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Abstract

Reliability-based design optimization is concerned with designing a product to optimize an
objective function given uncertainties about whether various design constraints will be satisfied.
However, the widespread practice of formulating such problems as chance-constrained programs
can lead to misleading solutions. While a decision analytic approach would avoid this unde-
sirable result, many engineers find it difficult to determine the utility functions required for a
traditional decision analysis. This paper presents an alternative decision analytic formulation
which, though implicitly using utility functions, is more closely related to probability maximiza-
tion formulations with which engineers are comfortable and skilled. This result combines the
rigor of decision analysis with the convenience of existing optimization approaches.
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1 Introduction

Consider the problem of designing a reliable product that is as affordable as possible. The product
is defined to be “reliable” if it satisfies various constraints. Unfortunately, uncertainties (about, for
example, the operating environment of the product or material behavior) often make it impossible
to design a product that is certain to satisfy all constraints. Complicating this problem is the
common situation in which constraints are set so that any violation, whether minor or major, leads
to a failure (i.e, an unreliable product) which cannot be offset by any subsequent actions.

To formulate this problem, reliability-based design optimization (Youn et al., 2004), a popular
methodology implemented in commercial structural analysis software such as NASTRANS, recom-
mends and incorporates chance-constrained programming (CCP). When there are m constraints,
the two classic forms of CCP are:

e Optimization of the expected value of an objective function (e.g., cost) subject to a lower
bound, «, on the probability that all constraints will be jointly satisfied (Miller and Wagner,
1965; Kall and Wallace, 1994). We refer to this formulation as jointly-constrained CCP
(JCCP).

e The optimization of the expected value of an objective function subject to a lower bound, «y,
on the probability that each constraint ¢ = 1,...m, will be independently satisfied (Charnes



and Cooper, 1963; Wets, 1989). We refer to this formulation as independently-constrained
CCP (ICCP).

Both versions of CCP have been extensively applied in design, energy, water resources, telecommu-
nications, chip manufacturing, insurance, chemical engineering, production, inventory food service
management and finance (Maarten and Van der Vlerk, 2007).

However, there are drawbacks to using either version of CCP, particularly when safety is involved.
For example, consider any design problem with the following two possible solutions x and z’:

e solution x has a probability « of satisfying all constraints

e solution z’ costs a penny more than z and always satisfies the constraints.

Both ICCP and JCCP will always reject the negligibly more expensive solution (possibly without
the engineer ever realizing that solution 2’ was rejected.) But according to modern product liability
law (Wade, 1973; Henderson and Twerski, 1998; Schwartz, 1998; Diamond, Levine and Madden,
2007), a company can be held liable (and sued) for a defective design if an individual is injured
using design solution 2z when a negligibly more expensive solution (such as design solution z’) would
have avoided the injury.

Thus in the event of a legal challenge, the engineer might need to justify using CCP. But a well-
prepared plaintiff’s attorney could argue that CCP almost always violates decision-analytic stan-
dards for logical choice (LaValle, 1985). Even if it can be argued that the decision-analytic formalism
is inappropriate, CCP has other properties that may be considered unpalatable:

e CCP sometimes allows a more informed engineer to deliver a solution with a lower expected
objective function value than the solution produced by a less informed engineer, i.e., new
information can have negative expected value (Blau, 1974; Hogan, Morris and Thompson,
1981; Jagannathan, 1985). This paradox has sometimes been called “Blau’s Dilemma.”

e CCP problems sometimes have randomized solutions, e.g., solutions involving the equivalent
of flipping a coin before choosing the final design solution (Dempster, 1968; Heilmann, 1983).

Two possible alternatives to CCP have been proposed:

1. The Bayesian Utility-Maximization Problem, BUMP (Nau, 1987) which requires that the
engineer assess a utility function and maximize its expected value.

2. Probability-Maximization, PM (Prekopa, 1995, 2003) which identifies solutions with the high-
est probability of satisfying the constraints.

BUMP is rarely used (Osyczka, 1984) because assessing the required utility functions involves a
substantial departure from standard practice and requires competencies not normally associated
with product designers. Meanwhile PM, which has been implemented using algorithms and software
packages designed for JCCP problems, is only intended for problems where “we have no special
objective function” (Prekopa, 2003, pg.269 ) and therefore does not address the standard design
problem where there is an objective function.



As the next section shows, BUMP can be made considerably easier to implement by reformulating
the approach as an extension of the PM approach. This reformulation of BUMP, Utility-based
Probability Maximization (UPM), while finding the same solutions as BUMP, retains the ease of
use of PM. The third section discusses the advantages of using UPM instead of CCP for problem
formulation. The fourth section discusses the computational advantages of using UPM instead of
CCP. The fifth section presents and discusses, in a product liability context, concerns sometimes
associated with CCP but avoided by UPM.

2 Utility-Based Probability Maximization

In the absence of uncertainty, an engineering design problem can often be formulated as the general
deterministic optimization problem
max v(z,z) subject to gi(z,2) <0, i=1,...,m, (1)
xE
where x represents an n-dimensional vector of possible solutions, z a vector of known, deterministic
parameters of objective function v(x, z) and constraint functions g;(z, z), and D a set of constraints
that do not depend on z.

When the parameters z are uncertain, they can be replaced by the random variable vector Z
having joint cumulative distribution F'(z). For any particular realization of Z = z, v(z, z) provides
an adequate ranking of outcomes only when z and x are both feasible, i.e., when z € S(z) where
S(z) is the set of values of z for which the constraints involving z (i.e., g;(x,2) <0, i =1,2,...,m)
are satisfied (Kall and Mayer, 2005, pg. 92). However if there is a non-zero probability that
z ¢ S(x), the original problem of equation (1) must be reformulated.

This reformulation must provide a preference ranking of all possible solutions z € D, even when
z ¢ S(z). This paper focuses on the many applications where violating any constraint leads to
failure: all solutions violating any constraint are equally undesirable (and are never better) than a
solution that satisfies all constraints. To describe such a preference ranking, let 7y be some constant
<infiep.es@ (v(z,2)) (e.g., ro = —o0 if infyep eg(x)(v(7, 2)) = —00.) Define a ranking function
r(x, z) which equals v(x, z) when z € S(x) and equals ry otherwise.

If the decision analytic principles of consistency specified in Appendix I are satisfied, then well-

known arguments (von Neumann and Morgenstern (1944)) establish the existence of a bounded
utility function, 0 < u(r) <1 with u(rg) = 0 such that 2’ € D is preferred to z € D if

/Z u(r(a’, 2))dF(z) > / u(r(z, 2))dF(z)

or, equivalently,

/zGS(:p’) u(v(’, 2))dF (2) 2 / u(v(z, 2))dF(z)

z€S(x)

The original problem of equation (1) can then be reformulated as

r;leag)cﬂ(x) (2)

where

=l
2
Il

/ u(v(z, 2))dF(z) (3)
z€S(z)



Let z* denote the optimal solution to (2).

To rewrite the problem of maximizing @(z), as defined in equation (2), as a probability-maximization
problem, note that it is always possible (Billingsley, 1995; Castagnoli and LiCalzi, 1996; Bordley
and LiCalzi, 2000) to identify some random variable 7" such that

u(v) = Pr.{v > T} (4)

In some cases, T can be interpreted to be the uncertain performance level required to avoid
bankruptcy (Borch, 1968), or to meet the client’s goals (Bordley and Kirkwood, 2004), or to
attain aspiration levels (Oden and Lopes, 1997, 1999). Thus u(v), instead of being a function that
describes preferences toward probabilistic outcomes of v, can be interpreted to be the probability
that a goal will be achieved if the design achieves a value v for the objective function. Hence
instead of assessing how v should be adjusted to reflect risk attitudes, the engineer must assess the
uncertainty about whether a value of v will achieve an overall goal.

Many experienced engineers are very familiar with assessing these kinds of uncertainties. Design
projects may have the goal of designing a product that meets the needs of certain customers. The
project manager begins the project by providing engineers with design targets that express what the
manager believes is required to achieve that goal. As new information about customer preferences,
competitor technologies, supplier capabilities and regulatory requirements emerge, management
changes these initial targets. These changes can be major sources of disruption in complex design
projects (Smith and Eppinger, 1997). Moreover, even after all these changes, the finished project
may still fail to meet customer needs, reflecting the fact that the actual levels of performance, T,
required to achieve the goal are usually unknown to both engineers and managers.

Incorporating this target-oriented interpretation of utility into BUMP is straightforward. Substi-
tuting u(v) from equation (4) into equation (3) and simplifying gives

u(z) = Pr.{{v(z,2)>T} N {ZeS(x)}}

= Pr.{{v(z,2) =T} Mi% {gi(z,2) < 0}} ()
After defining the vector & = [T, Z] and
gO(x7§)ET_U(x7Z) (6)
equation (5) can be used to write the utility-based probability maximization “UPM” problem:
u = AN i <
maxu(z) = max Pr {MiZo{gi(z, ) < 0}} (7)

The formulation in (7) differs from Prekopa’s PM problem only (but critically) by the fact that
the constraint set has been extended to include an “objective function constraint”: go(z,&) < 0.
Moreover, since UPM is completely consistent with the formalism of decision analysis, UPM will
never produce a deterministic solution that is inferior to a randomized solution nor a solution that
leads to Blau’s dilemma.

3 Comparing UPM to CCP: Problem Formulation

3.1 How UPM Inherently Accounts for all Dependencies between Uncertainties

We now show that both versions of CCP ignore dependencies between uncertainties in the con-
straint functions and uncertainties in the objective function while UPM explicitly allows for these



dependencies. To show this, we first define:

o A(z) = In[Pr {MiZ {gi(2,§) < 0}}]
e Aj(x) =In[Pr.{gi(x,&) <0}] i=0,..,m

o Ay(xz)=In[Pr {N {gi(x,&) <0}}]

Note that
Pr {go(z,€) <0} =Pr {T —wv(z,Z) <0} =Pr {v(z,Z) > T}

When T has a uniform probability distribution and when v is bounded with its finite range entirely
contained within the range of T, Pr .{v(x, Z) > T} is equivalent, up to a positive linear transforma-
tion, to E[v(z, Z)]. As a result, E[v(z, Z)], the traditional objective function used in most ICCP
and JCCP problems, can be replaced by Ag(x) = In[Pr.{go(z, Z) < 0}]. The ICCP problem can
then be written as

max Ag(z) subject to Aj(x) >In(a;) i=1,..m. (8)
Te

while the conventional JCCP problem can be written as:

max Ao(z) subject to A(z) > In(a). 9)
(S

Thus both ICCP and JCCP formulations require that dependencies between objective function and
constraints be ignored. In contrast, the UPM problem can be written

max Ay (x 10
mas A (2) (10)
which clearly considers the dependencies between uncertain parameters in the objective function
and constraint functions.

To highlight the importance of considering these dependencies, consider a problem with one con-
straint and a distribution of ¢ such that go(x,€&) and g;(x,&) are strongly negatively correlated.
Then any solution z which maximizes Pr.{gi(z,&) < 0} will have a tendency to lead to a poor
value for Pr .{go(x,&) < 0}. As a result, the solution to the UPM problem:

max Pr {{go(x,€) < 0} 1 {g1(2,€) < 0}} (1)
will probably be very different from the solution to:

max Pr {go(s,€) < 0} (12)

Now consider a different problem with one constraint involving the same functions go(z,£) and
g1(z,€) (and therefore the same functions Ag(z) and Aj(x).) The only difference is that the
distribution of & has changed so that go(x,&) is strongly positively correlated with g¢1(x,§). For
this problem, solutions which maximize Pr.{gi(z,£) < 0} will have a tendency to lead to good
values for Pr.{go(z,£) < 0}. As a result, the solution to the UPM problem (11) will probably be
similar to the solution to (12). Thus the UPM solution, given negative correlation between go(z, &)
and ¢ (z, &), will probably be different from the UPM solution given positive correlation between

go(z, &) and ¢1(z, &).



Since Ag(z) and Aj(x) are the same, regardless of the dependencies between go(x, &) and g1 (x, &),
the JCCP formulation of the problem when go(z, £) and g;(x, §) are negatively correlated is identical
to the formulation when go(z,€&) and ¢1(x,&) are positively correlated. Thus, unlike the UPM
formulation, the JCCP formulation has the undesirable property of providing the same solution in
both cases, even when go(z,&) = —gi1(x, ) (the extreme case of negative correlation) and go(z,§) =
g1(z, &) (the extreme case of positive correlation.)

3.2 When Considering Dependencies is too Time-Consuming

Good modelling always involves a pragmatic tradeoff between model realism and model complexity.
Since dependencies between objective function and constraint functions could be very complicated,
a less realistic formulation that ignores these dependencies (such as JCCP) might be preferable.
Ignoring these dependencies in UPM is the equivalent of making the “independence” approximation:

and leads to what we call the “JCCP-comparable” UPM formulation:

max [Aq(z) + A () (13)

Note that this problem has the same solution as the Lagrangian relaxation (Kall and Mayer, 2005,
pg. 79) of the JCCP problem

max [Ag(z) + MA(z) — In(a))]

xeD
when A = 1.

ICCP is sometimes preferred to JCCP because of the computational effort associated with consid-
ering the dependencies among different constraint functions. Thus ICCP ignores the dependencies
among the constraint functions as well as the dependencies between the constraint functions and
objective function. In UPM, this is equivalent to making the “independence” approximation:

Pr {Niogi(z,&) < 0} = [ [ Pr {gi(x,) < 0}
=0

and leads to the “ICCP-comparable” UPM problem:

max [Ag(x) + > Ay(z)] (14)

zeD

Equation (14) corresponds to the Lagrangian relaxation of the ICCP problem

m

max [Ao(z) + ; Ai(Ai(r) — In(a;))]

when \; =1,i=1,...,m.

Thus JCCP-comparable and ICCP-comparable variants of UPM exist for the analyst who wishes
to ignore dependencies between constraints and objective function (as is implicitly done with JCCP
and ICCP.)



3.3 Inputs Required for CCP and UPM

Unlike CCP, UPM treats the objective function go(z,&) and the constraint functions g;(x,§) in
the same way. This is useful whenever there is considerable ambiguity about which performance
functions g;(z, ) belong in the constraints and which should be the objective function.

In addition, UPM does not require any specification of lower bounds on the probabilities with which
various stochastic constraints are satisfied. This can be helpful when “the decision maker may only
have a vague idea of a properly chosen level” (Henrion, 2004) for these lower bounds (or when there
is no defensible way of specifying these bounds.)

Instead of specifying lower bounds on probabilities, UPM requires that the distribution of T be
specified. For example, if this distribution is determined to be exponential with mean k, then only
this single parameter needs to be specified. If the objective function does not involve any uncertain
parameters, then using this distribution allows the JCCP formulation to be written as:

maxv(x) subject to A(x) > In(a).

xT

while the UPM formulation is
max{In[l — exp(—v(z)/k)] + A(x)}

In the JCCP problem, « is commonly specified using benchmark values of a drawn from past
successful applications of stochastic programming. In a similar way, the parameter k£ can be selected
so that UPM problems yield solutions comparable to those drawn from past successful applications.

4 Comparing UPM TO CCP: Ease of Solution

4.1 When there are No Deterministic Constraints

Where there are no deterministic constraints D, the UPM of equation (10) is an unconstrained op-
timization problem. Since the corresponding JCCP and ICCP problems always involve constraints,
we would typically expect UPM to be no harder to solve.

It is possible, of course, that the JCCP problem might be easier to solve if the dependency be-
tween objective function and constraints is extremely complicated. In this case, UPM offers more
realism at the cost of added computational effort. But since JCCP ignores dependencies, it is
more appropriate to compare the performance of JCCP given by equation (9) with the “JCCP-
comparable” UPM problem of equation (13). This comparison shows that the “JCCP-comparable”
UPM formulation will generally be no harder to solve.

Similarly it is possible that an ICCP problem might be easier to solve than a UPM problem if the
dependencies between the various constraint functions are especially complicated. However com-
paring the ICCP problem of equation (8) with the “ICCP-comparable” UPM problem of equation
(14) shows that the latter will generally be no harder to solve.



4.2 When there are no Deterministic Inequality Constraints

As is true in most areas of nonlinear programming, it is helpful to distinguish between optimization
problems having only equality constraints and those having both equality and inequality constraints.
Following this distinction, we first consider the case where D contains only equality constraints.
In this case, the first-order Karush-Kuhn-Tucker optimality conditions for the UPM problem of
equation (10) will all be equations. In contrast, conditions for the CCP problems (which always
have inequality constraints) will involve both inequalities and complementary slackness conditions.
Relatively simple Newton-like methods can be used to solve UPM’s first-order conditions while
more computationally demanding approaches are typically required for CCP’s first-order conditions.
Hence the UPM problem will typically be no harder to solve than the CCP problem.

Moreover, when the UPM problem is JCCP-comparable, the first-order conditions for the JCCP
problem will consist of the first-order conditions for the JCCP-comparable UPM problem (which
are all equations) plus an additional inequality and complementary slackness condition. Hence the
JCCP-comparable UPM problem will be generally no harder to solve than the JCCP problem. Like-
wise when the UPM problem is ICCP-comparable, the first-order conditions for the ICCP problem
will consist of the same first-order conditions as the ICCP-comparable UPM problem (which are all
equations) plus additional inequality constraints and complementary slackness conditions. Hence
the ICCP-comparable UPM problem will generally be no harder to solve than the ICCP problem.

4.3 When D Forms a Convex Set

Suppose the deterministic constraint set D includes both inequalities as well as equalities, and is
also convex. In addition, suppose the objective functions and probabilistic constraints are concave
(which will be true if they involve a wide variety of log-concave distributions (Prekopa, 1980, 2003)
such as the normal, Cauchy, Wishart, gamma, Pareto and non-J-shaped Dirichlet.) With concavity,
the JCCP and ICCP problems can be solved by formulating and solving dual JCCP and ICCP
problems (Bazaara, Sherali & Shetty, 1993).

In the unconstrained case, the dual to the JCCP problem given by equation (9) will have the form

max p(\) = ma}\x[Ao(x) + AA(2)] (15)
z,

If the algorithm for computing the optimizing value of A uses A = 1 as a starting point, the “JCCP-

comparable” UPM problem will be solved after zero iterations of the JCCP algorithm. Since

several iterations will typically be required to solve (15), solving the JCCP problem will involve

more computation than solving the “JCCP-comparable” UPM problem.

Similarly, the dual to the ICCP problem given by equation (8) will have the form

m

Jmax G(Ar,An) = max [Ao() + ; A ()]

Again, if the algorithm for computing A; begins computing the optimizing value of A\; using \; =
1,7 =1,...,m, as a starting point, then the “ICCP-comparable” UPM problem will be solved after
zero iterations of the ICCP algorithm. Hence in the absence of deterministic constraints, solving
the ICCP or JCCP problem will usually be harder than solving the comparable UPM problem if
the CCP solution algorithm involves solving the dual problem.



In the constrained case, additional multipliers will be required because of the constraints in D.
Since this complicates both problems to the same degree, the UPM problem should be no more
difficult to solve than the CCP problem.

4.4 When the Deterministic Constraints are General

Non-convex programming problems are significantly more complicated then convex programming
problems (Rockafellar, 1993). Nonetheless even a problem with multiple local minima must find
solutions satisfying the first-order conditions. Since these first-order conditions for the CCP problem
include all of the first-order conditions for the comparable UPM problem plus additional inequalities
and complementary slackness conditions (corresponding to the CCP constraints and )\;), we expect
that the UPM problem will be no harder to solve than the CCP problem. In addition, if the
non-convex optimization algorithm involves Lagrangian multipliers, then solving UPM problems
still might be easier since JCCP and ICCP both require added computation to solve for A and
it =1,...,m.

5 Comparing UPM TO CCP: Product Liability Concerns

5.1 The Liability Concern

Section 1 presented a situation where CCP will always prefer a solution x which costs ¢ dollars but
has a probability a of meeting the constraints to a solution x’ with a cost of ¢ + ¢’ which always
meets the constraints. Now consider the UPM formulation (with independent objective function
and constraints): u(z) = aPr.{c < T} and u(z’) = Pr.{c+ ¢ < T}. Using UPM, 2’ is the most
preferred of the two solutions when

u(z')=Pric+d <T}>u(x)=aPr{c<T} (16)

We now show that there will almost always be values of ¢’ for which condition (16) holds. We first
eliminate irrelevant cases by assuming that Pr.{¢ < T} > 0 and that 0 < a < 1. Suppose that T'
has a continuous distribution with a finite upper bound (which is not an unreasonable assumption
in practice). Then consider an arbitrary increase in cost, ¢’

o If=0,Pr{c+d <T}>aPr{c<T}.

o If ¢ is sufficiently large, Pr.{c+ ¢ < T} < aPr.{c < T}.

An extension of the intermediate value theorem (Anton, 1984; Munkres, 1975) can be applied to
the function g(¢) = Pr.{c+¢ < T} as long as ¢ is continuous over the real line. Accordingly, there
will always exist a value ¢y such that Pr.{c+ ¢; < T} = aPr.{c < T'}. Moreover, since UPM will
always prefer a lower cost solution whenever safety is unaffected, Pr.{c < T} is strictly decreasing
in c. Asaresult, Pr.{c+ ¢ <T} > aPr.{c<T} aslong as 0 < ¢ < ¢; which provides a range of
values of ¢ for which equation(16)) holds. Hence UPM will usually avoid the “legal risk” potential
of CCP discussed in section 1.
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5.2 The Liability Concern in Conventional CCP Formalisms

We now demonstrate the existence of the liability concern raised in section 5.1 when “the most
favorable situation arises” (Henrion, 2004) for ICCP, i.e., when the deterministic problem can be
written in the form:

max pv(xz) subject to hi(x) <z, i=1,.m (17)
Te

where puv(z), for some positive constant p, is interpreted as profit. When z; is replaced by the

random variable Z; with an invertible distribution function F;, the ICCP constraint, Pr.{h;(z) <

Z;} > a, can be written as h;(z) < F; (1 — ) and the ICCP formulation of problem (17) becomes
max pv(x) subject to hi(z) < Fy'(1—oq) i=1,..,m (18)
xe

Note that the solution of equation (18) is not a function of p as long as the h;(z) are not functions

of p. In the corresponding JCCP formulation:

mal%cpv(a:) subject to  Pr.{h;i(z) >0,i=1,...,m} > «
Te

the optimal solution is also not a function of p.

To show why this result is problematic, suppose z*, the optimal solution to equation (18), yields
v(z*) = 2 and, while satisfying all chance constraints, does not implement a particular safety
measure. Suppose another solution 2’ only differs from z* in that it does implement the safety
measure but yields v(z’) = 1. Since the profitability of any solution z is pv(x), p reflects the profit
lost from choosing x’ over z* while implementing the safety measure. Although modern product
liability law might not expect a company to implement a safety measure if p is a hundred billion
dollars, it is quite possible that it would expect a company to implement a safety measure if p is
a few dollars. As we have seen, the CCP solution, because it is not a function of p, ignores the
difference between these two situations. In contrast, the UPM formulation chooses x to maximize

Pr {{pv(x) = T} MLy {hi(z) < Zi}}
so that the optimal solution is a function of p.

On the other hand, this particular ICCP problem will be easier to solve than the UPM problem.
For example, if v(x) and h;(x) are both linear and D is a polyhedral set, then the CCP problem of
equation (18) is a linear program. In contrast, the UPM problem of equation (17) can be written,
for some matrix C, as

max Pr . {{pv(z) > T} N, {hi(x) < Z;}} = maxPr {Cz > ¢}

zeD zeD
As Kall and Mayer (2005) note, this is a linearly constrained convex optimization problem when
the distribution of Z is log-concave. Although this is generally harder to solve, it is still quite
tractable.

The fact that the ICCP solution can be misleading could potentially be addressed using sensitivity
analysis: solving the ICCP problem for various values of «;, examining the reduction in objective
function value associated with incremental increases in a; and choosing intuitively (and legally) un-
objectionable values for «;. However, this would clearly increase the computational effort required
in doing CCP. In fact, since the ICCP-comparable UPM problem can be written

max maxPr.{v(z) > T}a;...s, subject to Pr.{gi(z) < Zi} > oy

at,...0m x€D
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the ICCP-comparable UPM problem essentially incorporates sensitivity analysis into an ICCP-like
problem. Hence performing the sensitivity analysis required to avoid the liability concern could
offset ICCP’s potential computational advantage over UPM, even in the situation most favorable
to an easy solution of the ICCP problem.

5.3 Simple Example of the Liability Concern in Beam Design

To show how the situation discussed in section 5.2 might arise in design problems, consider the
problem, adapted from Reddy et al. (1994), of designing a minimum mass cantilever beam. The
beam is to have fixed height, h, length, [ and mass density, p; the width, x, is to be determined.
For safety reasons, the maximum displacement of the beam under an external load, B, should not
exceed 9, which holds if %hx?’ > B, where Y is Young’s modulus. Reddy et al. (1994) assumed
that the external load, B, and Young’s modulus, Y are uncertain and normally distributed with
means and standard deviations given by pp,op and py, oy respectively. Define Q(z) = %hﬁ -B
and let pg(z) and og(z) denote the mean and standard deviation of Q(z). (Appendix II gives
the equations for pg(x) and og(x) as a function of pup,op, ty, oy.) If the maximum displacement
must have at least a probability a of being less than §, this means that Pr.{Q(z) > 0} > a. If
Zq 18 the a-percentile of the standard normal distribution, then the ICCP formulation of the beam
problem becomes

rxn>1101 phlz  subject to pg(x) +og(z)zq >0 (19)

The ICCP solution to equation (19) does not depend on the beam’s mass density p (although it
still depends on material stiffness as reflected by the parameters py and oy of the distribution for
Young’s modulus.) Yet, if the cantilever design is for an aircraft wing, reducing p reduces overall
mass (and thus fuel costs) of the aircraft while increasing « increases aircraft safety. (As Appendix
IT notes, the problem, in this case, can be solved exactly.)

The UPM solution, by contrast, will be a function of p. For example, suppose the mass target T’
has an exponential distribution with mean value k. Then the UPM solution is the value of x that
maximizes

W[Pr {{T > phiz} N {Q(z) > 0}}] = W[Pr .{Q(x) > 0}] — %phlw

Defining ¢ to be the standard cumulative normal distribution allows the UPM problem to be written

as
_ phlx

k

max{Info[ 2]

oq(z) (20)

which does depend on p.

Using Calman and Royston (1997)’s definition of a logarithmic risk measure,

r(z) = —In[Pr {g(2,£) < 0}] = Ay (2) = ‘ln[¢[ﬁzgii]]

the UPM problem in equation (20) is equivalent to
min{kr(x) + p(hlx)}

i.e., the UPM problem is equivalent to minimizing a weighted average of safety risk and beam
volume, hlx, where k reflects the importance attached to reducing safety risk and p reflects the



12

importance attached to reducing beam volume, hlz. By contrast, the CCP problem represents
safety risk with the parameter a and treats it as either being of overriding importance (when the
probability of constraint-violation exceeds (1 — «)) or as being of negligible importance otherwise:
the importance of the objective function becomes irrelevant.

6 Conclusions

When formulating a design problem as a chance constrained optimization problem, important
considerations include:

e whether the formulation leads to quality solutions. We have identified concerns with the
quality of the CCP solution and noted that these concerns could be addressed by a decision
analytic approach.

e the ease with which a real problem can be translated into this formulation. UPM is a decision
analytic approach consistent with the probability maximization problem familiar to many
engineers.

e the computational effort required to solve the formulation. We present reasons why the UPM
representation will generally be no harder to solve than the CCP problem.

For these reasons, we recommend UPM for stochastic optimization in reliability-based design.

By demonstrating the usefulness of decision analysis in stochastic programming, we hope our results
encourage the integration of mathematical programming capabilities into influence diagram software
(e.g., Lumina’s Analytica.) Since the UPM formulation, as Appendix III notes, can potentially be
interpreted as a multiattribute utility formulation, we hope that this paper also encourages further
research into multiattribute utility theory and stochastic programming.
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APPENDIX I: Axioms of Decision Analysis

The von Neumann and Morgenstern axioms of decision analysis (with some rewording) can be
written as

Completeness: For any two solutions a and b, either a is no worse than b or b is no worse than a.

Transitivity: Consider any three possible solutions a, b, ¢ where a is no worse than b and b is no
worse than ¢. Then solution a is no worse than solution c.

Archimedean : Consider any three solutions where a is no worse than b and b is no worse than c.
Then there is some probability p such that a randomized solution, yielding a with probability p
and yielding ¢ with probability 1 — p is no better and no worse than solution b

Independence : For any three (possibly randomized) solutions a,b and ¢ where a is no better and
no worse than solution b, a randomized solution yielding a with probability p and yielding ¢ with
probability 1 — p, is no better and no worse than a randomized solution yielding b with probability
p and yielding ¢ with probability 1 — p.

There has been extensive debate on whether or not a rational individual should insist on all these
axioms being satisfied. In summarizing this debate, Fishburn and LaValle (1998) conclude that the
only axiom that an individual could defensibly violate is the Archimedean axiom. An individual
violating the Archimedean axiom might, for example, consider any solution with the slightest
chance of violating the constraints infinitely worse than any solution which always satisfies these
constraints. Instead of adopting either UPM or CCP, this non-Archimedean individual should
consider a form of Madansky’s ‘fat optimization’ (Dempster, 1978) which only chooses among
solutions that have no chance of violating the constraints, i.e., with g;(z,2) < 0,7 = 1...m for any
z in the support of Z. In the typical engineering problem, ‘fat optimization’ can lead either to no
feasible solutions or unaffordable designs and hence is usually not a viable alternative to UPM.
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APPENDIX II: Analytical Solutions of Equation (19)

The ICCP constraint can be written as (b(gggg) > « or, with 3 = ¢~ 1(a), as Zggg > 3. For «

large, this constraint can only hold if ug(x) > 0 and if u%(m) > 52032(1‘). Define A = ‘ZYTS’Z with
HaA = %,uy,cm = %ay so that Q(x) = Az3 — B. The first condition becomes 23 > Z—i and the
second condition is

(naz® — pp)* > %203 + o)
Letting 31 = % and 3y = [62% + 62[% + ﬂ4%%]1/2 allows the quadratic inequality to be
rewritten

(2% — B1(1+ B2)) (2 + B1(1 + B2)) > 0
If 23 — B1(1 + B2) > 0, then 23 + B1(1 + B2) > 0 and the quadratic inequality is satisfied. For
the reverse case, in which 23 — B1(1 + 82) < 0, 23 + B1(1 + B2) < 0 is impossible because = is

non-negative. Hence the ICCP solution is the minimum value of x satisfying both 23 > 31 (1 + 32)

and x3 > LB
A

APPENDIX III: Relationship between UPM and Multiattribute Utility Theory

Suppose gi(z,&) <0,i=0,1,...,m, is rewritten in the form g}(z,{) < T;,i =0, 1, ..., m for a vector
of possibly dependent random variables ¢ and additional random variables 17, ...T;,. Then the
UPM problem has the form

max Pr {2 {g!(x.0) < T3}

Define u;(z,¢) = Pr . {g/(z,{) < T;},i =1,..m. Also let U be the copula function (Nelson, 1998)
describing the interdependencies among the T; so that

Uluo(,Q), -.um(z,¢)) = Pr{MZo{gi(z, () < T;}}
Then the UPM problem assumes the form

m;lXEC[U(uo(:c, (),...i=0,1...m)]

If u;(z, ¢) is interpreted as the utility associated with the ith stochastic constraint, then U can be
interpreted as a multiattribute utility function (Keeney & Raiffa, 1976) with the UPM problem
being that of maximizing this expected multiattribute utility function. When T;,7 = 0,1, ..., m, are
independent, U (ug, u1..., uy,) becomes a multiplicative multiattribute utility.



