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A DECIDABLE FRAGMENT OF THE ELEMENTARY THEORY
OF THE LATTICE OF RECURSIVELY ENUMERABLE SETS

BY
M. LERMAN AND R. I. SOARE*

Abstract. A natural class of sentences about the lattice of recursively
enumerable sets modulo finite sets is shown to be decidable. This class
properly contains the class of sentences previously shown to be decidable by
Lachlan. New structure results about the lattice of recursively enumerable
sets are proved which play an important role in the decision procedure.

0. Introduction. Much of the recent work dealing with S, the lattice of
recursively enumerable sets, has dealt with global properties of S such as
automorphisms and decidability, rather than local properties of S, i.e.,
properties of definable classes of recursively enumerable sets. Two of the
major results are Lachlan's [3] decision procedure for a natural fragment of
the elementary theory of S *, the quotient lattice of S by the ideal of finite
sets, Soare's result [15] on the existence of automorphisms carrying any
maximal set into any other maximal set. More recently, Shore [13] has
determined the definable automorphism bases for £. These global results
have inspired new local results, in that they have naturally led to the
discovery of important new S-definable classes of recursively enumerable
sets whose properties have been investigated. Lachlan's result led to the
discovery of small sets, Soare's result led to the discovery of ¿/-simple sets,
and Shore's result led to the discovery of nowhere simple sets; the first two of
these classes have been studied by Lerman and Soare [8], and the third class
by Shore [14]. The class of ¿-simple sets proved to be of particular impor-
tance, in that it led to the refutation of conjectures of Martin and Shoenfield
which imply that the degrees of elements of any S-definable class can be
characterized by a finite set of equalities and inequalities involving the jumps
of those degrees. Evidence for these conjectures included Martin's result [9]
that a is the degree of a maximal set if and only if a' = 0", and results of
Lachlan [2] and Shoenfield [12] that a is the degree of an atomless set if and
only if a" > 0".

In this paper, we give a decision procedure for a larger fragment of the
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2 M. LERMAN AND R. I. SOARE

elementary theory of S * than did Lachlan. Such a decision procedure has
previously been given by Lerman [6] for S *(a) for various admissible
ordinals a, where S *(a) is the analogue of S * in a-recursion theory. Our
procedure led naturally to the discovery of the S-definable class of recur-
sively enumerable sets which have /--maximal major subsets. This class has
been studied by Lerman, Shore, and Soare [7], and it is important because it
can be used to show that there are atomless hyperhypersimple sets H, and H2
such that no automorphism of & carries //, to H2.

The fragment of the elementary theory of & * which we show to be
decidable is the V3 theory of ë * in the language used by Lachlan [3] with an
additional one-place relation symbol Max distinguishing the maximal sets.
Our motivation for studying this class of sentences is that we view it as a
preliminary step to finding a decision procedure for the 3 V3 sentences of
Lachlan's language which hold in & *. Lachlan showed that ¿/-lattices, i.e.,
ordered pairs (L, A) where L is a lattice and A is the boolean algebra
generated by L, play a natural role in the decision procedure and reduced the
V3 decision problem to the following: Given finite ¿/-lattices (L, A),
(L,, A [),... , (Lk, Ak), such that each (L¡, A¡) is a refinement of (L, A), when
is it true that for all sub-¿/-lattices (£, â) of (S*, <£*) such that (£, â) es
(L, A), there exists a sub-</-lattice (£', &') of (S*, (£*) such that one of the
diagrams

(L,A)     A-      (L,,A,)

(£, ff)     -^     (£', &')
Figure 1

commutes? He produces finitely many canonical realizations (£, (£) of (L, A)
which provide necessary conditions for the diagram of Figure 1 to commute.
He then proves a refinement theorem which shows that these necessary
conditions are indeed sufficient.

In order to extend the decision procedure, one would now ask for definable
necessary conditions given (L, A), (L¡, A¡), and (£, 6E) as in Figure 1, for the
existence of (£', S-') ç (S*, (£*) such that the diagram of Figure 1 com-
mutes. The necessary conditions provided by Lachlan point out a definable
obstruction preventing us from obtaining such a refinement (£', &'). If we
now add this definable obstruction to the language, and decide the V3 theory
of (S *, (£*) in the new language, we can repeat this procedure. Our hope is
that there is a recursive language whose V3 theory is decidable which
includes all such definable obstructions, and which admits an elimination of
quantifiers transforming a 3V3 sentence in the old language into a V3
sentence in the new language. As there are many possible obstructions, it may
be impracticable to carry out this procedure. The simplest such obstruction,
maximal sets, is treated in this paper. Our aim is to show that there is hope
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RECURSIVELY ENUMERABLE SETS 3

that the program is correct. In fact, our decision procedure also works if we
add both Max and Hhs to Lachlan's language, where Hhs is a one-place
relation symbol distinguishing the hyperhypersimple sets.

The outline of the paper is as follows: In §1, we introduce the definitions
and theorems about (/-lattices which we will need, and, in §2, we introduce
the definitions and theorems about r.e. sets which we will need. We construct
canonical realizations and obtain necessary conditions in §3. In §4, we prove
the needed refinement theorems, and give the decision procedure. The reader
will find an understanding of [3] very helpful.

1. ¿/-lattices. All lattices considered in this paper will be distributive, with
unequal least and greatest elements. C will denote the lattice ordering, and
U and n will denote the least upper bound and greatest lower bound
operations of the lattice. 0 and 1 will denote the least and the greatest
elements of the lattice unless we are dealing with sublattices of the lattice of
r.e. sets, in which case we use 0 for 0 and to for 1. Any distributive lattice
with 0 and 1 generates a unique boolean algebra A. We will use the same
symbols for constants, relations, and functions on A as are used for L. In
addition, ' will denote the complementation operation on A. A d-lattice is a
pair (L, A) where L is a distributive lattice and A is the boolean algebra
generated by L.

The ¿/-lattice (L, A) is said to be separated, if for all a, 6, c G L such that
a u b = c, there exist a,, /», G L such that a, C a, bx C b, a, u bx = c, and
a, n bl = 0. The ¿-lattice (L,, Ax) is said to be a sub-d-lattice of the ¿/-lattice
(L, A) ((L„ Ay) Q (L, A)) if Ax is a subalgebra of A and Ll = L n Av (L, A)
is said to be a refinement of (Lv A{) if (L,, Ax) C (L, A). If b G L, b ¥= 0,
then (L, A)\b is the ¿/-lattice (L,, A{) where L, = {c G L: c Ç b), Ax = (a G
A: a Ç b) and the ordering on (L„ Ax) is the same as that on (£, A) for
elements of Av

The ¿/-lattices (L, A) and {LVAX) are said to be isomorphic ((L,A)=¿
(L,, At)) if there is an isomorphism \p: A ==: Al such that \p: L -» Ll is also an
isomorphism. If b G L, b =£ 0, and there is an isomorphism \p:
(Lp y4,)-»(L2, A2) Q (L, ^4)|¿>, then we call »// an embedding of (L,, yl,) into
(L,A) and say that (L,,^,) is embeddable into (L, A) ((L„ A ])=-»(£, ,4)).
The embeddings ^: (L,, yl,) <^> (L, A) and £: (L2, j42) ̂ * (■£> -4) are said to be
equivalent over (L, A) if there is an isomorphism tj: (L„ .4,) ~ (L2, A^ such
that the diagram

Figure 1.1
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4 M. LERMAN AND R. I. SOARE

commutes. The reader should note that our definition of ¿-lattice embedding
is not the usual one. Rather, it is that of a map generated by a lattice
embedding which preserves 0 but not necessarily 1.

A component (Ll,Al) of (L, A) is a ¿-lattice of the form (L, A)\b where
b ¥= 0, b G L, b' G L. Let (LVA{) and (L2, A^ be two ¿-lattices. Their direct
product (L„ Ax) X (L2, A¿ is the ¿-lattice (L, X L2,Ai X A^, where L, X
L2 (Ax X A¿) is the direct product of L, and L2 (Al and A^. A sequence of
¿-lattices ((£,, A¡), . . ., (Lk, Ak)) is a decomposition of (L, A) if (L, A) ^
(Lj, ^4t) X • • • X(Lfc, Ak). {L, A) is said to be indecomposable if, for every
decomposition of (L,A) as above, k = 1. Otherwise, (L, yl) is said to be
decomposable.

The following lemma is stated in Lachlan [3].

Lemma 1.1 (Representation Lemma). Every finite d-lattice has a decomposi-
tion into a finite number of indecomposable components. This decomposition is
unique up to the order and isomorphism type of the components.

Let bv . . . , bk G L such that for all i,j < k, bx ¥= 0 and 6, n bj = 0. Let
b = U {b¡: i < k}, and let {L¡, A,) = (L,^)|i>, for i < Ac. Let (Af, B) be
isomorphic to a sub-¿-lattice of (L, ^4)|o. For /' < k, let i//,: (L,, ^4,) "■» (A/, 5).
Define L* by 6 G L* if and only if there is a ¿ G M such that 6 = U {c:
(3/ < A:)(c G L, & uV(c) Ç ¿)} and A* by a G A* if and only if there is a
d e B such that a = U {c: (3/ < A:)(c G ¿,. & ^(c) Ç d))- Then «f (¿*> ̂ *)
is a sub-¿-lattice of (L, .4)|6 which is isomorphic to (A/, B), it is called the
fusion of the (L,, ^4,) over (A/, 2?).

Fusion captures the following situation. Given a finite ¿-lattice (A/, 5) and
k ¿-lattices (Lv At), . . . , (Lk, Ak) each of which is embeddable into (Ai, B),
classify all possible isomorphisms of (A/, B) onto a sub-¿-lattice of
X*_,(L„ vi,). (L*, ^4*) is a fusion of the (L¡, /4y) over (A/, 5) exactly when it
is an isomorphic copy of (A/, B) which is a sub-¿-lattice of X f_ ,(!.,., A¡). \¡/¡ is
then the natural restriction of the isomorphism ^: (L*, A*)-*(M, B) to
(L„ ¿,).

Lemma 1.2 (Fusion Lemma). For i < k, let (L¡, A¡) = (L, A)\b¡. Let
(L*,A*) be the sub-d-lattice of (L, A) which is the fusion of the (L„ A¡) over
(A/, B). Assume that (L*, A*) is finite, (N, C) =s (L*, A*), and (N+, C+) is a
finite refinement of(N, C). Then there exists a d-lattice (L + , A+) such that the
diagram

(N,C)       A      (N+,C+)

4« I-
(L*,A*)     —>      (L + ,,4+)      A     (L,¿)

Figure 1.2

commutes if and only if for each i < k there is a refinement (Lf,Af) of
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recursively enumerable SETS 5

(L„ A,) with (L¡+, A,+) Ç (L, A)\b¡ and embeddings fy: (L,+ , A¡+) ̂ >(N+,C +)
defined by ¡¡/¡(a) = d if £(e) = b where e is the least element of C such that
d Ç e and b is the least element of (L*, A *) such that a Ç b, such that the
fusion of the {L¡+,A+) over (N +, C +) is isomorphic to (N + , C+).

Proof. Suppose that Figure 1.2 is a commutative diagram. Let L¡+ =
L + \b¡, A¡+ = A +\b¡. Then (L,+ , A¡+) has the desired properties. Conversely, if
we let (L + ,A+) be the fusion of the (L¡+,A¡+) over (JV + , C+), then the
diagram of Figure 1.2 commutes.    □

Let (L, A) be a finite ¿-lattice. An atom of (L, A) is an element a El A such
that a ¥= Q and for alloG^4,0<6<a implies b = a. A canonical generator
of (L, A) is a join irreducible element of L, i.e., an element c G L such that
for all a,b G L, if a u b = c then a = c or o = c. Note that the isomorphism
type of (L, A) is uniquely determined by the ordering of the canonical
generators of (L, A). Given any element c G A, L(c) will denote the least
element d G L such that c Q d. Note that if c is an atom, then L(c) is a
canonical generator. Given a canonical generator ¿, A(d) will denote the
unique atom a such that a Q d and a <£ c for any canonical generator c c ¿.
Given c, ¿ G ^4, we say that c is w/f/w« ¿ (c =< ¿) if c Ç L(¿). ■< restricted
either to atoms or to canonical generators yields a partial ordering. We write
c < d if c C L(¿) but ¿ <¿ L(c). We say that c is y'wsf w/tóín ¿ (c <, ¿) if
c < d but for no e G A do we have c < e < d. An atom a is said to be
outermost (innermost) if there is no atom b such that a < b (b <. a).

A path in the finite ¿-lattice (L, A) is a finite sequence of atoms a„ . . . ,ak
such that a, is outermost and for all i < k, ai+1 •<, a¡. The rank of the finite
¿-lattice (L, A) is («,, . . . , nh) where n, is the number of paths of length i and
h is the greatest i such that n¡ ¥= 0. Ranks are well ordered by the definition
(«„ . . . , nh) < (w„ . . . , mk) if k > h or if k = h and

(3x)(l < x < k & (Vy)(x <y < k^>ny = my)&nx < mx).

Let (L, /4) =^ (Lj, j4,) X •• • x(Lk, Ak) be a decomposition of (L, A) into
indecomposable components, arranged in order of decreasing ranks, where
(Lt, A¡) has rank r¡. The characteristic of (L, A) is (/-,, . . ., rfc). Characteristics
are well ordered by (/-,, . . . , rk) < (j„ . . ., sm) if either (3x)(l < x < Ac & 1
< x < m & (Vy)(l < _y < x -» /^ = sy) & rx < sx) or Ac < m and rx = i^ for
1 < x < k. The following lemma is proved in Lachlan [3].

Lemma 1.3. Any finite d-lattice (L, A) has a finite separated refinement
(L*, A*) with characteristic < the characteristic of (L,A).

ë will denote the lattice of r.e. sets, and & will denote the boolean algebra
generated by S. (S, &■) is then a ¿-lattice. We let S * (&*) be the quotient of
S (6E) by the ideal of finite sets. Lachlan [4] shows that the elementary
theories of (S, &) and (S *, &*) are equidecidable, so nothing is lost in trying
to obtain a decision procedure for the elementary theory of (S *, &*) instead
of the elementary theory of (S, &).
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6 M. LERMAN AND R. I. SOARE

Let (L, A) be a finite ¿-lattice. A realization of (L, A) is a sub-¿-lattice
(9, 9,) of (S, â) with no finite atoms such that (9, 9>)^(L, A).lf (9, 9>)
Ç(&,&) and C is an r.e. set, then (?,S)n C = (? n C,S n C) is the
¿-lattice for which

?nC=(fi: (3D G 9)(B = D n C)}
and

ffi n C = {fi: (3D G ®)(5 = D n c)}.

The ¿-lattice (<3\ <S) n C with one component, where (9, 9>) Q (&, &), is
said to be irreducible if given any r.e. set D G C such that C — D is r.e. and
the outermost atom of (9, 9> ) n C is contained in D, then (9, © ) n D ¡=±
(<3\ $) n C. The finite ¿-lattice (9, <&) n C is said to be irreducible if each
component of CdP, $ ) n C in any indecomposable representation of (9, 9>)
n C is irreducible. (9, 9> ) n C is reducible if it is not irreducible. (Warning:
Reducible and decomposable are different.) The following lemma is proved
by Lachlan [3].

Lemma 1.4. Let (9*, 9> *) Q (S*, (£*), and let c be the characteristic of
(9 *, 9> *), with (9*, 9>*) finite. Then there exists a finite separated refinement
(9+, 9> + ) <Z (S *, <£*) of (9, %) with characteristic < c. Furthermore, given
(9 *, 9> *), we can effectively enumerate a finite number of isomorphism types
and for each such type, an isomorphism of (9*, 9>*) into it, so that (9+, 9j + )
can be found in one of these types, with the isomorphism picking out (9 *, 9> *).

Our language for ¿-lattices (L, A) will be the pure predicate calculus with
equality together with the following symbols whose interpretations in
(S*, &*) are given in parentheses: Two-place function symbols u (union)
and n (intersection), a one-place function symbol ' (complementation), a
two-place relation symbol Q (ordering), a one-place relation symbol L
(x G L), a constant symbol 0 (least element), and a one-place predicate Max
(x is a maximal set). Furthermore, quantifiers range only over r.e. sets. A
diagram is a quantifier free formula o(xu . . . , xn) which can be interpreted as
the complete diagram of some finite ¿-lattice. We will treat diagrams as if
they were ¿-lattices.

We adopt the following notation. Xxfix, y) will denote the function of one
variable x with y fixed, ¡x will denote the least number operator. If / is a
function, dom(/) will denote the domain of/and rng(/) will denote the range
off. If S Q dom(/), then/|5 will denote the restriction of/ to domain S.f\x
will denote the restriction of / to domain {y: y < x} for x G w. For a set
S Q a and x G <o, S\x will denote S n {y- y < x), card(S) will denote the
cardinality of S, and max(5) will denote the greatest element of S if S is
finite. {S,: i S /} is said to be a partition of S if U {S¡: i G 1} = S and {S¡}
is a collection of pairwise disjoint sets. We say that

lim f(s) = n    if (3/)(Vr)(r > t -+f(r) = n)
S
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RECURSIVELY ENUMERABLE SETS 7

and

lim f(s) = oo    if (Vw)(Vi)(3r)(r > t &f(r) > m).
s

2. Recursively enumerable sets. This section contains the structure theory
for (S, ($,) needed for our decision procedure.

For A, B G to, we say that A G* B if for all but finitely many x G <o, if
x G A then x G B. We say that A = * B if A G * B and B G* A. Let {We:
e < to} be a standard enumeration of all the r.e. sets, with recursive ap-
proximation {If/: e<to&i<to}. We assume without loss of generality
that for each s, there is a unique e such that W/+1 — W¿ ¥= 0. Let We\ Wn
denote {x: (ßs)(x G W¡ & x g If;)}, and let If, \ If„ = (Ife\If„) n Wn.

The following facts about (S, ($) are well known.

Theorem 2.1. (&, &) is separated.

Theorem 2.2. For every infinite r.e. set W, (S, &)\W^(&, &).

Theorem 2.3. There exists an r.e. set which is not recursive.

Given an r.e. nonrecursive set A, we call Ax, . . . ,Ak a splitting of A if
U {A¡: 1 < i < Ac} = A, A¡ n Aj, = 0 if i ¥=j, and each A¡ is r.e. but not
recursive. C Ç « is said to be cohesive if C ¥^* 0 and for every r.e. set W,
either C Ç* If orC fl W =* 0. M G u is said to be maximal if A/ is r.e.
and A/' is cohesive. The following well-known theorems were proved by
Friedberg [1].

Theorem 2.4 (Splitting Theorem). For any r.e. nonrecursive set A and any
Ac < to, there is a splitting Av . . ., Ak of A such that

(2.1) for any r.e. set W and i < Ac, // W — A is not r.e. then W — A¡ is not
r.e.

We call a splitting of A satisfying (2.1) a Friedberg splitting.

Theorem 2.5 (Maximal Set Theorem). There exists a maximal set.

Let A and B be r.e. sets. A is said to be a major subset of B if A G B,
B - A =£* 0, and for all r.e. sets W, ifB'GW then A' G* W. A is said to
be a small subset of B if A G B, B — A ¥=* 0, and for all r.e. sets W, X, if
X n (B - A) G W then W u (X - B) is r.e. The following theorem was
proved by Lachlan [3].

Theorem 2.6 (Small Major Subset Theorem). Let B be an r.e. nonrecur-
sive set. Then B has a small major subset.

Let D = A — C with A and C r.e. sets. D is said to be pure d-r.e. if
D ¥=* 0 and for all B G to, if B =£* 0 and B G D then B' is not r.e. The
following remark is easily verified.

Remark 2.7. Let A G B be r.e. sets. Then A is a major subset of B if and
only if B — A is pure ¿-r.e.
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8 M. LERMAN AND R. I. SOARE

Let K, H G to. H is said to be hyperhypersimple in K (hhs in K) if
K - H ¥=* 0, H is r.e., and the lattice of r.e. sets J such that H GJ G K
under inclusion is a boolean algebra. H is hyperhypersimple (hhs) if H is hhs in
w. S G to is hyperhyperimmune (hhi) if 5" is hhs. The following theorem was
proved by Lachlan [4].

Theorem 2.8. // H is hhs and K is hhs in H, then K is hhs.

An r.e. set A ¥=* 0 is said to be atomless if A does not have a maximal
superset. A function h: to -^ to is A3 if there is a recursive function h*: to3 —» to
such that for all x, h(x) = lim4 limr h*(s, t, x).

We will need a recursive enumeration {/?/: e < to & i G {0, 1}} of all pairs
of pairwise disjoint recursive sets R, S such that either R u S is a finite initial
segment of to, or R «■ S", For each such pair, there will be an e such that
R = R° and S = R¿. Such an enumeration can be obtained from the
eumeration of pairs of r.e. sets. Let (Ifeo, We) be the eth pair of r.e. sets.
Define x G Ri. if Wl n Wse = 0, and for all y < x, y G Iff u If/, and
x G irç. ÄJ is then {J {R'ey. s < «}. The function ÁV: to -> (0, 1} is said to be
& preference function for the r.e. set A if for all e < u,

PI {ä*(/): i <e&R¡) u R¡1 infinite} n A' is infinite.
The construction of Lachlan [4] yields the following theorem as noted in
Lerman, Shore, and Soare [7].

Theorem 2.9. There exists an atomless hhs set H with a A° preference
function.

The set S1 G to is said to be r-cohesive if S ¥=* 0 and for all recursive sets
R, either S G* R or S n R =* 0.lf A and B are r.e. sets with AGB and
B — A =£ * 0, then A is said to be an r-maximal subset of B ii B — A is
r-cohesive. A is r-maximal if ^4 is an r-maximal subset of u.

An r.e. set Q is said to be quasimaximal of degree n if there are maximal
sets A/,, . . . , M„ such that Q = fl (A/,: / < «} and for all i,j < /t, if t =£j
then A/, =^* A/y. S G u is said to be quasicohesive of degree n if S" is
quasimaximal of degree n. Q G to is said to be quasimaximal (quasicohesive) if
for some n < u, Q is quasimaximal (quasicohesive) of degree n.

Define the relation =r on r-maximal sets B and C by B =r C if and only if
fin Cis r-maximal. Note that B =r C if and only if fi u C ^ * to. It is
easily verified that =r is an equivalence relation. An r.e. set Q is said to be
quasi-r-maximal of degree n if there are r-maximal sets Bv . . ., Bn such that
Q = fi {B¡: i < n) and for all i,j < n, if / i-j then Ä, Sr 2?y. S G u is said
to be quasi-r-cohesive of degree n if S" is quasi-r-maximal of degree n. Q G u
is said to be quasi-r-maximal (quasi-r-cohesive) if for some n < to, Q is
quasi-r-maximal (quasi-r-cohesive) of degree n.

A G to is said to be immune if A =£* 0 and for any infinite r.e. set If,
W n A' ¥=* 0. S G u is said to be simple if S is r.e. and S' is immune. The
following remark is well known and easily verified.
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RECURSIVELY ENUMERABLE SETS 9

Remark 2.10. If A has any of the following properties, then A is immune:
(a) A is hhi; (b) A is cohesive; (c) A is r-cohesive; (d) A is quasicohesive; (e)
A is quasi-r-cohesive; (f) A is pure ¿-r.e.; (g) A' is atomless.

Let A and B be r.e. sets such that AGB and ^4 u B' is not r.e. Let
Ex, . . . ,Ek partition B. Then we call Ex, . . . ,Ek an Owings splitting of B
above A if for all / < Ac, the following holds:

(2.2) for all r.e. sets W, if A u (W - E¡) is r.e., then A u (W - B) is r.e.
Note that (2.2) implies

(2.3) A u Ef is not r.e.
and (2.3) implies

(2.4) E¡ — A is infinite.
Owings [10] constructs a splitting of B - A satisfying (2.3) and hence (2.4).
His construction, however, also yields (2.2). We reprove Owings' theorem
here in the form which we will later need.

Theorem 2.11. Let A and B be r.e. nonrecursive sets such that AGB and
A u B' is not r.e. Let k > 1. Then there exists an Owings splitting Ex, . . . , Efc
of B above A.

Proof. If Ac = 1, the theorem is immediate setting ¿s, = B. Suppose that
Ac > 1. Fix one-one recursive enumerations {as: s < to} of A and {bs: s < to}
of B. For each i < k and e, m < to, establish the requirement specified by i, e,
and m,

A u (We - E,) = Wm-+ A u (W, - B)    is r.e.
Well order these requirements into a recursive sequence {Ry. j < to}. Ä, is
said to be satisfied if the condition it imposes holds.

We will define a recursive function h: to2 -» to such that for each s, Xjh(s,j)
has infinite range. We say that j potentially captures bs if h(s,j) > bs and
b, G Wl n Wsm. The least integer which potentially captures bs is said to
capture bs. Hj captures bs and Rj is the requirement specified by i, e, and m,
then we say that bs is targeted for E,.

Let As = {a¡: i < s], Bs = {b¡: i < s), and Ef = the set of numbers placed
into E¡ before stage s of the construction. We say that R-, the requirement
specified by /, e, and m, requires attention at stage s if

A*\h(s,j) u (W:\h(s,j) - Ef\h(s,j)) = W^\h(s,j).

The construction. Set h(0,j) = j for ally < a.
Stage s. If bs is not captured by any j, place bs G E¡. Otherwise, let /'

capture bs. Place bs G E, where bs is targeted for Er For ally < to, let

Í h(s,j) + 1     if j < s andy requires attention
h(s + IJ) = \ at stage s,

[h (s,j) otherwise.

This completes the construction. For all j < to, let h*(j) = linu, h(s,j). Let
J = {j: h*(j) < oo}. {E¡: i < Ac} clearly partitions B.
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10 M. LERMAN AND R. I. SOARE

Lemma 2.12. Let j capture bs,j G /. Then bs G A.

Proof. Let Rj be specified by /', e, and m and suppose that j captures bs.
Then bs G Ef+1 — E°. Since / G J, j requires attention at infinitely many
stages, hence A u (We - E¡) = Wm. Since j captures bs, bs G (W¡ - Èf) n
W'm G Wm. But b, G We - E, and bs G Wm, so bs G A.   Q

Lemma 2.13. If j G / then Ry is satisfied.

Proof. Let R¿ be specified by /', e, and m. Since y G /, for all sufficiently
large t, j does not require attention at stage /. Hence for some x < h*(j),
x G A u ( We - A¡) if and only if x £ Wm, so R- is satisfied.    □

Lemma 2.14. If j & J, then Rj is satisfied.

Proof. Fix j G J, and let Rj be specified by /', e, and m. Since h*(j) = oo,
we must have ^4 u (We - W¡) = Wm. Let

z = {x: (Bt)(x < h(t,j) &jteife'nw:&xi B')}.

Then Z is an r.e. set. We show that A u (We - B) =* A u ((We - E¡) n
Z), an r.e. set. Since h*(j) — oo, We - fi Ç Z, so Ç * follows. Choose 5
sufficiently large so that for all t > s,b, is not captured by any r <j such that
r G /. Suppose that x G (We - E¡) n Z. If x G 5', then x G We - B.
Otherwise, x G B, so we may assume that x = b, for some í > s. Since
x G Z, y potentially captures x = b, so or must be captured by some n < j
such that n G /. By Lemma 2.12, ¿b, = x G A. D * now follows. □

The theorem is now immediate from Lemma 2.13 and Lemma 2.14. □
Lachlan [2] described the requirements sufficient for the construction of an

atomless r-maximal set which differs from the Robinson [11] construction.
Norstad carried out the construction, and noted several interesting properties
of the set constructed. We present Norstad's construction, and note addi-
tional properties of the set.

Theorem 2.15. There exists an atomless r-maximal set B, and r.e. nonrecur-
sive sets Bv B2 partitioning B such that for all r.e. sets W, if B' G W and
W C\B' ¥=* 0 then B2L>(rV- B) is r.e.

Proof. We will construct an r.e. set H0, and a sequence of pairwise disjoint
infinite non-r.e. sets {K¡: i < to} such that for all i, H0 n K¡ = 0 and U {K¡:
i < to} u H0 = to. The sets 7], = H0 u U {Ky.j < /'} will form a tower of r.e.
sets such that for every r.e. set W, either H¿ G* W or W G * Ttíot some i. It
will then easily follow that H0 is atomless and r-maximal. B, ß„ and B2 will
be defined from the tower.

Let {(x¡,y¡): i < to} be a one-one recursive enumeration of to2. During the
construction, we will define a partial recursive function with recursive domain
¿: to3 -» to such that for each s, Xxyd(x,y, s) has domain G {i: i < s}2. Let

H0 = {x < s: (Vj)(Vy)(x*d(j,y, s))}.
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RECURSIVELY ENUMERABLE SETS 11

d(xi,yi,s + 1) =

¿ will be defined to maximize e-states of the elements of H¿ with respect to
an appropriate e-state function E. Let

y(e, x, s)

= [j < e: (3r < s)(x G WJ & (Vy)(VAc)(Ac <J->x ¥• d(k,y, r)))},

and
E(e, x, s) = 2 {2e-J:j G y(e, x, s)}.

By the bound given for the domain of ¿, it is evident that y and E are
recursive.

We say that e requires attention at stage s if either
(2.5) ¿(xe, ye, s) is defined and there is a v < s such that v G H¿, v ^

d(x¡,y¡, s) for all i < e, and E(e, d(xe,ye, s), s) < E(e, v, s); or
(2.6) ¿(xe, ye, s) is undefined.
The construction. Let e be the least number which requires attention at

stage s. If (2.5) holds for e and s, let v(s) be the least v satisfying (2.5) for e
and s, and let v(s) = s otherwise. Define

d(Xi,y¡, s)    ifi<e,
v(s) if / = e,
undefined     if i > e.

This completes the construction. Let H0 = UsHq. Clearly H0 is r.e.

Lemma 2.16. For all e < to, lim, d(xe,ye, s) < oo.

Proof. We proceed by induction on e. Suppose that the lemma holds for
ally < e. Choose s sufficiently large so that for all / > s and y < e, d(xpyj, s)
= d(Xj, yj, t). Then for all t > s, d(xe, ye, t) is defined. If t > s and ¿(xe, ye, t
+ 1) =£ d(xe,ye, t), then e requires attention at stage / and E(e, d(xe,ye, t), t)
< E(e, d(xe,ye, t + 1), t). As E(e, x, s) < 2e+1 for all e and x, and as
whenever u < v then E(e, x, u) < E(e, x, v) for all x, only finitely many such
stages t can exist. Hence lim, ¿(x,,,^, t) < oo.   □

By Lemma 2.16, the function d*(xe,ye) = lims d(xe, ye, s) is total. ¿* is
clearly one-one, as Axy¿(x, y, s) is one-one for all s < w.

Lemma 2.17. For all e < to, lim, lim^ E(e, d*(Xj,yf), s) < oo.

Proof. From the proof of Lemma 2.16, it follows that for all e,j < u
E+(e,j) = \ixas E(e, d*(Xj,yf), s) < oo. Fix e < œ. Suppose that e < u < v.
Choose s sufficiently large so that for all / > s, d(xu, yu, t) = ¿*(x„, yu),
d(xv,yv, t) = ¿*(xc,.y„), E+(e, u) = E(e, d*(xu, yu), t) and E+(e, v) =
E(e, ¿*(xc, yv), t). Then v cannot require attention at stage s + 1, hence
E+(e, u) > E+(e, v). As E+(e, x) < 2e+x for all x, we must have E+(e, u)
= E +(e, v) for all sufficiently large u, v. Hence lim„ E +(e, u) < oo.    □

By Lemma 2.17, E*(e) = limu Ihn, E(e, d*(xu,yu), s) is well defined.
For all e > 0, let Ke = {x: (3y)(x = d*(e,y))} and

Ce = (x: (3s)(3y)(x G H¿+1 & x = d(e,y, s) & E(e, x, s) = E*(e))}.
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12 M. LERMAN AND R. I. SOARE

Lemma 2.18. For ail e < to, Ce u Ke is r.e.

Proof. Fix e < to. Given x < to, search for the least s such that either for
some >% x = d(e,y, s) = d(e,y, s + 1) and E(e, x, s) = E*(e), or x G H¿+1.
By Lemma 2.17 and the definition of E, if no such 5 exists then x £ Ce u Ke
for all but finitely many x. Assume that s exists, and fix s. If x G H¿+1, then
x G Ce u Ke if and only if x = ¿(e, y, s) for some _y and E(e, x, s) = E*(e).
Otherwise, x = d(e,y, s) — d(e,y, s + 1) and £"(e, x, i) = E*(e). As {z:
(3t)(E(e, z, t) > E*(e))} is finite, by Lemma 2.17 we may assume that
lim,(E(e, x, t)) = E*(e). We claim under this assumption that x G Ce u ÀTe.
Suppose that x £ ATe. Then there is a least t > s such that x ^ d(e,y, t + 1).
Fix such a /. If x G H¿+1, then x G Ce. Assume that x £ H¿+1 for the sake
of obtaining a contradiction. Then there is some k <y such that x =
¿(x¿, yk, t + 1), where <e, >>> = (x,, ^>. Hence E(k, x, t) >
E(k, d(xk,yk, l), t). Furthermore, d(xk,yk, t — 1) = d(xk,yk, t) and

E(k, x, t - 1) < £(Ac, ¿(x^,^, t - 1), / - 1),
else some r < k would require attention at stage t — 1, and ¿(x,,^, t) would
not be defined. Thus we must have £(Ac, x, t) > E(k, x, t — 1). Hence for
some m < Ac, x G W'm and for all u < to and p < m, x ^ ¿(/>, u, r); by the
definition of y(e, x, s) we must therefore have m < e. But then E(e, x, t) >
E(e, x, t — 1) > E*(e), a contradiction.   □

Lemma   2.19.   For  all  e < to,   e/ï/ier    Ife C* 7/0 u U {K¡:   i < e}   or
#ó ç* w,-

Proof. If E*(e) is odd, then by Lemma 2.17 and the definition of E,
d*(x¡,y¡) G We for all but finitely many e. Hence H¿ G* We. Suppose that
E*(e) is even. Fix <Ac, o> such that k > e. By Lemma 2.17, for all but finitely
many such <Ac, t>>, lim, E(e, d*(k, v), s) = E*(e), so by the definition of
y(e, x, s), d*(k, v) G We. Hence We G* H0 u U {K¡: i < e}.   D

For all e < to, let £>e = {x: (3i)(3^)(x = d(e,y, s) & x G i/¿+1)}. Clearly
Ce G De. Let B = H0u K0, B2 = (J {£e: e > 0} and B, = 5 - B2. Then
i?, and j52 partition B. As C0 Ç //0, by Lemma 2.18, B is r.e. B2 is seen to be
r.e. from its definition. 7J, n H0 is r.e. and C0 Ç Bj. But B¡ = (B, n //0) u
(C0 u AT0), so B, is r.e. by Lemma 2.18. Since H¿ <¿ * B'„ B, cannot be
recursive, else by Lemma 2.19,

to = B, u b; G* H0 u  U {*/: ' < ^}
for some e < to, but this latter set is co-infinite.

Let R be any recursive set. Assume that R n B' and B' n B' are both
infinite for the sake of obtaining a contradiction. Then there are m, n < to
such that R n B' = Wm and B' n B' = If„. As B' Ç H¿, we must have
//,; %\* Wn and #ó (¿* Wm. Let Âc = max{w, n). By Lemma 2.19, B' Ç Wm u
If„ Ç* H0 U U {A,: i < k). But Ä^ + 1 is infinite, Kk+l G B', and Kk + l n
(i/o U U {K¡'- i < k}) = 0, a contradiction. It now follows that B is r-maxi-
mal.
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RECURSIVELY ENUMERABLE SETS 13

Suppose that B2 is recursive for the sake of obtaining a contradiction. Then
B2 = We for some e < to. As C, G B2, by Lemmas 2.16 and 2.18, Kx= Wer\
(C, u Kx) is an infinite r.e. subset of the r-cohesive set B', contradicting
Remark 2.10. Hence B2 is not recursive.

Suppose that M = We is a maximal superset of B for the sake of obtaining
a contradiction. Then H¿ £* We, so by Lemma 2.19, M G* H0 u U {K¡:
i < e). By Lemma 2.18, Ce+1 u Ke+l is an r.e. set such that both it and its
complement have infinite intersection with A/', contradicting the maximality
of M. Hence B is atomless.

Suppose that B' (¿* Ife and We n B' ^* 0. By Lemma 2.19, We G* H0
U U {#,: « < e}. Hence

B2 U (»; - B) =* B2 u ( (J {K¡: 1< i < «} n We)

-* £2 U ( U {C, U Ä): 1 < / < e} n W.)

an r.e. set by Lemma 2.18. This completes the proof of the theorem.   □
Let A be an r.e. nonrecursive set. We say that A is almost recursive if for

every recursive set R, either R n A or R' n A is recursive. The following
facts about almost recursive sets can easily be verified by the reader.

Remark 2.20. Let A be an almost recursive set. Then
(2.7) if A is simple, then A is r-maximal;
(2.8) if A [ and A2 are a splitting of A, then A, and A2 are almost recursive;
(2.9) if B is a major subset of A, then B is almost recursive.
Let A G B be r.e. nonrecursive sets such that neither A \J B' nor B — A is

r.e. A is said to be an adequate subset of B if for every r.e. set W G B, if
B — A G W then there is a recursive set R such that B — A G R and
W u (B — B) is r.e. Note that if A is a small subset of B, then >4 is an
adequate subset of B. Remarks following the proof of Theorem 2.21 show
that adequacy does not imply smallness.

In our next theorem, we construct several r.e. sets, among which are Hx and
K, such that K is a small subset of Hx. The usual requirements to make K a
small subset of Hx clash with other requirements, and we were unable to use
them. Instead, we arrange the construction to make Hx an almost recursive
set and K an adequate subset of Hx. These two properties are equivalent to
making K a small subset of Hx given other properties of the sets constructed.
Remark 2.34 will explicitly give these properties. The theorem extends results
of Lachlan [4] and Lerman, Shore, and Soare [7].

Theorem 2.21. There exist an atomless hhs set H, a splitting Hx, H2 of H,
and an r.e. subset K of H such that K is a small r-maximal major subset of Hx
and for any r.e. set W, if W — H2 is r.e. then W — H is r.e.

Proof. By Theorem 2.9, fix an atomless hhs set H with a A° preference
function. Fix a one-one recursive enumeration {by. s < to} of H and let
Hs = {6,: i < s). Let A*: to -» {0, 1} be a A° preference function for H. Fix a
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14 M. LERMAN AND R. I. SOARE

recursive   function   h:   to3 —» to   such   that   for   all   x < to,   h*(x) =
lim, lim, h(t, s, x). For all /, x < to, let h+(t, x) = lim, h(t, s, x).

We will construct Hx, H2, and K by stages {s: s < to}. H{, H2 and Ks will
be sets of elements placed in Hx, H2, and K respectively before stage s. We
will have a partial recursive function with recursive domain ¿: to2 -» to such
that for each s, Xid(s, i) will be one-one with range H¡ - K\ d*(i) =
lim, d(s, i) will be total with range Hx - K. Let {B/: e < a & / < 1} be the
enumeration of pairs of recursive sets mentioned earlier.

Many of the properties we desire of our sets will follow from the construc-
tion without specifically having to force these properties to hold. We will only
take care to guarantee that Hx and H2 partition H and that K is an adequate
r-maximal subset of Hx.

In order to guarantee that K is an adequate subset of Hx, we will enumerate
r.e.-sets [Ty. e < to} during the course of the construction. Te will be used in
conjunction with the appropriate recursive set B to show that We (J (B — Hx)
is r.e. whenever necessary. The definition of Te enables us to obtain an r.e.
subset T of Te such that R - Hx = * T n H[ and T G* We u (B - Hx). We
say that x is protected by e at stage s if x G (H[+l n T'e) - (Ks - Wse). In
order to guarantee that Hx — K is r-cohesive, we will try to maximize e-states
of elements of Hx — K, whenever the adequacy conditions permit. Let

y(e, t, x, s) = {/ < e: x G R%'s-°}

and

E(e, t, x, s) = 2 {2e~': «' G y(e, t, x,s)}.

We say that e requires attention at stage s if d(s, e) is not protected by any
/ < e at stage s, and either

(2.10) for some n > e, E(e, e, d(s, e), s) < E(e, e, d(s, n), s); or
(2.11) E(e, e, d(s, e), s) < E(e, e, bs, s), d(s, e) < bs, and for all t such that

b, < / < s, and all / < e, h(e, t, i) = h(e, s, i) and d(s, e) = d(t, e); or
(2.12) d(s, e) is undefined.
77te construction.
Stage s. Let e be the least number which requires attention at stage s.

Choose the first of (2.10), (2.11) and (2.12) satisfied by e at stage s, and adopt
the appropriate case below.

Case 1. (2.10) is chosen. Place bs G H2 and d(s, e) G K. Define

d(s + 1, i) =
d(s, i) if i ¥=e,n and d(s, i) is defined,
d(s, n) if i = e,
undefined    otherwise.

Case 2. (2.11) is chosen. Place o, G Hx and d(s, e) G K. Define

d(s + 1, i) =
d(s, i) if i ¥^e and d(s, i) is defined,
¿>, if i = e,
undefined    otherwise.
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Case 3. (2.12) is chosen. If bs < s, place bs G H2, and define

d(s + 1, i) = ( d(s' ') tf ^ ^ is defined'
I undefined    otherwise.

If 6, > i, place bs G //„ and define

d(s, i) if ¿(j, i) is defined,
d(s + 1, 0 = U if i « e,

. undefined    otherwise.
In all cases, for each i < s, let N(s, i) be the least m < s such that

Zf, + 1L - Ks+i\m G Wf\m G H!+i\m. Enumerate in T*+l all elements of
H's+1\N(s,i).

This completes the construction. For all e < w, let Te =   U>77.

Lemma 2.22. ¿* is total and one-one. Furthermore, rng(¿*) = Hx — K.

Proof. We proceed by induction on e. Assume that d*(i) is defined for all
/ < e. Fix j sufficiently large so that for all t > s and /' < e, d(t, i) = d*(i),
and for all t > s and / < e, h(e, t, i) = h+(e, i). As {s: bs > s) is infinite,
there must be a least r > s such that ¿(r, e) is defined. Then for all t > r,
d(t, e) is defined. If t > s and d(t, e) ^ d(t + 1, e), then e requires attention
at stage t and E(e, e, d(t, e),t) < E(e, e, d(t + 1, e), t). By choice of r > s, for
all v, u > r and x < co, if u < v then E(e, e, x, u) < E(e, e, x, v). As E(e,
e, x, u) < 2e+l for all x, u < to, only finitely many such í can exist. Hence
d*(e) = lim, d(s, e) must exist. As Xed(s, e) is one-one for all e, d* must be
one-one.

As mg(Xed(s, e)) = Hsx - Ks for all s, we must have rng(¿*) G Hx - K. If
x G //, — K, then x G rng(Ae¿(s, e)) for all sufficiently large s. Furthermore,
if t > s and x = d(t, e) = d(s, n), then e < n. Hence Hx- K G rng(¿*).    □

Lemma 2.23. For all e, there exists an M(e) such that, for all x > M(e) and
all sufficiently large s, x is not protected by e at stage s.

Proof. We may assume that Hx — K G We, else only finitely many x can
ever be enumerated in Te. If x is ever protected by e, then x G Te n Hx. Any
such x must eventually appear either in We or K, and can never be protected
thereafter.    □

For each e < to, let y*(e) = {i < e: R° U B,1 ¥>* 0} and E*(e) = 2{2i_':
I S y*(e)}.

Lemma 2.24. For all e < u lim^ lim^ lini, E(e, v, d*(x), s) = E*(e).

Proof. For all v, x, s < to, E(e, v, x, s) < 2e+1. Furthermore, for all t? < to
there is an s such that for all x < to and all r > t > s, E(e, v, x, t) <
E(e, v, x, r). As lim, lim, h(t, s, e) = h*(e), we must have E+(e, x) =
lim„ lini, E(e, v, x, s) existing for all e, x < to.

We proceed by induction on e. Assume that the lemma holds for all i < e.
We assume as an induction hypothesis that for ally < e, if y G Y*(y)> then

¿*(x) G B?(,)    for all sufficiently large x. (2.23)
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16 M. LERMAN AND R. I. SOARE

Note that if y < e, then y*(j) = y*(e)\j + 1, so (2.13) holds for all y G
y*(e)\e.

First assume that Be° u Be' = * 0. Then e G y*(e), and for only finitely
many x can x G B¡**(,). Hence for only finitely many x can E +(e, x) be odd.
By (2.13), we see that E +(e, d*(x)) = E*(e) for all sufficiently large x.

Now assume that B° u Ä,1 ?t* 0. Let

/ = {x: (35)(Vy G y*(e))(x G ÄJ™ -ff*)}.
Since A* is a preference function for H, J n #' must be infinite. As / is r.e.
and H is simple, J n H ¥=* 0. By (2.13) and Lemma 2.23, for all sufficiently
large x, E*(e) — 1 < E+(e, ¿*(x)) < B*(e) and ¿*(x) is not protected by any
/' < e at all sufficiently large stages. Assume that E+(e, ¿*(x)) = E*(e) — 1
for infinitely many x, for the sake of obtaining a contradiction. Fix such an x
for which h+(x, e) = h*(e) and x > e. Choose j sufficiently large so that for
all t > s, d(t, x) = d*(x), h(x, t, e) = h*(e), and ¿*(x) is not protected by
any i < e at stage t. Let t > s be the least stage such that b, G / and
b, > max(j, x). Then E(e, x, b„ t) = E*(e) and E(e, x, ¿*(x), t) < E*(e). As
x > e, E(x, x, b„ t) > E(x, x, d*(x), t), so x requires attention via (2.11) at
stage /. But this is impossible, else ¿*(x) = d(t, x) =£ d(t + 1, x) contradicting
the choice of x. Hence E +(e, d*(x)) = E*(e), and (2.13) holds for i = e.   \J

Lemma 2.25. K is an r-maximal subset of Hx.

Proof. Let B be any recursive set. Fix the least e such that B = R? and
B' = Be', and let E+ be as in Lemma 2.24. Then by Lemma 2.24, as
e G y*(e), E+(e, d*(x)) = E*(e) for all sufficiently large x. Hence for all but
finitely many x, ¿*(x) G Be**(e). Thus Hx - K is r-cohesive.   □

Lemma 2.26. K is a major subset of Hx.

Proof. It suffices to show that K u H2 is a major subset of H, as Hx, H2
partition H. Let W be an r.e. set such that H' G If. By Theorem 2.1, there is
a recursive set R such that RGW and B' G H, so H' G R. It now suffices
to show that Hx - K G* R. Let R = Be°, B' = Re\ Then h*(e) = 0. By
Lemma 2.24, we must have E+(e, ¿*(x)) = E*(e) for all sufficiently large x,
so for all but finitely many x, ¿*(x) G B**(e) = Be° = B. Hence by Lemma
2.22, Hx - K G* R.    U

Lemma 2.27. K is an adequate subset of Hx.

Proof. Suppose that Hx - K G We G Hx. Let B = D {B,A*(,): i G y*(e)}
and Rs = D {B(*,*(0: i G y*(e)} for all s < to. As in the proof of Lemma
2.25, we note that Hx - K G* R. We will show that We u (B - //,) is r.e.

Since Hx - K G We G Hx, we must have H[ G Te. Let I = {x: (3î)(x G
R' n 7/ & x g //*)}• Then I - Hx = R - Hx, so it suffices to show that
Jfe U (/ — ffi) is r.e. This will follow once we show that I n Hx G* We.

Suppose that x G I n Hx. By Lemma 2.22, V = {y: (3í)(3i)(í < e &y =
d(s, /))} is finite, so we may assume without loss of generality that x G V. By
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Lemma 2.23, we may assume without loss of generality that x > M(e).
Let x = bs. Without loss of generality, we may assume that d(s, i) = d*(i)

for all i < e. As x G Hx, x = d(s + 1, ¿) for some i > e. Then for all t > s, x
cannot be placed in K' + 1 if x is protected by e at stage r. Since x G fff+1 n
T¡, there must be a least stage t > s such that x is not protected by e at stage
/. But then x G Wt/ G We. Hence I n Hx G* We.   Q

Lemma 2.28. Hx and H2 partition H, and Hx is not recursive.

Proof. Clearly Hx and H2 partition H. If Hx were recursive, then we would
have H' G H[ but (Hx - K) n H'x = 0 contradicting Lemma 2.26.    □

For all e, s < to, let Bei = fl {B¿*(,): » G y*(e)) and Re =   U, B^.

Lemma 2.29. For a// recursive sets R, if R n H' =£* 0 then R f\ H2 ¥= 0.

Proof. Fix e < u such that B = Be° and B' = R¿. Let « < to be the least
number such that R — R„ ¥= * 0. Such an n must exist as ff is atomless hhs.
Fix M such that for all x > M, E +(n, d*(x)) = E*(n). Fix s sufficiently large
so that for all t > s and x < max(Af, n), d(t, x) = d*(x). Let V = {y < r:
y $ Hr &y G Re°r& (V«)(¿(r, «) <>> -+ F(«, u, d(r, u), r) = E*(n))}. Let
K = UrFr. V G R° is clearly r.e. and V n H' = R° n H'. Furthermore,
V - R„ is r.e. and (F - B„) n i/' =^* 0 As #' is immune, (V - Rn) n
H ¥-* 0. Let x = o, G (V - Rn) n ff with t > s. Then x G V for some
r < t. If Case 1 is followed at stage t, then x G H2 so F n H2 G Be° n H2 ¥=
0. Case 2 cannot be followed at stage /, because if x = d(t + 1, /'), then
d(t, i) < x and i > n so B(«, /, ¿(/, /), t) = E*(n) > E(n, i, x, t) so E(i,
./', x, /) < E(i, i, d(t, i), t) and thus the first clause of (2.11) fails for x = bt. If
Case 3 is followed at stage t, x < t so x G H2 and again we have H2 n Be° ¥=
0.   D

Lemma 2.30. H2 is not recursive.

Proof. Suppose that H2 is recursive for the sake of obtaining a contradic-
tion. Let H¿ = R°, H2 = Re\ Then ReGH{ = Be° so by Lemma 2.29,
Re n H2=£ 0; hence H2 n /i2 9* 0, a contradiction.   □

Lemma 2.31. For a// r.e. sett If, if W - H2 is r.e. then W - H is r.e.

Proof. Let W - H2 be r.e. We cannot have W n H' =£* 0, else as H is
hhs, H u If is r.e., so by Theorem 2.1 there is a recursive set B G W — //2
with R n H' = W n H'; by Lemma 2.29, B n H2 ¥= 0 yielding a con-
tradiction. Hence W G * H and the lemma is immediate.   □

Lemma 2.32. Hx is almost recursive.

Proof. Let B be a recursive set. We may assume that B n Hx and
B' n Hx are both infinite, else we are done. Fix e such that B = Be° and
R' = Rj. Without loss of generality, we may assume that h*(e) = 0. We will
show that R ' n Hx is recursive.

Let x G Rj'   If x G ff', then we can immediately decide whether or not
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x G ff,. So assume that x G H". Fix M such that for all x > M,
E+(e, ¿*(x)) = E*(e) and F+(e, x) < E*(e). Fix i sufficiently large so that
for all r > t and x < Max(A/, e), ¿(r, x) = ¿*(x). Without loss of generality
we may assume that s > t. Find the least stage r > max(x, t) such that for all
y < x, if y = ¿(r, /) then F(e, i, d(r, i), r) = E*(e) or / < Max(A/, e). Clearly
such a stage must exist. If x G Hr, then we can decide whether or not
x G Hx. Suppose x £ ffr. We claim then that x G ff,. For suppose x is
placed in ff, at stage u > r. As x < r <u Case 1 or Case 3 cannot be
followed at stage u. If Case 2 is followed and x = d(u + 1, /'), then i > e and
d(u, i) < x. Furthermore, by choice of r and the conditions of Case 2,
E(e, i, d(u, i), u) > E(e, i, d(u, i), r) = E*(e) as d(u, i) = ¿(r, i), and E(e,
i, x, u) < E*(e) as E +(e, x) < E*(e) and x g B**(e). Hence as i > e, E(i,
i, d(u, i), u) > E(i, i, x, u), so we cannot have x = d(u + 1, /). Hence Case 2

cannot be followed, and x G ff,. This procedure decides effectively whether
or not x G B' n ff„ so B' n Hx is recursive.   □

Lemma 2.33. AT is a small subset of ff,.

Proof. Let W and X be any r.e. sets such that X n (ff, - K) G W. We
must show that W u (X — ff,) is r.e. Since ff is hhs, ff u X' is r.e. Since
X u (ff U A-') = u, by the separation theorem, we can find a recursive set B
such that B ç * and B' ç ff u A". Since X - ff, = (ff2 n A') u (B -
ff,), it suffices to show that W u (B — //,) is r.e.

We first show that if S is any recursive set such that S n (ff, — K) —* 0,
then S — ff, is recursive. Without loss of generality, we may assume that
S n (ff, — K) = 0. Since S is recursive, we can prove S — ff, recursive by
proving that S n Hx is recursive. By Lemma 2.32, //, is almost recursive, so
it suffices to show that ff, n S" is not recursive. But ff, n S' cannot be
recursive else its complement would be an r.e. set containing ff,' and disjoint
from ff, — K, contradicting the fact that K is a major subset of ff,.

Since ff, — AT is r-cohesive, we need only consider the cases where B n
(ff, - K) =* 0 or ff, - K G* B. If B n (ff, - K) =* 0, then by the
previous paragraph, R — Hx is recursive. Hence W u (B — ff,) is r.e. If
ff, — AT Ç* B, then by Lemma 2.27, there is a recursive set T such that
Hx - K G T and If u (T - Hx) is r.e. By the preceding paragraph, V -
Hx is recursive. Hence

If U (B - ff,) = If u (((if u (T - ff,)) n B ) u «r - ff,) n B ))
is seen to be r.e.   □

The theorem now follows from Lemmas 2.25, 2.26, 2.28, 2.30, 2.31 and
2.33.   □

Adequacy and almost recursiveness are equivalent to smallness under the
conditions described in our next remark.

Remark 2.34. Let H be an hhs set, ff, an r.e. subset of H such that
ff — ff, is r.e., and let K be an r-maximal major subset of ff,. Then AT is a
small subset of Hx if and only if K is an adequate subset of ff, and ff, is
almost recursive.
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Proof. The proof of Lemma 2.33 shows that AT is a small subset of Hx if K
is an adequate subset of ff, and Hx is almost recursive. Assume that AT is a
small subset of ff,. Then K is easily seen to be an adequate subset of Hx. Let
B be any recursive set. Since Hx — K is r-cohesive, we may assume without
loss of generality that B n (Hx - K) = 0. By smallness, 0 u (B - ff,) = B
— ff, is r.e. Since B - 77, and B n 77, are r.e. sets partitioning B, B n ff,
must be recursive. Hence 77, is almost recursive.    □

It is easily seen that smallness implies adequacy. The converse, however, is
not true. One can easily modify the proof of Theorem 2.21 to show that if ff
is any atomless hhs set with a A° preference function, then ff has an adequate
r-maximal major subset K. K, however, cannot be a small subset of ff. For let
B be any recursive set such that B n ff' *=* 0 and B' n 77' # * 0. Since K
is an r-maximal subset of 77, we can assume without loss of generality that
B n (ff - K) = 0. Since B n (77 - K) G 0, if K were a small subset of ff,
0 U (B - 77) would be r.e. But this is impossible as 0 u (B — ff) is an
immune set.

We also note that in Theorem 2.21, 77, and 772 cannot be a Friedberg
splitting of ff. ff, and ff2 split ff and, by Lemma 2.31, ff2 satisfies (2.1). To
see that ff, does not satisfy (2.1), let B be any recursive set such that
B n ff' ¥=* 0 and B' n 77' ¥=* 0. As 77' is immune, neither B - ff nor
B' — 77 is r.e. Since 77, is almost recursive, we can assume without loss of
generality that B n ff, is recursive. But then B — ff, is the difference of two
recursive sets, hence recursive, so (2.1) fails to hold.

3. Canonical realizations and necessary conditions. Let (9, 9> ) G (S, &) be
a finite separated ¿-lattice with one component, and let C be the complement
of the outermost atom of (9, 9> ), with C non-hhs. Let D and E be r.e. sets
partitioning C, and let (9X, 9>x) = (9, 9>) n E and (92, 9>2) = (9,9>)n
D. We say that (92, 9>2) is a minimizer of (9, 9> ) if

(3.1) there is an r.e. set If such that C c* If C* co, D u (W - C)is r.e.,
and C u If ' is not r.e.; and

(3.2) for every pair of r.e. sets 7)„ Ex partitioning C and every r.e. set If
such that C c* If C* to, C u If ' is not r.e., and D, u (W - C) is r.e.,

(a) (9, 9> ) n Dx does not have smaller characteristic than (92, 9>2); and
(b) if (9, 9>) n Dx at (92, 9>2) then (9, 9>) n Ex does not have smaller

characteristic than (9X, 9>x).
If (92, 9>2) is a minimizer of (9, 9>), then (9X, 9>x) is said to be the

cominimizer of (9, 9>) associated with (92, 9>2). Note that if 9 = {0, w, C},
then (^P2, ®2) = 0 is a minimizer of (9, 9> ) if and only if C is not simple.

Let (9,9>) have minimizer (?P2, 9>2) with associated cominimizer
C?,, 9X). Then ("i?*, <& *) is said to be the minimizer refinement of (9, 9>)for
(92, 9>2) if (9 *, 9> *) is the sub-¿-lattice of (S, <$,) generated by the elements
of 9X and 92.

Let (9, 9> ) G (ë, â) be a finite separated ¿-lattice with one component,
and let C be the complement of the outermost atom of (9, 9> ), with C not
quasi-r-maximal. Let D and E be r.e. sets partitioning C such that E is not
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recursive and if D is recursive then D = 0, and let (92, 9>2) = (9, 9) n D
and (9X, 9>x) = (9, 9) n E. We say that (92, 9>2) is a companion of (9, 9)
if (9X, 9X) at (9, 9) n C and there is a partition (B,-: i < to} of to consist-
ing of recursive sets such that for all / < to B, n C ¥=* 0, (9, 9 ) n B0 ^
(<?, 9 ), and (<3>, 9 ) n (B, n C) at (<éP2, <&2) for all i > 1.

Let (<3\ $) have companion (¿P^ 92) = (9, 9) n D and let (ÍP,, <&,) =
(9, 9) n E where D and E are as in the preceding paragraph. Then
(9 *, 9 *) is said to be the companion refinement of (9, 9 ) for (92, 92) if
(9 *, 9 *) is the sub-¿-lattice of (S, t£) generated by the elements of 9X and
*v

For the rest of this section, fix a finite separated ¿-lattice (L, A) with one
component, having outermost atom a0. We will construct three types of
canonical realizations (9,9) of (L, A) and isomorphisms \p: (9,9)^
(L, A). The realization of type i will be defined in subcase i of the construc-
tion. The realization of type 1 will be the Lachlan canonical realization with
4>(a'0) maximal. For each pair of lattices (LX,AX) and (L2,A2) which are
embeddable in (L, A)\a'0 and whose fusion over (L, A)\a'0 under these embed-
dings is isomorphic to (L, A)\a'0 such that if (Lx, Ax) =¿ (L, A)\a'0 then (L2, A^
= 0, we will construct a canonical realization of type 2, all of whose
minimizers are isomorphic to (L2, A2) and such that (Lx, Ax) is isomorphic to
all of its cominimizers. For each pair of ¿-lattices (L„ Ax) and (L2, A^ such
that (L2, A2)^>(Lx,Ax)c^(L, A)\a'0, (L2, AJ =£ 0, and (L2, A¿ is not iso-
morphic to the two-element boolean algebra, we construct a canonical
realization of type 3, all of whose companions are isomorphic to (L2, A^. In
fact, instead of constructing (9, 9), we construct a refinement (9 ', 9 ') of
(9, 9) such that if (9, 9) is of type 1 then (9\ 9') = (9, 9),if(9, <S)is
of type 2 then (9', 9 ') is a minimizer refinement of (9,9), and if (9, 9) is
of type 3 then (9 ', 9 ') is a companion refinement of (9, 9 ).

\¡/ will be defined on the atoms of (L, A), and the definition will proceed by
induction downwards, following the withinness relation of either (L, A),
(Lx,Ax)ot(L2, A^.

The construction. Let e be an atom of (L, A) for type 1 realizations, and
e = a0 or e an atom of (Lx, Ax) or (L2, A2) for type 2 or type 3 realizations.
For any atom c, let c + be the unique atom a such that c -<j a if c ¥= a0 and c
is not outermost in (Lx, Ax) or (L2, A2), c+ = a0 if c is outermost in (L„ Ax)
or (L2, A j), and undefined if c = a0. For any canonical generator p, let
p+ = L(A(p)+). There is some ambiguity in this definition as an innermost
atom is also a canonical generator. To avoid any confusion, we will use a, b,
c, d, e to denote atoms, and/», a, r, s, t to denote canonical generators.

Assume that \p(e) has not yet been defined, but that uV(e+) has been
defined. Let e,, . . . , ek be the atoms such that e* = e+ for 1 < i < Ac, among
which e must occur. By induction, we may assume that none of
yp(ex), . . . , y¡i(ek) has yet been defined.

Case 1. e = a0. Define t|/(L(e)) = to.
Subcase 1. By Theorem 2.5, let M be a maximal r.e. set. Define \j/(e) = M'.
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Subcase 2. Let B be an atomless r-maximal set as in Theorem 2.15,
partitioned by B, and B2. If (L2, A^ ¥= 0, define ^(e) = B', and if (L2, A^ =
0, define \p(e) = B'x.

Subcase 3. Let 77 be an atomless hhs set with a A° preference function as in
Theorem 2.9. Define 4>(e) =77'.

Case 2. e+ = a0.
Subcase 1. Let Ex, . . ., Ekbe a. Friedberg splitting of A/ as in Theorem 2.4.

Define \p(L(e¡)) = E¡ for 1 < /' < Ac. For each / = 1, . . . , Ac, let C, be a small
major subset of E¡ as in Theorem 2.6: Define ^(e,) = E¡ — C¡ if e, is not
innermost, and \¡/(e¡) = E¡ otherwise.

Subcase 2. If (L2, A2) = 0, proceed as in Subcase 1 with B, replacing M. If
(Lx, Ax) = 0, proceed as in Subcase 1 with B replacing M. If (Lx, Ax) ¥= 0
and (L2, A^ ¥= 0, we may assume that (e„ . . . , ek} is ordered so that e, is an
atom of (L2, A2) for 1 < /' < r and e, is an atom of (Lx, Ax) for r <i < k. Let
Ex, . . . , Er be a Friedberg splitting of B2 as in Theorem 2.4 and
Er+l, . . . , Ek a Friedberg splitting of B, as in Theorem 2.4. Define \¡/(L(e¡))
= E¡ for 1 < / < Ac. For each / = 1, . . ., k, let C, be a small major subset of
E¡ as in Theorem 2.6: Define \¡/(e¡) = F, — C, if e, is not innermost, and
ip(e¡) = Ei otherwise.

Subcase 3. Let {e¡: 1 < / < Ac} be ordered so that e, is an atom of (Lx, Ax)
for 1 < i < r and e, is an atom of (L2, .4^ for r < i < k. Let 7v, 77,, and 772
be as in Theorem 2.21. Let Fr+„ . . . , Ek be a Friedberg splitting of ff2 as in
Theorem 2.4. Define 4>(L(e¡)) = F, for /' = r + 1, . . ., Ac. For each i = r +
1, . . . , Ac, let C, be a small major subset of E¡ as in Theorem 2.6: Define
\¡/(e¡) = E¡ — C¡ if e¡ is not innermost, and \¡/(e¡) = F, otherwise. Let
F,, . . ., Er be an Owings splitting of 77, above K as in Theorem 2.11. For
i = 1, . . ., r, define \p(L(e¡)) = F,: Define ip(e¡) = E¡ — K if e, is not inner-
most, and i¡/(e¡) = E¡ otherwise.

Case 3. Otherwise. Let D = ^(L(e+)) - 4>(e+). (Note that Z) is r.e. by Case
1 and Case 2 of the construction.) By Theorem 2.2, let F„ . . . , Ek be a
Friedberg splitting of D as in Theorem 2.4 relativized to \p(L(e+)). Define
\¡/(L(e¡)) = F, for i = 1, . . ., k. For each / = 1, . . ., Ac, by Theorem 2.2,
choose a small major subset C¡ of F, relative to \p(L(e+)) by Theorem 2.6
relativized to \p(L(e+)): Define \¡/(e¡) = F, - C, if e, is not innermost, and
\p(e¡) = F, otherwise.

This completes the construction. We leave it to the reader to verify
inductively that the construction is well defined. Let (9 ', 9 ') be the sub-¿-
lattice of (S, &) generated by {\p(L(e)): e as in some fixed subcase}.

Lemma 3.1. 7/ (9', 9 ') is of type 1, then (9', 9')^ (L, A).

Proof. See Lachlan [3, p. 138].   □

Lemma 3.2. Let (9\ 9') be of type 2 or type 3. For / = 1, 2, let /, =
U W(e): e an atom of(Lt, At)}, and let (9t, 9¡) = (9', 9')\J¡. Then (9¡, 9¡)
- (A, AX
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Proof. Exactly as in the proof of [3, Theorem 1]. Our construction has all
the properties of Lachlan's construction.    □

Let (9 ', 9 ') be of type 2 or type 3, and let (9¡, 9¡) be as in Lemma 3.2 for
/'= 1,2. Since the given fusion of (L,,^4,) and (L2, A^ over (L, A) is
isomorphic to (L, A)\a'0, the same fusion of (9X, 9X) and (92, 92) over
(L, A) is also isomorphic to (L, A)\a'0. Denote this fusion by (9 *, 9 *). Let
(9, ® ) be the sub-¿-lattice of (S, 6E) generated by the elements of 9 *. Note
that (9,9) is uniquely determined by the construction and that
(9,9M(a'0) = (9*,9*).

Recall that for Q G 9, 9(Q) is the smallest element of 9 containing Q.

Lemma 3.3. (9, 9) at (L, A).

Proof. If (9, 9) is of type 1, then (9, 9 ) = (9 ', 9 ') so the lemma
follows from Lemma 3.1. Assume that (9,9) is of type 2 or type 3. As
(9, 9)\\P(a'0) = (9*, 9 *) ̂  (L, A)\a'0, we need only show that i//(a0) is the
unique outermost atom of (9, 9); i.e., that 9(\p(a0)) = co. Suppose that
\¡s(a0) G S G 9. Let D be any outermost atom of (9 *, 9 *). It suffices to
show that S n D ¥=* 0. There must be some outermost atom of either
(Lx, Ax) or (L2, A2) such that \p(e) G D. Fix such an e. Then i//(e) is defined in
Case 2, Subcase 2 or Subcase 3. If e is innermost, then \p(e) = F, is part of a
Friedberg or Owings splitting of an r.e. nonrecursive set, so is not recursive.
As \P(a0) G S, S n F,■¥=* 0 (else F, would be recursive), so S n D ¥=* 0 If
e is not innermost and \p(e) is defined in Subcase 2, or if »//(e) is defined in
Subcase 3 and e G A2, then \p(e) = F, - C, where C¡ is a major subset of E¡.
If e is not innermost and \¡/(e) is defined in Case 2, Subcase 3 and e G Ax,
then \¡/(e) = F, — K for some i. Since AT is a major subset of 770 D F, and
E¡ — K is infinite, F, n K must be a major subset of E¡. Let T = S U 4>(e)'.
As ip(a0) ç S, T is r.e., and F/ G T. Thus we must have i//(e) Ç F. But then
i//(e) Ç S, so 5 n D ^* 0.    □

Let (L\ .4') be a refinement of (L, A) such that (U, A')^(9\ 9'). Let
(L", A") be a finite separated refinement of (L',A') and assume that the
diagram

(L',A')       ~^(L",A")

(9',®')     ~^(9",9")     —»     (S.6B)
Figure 3.1

commutes, where (ÍP ", 9 ") has no finite atoms. We show that the following
conditions are necessary (recall that Max(/>) means that p is interpreted in
(S, &) by a maximal set):

(3.3) Letp2 G A" be given such that Max(/>2). Then/>2 G L" and/>2 is an
atom of (L",A"). Let o, be the atom of (L',A') such that p'2 G bx. Then
either 0, is an innermost atom of (L',A'), or (<3\ <35) is of type 2 with
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(L2, A2) = 0 and 6, = a0 and L"(p'2) n a'0 = 0, or (<3\ 9 ) is of type 1 and
/>2 = 6, = a0. In the latter case, we must have Max(/?2).

(3.4) Let (9, 9) be of type 2. Then there is a unique outermost atom a2 of
(L", ,4") such that a2 Ç a0 and L"(a2) n a'0¥^0. Furthermore, if (L2, AJ ¥=
0, then a2 is the only outermost atom of (L", A") which is contained in a0.

(3.5) Let (9, 9 ) be of type 3. Then there is a unique outermost atom a2 of
(L", A") such that L"(a2) n ¿ ^ 0 for some outermost atom ¿ of (L„ ^4,).
Furthermore, for this a2, L"(a2) n ¿ ¥= 0 for every outermost atom ¿ of
(L,M,).

(3.6) Let a,, 6, be atoms of (L',A') such that a, <jbx and a, is not
innermost. Let a2 G a, be an atom of (L", A"). Then there is an atom b2 G bx
of (L", A ") such that a2 ■< o2.

(3.7) Let a„ o, be atoms of (L!, A') such that a, <j bx. Let 62 ç o, be an
atom of (L", A"). Then there is an atom a2 Ç a, of (L",A") such that
a2 -< b2, unless either (9,9) is of type 2, 6, = a0, ¿>2 ̂a2, a, G Ax, and
(L„ ^4,) ^ 0 (in which case no such a2 can exist), or (9, 9) is of type 3,
bx = a0, b2 ¥= a2 and a, G ,4,.

(3.8) Let a2, b2 be atoms of (L", A") such that a2 ■<, b2. Let a,, o, be atoms
of (U, A') such that a2 Ç a„ o2 Ç bx. Then a, = o, or a, -<, 6,.

(3.9) Let (9, 9) be of type 1. Then if a2 G a0 is an atom of (L", A"), then
a2 = a0.

(3.10) Let (9, 9) be of type 2. Let 62 be an atom of (L", A") such that
¿>2 Ç a0 and b2 =£ a2. Then (7/, A') n (¿"(o^ n a¿) =: (L2, /Q and (L', A')
n (L"(o2) n ai,) G (L2, AJ.

Proof of (3.3). Fix/?2 and 6, as in (3.3). Then ^(p^ must be a maximal set,
hencep2 G L. As ip(y2) is cohesive,p'2 must be an atom of (L", A"). Suppose
first that o, =£ a0. If 6, is not innermost, then \p(bx) = f — [/for r.e. sets Í7, f
such that U is a major subset of V. By Remark 2.7, V — U is pure ¿-r.e.
hence cannot contain the co-r.e. set \p(p'2). Hence in this case, o, must be an
innermost atom of (L', A'). Suppose next that 6, = a0. If (9, 9 ) is of type 1,
then 1^(6',) is a maximal set, so we must havep'2 = o, and Max(p2). If (9, 9)
is of type 2 with (L2, A2) ¥= 0 or of type 3, then if(o',) is atomless, so we
cannot have Max(/>2). If (9, 9) is of type 2 and (L2, AJ = 0, then \¡/(bx) =
B', = B2 u B'. As B is atomless, we must have ^(p'^ G B2. But then
HL"(p'2)) n B2 = $(L"(p'2)) - B, is r.e., so ^(L'Xp'^) - B, G 9 ". Hence
£"(/>i) n a'0 = 0.    □

Proof of (3.4). If (L2, A2) ¥= 0, then ip(a0) is r-cohesive, hence immune by
Remark 2.10. Any outermost atom b2 of (L", A") must, therefore, satisfy
L"(b2) n a0 7^= 0. Thus it suffices to show that there is a unique outermost
atom a2 G a0 of (L", A"). As \p(a'0) is not recursive, there must be an atom
a2 Ç a0 of (L", A") such that L"(a2) na^O. Fix such an a2, with the
property that $(L"(a2)) n B ¥= 0. Let F = (e2 G ,4": e2 G a0 & e2 #
a2 & e2 is an outermost atom of (L", A")}. If F = 0, then we are done.
Otherwise, let S0 = iH¿"(a2)) and 5, = U {^(¿"(e^): e2 G F}. Then S0
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and Sx are r.e. sets such that <Kao) £^oU Sx, and >Kao) — 5, ?*=* 0 for
i = 0, 1. Let G = ^(ay. By Theorem 2.1, there is a partition {Tq, F,} of to
such that F0 Ç S0 u G, F, Ç Sx, and iKa0) - 5, = i//(a0) - 7;. for / = 0, 1. If
(L2, A 2) ¥= 0, this is impossible since G is r-maximal, hence E = 0 in this
case. If (F2, A2) = 0, then G' = B' u B2 with B r-maximal, so we must have
B' Ç * F0. Hence F, ç * G u B2. Let e2 G F. Then iRF"^) - G G <S "
and iKL"(e2)) - G = iK¿"v>2)) n B2 is r.e. hence in 9". Thus L"(e) n a'0 =
0.   □

Proof of (3.5). Let ¿ be any outermost atom of (LX,AX) and let T =
U {$(L"(c2))\ c2 G a0 is an atom of (L", A")}. K u (T - H¿) cannot be r.e.,
since AT is a major subset of ff0, H¿ G ff, U (T — ff0) and (ff0 — AT) n (ff,
U AT u (F - 770)) = 0. If d is an innermost atom of (L„ Ax), then ip(¿) is
part of an Owings splitting of ff0 above K, so K \J (T — \p(d)) cannot be r.e.
Thus T - t//(¿) is not r.e., so there is an atom a2 G a0 of (L", A ") such that
L"(a2) n ¿ ¥= 0. If d is not innermost, then there are r.e. sets U G V G H0
such that \p(d) = V — U, H0 — V is r.e., and 1/ is a major subset of f. As
V G (770 - V) u 77, u F and i¿(¿) n (77, u (770 - f )) = 0, we must have
f - U = i/<¿) Ç* F. Hence again there is an atom a2 G a0 of (L", A")
such that L"(a2) n ¿ ^ 0. Fix such an a2.

Suppose that for some outermost atom c of (L„ v4,), there is an atom
c2 G aQ of (L", A") such that c2 ¥= a2 and L'^c-) nc^O, for the sake of
obtaining a contradiction. Let S = U {^(¿"(e^): ^2 ** °2 *s an outermost
atom of (L", A")}. Note that as 77 is hhs, a2 must be an outermost atom of
(L",A"), so iRF"(a2)) n 5 = 0 as (L",A") is separated. Hence S and
i£(L"(a2)) are recursive sets partitioning to. As ff0 — AT is r-cohesive and
iKc) n (770 - K) ** 0, we must have 770 - K G* S. But as «//(¿) D (770 -
K) n \f(L"(a2)) =£* 0 and ff0 - AT is r-cohesive, we must have ff0 -
K G * \p(L"(a2)). Hence H0 — K must be finite, a contradiction,    fj

Proof of (3.6). Fix a,, o„ a2 as in (3.6). Then there are r.e. sets U, V, X, Y
such that U G V G X G Y, i//(a,) = V - U, i//(6,) = Y - X, X - V is r.e.,
and U is a major subset of V relative to Y. Since U {¿"(ôj): b2 G o, is an
atom of (L",A")} \j (X - V) = T is &n r.e. set containing Y - V, we must
have f - U G* T. As (f - U) n (X - V) = 0 and 1/^2) ç f - Í/, we
must have >Ka2) G* $(L"(b2)) for some atom b2 G o, of (L", A"). For such a
b2, a2 < b2.    □

Proof of (3.7). Fix a,, bx, b2 as in (3.7). First consider the cases where
either 6, ^ a0 or (9, 9) is of type 1, or (9, 9) is of type 2 with (L„ ,4,) =
0. Then there are r.e. sets U, V, X, Y such that U G V G X G Y, t//(a,) = V
- U, \¡s(bx) = Y - X,X - V is r.e., and if U ¥= 0 then Í7 is a small subset of
V relative to Y. $(L"(b2)) n (Y - X) = (^(L'Xb^) n Y) - X is infinite but
not r.e. since Y — X is seen to be immune. As f was obtained through a
Friedberg splitting of X relative to Y, (\f(L"(b2)) n Y) — V cannot be r.e.
Hence \j/(L"(b2)) n V is infinite. If U = 0, then we are done. Otherwise,
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since U is a small subset of V relative to Y, if ^"(b-J) n (V - U) =* 0
then ¿(L"(b2)) - V = (xf(L"(b2)) n Y) - V would have to be r.e., but we
have shown this not to be the case. Hence ip(L"(o2)) n (V — U) =£* 0. Thus
there is an atom a2 of (L", A ") such that a2 -< b2.

Next consider the case where ¿>, = a0, (9, 9) is of type 2, and (L,, Ax) ¥=
0. If 62 ¥= a2 and a, G .4,, then \¡/(ax) G B, and by Theorem 2.15, B2 u
(\j/(L"(b2)) - i//(a0)) is r.e. Hence L'^bj) n a, = 0, else

$(L"(bJ) - Ha'0) =[B2 U (ï(L"(b2)) - HO)]

n[B, u(^(L"(o2))-tP(a0))]

would be an infinite r.e. subset of the immune set B', which is impossible.
Suppose that a, G A2. Then there are r.e. sets U, V, X, Y such that U G V G
X G Y, i//(a,) = V - U, xP(bx) = Y - X, X - f is r.e., and if U ^ 0 then U
is a small subset of V relative to Y.

î(L"(b2)) n (Y - X) = (f(L"(b2)) nY)-x

is infinite, and is not r.e. as Y — X is immune since (L2, A^ ^ 0. By
Theorem 2.15, $(L"(b2)) - B2 is not r.e., else ¡£(L"(b2)) - B would be an
infinite r.e. subset of the immune set B'. As V is obtained from a Friedberg
splitting of B2, \p(L"(b2)) — V cannot be r.e. We can now proceed as in the
preceding paragraph. Finally, assume that a, G A, and b2 = a2. By (3.4),
j(L"(b2)) n iM«o) ** 0. If (L2, AJ = 0, then ^(a0) = B, so iK¿"(¿>2» n
B, 7*=* 0. And if (L2, .4^ ^ 0, then by (3.4), a0 ç ¿"(62); we note that from
Theorem 2.15, B, is not recursive, so again we must have ^(¿"(oj)) n
B, ¥=* 0, else B', = B2 u $(L"(b2)) would be r.e. Hence ^"(bj) - B,
cannot be r.e. There are r.e. sets U, V, X, Y such that U c V G X c Y,
if(a,) = V - U, \P(bx) = Y - X, X - V is r.e., and if C/ ,* 0 then t/ is a
small subset of f relative to Y. As f is obtained from a Friedberg splitting of
B„ \p(L"(b2)) — V cannot be r.e. We can now proceed as in the preceding
paragraph.

Finally suppose that (9, 9 ) is of type 3 and that o, = a0. As iKa0) is hhs,
we must have b'2 G L". Suppose first that a, G A2. Then there are r.e. sets U,
V, X, Y such that U G V G X c Y, i(ax) = V - U, xP(bx) = Y - X, X -
V is r.e., and if U =£ 0 then U is a small subset of V relative to Y. As
"Kao) = H' an£l H is hhs> ^' is not immune by Remark 2.10. Hence
iKF"(ô2)) n 77 ^* 0 so iKF"(¿>2)) - 77 is not r.e. By Theorem 2.21,
\f(L"(b2)) — ff2 cannot be r.e. And as V is part of a Friedberg splitting of ff2,
4>(L"(b2)) — V is not r.e. We now proceed as in the first paragraph of this
proof. Suppose that a, G Ax and L'^b^ n ¿ ¥= 0 for some outermost atom d
of (F„^4,). As a, is an outermost atom of (LX,AX), by (3.5), b2 = a2 and
¿"(¿2) n a, ^ 0. Hence there is an atom a2 G a, such that a2 -< 62.    □
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Proof of (3.8). Let a,, bx, a2, b2 be as in (3.8). Assume that a, =£ bx and a,
is not just within o, for the sake of obtaining a contradiction. Note that if K is
a small subset of 770, and F„ . . . ,En are r.e. sets partitioning ff0 and splitting
ff0 — K, then for / = 1, ...,«, AT n F, is a small subset of ff0 n E¡. Thus
there is an atom c, of (L', A') such that a, -< c, and c, <* bx. Furthermore,
there are r.e. sets U, V, X, Y such that U c V G X c Y, x¡icx) = V - U,
\¡/(bx) = Y — X, X — f is r.e., and U is a small subset of V relative to Y. Let
F = (c2: c2 G L"(b2) n e, and c2 is an atom of (L", A")} and S =
U {$(L"(c2)): c2 G F}. Then S G 9" and ^(¿"(¿i)) n iRc,) ç S, so we
must have

S U (¿(F"(o2)) - *(!/(<:,))) =WG9"
by smallness. Hence ^(//'(o^)) ç If, so

*(L"(Ô2)) n <KF'(c,)) ç 5.

As a2 Ç L"(b2) n F'(c,), t//(a2) Ç \f(L"(c2)) for some atom c2 G T of
(L", /4"). Hence there is an atom c2 G c, of (L", A") such that a2 < c2 -< Z>2,
yielding a contradiction.    □

Proof of (3.9). Clear since \¡s(a0) is cohesive.   □
Proof of (3.10). Let b2 be an atom of (L", A") such that b2 G a0 and

b2 ¥=a2. Then \p(L"(b2)) n >Kao) = S is infinite, hence by Theorem 2.15,
B2 u S is r.e. If (F2, .42) = 0, then B2 Ç i|/(a0), hence ^"(b-J) G i//(a0) and
(3.10) follows immediately. Suppose that (L2, A-¿) =£0. Since B2 G 92, we
must have

(L',^')n(L"(62)na0)ç(L2,/l2).

To complete the proof of (3.10), it suffices to show that if D = ¡¡/(L'^b^) then
(9, G) = (92, 92) n D at (92, 92).

Assume that (9, Q) ä (92, 92) in order to obtain a contradiction. Since
(9, Q) <LJ> (92, 92), there must either be a canonical generator U G 92 such
that D n 92(U) = 0, or there must be canonical generators U, V G 92
such that U < V but D n U ^ 9(D n f ). By (3.7), the latter case can only
happen if D n 92(V) = 0. Hence we can fix a canonical generator U such
that 7) n 92(U) = 0 and such that for no canonical generator V D t/ of 92
is D n 92(V) = 0. By (3.6), 92(U) must either be an innermost or outer-
most atom of (92, 92).

Suppose that 92(U) is an innermost atom of (92, 92). Then there is an r.e.
set If such that U = B2( U) is part of a Friedberg splitting of If during the
construction, and If — U is r.e. Hence by Theorem 2.4, as D — U is r.e.,
D — W must also be r.e. If If is a canonical generator of C!P2, 92) and
92(W) is an outermost atom of (92, 92), then we must have D = 0, and so
S is an infinite r.e. subset of the immune set B', a contradiction. Otherwise,
there is a canonical generator X of (92, 92) such that 92(X) = X — W and
92(U) is just within 92(X). By (3.7) X n (D - W) = 0, contradicting the
choice of U. Hence 92(U) must be an outermost atom of (92, 92) which is
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not innermost, and so 92(U) = Z — y in the construction, with Y, Z i.e.
and Y a small subset of Z. Since D n (Z — F) = 0, D — Z must be r.e. By
Theorem 2.4, D — B2 must be r.e. As 7) n B, = 0, 7J) — B must be r.e. But
then D — B is an infinite r.e. subset of the immune set B', a contradiction.
D

4. Refinement theorems and the decision procedure. Fix a finite separated
¿-lattice (L, A) with one component, a finite separated refinement (L', A') of
(L, A), and a realization (?P, 9 ) of (L, /I). We will give sufficient conditions
for the existence of a refinement (9 ', 9 ') of (9, 9 ) with no finite atoms,
such that the diagram

(L,A)      -^      (L',A')

(9,9)     -»     (9',9')     —*     (S,&)
Figure 4.1

commutes, with appropriate elements of 9 ' maximal.
One of our principal tools will be a slight generalization of Lachlan's

refinement theorem [3, Theorem 4].

Theorem 4.1 (Refinement Theorem). Let (L, A), (L', A'), and (9, 9) be
as above with (9,9) irreducible. Suppose that:

(4.1) Every outermost atom of (L, A) which is not innermost is an atom of
(L',A').

(4.2) If a, b are atoms of (L, A) such that a •<, b and a is not innermost, and
a, G a is an atom of (U, A') then there is an atom bx G b of'(L', A') such that
a, < bx.

(4.3) If a, b are atoms of (L, A) such that a <.. b, and bx G b is an atom of
(L', A'), then there is an atom a, G a of(L', A') such that a, -< 6,.

(4.4) If ax, bx are atoms of (L', A') contained in the respective atoms a, b of
(L, A) and a, <, bx then a = b or a <¡ b.
Then there is a realization (9 ', 9 ') of (L', A') such that the diagram of Figure
4.1 commutes. Furthermore, if a, is any outermost atom of (9', 9') not
contained in the outermost atom of(9, 9 ), then we can make $(a'x) maximal or
4>(a'\) not maximal as we desire.

Proof. Lachlan [3, Theorem 4] proves the theorem without the maximality
conditions. The latter follows easily from his proof, as if a, is any outermost
atom of (9 ', 9 ') not contained in an outermost atom of (9, 9 ), then by
(4.2), a, must be contained in an innermost atom a of (9, 9 ). In this case,
Lachlan chooses a recursive subset B of 4>(a), and defines \p(L'(ax)) = R. He
then builds an isomorphic copy of (77, A')\L'(ax) inside of B. If we build such
a copy with a type 1 canonical realization, then \p(a'x) will be maximal. If we
build such a copy with a type 2 canonical realization, then \p(a'x) will not be
maximal.   □

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



28 M. lerman and r. i. soare

Fix the r.e. set C such that C is the outermost atom of (9, 9). We say
that (9, 9 ) is of type 1 if C is maximal. We say that (9, % ) is of type 2 if C
is not hhs. We say that (9,9>)v&oi type 3 if C is not quasi-r-maximal. The
following theorem is only a slight restatement of Theorem 4.1.

Theorem 4.2 (Type 1 Refinement Theorem). Suppose that (9,9) is
irreducible of type 1, and that (3.3), (3.6), (3.7), (3.8), and (3.9) hold. Let
S = {a, G A': a, is an outermost atom of (LI, A') contained in an innermost
atom of (L, A)}, and T G S. Then there exists a realization (9', 9') of
(L', A') such that Figure 4.1 commutes, and such that for all bx G A', \p(bx) is
maximal if and only if b\ G T or b'x is the outermost atom of (L, A).

Proof. (3.9), (3.6), (3.7), and (3.8) immediately yield (4.1), (4.2), (4.3), and
(4.4). By Theorem 4.1, we obtain (9', 9') as specified such that for all
bx G A', vH^i) is maximal if and only if b'x G F unless b[ is the outermost
atom a0 of (L, A). But in this case, by (3.3) we have Max(aó) and as C is
maximal, by (3.9) we have Max(C).   □

Let (9,9) be irreducible of type 2 with minimizer (92, 92) and
associated cominimizer (9X, 9X). Let B be any recursive infinite coinfinite
set. Note that the notions of minimizer and cominimizer straightforwardly
extend to (9, 9) n B. We say that (9, 9) n B has smaller degree than
(9, 9) as witnessed by (9X, 9X) and (<!P2, 92) if one of the following holds:

(4.5) (9, 9 ) n B is reducible or (9, 9 ) n B has smaller characteristic
than(<iP, 9);

(4.6) either (92, 92) n B ^ (92, 92) or (9X, 8,)nÄ^ (9X, 9X) or
(92, 92) n B is not a minimizer of (9, 9) n B.

As the relation "has smaller degree than" is transitive and we can effec-
tively finitely list all possible isomorphic types of ¿-lattices embeddable into
(9, 9 ), we can effectively finitely list all possible isomorphism types of
¿-lattices of smaller degree than (9,9) which are embeddable into (9, 9).

We say that (9, 9) is strongly irreducible if there is a minimizer (92, 92)
of (9, 9) with associated cominimizer (9X, 9X) such that for any recursive
set B, either

(4.7) (9,9) n Ris irreducible and (9, 9 ) n B a; (9, 9 ); or
(4.8) it is not the case that (9, 9 ) n B ' has smaller degree than (9, 9 ) as

witnessed by (9X, 9X) and (<éP2, 92).
If (9, ®) is strongly irreducible with (9X, 9X) and CéP2, 92) as above, we

call (9X, 9X) and (<!P2, 92) witnesses to the strong irreducibility of (9, 9).
We say that (9*, 9#) is a. preliminary refinement of (9,9) of type 2 if

there are r.e. sets If, D, E such that If is not maximal (92, 92) = (9,9) n
D is a minimizer of (9, 9) with associated cominimizer (9X, 9X) = (9,9)
n E, C c* If C* to, D \j (W - C) is r.e., C \j W is not r.e., and
(9*, 9*) is generated by {X: X = If or X = P n D or X = P n F for
some P G 9} and has no finite atoms.
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Theorem 4.3 (Type 2 Preliminary Refinement Theorem). If (9,9) is
strongly irreducible of type 2, (9X, 9X) and (92, 92) witness the strong irreduc-
ibility of (9,9), and (9*, 9 *) is the minimizer refinement of (9, 9) for
(92, 92), then (9, 9) has an irreducible preliminary refinement (9*, 9s) of
type 2 with (9 *, 9 *) G (9*, 9s).

Proof. Let (9,9) be strongly irreducible of type 2 with minimizer
(92, 92) and cominimizer (9X, 9X) witnessing the strong irreducibility of
(9,9). Fix r.e. sets D and F such that (92, 92) = (9, 9) n D and
(9x,9x) = (9,9)n E.

Let If be any r.e. set such that If satisfies (3.1). If If is maximal, then as C
is not hhs, by Theorem 2.8, C cannot be hhs relative to If. Hence there is an
r.e. set If* such that C c* If* c*toandCu(If- If*) is not r.e. Hence
C u If*' cannot be r.e. As D u (If - C) is r.e., D u (If* - C) = (D u
(If — C)) n If* is r.e., so If* satisfies (3.1) and If* is not maximal. Hence
without loss of generality, we may assume that If is not maximal. Thus there
is a finite modification (9s, 9s) of the ¿-lattice (9+, 9 + ) generated by {X:
X = If or X = F n Z> or * = B n F f or some P G 9 } which is a pre-
liminary refinement of (9,9) of type 2. We assume that (9+, 9+) =
(9s, 9s) without loss of generality. We must now show that (9s, 9s) is
irreducible.

We now proceed by cases. First consider the case where (9X, 9X) = 0. Let
B be a recursive set such that If' G R, and let Q = P r\ R for some
P G 9s. Suppose that If ' = If ' n B ç Q. If (If - C) n B %\ Q, then
(If - C) n B = 0, and so (C n B') u (C n B) u If ' = C U If ' is r.e., a
contradiction. Hence (W - C) n R G Q. If C n R <£ Q, then for some
atom B G C n B of (9s, 9s) n B, B n Q = 0; furthermore, we can sep-
arate C and Q by Theorem 2.1, obtaining an r.e. set S G Q such that
(C n B) — S is r.e. But this contradicts (3.2) since (9X, 9X) is a minimizer of
(9,9). Hence every atom B G C n B of (9s, 9s) n B is within (If - C)
D B. Choosing S = B n C in (3.2), we see that (9X, 9X) n B at (9X, 9X).
Hence (9s, 9s) n B a; (<?», $*), so (9*, $*) is irreducible.

Finally, consider the case where (92, 92) 9^ (9, 9) n C. Let B be any
recursive set such that If ' Ç B'. If (<!P, 9 ) n B at (9, 9), then (9x,9x)n
R c-» (?P,, $,) must have smaller characteristic than (9, 9 ) as it contains no
atom which has nonempty intersection with C'; and (92, 92), the sub-¿-lat-
tice of (S, &) n ((7) n B) u (C n R)) generated by {X: X = C' n B or
A' = F n B for some B G ?P2} has smaller characteristic than (9,9) as
(<!P*, 9*)n C^>(92, 92)^>(9, 9) n C and C!P2, ®2)9e (<3\ 9) n C.
We note that (92, 92) is a component of (<?, <S) n B since [7) u (W - C)]
n B is r.e. Hence if (9, 9 ) n B has the same characteristic as (9,9 ),
(9X, 9X) n B and CéP2, 92) decompose it to show that (^P, 9) n B is not
irreducible, and so (4.7) fails. As (9,9) is strongly irreducible, by (4.8),
(9, 9) n B' cannot have smaller degree than (9,9) as witnessed by
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(9X, 9X) and (<ÍP2, 92). Hence (4.5) and (4.6) must fail, so (9, 9) n B' is
irreducible, (9, 9) n R'at(9, 9), (9X, 9X) n R'at(9x, 9X), (92, 92) n
B' at (92, 92), and (92, 92) n B' is a minimizer of (9, 9) n B'. If Q = F
D B' for some F G <¿P* and (If - C) n B' G Q, then as C!P2, 92) n B' is a
minimizer of (9, 9) n B', we must have 7) n B' ç Q. Now to show that
(9s, 9s) n B' a;(<dPs, 9s) and so conclude that (9s, 9s) is irreducible, it
remains only to show that every atom of (9s, 9s) n B' is within If'. Let
Q = P n B' for some F G 9s and assume that If' G Q. Then since C u
If' is not r.e., (C u If') n B' cannot be r.e. as C u If' = C u ((C u If')
n B'). Hence (If - C) n B' G Q, so (If - C) n B' is within If' = If' n
B'. If B is any atom of (92, 92) n B', then we have shown that B is within
(If - C) n B', hence B is within If'. Let B be an atom of (9X, 9X) n B'. If
g n B = 0, then as (9X, 9X) n R' at (9X, 9X), we can choose such a B
which is an outermost atom of (9X, 9X) n B'. Hence G = (E n B') - B is
r.e. By Theorem 2.1, we separate Q and G to obtain a recursive set F ç g
such that F n B = 0. We now note that (9, 9) n (B' - F) has smaller
degree than (9, 9 ), and that (9, 9 ) n (B u F) either is not irreducible or
is not isomorphic to (9, 9 ). (The argument for the latter is the same as the
one that showed this fact for B replacing R u F.) This is impossible as
(9X, 9X) and CéP2, 92) witness the strong irreducibility of (9,9). Hence
Q n B =£ 0 and so B is within If'.   □

Theorem 4.4 (Type 2 Refinement Theorem). Let (9,9) be strongly
irreducible of type 2 and let (9X, 9X) and (92, 92) witness the strong irreduc-
ibility of (9,9). Let (9*, 9 *) be the minimizer refinement of (9, 9) for
(92, 92). Let (L*,A*) G (L",A") be finite d-lattices such that (9*, 9 *) a:
(L*,A*). Suppose that (3.3), (3.4), (3.6), (3.7), (3.8), and (3.10) hold for
(L*,A*) replacing (L',A'). Let S = {a2 G A": a2 is an outermost atom of
(L",A") contained in an innermost atom of (L*,A*)} and let T G S. Then
there exists a realization (9 ", 9 ") of(L", A") such that the diagram

(L*,A*)      -=>      (L",A")

<P\^— $ ̂  —
Q

(9*, 9*)     —>    (9", 9")
Figure 4.2

commutes. Furthermore, for all b2 G A", ^(b^ is maximal if and only if
b'2G T.

Proof. The proof follows the following diagram.
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(9", %n) ̂ ^ (L", A") (Iß, A#) ^^ (9>* %#)

Figure 4.3

Choose D and E such that (92, 92) = (9, 9) n D and (9X,9X) =
(9, 9) n E. Let a* be the outermost atom of (L*, A*). By (3.4), fix the
unique outermost atom a2 of (L", A") such that a2 G a* and L"(a2) n a*' #
0. Let G = {¿>2: (3o,)(o2 C o, and \p(bx) is an outermost atom of (9X, 9X))
and b2 is an outermost atom of (L",A") n ^"'(7))}. Let ff = {62 G G: 62 is
just within a2} = {¿„ . . . , ¿„}. We define a refinement (L + , ^ +) of (L", A")
obtained by partitioning a2 into n + 1 atoms a0, . . ., a„. We let L+(a0) =
L"(a2) and L + (a,) = L"(¿,) u a, for i - 1,..., n. Clearly (L", A")\a*' =
(F + , ^4 +)|a*'. Let (F*, v4*) be the ¿-lattice such that (L*, A*) G (Ls, As) G
(L + ,A+) and (LS,AS) is generated by the elements of L* and a0. Let
CdP*, $*) be an irreducible preliminary refinement of (9,9) extending
(9*, 9 *); such a (9s, 9s) exists by Theorem 4.3. It is easily verified that
(9s, 9s) at (Ls, As) which is separated.

To prove the theorem, it suffices to show that there is a refinement
(9+, 9 + ) of (9s, 9s) such that the diagram

(LS,AS)      A      (L + ,A+)

(9s,9s)     A-     (9+,9+)     A-     (&,&)
Figure 4.4

commutes, where CiP+, 9 + ) has no finite atoms, and the maximal sets in
(9+, 9 + ) are exactly those specified in the theorem. For then we could find
(9", 9 ") with no finite atoms such that ("iP *, 9 *) G (9 ", 9 ") G (9+, 9 + )
and Figure 4.3 commutes.

The existence of (9+, 9 + ) such that Figure 4.4 commutes will follow from
Theorem 4.1. We need only verify that (4.1)-(4.4) are satisfied; the maximal-
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ity conditions follow since (9 ", 9 ")\«a.,y = (9s, 9s)\^a.y
(4.1) clearly holds since a0 is the unique outermost atom of (Ls, As) and a0

is an atom of (L+, A +). Let a, b be atoms of (Ls, As) such that a <¡ b and a
is not innermost. Let c, G a be an atom of (L + , A +). If a <¿ a*, then by (3.6),
there is an atom bx G b of (L+, A +) such that c, -< o,. Suppose that a Ç a*.
Then we must have b = a0 and a = a* — a0. If c, = a, for some i =
1, . . . , n, then a, G L + (a0). Otherwise, c, is an atom of (L*,A*) in which
case we already have c, G L+(a0) from (3.6). Hence (4.2) holds.

Let a, b be atoms of (Ls, As) such that a <¡ b. Let 6, ç b be an atom of
(L + ,A+). By (3.7), there will be an atom cx G a of (L+,A+) such that
c, < o, unless o, = a0 or 6, = a, for some / = 1, . . . , n. (Note that if
\p(a) G ®,, then a is not within a* — a0.) If o, = a0, then every atom of
(L + ,A+) is contained in L + (bx), so there must be an atom c, G a of
(L + , A +) such that c, -< bx. If o, = a, for some / =^= 0, then since (Ls, As) is
separated and since by (3.10) (Ls, As) n (F+(o,) n a*') at CdP2, ®2), we must
have d¡ G a and so can choose c, = d¡ to obtain c, < bx. Hence (4.3) holds.

Let cx, o, be atoms of (L+, A +) such that c, <, 6,. Let a, b be the atoms of
(Ls, As) such that c, G a, bx G b. By (3.8), a = b or a <jb unless either
b = a0 and a = a, for some i = 1, . . . , n, or b = a, for some /' = 1, ...,«. If
b = a0 and a = a, for some / = 1, . . ., n, then a, <, b. If 6 = a, for some
/ = 1, . . . , n, then \\/(a) must be an outermost atom of (92, 92) in which case
a <j b. Hence (4.4) holds.   □

Let (U, A') have m components. Then (9, 9) is said to be of type 3 for
(L', A') if there are pairwise disjoint recursive sets B,, . . . , 7^ such that for
ij G {1, ... , m], B, n C" is not r.e. or cohesive, (9, 9) n B, and (9, 9)
n B, are equivalent over (9,9) through the inclusion embedding (i.e., ¡p
and £ in Figure 1.1 are given by inclusion).

Let (9, 9) be irreducible of type 3 for (L', A') with companion (<ÍP2, 92)
= (9,9) n F and such that D = C - Eis r.e. Since (92, 92) is a compan-
ion of (9, 9), (9, 9) n C at (i?, 9) n D. Let ("ÍP*, $ *) be the refinement
of (9, 9) generated by {X: X G 9 or X = D or * = F}. Note that
CéP *, 9 *) is a companion refinement of (ÍP, ÍB ). Let Rx, . . . , Rm be as in the
preceding paragraph. Let B be the complement of U {B,: 2 < í < m). Let
C?*, ®*) be the refinement of (9, 9) generated by {X: X G 9 or X = B,
for some i = 1, . . . , m}. (9s, 9s) is said to be a preliminary refinement of
O?, <&) of /y/>e 3 if (9s, 9s)nRat(9,9). Note that if (9s, 9s) is a
preliminary refinement of (ÍP, 9 ) of type 3, then if we choose D = R n C
and F = B' n C, and form (9*, $ *) as above, then (9*, © *) is a compan-
ion refinement of (9,9) induced by (9s, 9s).

Theorem 4.5 (Type 3 Preliminary Refinement Theorem). Let k be the
number of nonequivalent sub-d-lattices of (&, &) embeddable into (9,9)
under inclusion, and let m be the number of components of(L', A'). Suppose that
C is not quasi-r-maximal of degree < 2w(Ac — 1), but that C is simple. Then
(9,9) is of type 3 for (L',A'). Furthermore, if (9,9) is irreducible, then
(9,9) has an irreducible preliminary refinement of type 3.
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Proof. Since C is not quasi-r-maximal of rank < 2w(Ac — 1), there are
recursive sets B0, . . . , B2m((t_,) such that for all i < 2m(k — 1), B, n C is
infinite. Without loss of generality, we may assume that (9, 9) n R¡ is
irreducible for all i < 2m(k — 1), else the reduction will yield the desired sets.
By the pigeonhole principle, there are pairwise disjoint recursive sets
Sx, . . ., S2m G {B0, . . . , R2mik_X)} such that for ally, n < 2m, (9, 9) n Sj
is equivalent to (9, 9) n Sn over (9,9) under the inclusion embedding.
Fix y G {1, . .. , m}. Let 7} be the fusion of (9, 9) n S2J_X and (9, 9) n
S2J over (9,9) (l S2J under the isomorphism embedding. Then (9,9) C\ T}
is equivalent to (9, 9) n Sx over (9, 9) n Sx under the isomorphism
embedding, and C n 7} is not cohesive. As C is simple, T- n C is not r.e.
Hence (€P, *3&) is of type 3 for (L',A') with companion isomorphic to
(9, 9 ) n (Tj: n C). It is easily checked that (9, 9 ) n 7} is irreducible.

Let F be the complement of U{7}: 2 < j < m). We must show that
(9,9) n Tat (9, 9) and that (9, 9) n F is irreducible. (<3\ <S) n F is
the fusion of (9, 9) n F, and (<?, 9 ) n (F n T[) over (<3\ $) n F under
the inclusion embedding. Since (9, 9) n F, is equivalent to (9>, ©) n (7"
U F,) over (9,9) under the inclusion embedding, the fusion of (9, 9) n
(F n T[) and (<3>, $) n F, over CéP, $) n F, is isomorphic to the fusion of
(9, 9) n (F n F,') and ("éP, ®) n (F' u F,) over (ÍP, ®), where both fu-
sions are under the isomorphism embedding. But the latter fusion is (9, 9 ).
So (9, 9 ) n F at (9, 9 ). Let B Ç F be any recursive set containing F n
C. Let B* = B u U {7;.: 2 < i < m}. Then since (9, 9) D F, is irreduc-
ible and hence (9,9)n(R n F,) is equivalent to (9, 9) n (B* - (B -
F,)) over (ÍP, ®) under the inclusion embedding, we see by the same
argument as above that (9, 9) n B at (9, 9) n B*. Since ("!?, ®) is irre-
ducible and C'CJ!', (9, 9) n R* at (9, 9). Hence (?3)n/<a
(•éP, 9 ) and so (<!P, 9 ) n F is irreducible.   □

Theorem 4.6 (Type 3 Refinement Theorem). Let (9,9) be irreducible
and of type 3 for (L',A'). Let (L',A') have exactly k components which
intersect the outermost atom a0 of (L, A), say (L', A')\d¡ for i = 1, . . ., Ac such
that (U, A')\(dj n a'0) at (L, A)\a'0 and (L', A') n (dj n a'0) is equivalent to
(L',A')\(d¡ n a0) over (L, A) under the inclusion embedding for i,j G
{2, . . . , Ac}. Let (9s, 9s) be an irreducible preliminary refinement of (9, 9)
with companion (92, 92) at (L', A') n (¿2 n a'Q) (replace d2 with ¿, if Ac = 1),
and let (9 *, 9 *) be the companion refinement of (9,9) induced by (9s, 9s).
Let (L*, A *) and (Ls, A s) be given so that the diagram

(L,A)      A       (L*,A*)      A-      (L*,A*)      A-     (L',A')

(9,9)     A-     (9*, 9*)     A-     (9s, 9s)
Figure 4.5

commutes. Assume that (3.3), (3.5), (3.6), (3.7), and (3.8) are satisfied by
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(L*, A*) G (L',A'). Let S = {a, G A': a, is an outermost atom of (L^A1)
contained in an innermost atom of (L*, A*)}, and let T G S. Then there is a
realization (9', 9 ') of(L', A') such that the diagram

(L*,A*)       —>      (LS,AS)      -=>       (L',A')

(9*, 9*)     —>     (9s, 9s)     —»     (9', 9')

Figure 4.6
commutes, and for all bx G A', \p(bx) is maximal if and only if b\ G T.

Proof. It suffices to verify the conditions (4.1)-(4.4) for (Ls, As) G
(L',A'), as then the result will follow from Theorem 4.1 as (9s, 9s) is
separated, noting that since (9s, 9s) is a preliminary refinement of (9, 9),
no outermost atom of (9s, 9s) can be cohesive, hence by (4.1), no outermost
atom of (9 ', 9 ') which is contained in a0 can be cohesive.

(4.1) is clearly satisfied from the hypotheses of the theorem as (9s, 9s) is a
preliminary refinement of (9, 9). Let a, b be atoms of (LS,AS) such that
a <j b and a is not innermost. Let a, G a be an atom of (U, A'). Let c, ¿ be
the atoms of (L*,A*) such that a G c, b G d. As (L*,A*) G (Ls, As), c is
within ¿. By iterating applications of (3.6), there is an atom è, G d of (U, A')
such that a, -< bx. But then a, and 6, must lie in the same component of
(L', A '), and b is the intersection of d with this component, so bx G b. Hence
(4.2) holds.

Let a, b be atoms of (Ls, As) such that a <j b. Let o, G b be an atom of
(U, A'). Let c, d be the atoms of (L*, A*) such that a G c, b G d. Let a2 be
the atom of (L', A') as in (3.5). Note that if b G a0 and o, ^= a2, then 6, is an
outermost atom of (LS,AS) and if (Lx, Ax) = ((L, A) n a'0) — (L2, A^
((Lx, Ax) is just the complementary part of (L, A) n a0 to the part isomorphic
to the companion), then an e = 0 for all e G Ax. Hence by iterating applica-
tions of (3.7), there is an atom a, G c such that a, < bx. a, and 6, must,
therefore, lie in the same component of (U, A'), and a is the intersection of c
with this component. Thus a, G a, and (4.3) holds.

Let a,, 6, be atoms of (L\ A') such that a, <¡ bx. Let a, b be the atoms of
(Ls, As) such that a, G a, bx G b. Let c, d be the atoms of (L*,A*) such that
a G c, b G d. As in the previous paragraph, we see that (3.8) has no
restrictions in this case, so by (3.8), c = d or c <j d. Since a, is within o,,
a = b or a is within b. As a G c, b G d, we must have a = b if c = ¿ since
then both a and b would be the intersection of c with the same component.
And if c <, d and (Ls, As) is a refinement of (L*, /!*), then as a is within b,
a <j b. Hence (4.4) holds.    □

We are now ready to give the decision procedure. Let a = (yx)(3y)R(x,y)
be a sentence of our language. Recall that quantifiers range only over r.e. sets.
Then a is uniformly effectively equivalent to a conjunction of sentences of thé
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form a, s (\/x)(3y)(D(x) -+ \Z¡P¡(x, y)) where D and all the B, are finite
diagrams and D G P¡ for all i. Hence it suffices to decide all sentences of the
form a,. By Lemma 1.3, a, is uniformly effectively equivalent to a conjunc-
tion of sentences of the form a2 = (Vx)(3/)(F(x) -> V,-ßi(*>>0) where E
and Q¡ are the finite separated diagrams of the ¿-lattices (L, A), (L„ A¡)
respectively, and E has characteristic less than or equal to that of D and
(L, A) G (L¡, A¡) for all /'. Hence it suffices to decide all sentences of the form
ct2. Furthermore, a2 is true if and only if for every realization (9,9) of
(L, A), there is an i and a realization (??,■, 9¡) of (L„ A¡) such that the
diagram

(L,A)      A      (L,,A,)

(9,9)     -»»    (%,%)
Figure 4.7

commutes, with appropriate sets maximal.
We note that if two components of (9, 9) are equivalent over (9,9)

through the inclusion embedding, then their fusion over the first component
under isomorphism is equivalent under inclusion over (9, 9 ) to each of the
components. Furthermore, if one of the components is irreducible, so is their
fusion. Since the ordering of characteristics is a well-ordering, and since we
can effectively list the finite number of nonequivalent embeddings of ¿-lat-
tices into (9, 9), we can effectively list the finite number of possible
combinations of components for (9,9) such that in each combination, each
component is irreducible and embeddable into ("5?, 9), no two components
are equivalent over (9,9) under inclusion, and the fusion of the compo-
nents over (9,9) under the inclusion map is (9, 9). By Lemma 1.2 and
induction, it thus suffices to decide whether there is an /' such that Figure 4.7
commutes with appropriate elements of 9¡ maximal, given that (9,9) is
irreducible with one component. Hence we assume that (9, 9 ) is irreducible
with one component.

Let C be the outermost atom of (9, 9 ). Then C is of type 1, type 2, type
3, or quasimaximal. (The type of C is just the type of (9, 9 ).)

First consider the case where C is of type 1. By the results of §3, there must
exist an i such that (3.3), (3.6), (3.7), (3.8), and (3.9) hold for (L, A) G (L¡, AX
Theorem 4.2 shows these conditions to be sufficient, so we have a decision
procedure for C of type 1.

Consider the case where C is of type 2. Let (92, 92) be a minimizer for
(9, 9) with associated cominimizer (9X, 9X). We can effectively list the
finite number of possible combinations of components for (9,9) such that
each component has smaller degree than (9,9) and no two components of
the same degree (if degree is defined for the components) are equivalent over
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(9,9) under inclusion. Since the ordering of degrees is well founded, it
suffices by Lemma 1.2 to consider the case where (9, ® ) is strongly irreduc-
ible as witnessed by (9X, 9X) and (92, 92). The minimizer refinement
(9*, 9*) of (9,9) for (9X,9X) and (92, 92) is then uniquely determined,
and we consider (9,9) with all possible minimizers and associated comin-
imizers. By the results of §3, there must exist an i and finite ¿-lattices
(L*,A*) and (L", A") such that the diagram

(9*, 9*)

Figure 4.8

commutes, and (3.3), (3.4), (3.6), (3.7), (3.8), and (3.10) are satisfied by
(L*, A*) G(L", A"). The existence of such an i can effectively be de-
termined. By Theorem 4.4, if such an / exists, then Figure 4.7 commutes for
that i with the appropriate sets maximal, so we have a decision procedure for
C of type 2.

Consider the case where (9,9) is of type 3 but not of type 2 with
companion (92, 92), and let (9*, 9*) be the companion refinement of
(9,9) generated by (92, 92). By the results of §3, there must exist an i and
finite ¿-lattices (L*, A*) and (L", A") such that (3.3), (3.5), (3.6), (3.7), and
(3.8) are satisfied by (L*, A*) G (L", A") and Figure 4.8 commutes. Further-
more, we can effectively decide whether or not such an / exists. Suppose that
such an / exists. Let (L", A ") have exactly Ac components which have
nonempty intersection with the outermost atom of (L, A), say (L",A")\d¡,
i = 1, . . ., Ac. By (3.3) and (3.7), for exactly one of these components, say
(L",A")\dx do we have (L, A) n ¿, at (L, A). By (3.5), (3.7), and (3.8),
(L, A) n d¡ at (92, 92) for i = 2, . . . , Ac. Hence there exists a preliminary
refinement (9s, 9s) of (9, 9) inducing a companion refinement isomorphic
to (9 *, 9 *) (without loss of generality, we assume equality instead of
isomorphism) and a finite ¿-lattice (Ls, As) such that the diagram

(L,A)      -=>      (L*,A*)      -^     (LS,AS)      -=>     (L",A")

v~ V" v~

(9,9)     A     (9*,9*)     -H>     (9s,9s)
Figure 4.9

commutes. Hence by Theorem 4.6, there exists an I such that Figure 4.7
commutes for that i with the appropriate sets maximal, so we have a decision
procedure for C of type 3.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



RECURSIVELY ENUMERABLE SETS 37

Let Ac be the number of components of (L, A), m the number of nonequiv-
alent embeddings of ¿-lattices into (L, A). Our decision procedure for C of
type 3 works where C is simple, hence by Theorem 4.5, for C not quasi-r-
maximal of rank < 2m(k — 1). If C is quasi-r-maximal of rank < 2m(k —
1), then either C is of type 2, or C is quasimaximal of rank < 2w(Ac — 1). As
we have a decision procedure for C of type 2, it suffices to consider the case
where C is quasimaximal of rank < 2m(k — 1). But then (9,9) is the
fusion of < 2m(k — 1) type 1 components, each embeddable into (9, 9),
hence by Lemma 1.2 and the decision procedure for C of type 1, we have a
decision procedure in this last case also.

We note that slight modifications of the above decision procedure will yield
a decision procedure for the V3 theorem of (S *, &*) in our language with
the additional one-place predicate Hhs distinguishing the hhs sets. The
needed modifications deal only with the way innermost atoms are treated;
i.e., the ability to arbitrarily specify whether Max(x), Hhs(x), — Max(x),
~ Hhs(x) for appropriate x.
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