
A Decidable Logic

for Describing Linked Data Structures

Michael Benedikt1, Thomas Reps2, and Mooly Sagiv3

1 Bell Laboratories, Lucent Technologies, benedikt@research.bell-labs.com
2 University of Wisconsin, reps@cs.wisc.edu

3 Tel-Aviv University, sagiv@math.tau.ac.il.

Abstract. This paper aims to provide a better formalism for describing
properties of linked data structures (e.g., lists, trees, graphs), as well as
the intermediate states that arise when such structures are destructively
updated. The paper defines a new logic that is suitable for these purposes
(called Lr , for “logic of reachability expressions”). We show that Lr is
decidable, and explain how Lr relates to two previously defined structure-
description formalisms (“path matrices” and “static shape graphs”) by
showing how an arbitrary shape descriptor from each of these formalisms
can be translated into an Lr formula.

1 Introduction

This paper aims to provide a better formalism for describing properties of linked
data structures (e.g., lists, trees, graphs). In past work with the same motivation,
a variety of different formalisms have been developed — including “static shape
graphs” [14, 15, 17, 12, 3, 23, 1, 19, 27, 21, 20, 22], “path matrices” [9, 11], “graph
types” [16], and the ADDS annotation formalism [10] — and several previously
known formalisms have been exploited — including graph grammars [6] and
monadic second-order logic [13]. For lack of a better term, we will use the phrase
structure-description formalisms to refer to such formalisms in a generic sense.

In this paper, we define a new logic (called Lr , for “logic of reachability
expressions”), and show that Lr is suitable for describing properties of linked
data structures. We show that Lr is decidable. We also show in detail how
Lr relates to two of the previously defined structure-description formalisms: In
Section 3, we show how a generalization of Hendren’s path-matrix descriptors [9,
11] can be represented by Lr formulae; in Section 4, we show how the variant
of static shape graphs defined in [21] can be represented by Lr formulae. In this
way, Lr provides insight into the expressive power of path matrices and static
shape graphs.

The benefits of our work include the following:

– The logic Lr can be used as an annotation language to express loop invariants
and pre- and post-conditions of statements and procedures. Annotations are
important not only as a means of documenting programs, but also as the
basis for analyzing and reasoning about programs in a modular fashion. Our
work has two advantages:

S.D. Swierstra (Ed.): ESOP/ETAPS’99, LNCS 1576, pp. 2–19, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

A Decidable Logic for Describing Linked Data Structures 3

• The logic Lr is quite expressive (e.g., strictly more expressive than the
formalism used by Hendren et al. [10]). The added expressibility is im-
portant for describing the intermediate states that arise when linked data
structures are destructively updated.

• The logic Lr is decidable, which means that there is an algorithm that
determines, for every formula in the logic, if the formula is satisfiable.
In other words, it is possible to determine if there is any store at all
that satisfies a given formula. In principle, this ability can be used to
provide some sanity checks on the formulae that a user employs — e.g., a
warning can be issued if the user employs a formula that is unsatisfiable.

– Our work makes contributions on the question of extracting information
from the results of program analysis. Although the subject of the paper is
not primarily algorithms for analyzing programs that manipulate linked data
structures, the decidability of Lr — together with the constructions given in
Sections 3 and 4 for encoding other structure-description formalisms in Lr

— has interesting consequences for extracting information from the results
of program analyses: Lr provides a way to amplify the results obtained from
known pointer-analysis, alias-analysis, and shape-analysis algorithms in the
following ways:
• For a structure-description formalism in which each structure descriptor

corresponds to an Lr formula, as is the case for path matrices (Section 3)
and static shape graphs (Section 4), it is possible to determine if there
is any store at all that corresponds to a given structure descriptor. This
lets us determine whether a given structure descriptor contains any useful
information.

• Pointer-analysis, alias-analysis, and shape-analysis algorithms necessar-
ily compute structure descriptors that over-approximate the
pointer/alias/shape relationships that actually arise. This kind of loss of
precision is intrinsic to static-analysis; however, many of the techniques
that have been proposed in the literature have the feature that additional
imprecision crops up when information is extracted from the structure
descriptor for a particular program point. For instance, with the three-
valued logic used for shape analysis in [20, 22], a formula that queries
for a specific piece of information sometimes evaluates to “unknown”,
even when, in all of the stores that the static shape graph represents,
the formula evaluates to a definite true or false value.
For a structure-description formalism in which each structure descrip-
tor corresponds to an Lr formula, decidability gives us a mechanism for
reading out information obtained by existing algorithms, without any ad-
ditional loss of precision: If ϕ is the formula that represents the shape
descriptor and ψ is the formula that represents the query, we are in-
terested in whether ϕ =⇒ ψ always holds (or, equivalently, whether
¬(ϕ =⇒ ψ) is unsatisfiable). Thus, in principle, the machinery devel-
oped in this paper allows us to take the structure descriptors computed
by existing techniques, and extract information from them that is more
precise than that envisioned by the inventors of these formalisms.

4 Michael Benedikt, Thomas Reps, and Mooly Sagiv

– For many of the structure-description formalisms used in the literature, very
little is known about basic decision problems associated with them. Mapping
a structure-description formalism F into Lr can provide a way to analyze
many basic decision problems of F .
For instance, a decision problem of special interest for structure-description
formalisms that are used in abstract interpretation is the inclusion problem
(i.e., whether the set of stores that structure descriptor D1 represents is a
subset of the set of stores that D2 represents). When the inclusion problem
is decidable, it is possible to check (i) whether one structure descriptor sub-
sumes another (and hence the second need not be retained), and (ii) whether
a simpler structure descriptor is a conservative replacement of a larger one,
which is useful in widening. Thus, the inclusion problem is important for
reducing both the time and space used during abstract interpretation.
For a structure-description formalism in which each structure descriptor cor-
responds to an Lr formula, the inclusion of structure descriptor D1 (repre-
sented by formula ϕ1) in D2 (represented by ϕ2) is a matter of testing
whether ϕ1 =⇒ ϕ2 always holds (or, equivalently, whether ¬(ϕ1 =⇒ ϕ2)
is unsatisfiable).

To date, our concern has been with developing the tools for describing prop-
erties of linked data structures and obtaining a logic that is decidable. We have
developed a decision procedure for Lr , although this procedure does not yield a
practical algorithm. We have not yet investigated the complexity of the decision
problem for Lr , nor looked for heuristic methods with acceptable performance
in practice, but we plan to do so in future work.

Two programs that will be used to illustrate our work are shown in Figure 1.
The remainder of the paper is organized into six sections: Section 2 presents
the logic we use for describing properties of linked data structures. Section 3
shows how a generalization of Hendren’s path-matrix descriptors [9, 11] can be
represented by Lr formulae. Section 4 shows how a variant of static shape graphs
can be represented by Lr formulae. Section 5 discusses the issue of using Lr

formulae to extract information from the results of program analyses. Section 6
gives a sketch of the proof that Lr is decidable. Section 7 discusses related work.

2 A Language for Stating Properties of Linked Data
Structures

Definition 21 Let PVar be the (finite) set of pointer variables in a given pro-
gram. Let Sel be the set of pointer selectors (i.e., pointer-valued fields of struc-
tures) used in the program. We define the alphabet Σ to be the following finite
set of symbols: Σ = Sel ∪ {pvar? | pvar ∈ PVar} ∪ {¬pvar? | pvar ∈ PVar},
with the intended meaning that pvar? denotes the cell pointed to by the pointer
variable pvar, and ¬pvar? denote cells not pointed to by pvar. A formula in

A Decidable Logic for Describing Linked Data Structures 5

typedef struct elem list struct {
int val;
struct elem list struct *cdr; } Elements;

(a)

Elements * elem reverse(Elements *x
/* acyclic list(x) */)
{ Elements *z, *y;

y = NULL ;
while (x != NULL) {

/* acyclic list(x) */
/* acyclic list(y) */
/* disjoint lists(x,y) */
z = y;
y = x ;
x = x →cdr;
y →cdr = z; }

/* acyclic list(y) */
return y ;

}

bool elem delete(int delval, Elements *c)
{ /* acyclic list(c) */

Elements *elem,*prev;
for (prev = NULL, elem = c;

elem != NULL;
prev=elem, elem = elem →cdr) {
if (elem →val == delval) {

if (prev == NULL)
c = elem →cdr;

else
prev →cdr = elem →cdr;

free(elem);
return TRUE; } }

/* acyclic list(c) */
return FALSE;

}
(b) (c)

Fig. 1. (a) A C declaration of a linked-list type. (b)A program that uses destructive-
updating operations to reverse a list. (c)A program that searches the list pointed to
by variable c (using a “trailing pointer” prev) and deletes the first element whose val

field equals delval.

the logic Lr is defined as follows:

Φ ::= pe1 = pe2 equality of pointer exps. R ::= ε empty path
| pe1〈R〉pe2 reachability constraint | ∅ empty lang.
| hs(pe〈R〉) heap-sharing constraint | σ σ ∈ Σ
| al(pe〈R〉) allocation constraint | R1.R2 concat.
| ¬Φ negation | R1|R2 union
| Φ1 ∧ Φ2 conjunction | R∗ Kleene star
| Φ1 ∨ Φ2 disjunction pe ::= pvar pointer var.
| Φ1 =⇒ Φ2 implication | pe.sel sel ∈ Sel

We call R terms routing expressions, and refer to occurrences of pvar? and
¬pvar? in routing expressions as pointer-variable interrogations.

We also use several shorthand notations: hs(p) and al(p) are shorthands
for hs(p〈ε〉) and al(p〈ε〉), respectively. Similarly, hs(p.sel) and al(p.sel) are
shorthands for hs(p〈sel〉) and al(p〈sel〉), respectively. pe1 6= pe2 is a shorthand
for ¬(pe1 = pe2). Φ1 ⇔ Φ2 is a shorthand for (Φ1 =⇒ Φ2) ∧ (Φ2 =⇒ Φ1).

Example 22 For a pointer variable x, the formula

acyclic list(x) def= ¬x〈cdr+〉x ∧ ¬hs(x〈cdr∗〉)

6 Michael Benedikt, Thomas Reps, and Mooly Sagiv

states that x points to an unshared acyclic list. The term ¬x〈cdr+〉x signifies
that a traversal that starts with the cell pointed to by x and follows one or
more cdr fields never returns to the cell pointed to by x. The term ¬hs(x〈cdr∗〉)
signifies that a traversal that starts with the cell pointed to by x and follows
zero or more cdr fields never leads to a cell that is “heap shared”. (A cell c is
“heap shared” if two or more cells have fields that point to c, or if there is a cell
c′ such that c′.car and c′.cdr both point to c [15, 3, 21, 20].)

Thus, a loop invariant for program elem reverse can be written as follows:

((al(y.cdr) ∨ al(z)) =⇒ y.cdr = z)
∧ acyclic list(x) ∧ acyclic list(y)
∧ ¬x〈cdr∗〉y ∧ ¬x〈cdr∗〉z ∧ ¬y〈cdr∗〉x ∧ ¬z〈cdr∗〉x

(1)

The first line of (1) states that y.cdr and z refer to the same list element when
either one is allocated. The subformulae on the last line of (1) states that the
x-list is disjoint from both the y-list and the z-list.

Example 23 A loop invariant for program elem delete can be written as fol-
lows:

acyclic list(c) ∧ c〈cdr∗〉elem
∧ al(prev) =⇒ (c〈cdr∗〉prev∧ prev.cdr = elem)
∧ ¬al(prev) ⇐⇒ elem = c

(2)

The subformula c〈cdr∗〉elem states that elem points somewhere in the list
pointed to by c. The subformula on the last line of (2) states that prev is allo-
cated (i.e., not NULL) if and only if elem and c point to different locations. From
this, we can conclude that the location released by the statement free(elem)
cannot be pointed to by c.

The use of pointer-variable interrogations in routing expressions will be il-
lustrated in Examples 33 and 36.

We now define the semantics of Lr formulae:

Definition 24 A store S can be represented by a tuple 〈LocS , envS , ιS〉, where
LocS is a set of locations, and envS and ιS are functions

envS : PVar → (LocS ∪ {⊥})
ιS : Sel → (LocS ∪ {⊥}) → (LocS ∪ {⊥}),

where ιS is strict in ⊥.
The meaning of a pointer expression pe in a given store S, denoted by [[pe]]S

(where [[pe]]S ∈ (LocS ∪ {⊥})), is defined inductively, as follows:

[[pvar]]S = envS(pvar)
[[pe.sel]]S = ιS(sel)([[pe]]S)

The language L(R) of a routing expression R is defined as is usual for regular
expressions. However, because a word in L(R) can contain occurrences of pointer-
variable interrogations of the form pvar? and ¬pvar?, the meaning of a word is

A Decidable Logic for Describing Linked Data Structures 7

slightly nonstandard: The meaning of a word in a given store S, denoted by [[w]]S

(where [[w]]S : (LocS ∪ {⊥}) → (LocS ∪ {⊥})), is defined inductively, as follows:

[[ε]]S(l) = l

[[w.sel]]S(l) = ιS(sel)([[w]]S(l))

[[w.pvar?]]S(l) =
{

[[w]]S(l) if env (pvar) = [[w]]S(l)
⊥ otherwise

[[w.¬pvar?]]S(l) =
{

[[w]]S(l) if env (pvar) 6= [[w]]S(l)
⊥ otherwise

The meaning of formula in a given store S is defined inductively, as follows:

[[pe1 = pe2]]
S = ([[pe1]]

S = [[pe2]]
S)

[[pe1〈R〉pe2]]
S = there exists w ∈ L(R) s.t. [[w]]S([[pe1]]

S) = [[pe2]]
S

and [[pe2]]
S ∈ Loc

[[hs(pe〈R〉)]]S = there exists w ∈ L(R) s.t. [[w]]S([[pe]]S) = l and l ∈ Loc and
there exist l1, l2 ∈ Loc, sel1, sel2 ∈ Sel s.t. ιS(sel1)(l1) = l

andιS(sel2)(l2) = l and either (i) l1 6= l2 or (ii) sel1 6= sel2

[[al(pe〈R〉)]]S = there exists w ∈ L(R) such that [[w]]S([[pe]]S) ∈ Loc
[[¬Φ]]S = [[Φ]]S is false

[[Φ1 ∧ Φ2]]S = [[Φ1]]S is true and [[Φ2]]S is true
[[Φ1 ∨ Φ2]]S = [[Φ1]]S is true or [[Φ2]]S is true

[[Φ1 =⇒ Φ2]]S = [[¬Φ1]]S is true or [[Φ2]]S is true

3 Representing Path Matrices via Formulae

In this section, we study the relationship between the logic Lr and a variant of
the path-matrix structure-description formalism [9, 11]. A path matrix records
information about the (possibly empty) set of paths that exist between pairs of
pointer variables in a program. The version of path matrices described below is
a generalization of the original version described in [9, 11]. We show that every
path matrix (of the extended version of the formalism) can be represented by a
formula in logic Lr .

Definition 31 A path matrix pm contains an entry pm[x, y] for every pair of
pointer-valued program variables, x and y. An entry pm[x, y] describes the set of
paths from the cell pointed to by x to the cell pointed to by y. An entry pm[x, y]
has a value of the form 〈R,Q〉, where R is a regular expression over Σ, and Q is
either “P” (standing for “possible path”) or “D” (standing for “definite” path).

The notions of “possible paths” and “definite paths” are somewhat subtle
(and the names “possible paths” and “definite paths”, which we have adopted

8 Michael Benedikt, Thomas Reps, and Mooly Sagiv

from [9, 11], are somewhat misleading). In the discussion below, let S be a store
that path matrix pm represents, and let PathsS(x, y) denote the set of paths
from the cell pointed to by program variable x to the cell pointed to by y.

– An entry pm[x, y] that has the value 〈RD, D〉 means that there is a path p
in S from the cell pointed to by program variable x to the cell pointed to by
y, such that p ∈ L(RD). In other words,

PathsS(x, y)∩ L(RD) 6= ∅. (3)

Note that only one of the paths in L(RD) need be a path in PathsS(x, y)
for pm[x, y] = 〈RD, D〉 to be satisfied.

– An entry pm[x, y] that has the value 〈RP , P 〉 means that L(RP) is an over-
approximation to the set of paths from the cell pointed to by x to the cell
pointed to by y. In other words,

PathsS(x, y) ⊆ L(RP). (4)

An alternative way to think about this is as follows: What we really mean
by “RP represents possible paths in store S” is that L(RP) = Σ∗−L(RP) is
a set of impossible paths of S: That is, an entry pm[x, y] that has the value
〈RP , P 〉 means that none of the paths from the cell pointed to by x to the
cell pointed to by y are in L(RP). Thus, we have

PathsS(x, y)∩ L(RP) = ∅. (5)

These two ways of looking at things are equivalent, as shown by the following
derivation: PathsS(x, y) ∩ L(RP) = ∅ =⇒ PathsS(x, y) − L(RP) = ∅ =⇒
PathsS(x, y) ⊆ L(RP).

It is instructive to consider some simple examples of possible path-matrix
entries:

– An entry pm[x, y] that has the value 〈∅, P 〉 represents the fact that there
is no path in S from the cell pointed to by program variable x to the cell
pointed to by y.

– An entry pm[x, y] that has the value 〈ε, D〉 represents the fact that x and y
are must-aliases, i.e., x and y must point to the same cell in all of the stores
that the path matrix represents.

– In contrast, an entry pm[x, y] with the value 〈ε, P 〉 represents the fact that
x and y are may-aliases, i.e., x and y might point to the same cell in some
of the stores that the path matrix represents, but it is also possible that in
other stores that the path matrix represents, there is no path at all from the
cell pointed to by x to the cell pointed to by y.

– More generally, a value 〈R, P 〉 for entry pm[x, y], where ε ∈ L(R) means that
x and y are may aliases. The language L(R) − {ε} represents other possible
paths from the cell pointed to by x to the cell pointed to by y, but it is also
possible that in some of the stores that the path matrix represents, there is
no path at all from the cell pointed to by x to the cell pointed to by y.

A Decidable Logic for Describing Linked Data Structures 9

Note that a path matrix represents a smaller set of stores if the language for
a “D” entry is made smaller, and also if the language for a “P ” entry is made
smaller (see (3) and (4)).

Example 32 The following path matrix expresses a loop-invariant for the loop
of elem reverse:

pm x y z
x 〈ε, D〉 〈∅, P〉 〈∅, P 〉
y 〈∅, P 〉 〈ε, D〉 〈cdr, D〉
z 〈∅, P 〉 〈∅, P〉 〈ε, D〉

(6)

The fact that pm[y, z] is 〈cdr, D〉 signifies that y → cdr must point to the cell
that z points to.

Example 33 The following path matrix expresses a loop-invariant for the loop
of elem delete:

pm prev elem c
prev 〈ε, D〉 〈cdr, P 〉 〈∅, P 〉
elem 〈∅, P 〉 〈ε, D〉 〈∅, P 〉
c 〈cdr∗, P 〉 〈ε|cdr∗.prev?.cdr, P 〉 〈ε, D〉

(7)

The fact that pm[prev, elem] is 〈cdr, P 〉 signifies that prev → cdr may point
to the cell pointed to by elem, but may also point to a cell that elem does
not point to; in fact, the latter is the case at the beginning of the first loop
iteration. Similarly, the fact that pm[c, prev] is 〈cdr∗, P 〉 signifies that prev may
be reachable from c. The fact that pm[c, elem] entry is 〈ε|cdr∗.prev?.cdr, P 〉
signifies that either c and elem point to the same cell, or else that as we traverse
the list pointed to by c, we first reach a cell pointed to by prev and then the
cell pointed to by elem.

Remark. The routing expressions that we allow in path matrices are more
general than the ones allowed in [9, 11] in the following way:

– We allow arbitrary alternations and not just car|cdr.
– We follow [13] in allowing pointer-variable interrogations (e.g., prev, ¬prev)

in routing expressions. This comes in handy in cases where several paths
depend on each other (cf. the pm[c, elem] entry in path matrix (7)).

(The use of a less-general language of routing expressions in [9, 11] was motivated
by the need to be able to compute efficiently a safe approximation to the path
matrix at every program point.)

Since path matrices are an intuitive notation, we will not spend the space
in directly formalizing the meaning of path matrices in terms of sets of stores.
Instead, we now define the meaning of a path matrix by a formula in our language
that characterizes the set of stores that a path matrix represents.

10 Michael Benedikt, Thomas Reps, and Mooly Sagiv

Definition 34 For a regular expression R, let R denote the complement of R,
i.e., a regular expression such that L(R) = L(R) = Σ∗−L(R). For a path matrix
pm, we define the formula ϕpm as follows:

ϕpm
def=

∧
x,y∈PVar ,〈R,D〉∈pm[x,y]

x〈R〉y ∧
∧

x,y∈PVar ,〈R,P 〉∈pm[x,y]

¬x〈R〉y (8)

This definition is justified by the discussion that follows Definition 31.

Example 35 Path matrix (6), which expresses a loop-invariant for the loop of
elem reverse (see Example 32), corresponds to the following formula:

x〈ε〉x ∧ ¬x〈Σ∗〉y ∧ ¬x〈Σ∗〉z
∧ ¬y〈Σ∗〉x ∧ y〈ε〉y ∧ y〈cdr〉z
∧ ¬z〈Σ∗〉x ∧ ¬z〈Σ∗〉y ∧ z〈ε〉z

(9)

Formula (9) is less informative than the loop-invariant given as Formula (1) of
Example 22. For example, with Formula (9) it is not known that x points to a
list, because cyclic stores of the form shown in Figure 2 also satisfy (9).

r

?
-· · ·r --· · ·r -x - r -

Fig. 2. A store with a shared node.

Example 36 Path matrix (10), which expresses a loop-invariant for the loop of
elem delete (see Example 33), corresponds to the following formula:

prev〈ε〉prev ∧ ¬prev〈cdr〉elem ∧ ¬prev〈Σ∗〉c
∧ ¬elem〈Σ∗〉prev ∧ elem〈ε〉elem ∧ elem〈Σ∗〉c
∧ ¬c〈cdr∗〉prev ∧ ¬c〈ε|cdr∗.prev?.cdr〉elem ∧ c〈ε〉c

(10)

Formula (10) is less informative than the loop-invariant given as Formula (2) of
Example 23. In contrast to Formula (2), Formula (10) cannot be used to conclude
that the use of free in elem delete is correct; i.e., we cannot conclude that the
location released by the statement free(elem) cannot be pointed to by c.

A Decidable Logic for Describing Linked Data Structures 11

4 Representing Shape Graphs via Formulae

In this section, we study a structure-description formalism called static shape
graphs, which, in addition to reachability information, allow certain “topologi-
cal” properties of stores to be represented. There are many ways to define static
shape graphs. For simplicity, we only consider the variant of static shape graphs
defined in [21]. In Section 4.1, we give a formal definition of static shape graphs.
Then, in Section 4.2, we construct a formula in Lr that exactly characterizes the
set of stores represented by a static shape graph.

4.1 Static Shape Graphs

Below, we formally define static shape graphs. Unlike the stores defined in Sec-
tion 2, static shape graphs are of an a priori bounded size, i.e., the number
of shape nodes depends only of the size of the program being analyzed. This
is needed by shape-analysis algorithms so that an iterative shape-analysis algo-
rithm that computes static shape graphs for each program point will terminate.

Definition 41 A static-shape-graph (SSG) is a finite directed graph that con-
sists of two kinds of nodes — variables (i.e., PVar) and shape-nodes — and
two kinds of edges — variable-edges and selector-edges. A shape-graph is
represented by a quadruple 〈shapeNodes , Ev, Es, is〉, where:

– shapeNodes is a finite set of shape nodes. Every shape node n ∈ ShapeNodes
has the form n = nX where X ⊆ PVar. Such a node describes the cells that
are simultaneously pointed to by all the pointer variables in X.
Graphically, we denote shape nodes by circles. The node n∅ is the “summary-
node” since it represents all the cells that are not directly pointed to by any
pointer variable, and therefore it is represented by a dotted circle.

– Ev is the graph’s set of variable-edges, each of which is denoted by a pair of
the form [x, nX], where x ∈ PVar and nX ∈ shapeNodes. We assume that for
every x ∈ PVar, at most one variable-edge [x, nX] ∈ Ev exists and x ∈ X.
Graphically, we denote variable-edges by solid edges since they must exist.

– Es is the graph’s set of selector-edges, each of which is denoted by a triple of
the form 〈nX , sel , nY 〉, where nX , nY ∈ shapeNodes and sel ∈ {car , cdr}. We
assume that for every x ∈ PVar, sel ∈ {car , cdr}, and shape node nX such
that [x, nX] ∈ Ev, at most one selector-edge, 〈nX , sel, nY 〉 ∈ Es exists. In
contrast, there may be many selector-edges 〈n∅, sel, nY 〉 ∈ Es corresponding
to different selector-edges emanating from cells represented by n∅.
Graphically, we denote selector-edges by dotted edges since they may or may
not exist.

– is (standing for “is shared”) is a function of type shapeNodes → {false, true}.
It serves as a constraint to restrict the set of stores represented by a shape
graph. When n∅ has more than one incoming selector edge and yet is(n∅) =
false, we know that, for any memory cell c represented by n∅, at most one of
the concrete representatives of these selector-edges can be an incoming edge
of c.

12 Michael Benedikt, Thomas Reps, and Mooly Sagiv

Graphically, we denote the fact that nX is a shared node by putting “is(nX)”
inside the circle.

Example 42 The SSG that represents the store shown in Figure 2 is shown in
Figure 3.

x // GFED@ABCn{x} cdr // is(n∅)

cdr
��

Fig. 3. The SSG that corresponds to the store shown in Figure 2.

4.2 From a Static Shape Graph to an LrFormula

We are now ready to show how to construct the formula that captures the
meaning of a static shape graph.

Definition 43 Let SG = 〈shapeNodes , Ev, Es, is〉 be an SSG. We define the
graph ŜG to be a directed graph, ŜG = (N,A, l), with edges labeled by letters in
Σ, where:

– N contains two nodes u.in and u.out for every shape node u in shapeNodes .
– A ⊆ N ×N contains the following two types of labeled edges:

• For every shape node nX such that [p1, nX], [p2, nX], · · · , [pn, nX] ∈ Ev

and [pn+1, nX], [pn+2, nX], · · · , [pn+k, nX] 6∈ Ev, there is an edge
〈nX .in, nY .out〉, labeled by (p1?.p2?. · · · .pn?.¬pn+1?.¬pn+2? · · · .¬pn+k?).

• If there is a selector-edge 〈nX , sel, nY 〉 ∈ Es, there is an edge a =
(nX .out, nY .in) from nX .out into NY .in, labeled sel.

– l : A→ Σ maps edges into their labels.

For any two nodes nX , nY ∈ shapeNodes, let rnX.in→nY .out be the regular
path expression over Σ that describes paths in ŜG from nX .in into nY .out
(which can be computed by well-known methods, e.g., [25, 24]). For a finite set of
regular expressions S = {r1, r2, . . . , rn}, RsumS denotes the regular expression
r1|r2| · · · |rn. Finally, for a regular expression r, r is the regular expression over
Σ that describes the non-existing words in r, i.e., L(r) = Σ∗ − L(r). Let us
define the following formulae to characterize the different aspects of SG

Φ+
val =

∧
x∈PVar ,[x,nX]∈Ev

al(x) Φ−
val =

∧
x∈PVar ,[x,nX]6∈Ev

¬al(x)
Φ+

veq =
∧

x,y∈PVar ,[x,nX],[y,nX]∈Ev
x=y Φ−

veq =
∧

x,y∈PVar ,[x,nX]∈Ev ,[y,nX]6∈Ev
x 6=y

Φ−
pal =

∧
x∈PVar ,[x,nX]∈Ev

¬al(x〈RsumnY ∈shapeNodesrnX.in→nY .out〉)
Φ−

r =
∧

[x,nX],[y,nY]∈Ev
¬x〈rnX.in→nY .out〉y

Φ−
hs =

∧
x∈PVar ,[x,nX]∈Ev

¬hs(x〈RsumnY ∈shapeNodes,is(v)=1rnX.in→nY .out〉)

A Decidable Logic for Describing Linked Data Structures 13

Finally, the formula Φ[SG] is the conjunction of these formulae.

Lemma 44 For every store S and SSG SG, S is represented by SG if and only
if [[Φ[SG]]]S is true.

5 Extracting Information from Program Analyses via Lr

Formulae

Many interesting properties of linked data structures can be expressed as Lr

formulae:

– For example, the formula Ψ def= (x = x.cdr), expresses the property “x points
to a cell that has a self-cycle”. This information can be used by an optimizing
compiler to determine whether it is profitable to generate a pre-fetch for the
next element [18].

– It is possible to express in Lr that two pointer-access paths point to different
memory cells (i.e., they are not may-aliases), which is important both for
optimization and in tools for aiding software understanding.

– The reachability and sharing predicates can also be useful, for example, to
improve the performance of garbage-collection algorithms and to parallelize
programs.

In principle, Lr provides a uniform basis for using the results of analyses that
yield either path matrices or static shape graphs in program optimizers and in
tools for aiding software understanding. For instance, Figure 4 shows one of the
SSGs SG that arises at the loop header in an analysis of elem reverse. It can
be shown that Ψ is not satisfiable by any store that is represented by SG. This
means that x does not point to a cell that has a self-cycle in any of the stores
that SG represents. This can be determined automatically with our approach
by showing that Φ[SG] ∧ Ψ is not satisfiable. Similarly, by translating a path
matrixM (obtained from a path-matrix-based program-analysis algorithm) into
the corresponding Lr formula Φ[M] and checking whether Φ[M]∧Ψ is satisfiable,
one can verify automatically whether x could point to a cell that has a self-cycle
in any of the stores represented by M .

x // GFED@ABCn{x} cdr // n∅

cdr

��

Fig. 4. An SSG, SG, that represents acyclic lists of length two or more that are pointed
to by variable x.

14 Michael Benedikt, Thomas Reps, and Mooly Sagiv

6 The Decidability of Lr

Theorem 61 Lr is decidable.
Sketch of Proof: Prior to directly approaching the question of decidability of
Lr, one first proves a normalization lemma showing that the routing expressions
mentioned in formulae can be rewritten in such a way that they deal only with
paths that avoid all nodes pointed by pointer expressions that are mentioned in
the formula (i.e. pointer expressions that occur in some constraint or program
variables that occur in some pointer-variable interrogation). That is, they assert
only reachability of shared nodes or pointer expressions via paths that traverse
nodes in the heap. One proves this normalization lemma by breaking down path
expressions that may cross mentioned pointer expressions into component path
expressions that do not cross mentioned pointer expressions.

The decidability of logicLr follows from showing that that Lr has the bounded
model property: that is, there is a computable numerical function f such that
any sentence φ of Lr that is consistent has a model of size bounded by f(|φ|).
This technique is one of the most common in logical decision procedures [2]. It
immediately shows the existence of a crude decision procedure: one enumerates
all possible stores of size f(|φ|) searching for a model. (Note that the approach
sketched here is intended only to give a comprehensible demonstration of decid-
ability, not to give a practical decision procedure.) The proof of the bounded
model property proceeds by starting with an arbitrary concrete store G satisfy-
ing a formula φ and showing that G can be diminished to a model of size |f(|φ|)
(for a particular f given in the proof) while preserving all atomic formulae in φ.

The normalization theorem above implies that in this shrinking process one
only has to preserve properties that deal with paths through the heap (reacha-
bility, heap-sharing, etc.) and equalities and inequalities between a fixed set of
pointer expressions. This shrinking is then done in three phases: first, the original
store G is “pruned” to get a model that is a union of trees: in the process, some
information about the sharing of nodes is lost, but extra labels are added to the
nodes to maintain this information. These “auxiliary labels” indicate that cer-
tain nodes in the tree correspond to nodes associated with a particular pointer
expression in the original store, and that certain nodes in the tree were shared
in the original store.

We then make use of classical decidability results on reachability expressions
on finite trees ([26], summarized also in [2]) to shrink each of these trees to
smaller trees that satisfy the same properties as the union of trees produced in
stage one. The “properties” mentioned here are obtained by taking the original
reachability, heap-sharing, and allocation constraints and transforming them to
expressions in monadic second-order logic that express how to reach the auxiliary
labels mentioned above.

Finally, the shrunken set of trees are glued together to restore sharing in-
formation lost in the first phase: multiple nodes that have been annotated as
associated with the same pointer expression are identified, and nodes that were
annotated as being shared heap nodes are made into shared nodes. The normal-
ization results are used in a crucial way in this glueing stage, since the glueing

A Decidable Logic for Describing Linked Data Structures 15

can create many new paths within the represented store. Glueing cannot, how-
ever, create new paths through the heap in any store, since the glueing process
only identifies nodes associated with pointer expressions mentioned in the for-
mula (or in unshared paths leading to such nodes). Since normalization implies
that we are only concerned with preserving the existence and nonexistence of
paths that lie strictly within the heap, this is sufficient.

Figures 5 and 6 show how the proof might work for the formula Φ:

Φ
def= x〈car∗〉y ∧ x〈(cdr.cdr)∗〉y

∧¬x〈(cdr.cdr.cdr)∗〉y ∧ y〈car∗〉z ∧ y〈(cdr.cdr.cdr)∗〉z.

We start with a store in Figure 5 that satisfies Φ, and then prune it into a set
of trees. The auxiliary labels y′ and y′′ keep track of the fact that these nodes
in the tree must at some point be pointed to by y. In Figure 6, the trees are
decreased in size, while preserving analogs of the reachability statements: e.g.,
the node labeled y can reach a copy of the node z with a (cdr.cdr.cdr)∗ path,
and x cannot reach a copy of y with a (cdr.cdr.cdr)∗ path. In the final stage,
the tree-like model is glued together to form a traditional store that satisfies Φ.

Fig. 5. The pruning stage of the proof

7 Related Work

Jensen et al. have also defined a decidable logic for describing properties of linked
data structures [13]. It is interesting to compare the two approaches:

16 Michael Benedikt, Thomas Reps, and Mooly Sagiv

Fig. 6. The shrinking and glueing stages of the proof

– The logic of Jensen et al. allows quantifications on pointer expressions, which
is forbidden in Lr . Instead, Lr allows stating both sharing constraints and
allocation constraints. However, both of these can be encoded using their
logic:
• Sharing constraints that can be encoded using quantifications.
• Allocation constraints can be encoded using tests for NULL in routing

expressions.
– Lr imposes a limitation on routing expressions by forbidding testing for NULL

and for garbage cells.
– On the other hand, Lr generalizes the logic of Jensen et al. in the following

ways:
• Lr allows multiple selectors, which enables Lr formulae to describe prop-

erties of general directed graphs as opposed to just lists.1
• The reachability constraints in Lr formulae allow one to test simultane-

ous pointer inequities, which is crucial for capturing the strength of the
variant of static shape graphs defined in [21].

In summary, the formulae of Jensen et al. are more expressive than Lr formu-
lae, but they can only state properties of lists and trees, whereas Lr can state
properties of arbitrary graph data structures.

Klarlund and Schwartzbach defined a language for defining graph types, which
are tree data structures with non-tree links defined by auxiliary tree-path ex-
pressions [16]. In the application they envision, a programmer would be able
1 [13] sketches an extension of their technique to trees, which involves multiple selec-

tors, but they do not handle general directed graphs.

A Decidable Logic for Describing Linked Data Structures 17

to declare variables of a given graph type, and write code to mutate the “tree
backbone” of these structures. After a mutation operation, the runtime system
would automatically apply an update operation that they define, which updates
the non-tree links. The graph-type definition language is unsuitable for describ-
ing arbitrary store graphs, and the fact that the update operations are limited
does not allow the programmer to write arbitrary pieces of code. (However, the
latter property is a significant advantage for the intended application — a pro-
gramming language supporting controlled destructive updating of graph data
structures.)

The ADDS formalism of Hendren et al. is an annotation language for ex-
pressing loop invariants and pre- and post-conditions of statements and proce-
dures [10]. From a programmer’s point of view, an advantage of a logic like Lr

over ADDS is that Lr is strong enough to allow stating properties of the kind
that arise at intermediate points of a procedure, when a data structure is in the
process of being traversed or destructively updated. For example, ADDS can-
not be used to state the loop invariant of Example 22 because the relationship
between x and y cannot be expressed. Because it is lacking in expressive power,
ADDS is mainly useful as a documentation notation for type definitions, func-
tion arguments, and function return values. Hendren et al. propose to handle
this limitation of ADDS by extending it with the ability to use a certain limited
class of reachability properties between variables (of the kind used in the path
matrices defined in [9]).

Lr goes beyond ADDS in the following ways:

– Lr permits stating properties of cyclic data structures.
– The routing expressions used in Lr formulae are general regular expressions

(with pointer-variable interrogations).
– Lr is closed under both conjunction and negation. In contrast, ADDS cannot

express the loop invariant in Example 23 because of the implication.

It should be noted that currently the notion of heap sharing in Lr is weaker
than the ADDS notion of “dimension”. It is easy to generalize Lr to include this
concept without affecting its decidability. We did not do so in this paper because
we wanted to stay with two selectors.

Finally, it should be noted that both Lr and ADDS do not allow stating
connectivity properties of the form x〈R1〉 = y〈R2〉. We believe that Lr can
be generalized to handle this. (A limited form of such connectivity properties,
restricted to be in the form x〈(car|cdr)∗〉 = y〈(car|cdr)∗〉, was proposed in [8,
7].)

Lr is incomparable to Deutsch’s symbolic aliases [4, 5]: Symbolic aliases allow
the use of full-blown arithmetic, which cannot be used in a decidable logic.
On the other hand, symbolic-alias expressions are not closed under negation.
For instance, there is no way to express must-alias relationships using symbolic
aliases. Thus, the loop invariant used in Example 23 cannot be expressed with
symbolic aliases.

In [6], Fradet and Le Métayer use graph grammars to express interesting
properties of the data structures of a C-like language. Graph grammars can be a

18 Michael Benedikt, Thomas Reps, and Mooly Sagiv

more natural formalism than logic for describing certain topological properties
of stores. However, graph grammars are not closed under intersection and nega-
tion, and problems such as the inclusion problem are not decidable. In terms of
expressive power, the structure-description formalism of [6] is incomparable to
the one proposed in the present paper.

It should be noted that the approach given here is limited in several ways:
The approach we have taken is to develop decidable, logic-based languages for
capturing topological properties of a broad class of linked data structures. Un-
decidability results in predicate logic give many hard limitations on the expres-
siveness of such languages: For example, no such language exists that is closed
under first-order quantification and boolean connectives. Although logic-based
formalisms can be more succinct in expressing properties of linked data struc-
tures, they can also be more verbose; in particular, the output from our transla-
tion algorithms can be significantly more verbose than the input. For example,
with the translation from a static shape graph SG into Lr formula Φ[SG] given
in Section 4.2, the size of Φ[SG] can be exponential in |SG|.

There are a few properties that cannot be expressed in Lr , including:
(i) whether a store contains a garbage cell (i.e., a cell not accessible from any
variable), and (ii) whether a tree is balanced (or almost balanced, such as the
condition used in AVL trees). It may be difficult to extend Lr to handle these
sorts of properties. However, such properties go well beyond the scope of current
optimizing compilers and tools for aiding software understanding.

Acknowledgements
This work was supported in part by the NSF under grants CCR-9625667 and

CCR-9619219, by the United States-Israel Binational Science Foundation under grant

96-00337, and by a Vilas Associate Award from the Univ. of Wisconsin.

References

1. U. Assmann and M. Weinhardt. Interprocedural heap analysis for parallelizing
imperative programs. In W. K. Giloi, S. Jähnichen, and B. D. Shriver, editors,
Programming Models For Massively Parallel Computers, pages 74–82, Washington,
DC, September 1993. IEEE Press.

2. E. Boerger, E. Graedel, and Y. Gurevich. The Classical Decision Problem.
Springer-Verlag, 1996.

3. D.R. Chase, M. Wegman, and F. Zadeck. Analysis of pointers and structures. In
SIGPLAN Conf. on Prog. Lang. Design and Impl., pages 296–310, New York, NY,
1990. ACM Press.

4. A. Deutsch. A storeless model for aliasing and its abstractions using finite repre-
sentations of right-regular equivalence relations. In IEEE International Conference
on Computer Languages, pages 2–13, Washington, DC, 1992. IEEE Press.

5. A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting. In
SIGPLAN Conf. on Prog. Lang. Design and Impl., pages 230–241, New York, NY,
1994. ACM Press.

6. Pascal Fradet and Daniel Le Metayer. Shape types. In Symp. on Princ. of Prog.
Lang., New York, NY, 1997. ACM Press.

7. R. Ghiya and L. Hendren. Putting pointer analysis to work. In Symp. on Princ.
of Prog. Lang., New York, NY, 1998. ACM Press.

8. R. Ghiya and L.J. Hendren. Connection analysis: A practical interprocedural heap
analysis for C. In Proc. of the 8th Int. Workshop on Lang. and Comp. for Par.

A Decidable Logic for Describing Linked Data Structures 19

Comp., number 1033 in Lec. Notes in Comp. Sci., pages 515–534, Columbus, Ohio,
August 1995. Springer-Verlag.

9. L. Hendren. Parallelizing Programs with Recursive Data Structures. PhD thesis,
Cornell Univ., Ithaca, NY, Jan 1990.

10. L. Hendren, J. Hummel, and A. Nicolau. Abstractions for recursive pointer data
structures: Improving the analysis and the transformation of imperative programs.
In SIGPLAN Conf. on Prog. Lang. Design and Impl., pages 249–260, New York,
NY, June 1992. ACM Press.

11. L. Hendren and A. Nicolau. Parallelizing programs with recursive data structures.
IEEE Trans. on Par. and Dist. Syst., 1(1):35–47, January 1990.

12. S. Horwitz, P. Pfeiffer, and T. Reps. Dependence analysis for pointer variables. In
SIGPLAN Conf. on Prog. Lang. Design and Impl., pages 28–40, New York, NY,
1989. ACM Press.

13. J.L. Jensen, M.E. Joergensen, N.Klarlund, and M.I. Schwartzbach. Automatic
verification of pointer programs using monadic second-order logic. In SIGPLAN
Conf. on Prog. Lang. Design and Impl., 1997.

14. N.D. Jones and S.S. Muchnick. Flow analysis and optimization of Lisp-like struc-
tures. In S.S. Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory
and Applications, chapter 4, pages 102–131. Prentice-Hall, Englewood Cliffs, NJ,
1981.

15. N.D. Jones and S.S. Muchnick. A flexible approach to interprocedural data flow
analysis and programs with recursive data structures. In Symp. on Princ. of Prog.
Lang., pages 66–74, New York, NY, 1982. ACM Press.

16. N. Klarlund and M. Schwartzbach. Graph types. In Symp. on Princ. of Prog.
Lang., New York, NY, January 1993. ACM Press.

17. J.R. Larus and P.N. Hilfinger. Detecting conflicts between structure accesses. In
SIGPLAN Conf. on Prog. Lang. Design and Impl., pages 21–34, New York, NY,
1988. ACM Press.

18. C.-K. Luk and T.C. Mowry. Compiler-based prefetching for recursive data struc-
tures. In Proceedings of the Seventh International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 222–233, Oc-
tober 1996.

19. J. Plevyak, A.A. Chien, and V. Karamcheti. Analysis of dynamic structures for
efficient parallel execution. In U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua,
editors, Languages and Compilers for Parallel Computing, volume 768 of Lec. Notes
in Comp. Sci., pages 37–57, Portland, OR, August 1993. Springer-Verlag.

20. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
Tech. Rep. TR-1383, Comp. Sci. Dept., Univ. of Wisconsin, Madison, WI, July
1998. Available at “http://www.cs.wisc.edu/wpis/papers/parametric.ps”.

21. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. Trans. on Prog. Lang. and Syst., 20(1):1–50, January
1998.

22. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-
valued logic. In Symp. on Princ. of Prog. Lang., 1999. Available at
“http://www.cs.wisc.edu/wpis/papers/popl99.ps”.

23. J. Stransky. A lattice for abstract interpretation of dynamic (Lisp-like) structures.
Inf. and Comp., 101(1):70–102, Nov. 1992.

24. R.E. Tarjan. Fast algorithms for solving path problems. J. ACM, 28(3):594–614,
1981.

25. R.E. Tarjan. A unified approach to path problems. J. ACM, 28(3):577–593, 1981.
26. J.W. Thatcher and J.B. Wright. Generalized finite automata with an application

to a decision problem of second order logic. Math. Syst. Theory, 2:57–82, 1968.
27. E. Y.-B. Wang. Analysis of Recursive Types in an Imperative Language. PhD

thesis, Univ. of Calif., Berkeley, CA, 1994.

	1 Introduction
	2 A Language for Stating Properties of Linked Data Structures
	3 Representing Path Matrices via Formulae
	4 Representing Shape Graphs via Formulae
	4.1 Static Shape Graphs
	4.2 From a Static Shape Graph to an Lr Formula

	5 Extracting Information from Program Analyses via Lr Formulae
	6 The Decidability of Lr
	7 Related Work
	Acknowledgements
	References

