarketAgent MarketAgent

Event-based communication

<<Agent>> <<Agent>> <<Agent>> <<Agent>>

<<Agent>> <<Agent>>

<<Agent>> <<Agent>> <<Agent>> <<Agent>>

<<Agent>> Trading Agent

Service-based
Application

Subsystems
inside OpenStack

Advanced MessageQueue
Protocol

Method Call

Fig. 3: Clobmas as middleware between SOA-based applications and two OpenStack-based clouds

coupling properties, such that each communicating en-
tity in the system is independent of every other. This
fits in well, with our notion of agents acting on the
basis of their own goals and their environment, in a
decentralized manner. Each type of agent is both an
event publisher and an event subscriber. That is, each
ApplicationAgent generates events that describe when
the application’s QoS constraints have changed, when
the budget has changed, etc. These events are subscribed
to, by BuyerAgents belonging to that application. The
BuyerAgents, for their part, publish events relating to the
market that they are registered with. Similarly, the Mar-
ketAgents publish events relating to the start of trading,
transaction events, etc. The event-based paradigm fits
well with the QoS monitoring schemes, as well. Both
Zeng [55] and Michlmayer [37] use events to monitor
and communicate SLA violations.

2.9.2 Class and Package Diagram
The class diagram shows the static relationships between
the main entities in clobmas. The Bid and Ask interfaces
shown in Figure 4 are implemented by the BuyerA-
gent and SellerAgent respectively, with the MarketAgent
implementing both of them. The packages with the
stereotype “subsystems”, marked as Nova and Glance,
belong to OpenStack.

2.9.3 Activity Diagram

The most difficult part of getting all the agents in an
MAS to solve a problem, is the problem of communi-
cation. The design of the communication protocol de-
termines how much communication happens, at what
times and how much computational effort it takes to
communicate. If the agents communicate too little, then
there is a danger of the MAS failing to solve the problem
it was created for. On the other hand, if too much
communication takes place, then a lot of wastage occurs,
not only in terms of bandwidth but also in computa-
tional cycles and time. Thus, while communication is a
fundamental activity in an MAS, depicting this in UML
is difficult. We document the communication steps of our
mechanism through Agent-UML (AUML) diagrams.
In the following figures, we show the communication for
an application with two AbstractServices, A and B, and
its corresponding BuyerAgents and the MarketAgent.
The Setup Phase (Figure 5) is composed of two calcula-
tions done by the ApplicationAgent and, two multicast
messages to the application’s BuyerAgents. The two
calculations involve decomposing the application’s end-
to-end constraints into local constraints and, computing
the budget that each BuyerAgent will receive.

More figures showing the various scenarios of com-



10

Application

{leaf}

AgentStrategy

+calc_next_bid()

«implementation class»

ZIP

Buyer

«refines»

«implementation class»

Buyer

ConcreteService

«refines»

«signal»

Constraints_Changed_Event«uses»

«signal»

TransactionEvent

+calc_next_bid()

«implementation class»

ZIP

Seller

«refines»

«implementation class»

Market

ConcreteService

«refines»

«uses»

Seller

ConcreteService

«refines»

«uses»

«uses»

Register

Bid

«uses»

Ask

«uses»

«uses»

«uses»

«subsystem»

MetricComputationEngine

«signal»

FailureEvent

«metaclass»

AbstractService

«uses»

«subsystem»

Nova-api

«uses»

«uses»

1 *

«subsystem»

Queue

«subsystem»

Nova-compute

«signal»

Accept

«uses»

«uses»

«uses»

«subsystem»

Glance-api

«subsystem»

Glance-registry

«uses»

«uses»

«subsystem»

Nova-network

«subsystem»

Nova-volume

«uses»
«uses»

Fig. 4: Class and package diagram of clobmas and OpenStack subsystems



11

Buyer_A Market_A Application Market_B Buyer_B 

local_constraints local_constraints

local_endowment local_endowment

Setup Phase 

ref
Decompose_Constraints

ref
Compute_Endowment

Fig. 5: Setup phase for an application with two AbstractServices A & B

munication between the agents are shown in Appendix
A.

2.10 Monitoring

Monitoring the actual QoS exhibited during runtime by
the CandidateService, is beyond the scope of the system.
We assume that all the agents agree on the monitor-
ing of a CandidateService, by a third-party mechanism.
This could be market-specific or domain specific. The
monitoring of QoS cannot be done by our mechanism,
since it needs to be neutral, and trusted by both parties:
BuyerAgent and SellerAgent. The BuyerAgent needs to
know whether the SellerAgent’s service is providing the
QoS that it promised, and the SellerAgent needs to know
that the BuyerAgent’s application is not abusing the
service.

3 EVALUATION

3.1 The Current Scenario

The current form of service-selection is provider-driven.
That is, in all commercial clouds, the cloud provider uses
a posted-offer mechanism. A posted-offer is a form of
market where the supplier posts a certain price on a take-
it-or-leave-it basis. Thus, on Amazon’s elastic cloud com-
pute (EC2), there are several services that are functionally
identical, but priced differently. This price differentiation
exists due to different QoS being exhibited by these
services. In Table 10, we show a slice of Amazon’s
pricing for its On-Demand Instances. Depending on the
type of job envisioned, customers purchase a basket of
computational power from Amazon. However, currently,
there is no mechanism to automatically switch from one
kind of On-Demand Instance to another. Customers have
to forecast the type of demand for their application in
advance, and appropriately chose their package from
Amazon. Any application that desires to use a partic-
ular service, has to pay the posted price. There exists
no mechanism to negotiate/bargain with Amazon, on
pricing or QoS of the services being offered. This has the
very obvious effect of customers either over-provisioning
or under-provisioning for their actual demand. If an

Association Rule Mining

Clustering

Data Filtering VisualizationJob Submission Cross-Validation

Fig. 6: BizInt’s workflow constructed using composite
services from the hosting cloud

application under-provisions, then it risks losing cus-
tomers due to lack of QoS. On the other hand, if it over-
provisions, it loses money due to lack of productive use.
In both cases, the customer faces a loss.

3.2 Empirical Study

BizInt, a small (fictional) startup company creates a
new business intelligence mining and visualization ap-
plication. It combines off-the-shelf clustering algorithms
with its proprietary outlier detection and visualization
algorithms, to present a unique view of a company’s
customer and competitor ecosystem. In order to exhibit a
high level of performance, it decides to host its applica-
tion in the cloud. Also, instead of reinventing the wheel,
it uses third-party services (for clustering, etc.) that are
also hosted in the same cloud. As seen in figure 6, BizInt
uses composite web services (Data Filtering, Clustering,
Association Rule Mining and Cross-Validation) from the
cloud, along with its own services (Job Submission,
Outlier Detection and Visualization) to create a com-
plete application. Soon BizInt discovers that different
jobs emphasize different QoS. Some jobs want data to
be processed as fast as possible, others require a high
amount of security and reliability. In order to exhibit
different QoS, BizInt needs to dynamically change its
constituent services.
SkyCompute is a new (fictional) entrant to the field of
Cloud Computing. It wants to compete with Amazon,
3Tera, Google, Microsoft and other established cloud-
providers. In order to attract cost and QoS-conscious
customers, SkyCompute will have to differentiate its
cloud from the others. It plans to target the Software-As-
A-Service market. Instead of providing specialist infras-
tructural services (like Amazon) or application frame-



12

Linux/UNIX usage Windows usage
Standard On-Demand Instances

Small (default) $0.085 per hour $0.12 per hour
Large $0.34 per hour $0.48 per hour
Extra Large $0.68 per hour $0.96 per hour

Micro On-Demand Instances
Micro $0.02 per hour $0.03 per hour
Hi-Memory On-Demand Instances

Extra Large $0.50 per hour $0.62 per hour
Double Extra Large $1.00 per hour $1.24 per hour
Quadruple Extra Large $2.00 per hour $2.48 per hour

TABLE 10: On-Demand Instance Pricing on Amazon EC2

work services (like Google and Microsoft),it is plan-
ning to provide generically useful services like indexing,
clustering, sorting, etc. Like most cloud providers, it
plans to provide services with different QoS levels, so
that multiple types of clients can be attracted to use it.
To differentiate itself, SkyCompute plans to provide an
adaptive framework, so that companies like BizInt can
change their constituent services, dynamically.

3.3 Qualitative Criteria

Thus, clobmas must fulfill the following criteria:

1) Allows customers like BizInt to create adaptive
applications

2) Generates a higher utilization of services than the
posted-offer model currently followed (for Sky-
Compute)

3.4 Quantitative Criteria

Since, SkyCompute is an ultra-large collection of ser-
vices, clobmas must be able to scale to large num-
bers of applications and ConcreteServices. Since there
is no public data about the kinds of workflows hosted
on commercial clouds, and their corresponding service
choices, we made assumptions about the variables in-
volved in dynamic service composition. We make these
assumptions based on conversations with performance
consultants at Capacitas Inc., and numbers gleaned from
the literature review.
We summarize the operational ranges that clobmas is

expected to deal with, in Table 11

Variable affecting performance From Lit. Review Target Goals

Number of AbstractServices 10 20
Number of CandidateServices 20 50
Number of QoS attributes 3 10
Number of markets 1 10

TABLE 11: Operational range for scalability goals

3.5 Experimental Setup

Although open-source cloud implementations like
OpenStack2, and Eucalyptus3 are freely available

2. www.openstack.org
3. http://www.eucalyptus.com/

for download, they are primarily targetted at the
Infrastructure-As-A-Service market. Modifying these im-
plementations for our purposes (to introduce the notion
of markets, respond to transaction events, etc.), would
be expensive in terms of time. In the same vein, us-
ing simulators such as CloudSim would require major
modifications, to those toolkits. CloudSim is a fairly new
toolkit, and does not have the ability to explore market
mechanisms in a sophisticated manner [7].
Software: In this scenario, we wrote our own simulator
in Python (v. 2.6.5), using a discrete-event simulation
library, SimPy4. The operating system in use, was 64-
bit Scientific Linux.
Hardware: All experiments were run on an Intel Dual-
cpu Quad-Core 1.5Ghz workstation, with 4MB of level-1
cache and 2GB of RAM.
Generating Randomness: We use Monte Carlo sampling
to draw QoS values for each of the services in the market
and for the QoS values demanded by the applications. A
critical factor in ensuring the goodness of sampling used
for simulations, is the goodness of the pseudo-random
number generator (PRNG). We use the Mersenne Twister,
that is known to be a generator of very high-quality
pseudo-random numbers [36]. We use this generator due
to the fact it was designed with Monte Carlo and other
statistical simulations in mind. 5

Reporting: All results are reported as an average of a
100 simulation runs. Each simulation reported, unless
otherwise specified, was run with the following pa-
rameters given in Table 12. In the section on scalability
(subsection 3.8), we stress the mechanism by scaling up
variables to the target goals given in Table 11.

System Parameter Value

AbstractServices in Workflow 10
CandidateServices per AbstractService 20
QoS attributes 3
Number of markets per CandidateService 1
Tolerance Level (for numeric QoS) 0.1
Applications simultaneously adapting 300

TABLE 12: System parameters and their standard values

4. http://simpy.sourceforge.net/
5. For a k-bit word length, the Mersenne Twister generates an almost

uniform distribution in the range [0, 2k
− 1]



13

3.6 Methodology

We simulate 300 applications, each application consisting
of randomly generated workflows trying to achieve
their desired QoS levels, within a given budget. The
budget that each application gets, acts as a constraint
and the application’s constituent BuyerAgents can never
bid above their budgets. Each application generates
a random level of QoS that it must achieve. Once an
application achieves its required QoS, it withdraws from
trading until an internal or external stimulus occurs. We
model the probability of a QoS service violation based
on a study by Cloud Harmony [1].

3.7 Results

There are two perspectives from which to evaluate our
mechanism, BizInt’s and SkyCompute’s perspective.
We present both perspectives, with an emphasis on
SkyCompute’s view since it provides a better idea on
the scalability of our mechanism 6

3.7.1 BizInt’s Perspective

From BizInt’s perspective, a cloud provider that enabled
applications to self-adapt at the QoS level would be
ideal. BizInt understands that a typical adaptation pro-
cess does not guarantee an optimal result. But, even
so, a self-adaptive mechanism would be a step-up from
the current mechanism of manually selecting the service
to be used. It evaluates the efficacy of the adaptive
mechanism by two measures:

1) How close to the desired QoS level does the adap-
tive mechanism reach?

2) How long does it take for an application to achieve
its desired QoS?

Close to desired QoS: Like most research on dynamic
service composition, we evaluate the goodness of a
particular set of services, by means of a utility function.
We use the application’s targetted end-to-end QoS as the
benchmark, against which the currently achieved QoS
is measured. The application’s target QoS is normalized
and summed across all the QoS that it is interested in.
This is taken to be the ideal utility level. The achieved QoS
is fed through the same process, to attain the achieved
utility level. Calculation of utility is done by summing
up the value(s) of QoS. Hence, if w denotes the weight
for a particular QoS, K be the set of QoS, and V (x) be
the value function, then:

Utility =

K
∑

k=1

wk ∗ V (k) (11)

where
ωk ∈ R

1
0

6. Code for the simulation available at:
http://www.cs.bham.ac.uk/∼vxn851/multiple-DA-sim.tar.bz2

The difference between the ideal utility level and achieved
utility level is called the quality gap. Each application
defines a tolerance level, that specifies the magnitude
of quality gap that is acceptable. If the quality gap
is within the tolerance level, the application is said
to be satisfied. We measure over a trading period, the
number of rounds that the application is satisfied.

Time to Satisfaction: In the absence of a deterministic
solution (and therefore a deterministic notion of time),
we must contend ourselves with evaluating whether the
adaptive algorithm is ‘fast-enough’. The natural unit of
time in clobmas, is a trading round. We measure how
many trading rounds, application takes to be satisfied,
from the start of an adaptation event. An adaptation
event occurs when an application notices that the quality
gap is beyond the tolerance level. Thus, the start of
the simulation defines an adaptation event, since all
applications start off without any achieved utility level.
In Figure 7, we see an average application’s achieve-

ment of QoS levels. The application starts off with a
quality gap of minus 3. But it quickly adapts to the
QoS demanded and reaches the tolerance zone, in about
20 trading rounds. From this point on, the application
stays satisfied. The application is satisfied for 280 out
of 300 trading rounds. We see that the achieved utility
level does not stay constant. Instead, internal adapta-
tion events cause the application to seek out different
services. However, it stays within the tolerance zone.
In Figure 7, we show the adaptation occurring under
conditions of normal distribution of QoS demand and
supply in the cloud.

Fig. 7: Utility gained by adaptation by a single applica-
tion

To compare the goodness of trading in a CDA market,
we contrast its use in a posted-offer market.
Posted Offer: This type of mechanism refers to a situ-
ation where a seller posts an offer of a certain good at
a certain price, but does not negotiate on either. That is,

http://www.cs.bham.ac.uk/~vxn851/multiple-DA-sim.tar.bz2


14

the buyer is free to take-it-or-leave-it. In such a scenario,
the probability that an application will find services, at
the bid-price decreases.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Trading rounds

10

9

8

7

6

5

4

3

2

1

0

1

2

3

4

5

6

7

8

9

A
ch

ie
v
e
m

e
n
t 

o
f 

re
q
u
ir

e
d
 Q

o
S

Ideal level of QoS

Tolerance Zone

Fig. 8: Utility gained by a single application in a posted
offer market

In Figure 8, we see that the application is able to
adapt and acquire the QoS that it requires. It is obvious
from the two figures, the application is able to reach
the tolerance zone a lot quicker in Figure 7, than in
Figure 8. In fact, in the posted offer market, we see that
the application takes 140 rounds to reach the tolerance
zone, while in the CDA market, the application is able to
reach its tolerance zone in under 20 rounds of trading.
This difference can be attributed to the fact that since
the sellers in a posted-offer market do not change their
price, the buying agents have to search a lot longer to
find sellers that they are able to trade with. In a CDA,
the search process is much faster, since both the buyers
and the sellers adjust their Bids and Asks.

CDA PostedOffer

Number of rounds satisfied 282 160
Time to reach QoS 18 140

TABLE 13: Comparative performance of adaptation in
CDA vis-a-vis Posted Offer

3.7.2 SkyCompute’s Perspective
SkyCompute would like to ensure that any mechanism
that it offers for self-adaptation results in high utilization
of its services. We define market satisfaction rate as
a measure of the efficiency of the mechanism. Market
satisfaction rate is the percentage of applications that
are satisfied with their QoS achievement. A satisfied
application would withdraw from trading and use the
service for a relatively long period of time. The more
the number of applications that are satisfied, the more
the number of services from SkyCompute that are being
utilized. Thus, market satisfaction rate is a measure that

SkyCompute would like to maximize.
As a baseline, we first implement the Zero-Intelligence
mechanism, as this represents the lower limit of the effec-
tiveness of the CDA mechanism. The Zero-Intelligence
scheme consists of agents randomly making bids and
asks, with no history or learning or feedback(see figure
9). As expected, it performs quite poorly, with a market
satisfaction rate of about 10-20%. Clobmas, on the other
hand, achieves a much higher rate of market satisfac-
tion(see Figure 10).

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280
Trading rounds

0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
ta

g
e
 o

f 
a
p
p
lic

a
ti

o
n
s 

su
cc

e
ss

fu
lly

 a
d
a
p
te

d
u
si

n
g
 Z

e
ro

-I
n
te

lli
g
e
n
ce

Aggregate view of all applications

Fig. 9: Efficiency of adaptation in a CDA market with
Zero Intelligence

On the other hand, we see (in figure 10) that with
adaptive bids, the number of applications that are able
to adapt rise to about 85% of the total market. This is
a huge improvement with a very small improvement in
the intelligence of the agents.

Fig. 10: Efficiency of adaptation in a CDA market

Quite similar to the CDA, the posted-offer also per-
forms well (approx 70% market satisfaction rate). In this
case, the sellers never adjust their prices, but the buyers
do.



15

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Trading rounds

0

10

20

30

40

50

60

70

80

90

100
P
e
rc

e
n
ta

g
e
 o

f 
a
p
p
lic

a
ti

o
n
s 

su
cc

e
ss

fu
lly

 a
d
a
p
te

d
Aggregate view of all applications

Fig. 11: Efficiency of adaptation in a Posted Offer market

3.8 Scalability Requirements for SkyCompute

There are no commonly accepted/standard definitions
of scalability, in self-adaptive, multi-agent systems. To
alleviate this, we use a definition of scalability from
[20]: a quality of software systems characterized by the causal
impact that scaling aspects of the system environment and
design have on certain measured system qualities as these
aspects are varied over expected operational ranges.
According to this definition, when aspects of the en-
vironment change, they have an impact on the system
qualities. In our case, the system quality that we want
to measure is performance, measured as the amount of
time taken to reach a defined level of market satisfaction
rate. Although clobmas using a double-auction is better
than clobmas using a posted offer, SkyCompute would
like to know if this mechanism scales well. To investigate
this, we pick a level of market satisfaction rate, that
is higher than posted-offer, and measure how long it
takes to achieve this level. The adaptation process can
be highly dependent on many variables. In this section,
we tease out how each of these variables affect the time
taken for adaptation. To this end, we present the time
taken by the CDA market to achieve an 80% market
satisfaction rate, while varying each of these variables.
AbstractServices Vs. CandidateServices: Arguably,

these are the variables that change most often from
application to application. Every application has a dif-
ferent workflow and therefore, a different number of
AbstractServices. As time passes, applications that have
met their QoS will retire from the market, and new ap-
plications will come in. This changes the orderbook from
the demand side. Also, the number of CandidateServices
is most susceptible to change. As time passes, some
CandidateServices will no longer be available, and new
ones come into the market. This changes the orderbook
from the supply side.
We perform curve-fitting to analyze the growth of

10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

400

CandidateServices
per AbstractService

T
im

e 
to

 a
da

pt
(in

 s
ec

on
ds

)

 

 

1 AbstractService
3 AbstractServices
5 AbstractServices
10 AbstractServices

Fig. 12: CandidateServices increase

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

AbstractServices in Workflow

T
im

e 
to

 a
da

pt
(in

 s
ec

on
ds

)

 

 

10 CandidateServices per AbstractService
30 CandidateServices per AbstractService
50 CandidateServices per AbstractService

Fig. 13: AbstractServices increase in Workflow

the graphs. In the worst case, the polynomial growth
of Time-to-MSR(y) when AbstractServices(x) increase, is
given by

y = −0.0361x3 + 4.7619x2 − 5.4985x + 3.8978 (12)

Again, in the worst case, the polynomial growth of
Time-to-MSR (y) when CandidateServices (x) increase,
is given by

y = 0.0012x3 − 0.0611x2 + 8.2678x− 16.6664 (13)

From Equation 12 and Equation 13, we see that Clob-
mas is more sensitive to the number of CandidateSer-
vices than to the number of AbstractServices (see Figures

10

20

30

40

50

0

2

4

6

8

10
0

50

100

150

200

250

300

350

400

CandidateServices
per AbstractService

AbstractServices
per Workflow

T
im

e 
ta

ke
n 

to
 a

da
pt

(in
 s

ec
on

ds
)

Fig. 14: Both AbstractServices and CandidateServices
increase



16

12, 13 and 14). Although, both equations are cubic in
nature, the cubic term in Equation 12 is negative. This
indicates that it grows slower than Equation 13. This
makes intuitive sense, since the increase in AbstractSer-
vices merely increases the number of BuyerAgents.

CandidateServices Vs. QoS attributes: In the follow-
ing figures (Figure 15 and 16), we see that increasing
CandidateServices and QoS attributes, affect the time-to-
MSR in slightly different ways. There is a difference in
the slope of the lines, when QoS attributes are increased
(Figure 17).

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

T
im

e 
ta

ke
n 

to
 a

ch
ie

ve
 Q

oS
(in

 s
ec

s)

 

 

5 CandidateServices
10 CandidateServices
15 CandidateServices
20 CandidateServices

Fig. 15: QoS increase

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

CandidateServices per AbstractService

T
im

e 
ta

ke
n 

to
 a

ch
ie

ve
 a

da
pt

at
io

n
(in

 s
ec

s)

 

 

1 QoS per AbstractService
3 QoS per AbstractService
5 QoS per AbstractService
7 QoS per AbstractService
9 QoS per AbstractService

Fig. 16: CandidateServices increase

We see from Figure 17 that the slope of QoS axis
is greater than that of CandidateServices. That is, time
taken for adaptation increases faster when QoS attributes
increase, as compared to the number of CandidateSer-
vices.

In the worst case, the polynomial describing the
growth of Time-to-MSR (y) as QoS attributes (x) increase,
is given by

y = 0.0303x4 − 0.7769x3 + 6.4554x2 − 14.4945x + 25.7250
(14)

Whereas, the polynomial describing the growth of
Time-to-MSR (y) as CandidateServices (x) increase, is
given by

y = 0.0030x2 + 2.3721x + 2.4722 (15)

Equations 14 and 15 indicate that it is preferable to
increase CandidateServices, than QoS attributes.

0 2 4 6 8 10 12 14 16 18

0

2

4

6

8

10

0

10

20

30

40

50

60

Number of Candidate Services per Abstract Service

QoS per Abstract Service

T
im

e 
(in

 s
ec

)
fo

r 
ad

ap
ta

tio
n

Fig. 17: Both CandidateServices and QoS increase

3.8.1 The Cost of Decentralization

As discussed in [21], an auction-based mechanism, by
default, leads to a centralized mechanism. The auction-
eer becomes a single point of failure, and thus leads to
decreased robustness. This can be remedied by introduc-
ing multiple auctioneers. In clobmas, we use multiple
markets for each AbstractService. This ensures that even
if one market is non-functional, the others continue to
function. Decentralization of markets comes at a cost.
BuyerAgents have to choose which market to place their
bids, to place them in multiple markets or a single
market. Placing bids in multiple markets increases the
chances of getting Candidate Services, but it also places
a greater computational load on the BuyerAgent in
terms of decision making. We currently choose markets
randomly.
CandidateServices Vs. Number of Markets: Does de-
centralization affect time taken for adaptation or number
of CandidateServices? In other words, should clobmas
increase the number of CandidateServices available per
market? Or would it be better to increase the number of
markets?

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

Markets per CandidateService

T
im

e 
ta

ke
n 

to
 a

ch
ie

ve
 Q

oS
(in

 s
ec

s)

 

 

1 CandidateService per AbstractService

3 CandidateServices per AbstractService

5 CandidateServices per AbstractService

7 CandidateServices per AbstractService

10 CandidateServices per AbstractService

Fig. 18: Markets increase

The polynomial describing the growth of Time-to-MSR
(y), as number of Markets increase (x), is given by

y = 8.3745x + 0.0800 (16)



17

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

CandidateServices per AbstractService

T
im

e 
ta

ke
n 

to
 a

ch
ie

ve
 Q

oS
(in

 s
ec

s)

 

 
1 market per CandidateService
3 markets per CandidateService
5 markets per CandidateService
7 markets per CandidateService
10 markets per CandidateService

Fig. 19: CandidateServices increase

0
2

4
6

8
10

0
2

4
6

8
10

0

20

40

60

80

100

Number of ConcreteServices 
per AbstractService

Number of Markets 
per AbstractService

Fig. 20: Both Candidate Services and Markets increase

The polynomial describing the growth of Time-to-MSR
(y), as number of CandidateServices increase (x), is given
by

y = 7.5972x + 6.8222 (17)

We see from Equation 16 and Equation 17 that
the slopes of both lines are linear. That is, increasing
the number of CandidateServices vis-a-vis increasing
the number of markets does not make a significant
difference to the time-to-adapt.

QoS attributes Vs. Number of Markets:Next we look
at how QoS attributes affect the time-to-adapt vis-a-vis
the number of markets.

1 2 3 4 5 6
50

100

150

200

250

300

350

400

450

500

550

Number of QoS

T
im

e 
ta

ke
n 

fo
r 

A
da

pt
at

io
n

(in
 s

ec
s)

 

 

1 Market
4 Markets
7 Markets
9 Markets

Fig. 21: QoS increase

In the worst case, the polynomial describing the
growth of Time-to-MSR (y) as number of Markets (x)

1 2 3 4 5 6 7 8 9
50

100

150

200

250

300

350

400

450

500

550

Number of Markets
per CandidateService

T
im

e 
ta

ke
n 

fo
r 

A
da

pt
at

io
n

(in
 s

ec
s)

 

 

2 QoS
4 QoS
6 QoS

Fig. 22: Markets increase

1
2

3
4

5
6

7
8

1

2

3

4

5

6
0

100

200

300

400

500

600

Number of QoS
per CandidateService

Number of Markets
per CandidateService

T
im

e 
ta

ke
n 

fo
r 

A
da

pt
at

io
n

(in
 s

ec
s)

Fig. 23: Both QoS attributes and markets increase

increase, is given by

y = −0.4595x2 + 65.0048x + 26.6683 (18)

In the worst case, the polynomial describing the
growth of Time-to-MSR (y) as QoS attributes (x) increase,
is given by

y = −0.1103x4+2.3380x3−14.9209x2+42.0606x+465.6389
(19)

The increase in QoS attributes causes Time-to-MSR
increase in a biquadratic way, as opposed to increase in
number of Markets (Equation 18 and Equation 19).

3.9 Discussion

3.9.1 Strengths
A big strength of our mechanism is the high scalability
that it offers. As service-oriented applications mature
and cloud offerings become more standardized, it is easy
to envision applications being composed out of several
third-party services. In such a scenario, a mechanism
that scales up to accommodate many concrete services
is essential. None of the variables increased the time-to-
MSR in an exponential manner. Rather, all of them are
low-order polynomials.
Since the decision-making over which concrete service
to instantiate is done in a de-centralized manner, the
individual agents are simple and easy to implement.
Our mechanism implements a continuous adaptation
scheme, thus leaving the system administrator free to
attend to more critical tasks.



18

3.9.2 Weaknesses

The introduction of decentralization in the adaptivity
process, while increasing robustness, also brings an in-
creased cost in terms of time, and communication. There
are two steps which are particularly affected. These are:

1) Decomposition of Constraints: Depending on the
type of QoS constraints, the time taken to decom-
pose them, changes. If the constraints are boolean
or categoric, then the time complexity for k con-
straints in an application with n AbstractServices,
is O(n· k). However, if the constraints are numeric,
then the time increases substantially. Since each
market is queried for its historical data of trans-
actions. The complexity of decomposition now be-
comes O((n· k·m) + (k·SWR)), where m is the
number of markets and SWR is the complexity
of applying Stochastic Workflow Reduction on the
application structure [12].

2) Calculation of achieved utility: To calculate the
total achieved utility, all the BuyerAgents commu-
nicate the QoS of the CandidateService that they
selected, to the ApplicationAgent. The Application-
Agent applies SWR to the numeric QoS attributes,
to check if all constraints are met. This costs O(n)
in time, whereas the application of SWR depends
on the structure of the application itself [12].

As the number of BuyerAgents for an application in-
crease, or the number of markets increase (more likely),
the time complexity of decomposition will increase.

3.9.3 Threats to Validity

Lack of Optimality: The market mechanism does not
achieve optimum, either from the individual perspective
or from the aggregate perspective. Since the self-adaptive
mechanism merely attempts to satisfy the application’s
QoS targets, it does not try to achieve optimal set of con-
crete services, even if available. Rather, it stops adapting
as soon as all QoS constraints are met.
Lack of Trust: In any market-oriented mechanism,

there is the issue of trust between the buyer of a service
and the seller of a service. How does the seller reliably
ensure that the buyer does not make more calls to the
web-service, than the number agreed upon? How is the
provenance of calls established? How does the buyer
ensure that the seller provides the QoS, that it has
promised in the SLA? What legal/technical recourse
does it have, in case of violation of contract? These
are all issues that are still open research problems.
Ramchurn et al [42] provide a good overview of these
problems in the specific case of multi-agent systems.
However, a good amount of research needs to be
done, before all issues are acceptably resolved to the
satisfaction of both, buyer and seller.

Simulation Effects: Any simulation model is a con-
strained version of reality, and as such, results from
simulations should always be taken with a pinch of salt.

Given this caveat, simulations help us carry out con-
trolled experiments that would be too cumbersome or
expensive to carry out in reality. Simulation toolkits are a
valuable mechanism for testing out new, and sufficiently
different ideas. CloudSim [8] is a toolkit that aims to
make simulations of clouds easier to perform, and in the
ideal case, we would have liked to implement our ideas
on it. However, at its current level, it is insufficient to
capture market mechanisms and multiple types of QoS
attributes. In future, we aim to port our market-model
to CloudSim, so as to enable richer modelling.

4 RELATED WORK

4.1 Dynamic Composition of Web-services

There has been a plethora of work on dynamic compo-
sition of web-services. Much early work has been done
in AgFlow [54] on Quality-Aware composition of web-
services [5] and [53]. The authors propose a per-service-
class optimisation as well as a global optimisation using
integer programming.
[10] proposed a genetic algorithm based approach where
the genome length is determined by the number of
abstract services that require a choice to be made. Con-
straints on QoS form a part of the fitness function, as do
cost and other QoS attributes. A big advantage of GA-
based approach is that it is able to handle non-linear
constraints, as opposed to integer programming. Also,
it is scalable when the number of concrete services per
abstract service increase.
[2] propose an interesting mechanism for cutting through
the search space of candidate web-services, by using sky-
line queries. Skyline queries identify non-dominated web-
services on at least one QoS criteria. A non-dominated
web-service means, a web-service that has at least one
QoS dimension in which it is strictly better than any
other web-service and at least equal on all other QoS
dimensions. Determining skyline services for a particular
abstract service, requires pairwise comparisons amongst
the QoS vectors of all the concrete services. This process
can be expensive if the number of candidate concrete
services is large. Alrifai et al. consider the case where
the process of selecting skyline services is done offline.
This would lead to an inability to adjust to changing
conditions of available services and their associated QoS
values. [56] propose an interesting method to achieve
a good set of concrete services, using Ant Colony Op-
timization (ACO). ACO involves creating virtual ants
that mimic the foraging behaviour of real ants. The
search space of optimal concrete services is modelled as
a graph, with sets of concrete services as vertices and
edges being all the possible connections between differ-
ent concrete service sets. The ants attempt to complete a
traversal of the graph, dropping pheromones on the edge
of each concrete service visited. The path through the
graph that accumulates the most pheromones represents
the near-optimal path of services to use. Our approach
differs from the above approaches in two respects:



19

1) Consideration of time as a factor: In practice,
the optimal set of concrete services may not be
available at the time instant that an application
is searching. The set of service providers changes
with time, as does the set of service consumers.
This means that the optimal matching of service
providers to consumers changes with time. The
approaches above do not take this into account.

2) Optimality not considered: Due to the infeasibility
of computing the optimal set (being NP-hard), we
concentrate on finding a good solution, rather than
an optimal one. A good solution is one that does
not violate any QoS constraints and meets the cost
constraint within a certain margin.

4.2 Self-Adaptation

Applications that use dynamic service composition
should be able to continuously monitor their current QoS
levels and make adjustments when either the demand
for QoS changes or the cost constraint changes. The
application should thus be able to respond to both
internal as well as external stimuli, to trigger a change
in its constituent web-services. This change needs to
be both timely, as well as correct, i.e., the new set of
services should not violate any of the application’s QoS
constraints, and the change should happen as fast as
possible.
Self-Adaptation in software systems is the achievement
of a stable, desirable configuration, in the presence of
varying stimuli. These stimuli may be environmental (in
the form of workload, failure of external components,
etc.) or internal (failure of internal components, changed
target states, etc.). Given that the range of stimuli that
affect a software system is wide, Self-Adaptation has
come to mean an umbrella term that covers multiple
aspects of how a system reacts [44]:

1) Self-Awareness
2) Context-Awareness
3) Self-Configuring
4) Self-Optimizing
5) Self-Healing
6) Self-Protecting

However, most approaches to self-adaptation follow a
common pattern: Monitor – Analyze – Plan – Execute,
connected by a feedback loop. There are two approaches
to self-adaptation: centralized and de-centralized. In
a centralized self-adaptive system, the analysis and
planning part are concentrated in one entity. This form
of self-adaptation has the advantage of cohesiveness
and low communication overhead as compared to a
decentralized mechanism. The analysis and the plan can
be communicated to the effectors, and feedback from
obeying the plan is communicated back through the
monitors (or sensors). Rainbow [14] and The Autonomic
Manager [28] are classic examples of centralized self-
adaptation.
Decentralized self-adaptation, on the other hand,

distributes the analysis, planning or the feedback
mechanism amongst different parts of the adapting
system. This automatically implies a communication
overhead, since all constituent parts must coordinate
their actions. However, it also provides for robustness
in the presence of node failure and scalability of
application size. Cheng et al [13] have advocated
that the feedback loop, which is a critical part of the
adaptation, be elevated to a first-class entity in terms
of modelling, design and implementation. Although,
this would allow for reasoning about properties of
the adaptation, there are no systems that we currently
know of, that provide an explicit focus on the feedback
loop. Most decentralized self-adaptation systems are
typically realised as a multi-agent systems wherein
the agents are autonomous in their environments and
implement strategies that collectively move the entire
system into a desirable state. [15] have advocated
separating the functional part of the system from the
adaptive part, thus allowing for independent evolution
of both. Baresi et al [4] describe such a system, where
adaptation is considered as a cross-cutting concern, and
not a fundamental part of system computation. Baresi
et al. use aspect-oriented programming to implement
the Monitor and Execute part of the MAPE loop.
They implement distributed analysis and planning by
dividing the self-adaptive system into supervised elements,
that perform the business logic of the application and
supervisors that oversee how the supervised components
behave and plan for adaptation. Aspect-probes form the
sensors and actuators that link the supervised elements
to the supervisors.
[18] describe another interesting approach to
decentralized self-adaptation, through self-organization.
DiMarzo et al. take a bio-inspired approach and use
principles of holons (and holarchy) and stigmergy to
get agents in a manufacturing department to perform
coordination and control. A holon is defined by [33]
to be both a part and a whole. Therefore, an agent
is both autonomous as well as a part of a hierarchy,
which influences it. The essential idea in their work is
that with such structures, order emerges from disorder,
as simple interactions build on each other, to produce
progressively complex behaviour.
Weyns et al [50] study a decentralized self-healing
system and a QoS-driven self-optimized deployment
framework. Their approach is the nearest to ours.
They suggest multiple decentralized models which
feed into decentralized algorithms, which are in turn
analyzed by decentralized analyzers. These analyzers
then individually direct local effectors to make changes
to the host system.
These approaches, while interesting, have not explicitly
considered scale of adaptation. Any approach that
attempts self-adaptation on the cloud, must concern
itself with scaling up to hundreds and possibly even
thousands of entities. Another issue that needs to be
considered, is the effect of other self-adapting systems



20

operating in the same environment.

4.3 QoS Monitoring

Zeng [55], and Michlmayer [37] are good examples of
online QoS monitoring. Zeng et al. classify QoS met-
rics into three categories: (a) Provider-advertised (b)
Consumer-rated, and (c) Observable metrics. They pro-
vide an event-driven, rule-based model where designers
can define QoS metrics and their computation logic (in
terms of Event-Condition-Action rules), for observable
metrics. These are then compiled into executable state-
charts, which provide execution efficiency in computing
QoS metrics based on service-events that are observed.
Michlmayer et al. provide their QoS monitoring as a
service runtime environment. This service runtime envi-
ronment addresses service metadata, QoS-aware ser-
vice selection, mediation of services and complex event
processing. The authors propose two mechanisms to
monitor QoS: (a) a client-side approach using statistical
sampling, and (b) a server-side approach using probes
that are present on the same host as the service. The
client-side approach is non-intrusive, in terms of not
needing access to the service’s host.
Both approaches, Zeng and Michlmayer, use an event-
based mechanism to detect QoS values, and SLA vio-
lations, if any. This fits in neatly with our need for a
non-intrusive, third-party based QoS Monitoring Engine.
Our mechanism is agnostic to the actual QoS monitoring
mechanism, that is used.

5 CONCLUSION AND FUTURE WORK

Cloud-based service-oriented applications have the
potential to self-adapt their QoS, depending on
demand. Using a market-based mechanism maps nicely
to the real-world situation of unpredictable change of
QoS requirements, costs involved in adaptation and
adaptation by competing applications. As the number
of possible concrete services increase, the scalability of
the self-adaptive mechanism becomes important. We
see that the market-based mechanism consists of simple
agents, is able to adapt well and yet scales linearly
to the number of concrete services. We also see that
it is robust in the presence of differences in demand
and supply of QoS. Applications implemented as an
ASN can thus scale and adapt to the changing business
requirements of QoS.
We have not modelled complex seller-side behaviour.
Specifically, actions like deliberate violation of QoS to
free up resources for making Asks with higher prices
or mis-reporting of QoS available. Mechanisms like
penalties and reputation management can be used to
prevent seller agents from behaving dishonestly. Also,
we have not modelled adaptation on the part of the
market. Sellers that lie about their QoS or, are generally
unattractive for transactions may lower the reputation
of the marketplace. Hence, the market could take

steps to ensure that it is populated, only with sellers
that are likely to be sold. In future work, we aim to
systematically add these modifications to observe their
effect on the collective adaptation.

REFERENCES

[1] Do slas really matter? 1-year case study.
[2] Mohammad Alrifai, Dimitrios Skoutas, and Thomas Risse. Se-

lecting skyline services for QoS-based web service composition.
Proceedings of the 19th international conference on World wide web -
WWW ’10, page 11, 2010.

[3] Danilo Ardagna and Barbara Pernici. Global and local qos
constraints guarantee in web service selection. pages 805–806,
2005.

[4] Luciano Baresi, Sam Guinea, and Giordano Tamburrelli. Towards
decentralized self-adaptive component-based systems. Proceedings
of the 2008 international workshop on Software engineering for adaptive
and self-managing systems - SEAMS ’08, page 57, 2008.

[5] B. Benatallah, M. Dumas, Q.Z. Sheng, and a.H.H. Ngu. Declara-
tive composition and peer-to-peer provisioning of dynamic Web
services. Proceedings 18th International Conference on Data Engineer-
ing, pages 297–308, 2002.

[6] J.P. Brans and Ph. Vincke. A preference ranking organisation
method: The promethee method for multiple criteria decision-
making. Management Science, 31(6):647–656, June 1985.

[7] Ivan Breskovic, Christian Haas, Simon Caton, and Ivona Brandic.
Towards self-awareness in cloud markets: A monitoring method-
ology. pages 81 –88, dec. 2011.

[8] R Buyya and S Pandey. Cloudbus toolkit for market-oriented
cloud computing. In Proceedings First International Conference,
CloudCom 2009, pages 22–44, 2009.

[9] Rajkumar Buyya, Chee Shin Yeo, and Srikumar Venugopal.
Market-Oriented Cloud Computing: Vision, Hype, and Reality
for Delivering IT Services as Computing Utilities. 2008 10th
IEEE International Conference on High Performance Computing and
Communications, pages 5–13, September 2008.

[10] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and
Maria Luisa Villani. An approach for QoS-aware service composi-
tion based on genetic algorithms. Proceedings of the 2005 conference
on Genetic and evolutionary computation - GECCO ’05, page 1069,
2005.

[11] Jorge Cardoso, Amit Sheth, and John Miller. Workflow quality of
service. Technical report, University of Georgia, Athens, Georgia,
USA, March 2002.

[12] Jorge Cardoso, Amit Sheth, John Miller, Jonathan Arnold, and
Krys Kochut. Quality of service for workflows and web service
processes. Web Semantics: Science, Services and Agents on the World
Wide Web, 1(3):281–308, April 2004.

[13] B Cheng, R De Lemos, Holger Giese, and Paola Inverardi. Soft-
ware engineering for self-adaptive systems: A research roadmap.
Software Engineering, pages 1–26, 2009.

[14] Shang-Wen Cheng, David Garlan, and Bradley Schmerl.
Architecture-based self-adaptation in the presence of multiple
objectives. Proceedings of the 2006 international workshop on Self-
adaptation and self-managing systems - SEAMS ’06, page 2, 2006.

[15] SW Cheng and David Garlan. Making self-adaptation an engi-
neering reality. Self-star Properties in Complex Information Systems:
Conceptual and Practical Foundations, 3460:158–173, 2005.

[16] Scott H. Clearwater, Rick Costanza, Mike Dixon, and Brian
Schroeder. Saving energy using market-based control. pages 253–
273, 1996.

[17] D Cliff. Simple bargaining agents for decentralized market-based
control. HP Laboratories Technical Report, 1998.

[18] Giovanna Di Marzo Serugendo, Marie-Pierre Gleizes, and An-
thony Karageorgos. Self-organization in multi-agent systems. The
Knowledge Engineering Review, 20(02):165–189, June 2005.

[19] Elisabetta DiNitto, Carlo Ghezzi, Andreas Metzger, Mike Papa-
zoglou, and Klaus Pohl. A journey to highly dynamic, self-
adaptive service-based applications. Automated Software Engineer-
ing, 15(3-4):313–341, September 2008.



21

[20] Leticia Duboc, David Rosenblum, and Tony Wicks. A framework
for characterization and analysis of software system scalability.
Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering - ESEC-FSE ’07, page 375, 2007.

[21] Torsten Eymann, Michael Reinicke, Oscar Ardaiz, Pau Arti-
gas, Luis Dı́az de Cerio, Felix Freitag, Roc Messeguer, Leandro
Navarro, Dolors Royo, and Kana Sanjeevan. Decentralized vs.
centralized economic coordination of resource allocation in grids.
In European Across Grids Conference, volume 2970 of Lecture Notes
in Computer Science, pages 9–16. Springer, 2003.

[22] Daniel Freidman. The double auction market institution: A
survey. 1993.

[23] Dhananjay K. Gode and Shyam Sunder. Allocative efficiency of
markets with zero-intelligence traders: Market as a partial sub-
stitute for individual rationality. The Journal of Political Economy,
101(1):119–137, 1993.

[24] Alok Gupta and DO Stahl. The economics of network manage-
ment. Communications of the ACM, 42(9):57–63, 1999.

[25] Kieran Harty and David Cheriton. A market approach to operat-
ing system memory allocation. pages 126–155, 1996.

[26] Minghua He and Nicholas R. Jennings. Southamptontac: An
adaptive autonomous trading agent. ACM Trans. Internet Technol.,
3:218–235, August 2003.

[27] Minghua He, N.R. Jennings, and Ho-Fung Leung. On agent-
mediated electronic commerce. Knowledge and Data Engineering,
IEEE Transactions on, 15(4):985 – 1003, july-aug. 2003.

[28] IBM. An architectural blueprint for autonomic computing. June
2006.

[29] Amazon Inc. Amazon spot-instances. December 2009.
http://aws.amazon.com/ec2/spot-instances/.

[30] Nick Jennings. Automated haggling: building artificial negotia-
tors. pages 1–1, 2000.

[31] Jeffrey O. Kephart and David M. Chess. The vision of autonomic
computing. Computer, 36(1):41–50, January 2003.

[32] Paul Klemperer. Auction theory: A guide to the literature.
JOURNAL OF ECONOMIC SURVEYS, 13(3), 1999.

[33] Arthur Koestler. The ghost in the machine. 1989. ISBN 0-14-
019192-5.

[34] MM Kokar and K Baclawski. Control theory-based foundations
of self-controlling software. Self-Adaptive Software and their Appli-
cations, IEEE Intelligent Systems, 1999.

[35] Robert Laddaga. Creating robust software through self-
adaptation. IEEE Intelligent Systems, 14:26–29, May 1999.

[36] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a
623-dimensionally equidistributed uniform pseudo-random num-
ber generator. ACM Trans. Model. Comput. Simul., 8:3–30, January
1998.

[37] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and
Schahram Dustdar. Comprehensive qos monitoring of web ser-
vices and event-based sla violation detection. pages 1–6, 2009.

[38] Vivek Nallur and Rami Bahsoon. Design of a Market-Based
Mechanism for Quality Attribute Tradeoff of Services in the Cloud
. In Proceedings of the 25th Symposium of Applied Computing(ACM
SAC). ACM, 2010.

[39] Jinzhong Niu, Kai Cai, Simon Parsons, Enrico Gerding, and Peter
McBurney. Characterizing effective auction mechanisms: insights
from the 2007 tac market design competition. pages 1079–1086,
2008.

[40] Jinzhong Niu, Kai Cai, Simon Parsons, Peter McBurney, and
Enrico Gerding. What the 2007 tac market design game tells
us about effective auction mechanisms. Autonomous Agents and
Multi-Agent Systems, 21:172–203, 2010. 10.1007/s10458-009-9110-
0.

[41] P. Oreizy, N. Medvidovic, and R.N. Taylor. Architecture-based
runtime software evolution. Proceedings of the 20th International
Conference on Software Engineering, pages 177–186, 1998.

[42] Sarvapali D Ramchurn, Dong Huynh, and Nicholas R Jennings.
Trust in multi-agent systems. The Knowledge Engineering Review,
19(01):1–25, 2005.

[43] a Roth and I Erev. Learning in extensive-form games: Experimen-
tal data and simple dynamic models in the intermediate term.
Games and Economic Behavior, 8(1):164–212, 1995.

[44] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software.
ACM Transactions on Autonomous and Adaptive Systems, 4(2):1–42,
May 2009.

[45] Michael Stonebraker, Robert Devine, Marcel Kornacker, Witold
Litwin, Avi Pfeffer, Adam Sah, and Carl Staelin. An economic
paradigm for query processing and data migration in mariposa.
pages 58–67, 1994.

[46] Perukrishnen Vytelingum. The Structure and Behaviour of the
Continuous Double Auction. PhD thesis, 2006.

[47] C.A. Waldspurger, T. Hogg, B.A. Huberman, J.O. Kephart, and
W.S. Stornetta. Spawn: a distributed computational economy.
Software Engineering, IEEE Transactions on, 18(2):103–117, feb. 1992.

[48] Carl A. Waldspurger and William E. Weihl. Lottery scheduling:
flexible proportional-share resource management. page 1, 1994.

[49] Michael P. Wellman. A market-oriented programming environ-
ment and its application to distributed multicommodity flow
problems. J. Artif. Int. Res., 1(1):1–23, 1993.

[50] Danny Weyns, Sam Malek, and J. Andersson. On decentralized
self-adaptation: lessons from the trenches and challenges for the
future. In Proceedings of the 2010 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems, pages 84–93.
ACM, 2010.

[51] P Wurman. A Parametrization of the Auction Design Space.
Games and Economic Behavior, 35(1-2):304–338, April 2001.

[52] L. Servi Y. C. Ho and R. Suri. A class of center-free resource
allocation algorithms. Large Scale Systems, 1:51, 1980.

[53] Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant
Kalagnanam, and Quan Z. Sheng. Quality driven web services
composition. Proceedings of the twelfth international conference on
World Wide Web - WWW ’03, page 411, 2003.

[54] Liangzhao Zeng, Boualem Benatallah, Phuong Nguyen, and Anne
H. H. Ngu. Agflow: Agent-based cross-enterprise workflow
management system. pages 697–698, 2001.

[55] Liangzhao Zeng, Hui Lei, and Henry Chang. Monitoring the qos
for web services. pages 132–144, 2007.

[56] Wei Zhang, Carl K. Chang, Taiming Feng, and Hsin-yi Jiang.
QoS-Based Dynamic Web Service Composition with Ant Colony
Optimization. 2010 IEEE 34th Annual Computer Software and
Applications Conference, pages 493–502, July 2010.

Vivek Nallur Dr. Vivek Nallur is a postdoc at the University of Birming-
ham. Prior to doing research, he used to work with VMware Inc. His
research interests are complex systems, decentralized self-adaptation,
ultra-large scale systems, and communication and decision-making in
multi-agent systems.

Rami Bahsoon Dr. Rami Bahsoon is a Lecturer in Software Engineering
at the School of Computer Science, the University of Birmingham,
United Kingdom. He did his PhD from University College London (UCL),
on evaluating software architectures for stability using real options
theory. His research interests include Cloud Architectures, Security
Software Engineering, Relating software requirements (non-functional
requirements) to software architectures, testing and regression testing,
software maintenance and evolution, software metrics, empirical evalu-
ation, and economics-driven software engineering research.



22

APPENDIX

Decomposing Constraints: Decomposing constraints
(Figure 24) involves communication between the Buy-
erAgents, their respective markets and the Application-
Agent. The ApplicationAgent waits for the BuyerAgents
to get data about previous transactions in the market,
applies SWR [11] and checks whether the combination
of QoS available in the market meets its end-to-end con-
straints. Based on the combinations that meet the end-
to-end constraints, the ApplicationAgent creates local
constraints for the individual BuyerAgents. These are
then propagated to the BuyerAgents.
Computing Endowments: The budget for the indi-

vidual agents is split in the ratio of the transaction
prices that are prevalent in the individual markets (see
Figure 25). Given historical price information in a mar-
ket, the prices in the next trading rounds are likely to
be around the same figure. Splitting the application’s
budget evenly across the BuyerAgents could possibly
result in some agents getting excess endowment, and
some agents too less. The ratio of their transaction
prices allows the agents with expensive services to get a
naturally higher share of the budget.
Trading Phase: In Figure 26, we show the communi-

cation that takes place during the trading phase. This
phase is essentially a loop. It periodically evaluates the
bids and asks in the orderbook, and tries to match them.
If it is successful, the transaction moves into the second
stage (see Figure 27). Based on whether a trade occurs
or not, the application evaluates whether it needs to re-
distribute the endowments of its agents. It is possible
that an agent is unable to find any potential transactions,
simply because it does not have the budget to bid high
enough.
CDA Protocol: The trading proceeds in two stages.

In the first stage, the MarketAgent matches the bids
and asks based on their individual QoS values and
shout prices. After matching, a provisional transaction
is created. This provisional transaction enters the second
stage. In the second stage, the BuyerAgent compares all
the Asks returned as provisional transactions. The top-
ranked Ask is selected and the other Asks are rejected.
The BuyerAgent enters into a transaction with the Sell-
erAgent of the selected Ask.



23

Buyer_A Market_A Application Market_B Buyer_B 

get_last_k_transaction_data get_last_k_transaction_data

get_last_data

get_last_data get_last_data

last_data last_data

last_k_transaction_data last_k_transaction_data

Loop

Possible_Infeasibility

alt

Decompose_Constraints

[All_Combinations_Checked]

ref
Apply_SWR_to_Combination

ref
Save_Valid_Combination

[Valid_Combinations_Exist?]

ref
Create_local_constraints

[else]

Fig. 24: Application decomposes its constraints into local constraints

Buyer_A Market_A Application Market_B Buyer_B 

get_k_last_transaction_prices

get_k_last_transaction_prices

par

get_last_prices get_last_prices

last_prices last_prices

last_transaction_prices

last_transaction_prices

par

Compute Endowment 

ref
Split_Budget_In_Corresponding_Ratio

Fig. 25: Application computes endowment for its BuyerAgents



24

Application Buyer Market 

Get_Last_Transaction_Price

Last_Transaction_Price

Reg_Bids

Transaction_Details

Accept_Transaction?

Accept_Transaction

Delete_Other_Bids

Transaction_Details

Cancel_Transaction

alt

Failed_to_Transact

Last_Transaction_Price

New_Budget

alt

Revise_Bid

alt

alt

Loop

Trading_Phase

ref
sub Market: Match_Bid_Ask

[Provisional_Transaction_Possible]

ref
sub Buyer:Ask_Selection 

[Yes]

ref
sub Application:Redistribute_Budget? 

[Surplus_Available?]

ref
sub Application:Raise_Error 

ref
sub Buyer:Revise_Bid 

Fig. 26: The trading phase of buying a service



25

Seller Market Buyer Application 

Mkt_OpenMkt_Open

Reg_BidReg_Ask

Provisional_TransactionProvisional_Transaction

Trust_Seller?

Yes

Cancel_Transaction

Delete_Bid

No

Accept_Transaction

New_TransactionNew_Transaction

Delete_Bid

Exit_Mkt

Delete_Ask

alt

timeout! timeout!

alt

Loop

2-Stage CDA 

Stage-1

ref
sub Match_Bid_Ask 

[All_Constraints_Met]

Stage-2

[else]

Fig. 27: Two-stage CDA protocol


	Introduction
	Problem Statement
	Contributions of this paper

	Our Approach
	Market-Based Control
	Auctions
	Use of MDA for QoS adaptation
	Description of Agents
	Structure of the Auction
	QoS Calculation
	Decomposing End-to-End constraints

	Adaptation Using Bid Generation
	Decentralized Decision-Making Using Ask-Selection
	A Worked-out Example
	Post-Transaction
	Re-starting Conditions
	Design and Implementation
	Architectural Style
	Class and Package Diagram
	Activity Diagram

	Monitoring

	Evaluation
	The Current Scenario
	Empirical Study
	Qualitative Criteria
	Quantitative Criteria
	Experimental Setup
	Methodology
	Results
	BizInt's Perspective
	SkyCompute's Perspective

	Scalability Requirements for SkyCompute
	The Cost of Decentralization

	Discussion
	Strengths
	Weaknesses
	Threats to Validity


	Related Work
	Dynamic Composition of Web-services
	Self-Adaptation
	QoS Monitoring

	Conclusion and Future Work
	References
	Biographies
	Vivek Nallur
	Rami Bahsoon

	Appendix

