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Abetract 

Previously, we have presented a method for embedding selection based on cluster analysis. 
In this paper, we described an embedding selection method based on a feature reduction trans- 
formation matrix. This method extracts features that are important for maintaining decision 
boundaries in the supervised clusters. Experimentally, we demonstrate that our method allow 
accurate prediction of the Mackay-Glass chaotic time series. Three important properties of the 
feature reduction transformation are proved in this paper. 
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1 Introduction 
The choice of an embedding scheme is an important step in the modeling and prediction of any 
chaotic dynamical systems. The modeling and prediction of chaotic systems has attracted much 
recent attention due to the discovery of the presence of chaos in many interesting phenomenal 
previously thought to be random. Examples are these systems include the economic systems[l, 21, 
weather[3] and a number of physiological procesaes[4]. 

The two step to chaotic time series prediction are the feature extraction and th e pattern learning 
steps. When the chaotic time series assumption can be made, the feature extraction step is equivalent 
to  specifying an embedding scheme. 

Specifying an embedding scheme is equivalent to identifying the set of features necessary to char- 
acterize the system. In physics, this process is sometimes referred to as state-space reconstruction. 
A large body of theoretical work has been done in this area. A comprehensive summary can be 
found in [5]. The most cited work among neural network researchers dealing with chaotic dynamical 
system is perhaps the work by Takens[6]. Takens showed that a chaotic time series x(t) can be 
predicted T step in the future by using only m number of equally spaced past samples of the chaotic 
time series itself as follows : 

z(t + T )  = F{z(t),  z(t - A), z(t - 2A), . . . , z(t - (m - 1)A)) (1) 

where F is nonlinear but continuous under the suitable assumptions[6]. Taken's theorern does not, 
however, provide a way of constructing F. An embedding scheme for a chaotic time series is given 
by the 3-tuple 

n = [m,A,T]. ( 2 )  

Equation 1 says that a chaotic time series z(t) can be predicted T time step in advance using only 
m past samples of z( t )  spaced A distance apart. 

Previously, we have presented a method for embedding selection based on cluster analysis[7]. 
In this paper, we described a decision boundary method and its application to the embedding 
selection problem. The decision boundary method extracts features that are important in preserving 
some given decision boundaries. The embedding obtained are a set of features which. are linear 



combinations of the original features. This method is different from principal component analysis[8] 
which extracts features that maximize the fidelity of representation of the training samples. The 
embedding so obtained are different from the usual embedding because in the usual embedding subset 
of the original features are selected but in our method, linear combinations of original features are 
obtained. 

The concept of a decision boundary is first suggested to us by Lee and Landgrebe(91. Lee and 
Landgrebe[9] estimote their decision boundaries by examining the classification of various input data 
by the fully trained neural network. The resulting feature set obtained by their procedure can then 
be used to train another smaller neural network. Our method does not require this duplication of 
effort because the decision boundary for the network can be determined analytically. 

Our method is related to  the Fisher's method[lO] in the following way. For simplicity, let us 
assume we are given date points in 2-d Euclidean space. Assume that clusters are created by some 
algorithms. Fisher method finds a scaling factor that when multiplied to the original data sets, 
maximizes the inter cluster and minimize the intra-cluster distances. Fisher's method takes into 
consideration all data points. Using a different approach, our method was based on the concept of 
a decision boundary. Our method finds scaling factor that preserves the boundary of each cluster 
by concentrating on "pushing" data points near the boundary to their respective cluster centers. 
Consequently, data points that are far away from the boundary are moved only slightly or not at  
all. Thus, the emphasis of this method is on preserving the given boundaries. Since the points on 
the boundary are those that are more likely to be confused by the predictor, the boundary method 
represents a more direct method to  minimizing the number of data points that are ilikely to  be 
misclassified. 

The organization of the paper is as follows. In Section 3, several definitions are made. In Section 
4, the feature extraction procedure is described. In Section 5, three important properties of this 
procedure are proved. In Section 6, experimental results of prediction the benchmark Mackey-Glass 
chaotic time series are presented. 

2 The Supervised Clustering Network 

2.1 The Input to the Network 
Given a time series 

21, 2 2 , . .  ., 2i , .  . .  
The following steps are taken to construct a set of delayed vectors. 

1. Determine the region to be explored by assigning the maximum values of T ,  A and m. Let 
these be T,,, , A,,, and m,,, respectively. We define L = m,,, A,,, + T,,, . 

2. Decide on the size of the training set. Let it be n. 

3. Form the following delayed vectors: 

4. These delayed vectors [zp, yP] will be used as input vectors to  the network to  be described in 
the next subsection. 
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Figure 1: The SupNet Architecture 

2.2 Network Architecture 
The supervised clustering network SupNet[ l l ]  is a neural network that classifies a given set of n 
delayed vectors 9 into N clusters, according to their corresponding values of yp. Its architecture is 
shown in Figure 1. 

The network consists of 2 layers. The first layer is the input layer. I t  consists of L, + 1 nodes. 
The first L nodes represent the components of the delayed vector z. The last node represents the 
value of y. 

The second layer is the cluster layer. Its size is determined dynamically by the learning algorithm 
described in the next subsection. The number of nodes corresponds to the number of clusters needed 
to  classify the values of y to  within a given accuracy eY. 

The weights connecting a given cluster node c to the input nodes form the compo~ients of the 
weight vector W e .  The values of these weight vectors are determined by the learning algorithm 
which will be described in the next subsection. 

When input vector [zp, yp] is presented, the activation a t  node c is defined as 

2.3 The Learning Algorithm 
The learning is done in two stages. During the first stage, the state vector zP is taken to be the zero 
vector and only the value of yp is presented. We follow the algorithm used in ClusNet[lZ, 131 to 
determine the (L+l)-th component of the weight vectors for all the clusters. The first L c:omponents 
of W remain a t  zero. 

During the second stage, the n input vectors are presented one a t  a time. Let us assume that 
when input vector [zP, yp] is presented, the c-th cluster node has the lowest activation among other 
cluster nodes. We say that the c-th node is the winning node and the first L components of its 
weight vector is updated to: 

where n, is the number of vectors belonging to  cluster c, after the new vector ZP has been added. 
When all the n input vectors have been presented, the weight vectors W are all known. 
In the above network, the delayed vectors ZP are clustered according t o  their corresponding values 

of yp. Two delayed vectors, z' and z j ,  which are separated by a large Euclidean distance may be 



grouped together into a single cluster because their corresponding values of 9's are Uclose" to one 
another. The proposed feature selection algorithm will discriminate within each cluster against the 
components of any zi and ej  that have very different values and favor those components that have 
similar values. 

3 Preliminary Definitions 

3.1 The Decision Boundary Feature Matrix 
Consider the boundary between cluster c and cluster d .  It is defined by 

where 
h ( z )  = ( z  - - ( Z  - w ~ ) ~ .  

The normal vector to the decision boundary a t  z is given by 

Therefore, 

Following Lee and Landgrebe[9], 

Definition 3.1 The Decision Boundary Feature Matrix 2) is defined b y  

A measure of the ability of each feature to  distinguish between vectors belonging to  different 
clusters is given by the trace of V ,  t r ( V ) .  We call this quantity the Feature Discriminant. 

Definition 3.2 The Feature Discriminant F D  is defined as 

See [14] for a comprehensive review of the terminologys used. 

3.2 The Feature Extraction Transformation 
We now diagonalize the matrix 2) so that: 

where A is the diagonal matrix whose diagonal matrix elements are the eigenvalues 

and V is the matrix formed by the corresponding eigenvectors 



In matrix notations, the eigenvalue matrix A and eigenvector matrix D can be written as follows. 

We shall assume that the A's are in descending order so that 

A 1  > A 2  > ... > A r  2 0  

Ar+l,Ar+2l...,Am - 0  

We now define a r  x m matrix U 

and a (m - r )  x m matrix 
U' = [Vr+lp Vr+2 7 ,  . - r Vm]. @ I 1  

We shall call the U matrix the Feature Reduction Matn'z. This matrix transforms a m-dimensional 
Full Feature Vector z into a vector in an r-dimensional space 

The new vectors r are called the Reduced Vectors. 

3.3 The Euclidean Matrix 
The training set of full feature Vectors z are clustered with respect to their values of y. The quality 
of prediction depends on the total Euclidean distances of the vectors to their respective centroids. 
The smaller this quantity, the better the vectors are clustered about their centroids and the better 
prediction can be obtained. This quantity is computed from the Euclidean Matrix. 

Definition 3.3 The Euclidean Matrix E is defined as 

I t  is clear that the trace of this matrix gives the total Euclidean distances of each training vector 
from its respective centroids. 

Definition 3.4 The Total Euclidean Distance T E  is defined as 

4 Three Important Properties of the Feature Reduction 
Procedure 

The feature reduction procedure described above has the following three nice properties. 

1 .  I t  reduces the length of the state vectors from m to r .  

2. I t  preserves the Feature Discriminant FD. 

3. I t  reduces the Total Euclidean Distances T E .  



4.1 Reduction in the Dimensions of the Feature Vectors 
The ability of the feature extraction procedure t o  reduce the size of the state vector depends on the 
rank of the matrix D. Since D is the sum of the direct products of vectors, we shall discuss the 
property of such matrices in the next subsection. 

4.1.1 Rank of Sum of Direct Products 

Definition 4.1 (Sum of Direct Products) The Sum of Direct Products of a set of vectors { TJ, j = 
1, r ) is defined as 

r 

Lemma 4.1 The rank of the S u m  of Direct Prodacts of r vectors 5 r. 

Proof The rank of each of the direct product T J ( T ~ ) ~  is 0 or 1. The rank of the su:m of r such 
matrices 5 r. 
Lemma 4.2 If  the T vectors i n  Lemma 4.1 are constructed by taking linear combiirations of s 
independent vectors { Vi ,  i = 1, s ), then the rank of S < s. 

Proof Let L be the length of the T vectors, we can write: 

Since the row vectors are constructed from s independent vectors, it is not possible to  have more 
than s independent rows. Therefore 

rank(S) 5 s (26) 

From Lemma 4.1 and Lemma 4.2 it  is easy to  infer the following theorem. 

Theorem 4.1 The rank of matriz S is less than or equal t o  r or s which ever is the le.sser, i.e., 

Since 'D is the sum of the direct product of vectors and only N - 1 of these are linearly 
independent, we conclude that 

rank(V) 5 N - 1. (28) 
Therefore, the size of the Reduced Vectors 5 N - 1. In a typical prediction task, the value of m is 
around 100 and the value of N is around 10. 

4.2 The Preservation of the Feature Discriminant 
We recall that the Feature Reduction Mairiz U transforms a m-dimensional Full Feature Vector z 
into a Reduced Vector x in a r-dimensional space by 

In the original space, the Feature Discriminant is 

because . . , A, fi: 0. In the transformed space, the Feature Discriminant is 

Therefore the Feature Discriminant is preserved by this transformation. 



4.3 Reduction in the Total Euclidean Distances 
In the original space, we defined the Euclidean Matrix E as 

Under the transformation of the matrix [UIUI, we write 

It  is obvious that 
T E  = t r ( E )  2 t r ( u T E U )  

When the Reduced Feature Vector r is used, we define the corresponding Euclidean matrix E' as 

where we have assume that in the transformed space each state vector remains assigned to the same 
centroid it was assigned to in the original space so that 

and the centroid in the new space for cluster c can be written as 

Therefore 
E' = U ~ E U  

and the total Euclidean distance in the transformed space TE' is reduced as follows. 

TE'  = t r ( E 1 )  5 T E  (42 )  

5 The Feature Reduction Procedure 
The proposed feature reduction procedure consists of the following steps. 

1. The m dimensional Full Feature Vector are used to construct the Decision Boundary Feature 
Matn't V. 

2. V is then diagonalized to obtain the Feature Reduction Matri t  U .  

3. The Full Feature Vectors z are transformed to r dimensional Reduced Vectors x by 

4. The Reduced Vectors r are then used for prediction tasks. 



6 Predicting the Mackey-Glass Time Series 
The following discussion is based on the example of the prediction of a univariate chaotic time 
series. In this case, the full feature set consists of delayed samples of the time series. However, the 
methodology can be generalized to general prediction problem. 

For the sake of discussion, our discussion is based on the prediction of time series and the features 
in our full feature set are made up of delayed samples of the time series. The prediction accuracy 
will be reported in n r m s e  or normalized root mean square values defined as follows. If the true Y 
values of the prediction set is 

and let 

and the predicted Y is 

and let 

then the n r m s e  of the predicted Y with respect to the true Y is 

where o(L) denotes the standard deviation of the vector L. The mean operation in Equation 48 
makes the measure independent of the length of vector L. The normalization of the quantity in 
Equation 48 removes the dependence on the dynamic range of the data. From Equation 48, if the 
mean of L is used as the prediction for L,  i.e., L'  = mean(L), then, 

In ClusNet ,  state vectors are grouped into clusters such that patterns within the same cluster 
can be predicted similarly. An important subproblem of the prediction task is to classify these 
patterns to the correct prediction cluster. In this section, we apply the algorithms described above 
in the prediction of the benchmark Mackey-Glass chaotic time series[4]. We choose a prediction 
lead time of T = 85 for our demonstration. S u p N e t  results in N = 7 clusters. The number of 
nonzero eigenvalues for V is 6. As shown in Table 1, this procedure results in improved prediction 
performance on the Mackey-Glass benchmark. The prediction is done using ClusNet .  The entry 
refers to the conventional feature vector for this problem consisting of 4 features. 

In Table 2, we see a reduction in the TE in the transformed feature space compared to that 
computed in the original space. The reduction results in a tighter clustering of the vectors around 
their respective centers and thus reduces the probability of predicting a vector to  belong to  a different 
cluster and thus improve prediction accuracy. 

In a separate experiment, a 32 feature subset of the original feature set (of length 100) is chosen. 
Using this feature extraction procedure, results are tabulated in in Table 3. This experiment suggests 
that this feature extraction procedure is more effective if some preprocessing to remove the less useful 
features prior to applying this feature reduction algorithm. 

7 Summary 
In this paper, a decision boundary method is applied to the problem of selecting important features 
(embedding) for the prediction of chaotic time series. The reduced feature sets are linear combina- 
tions of the original features. We demonstrate the effectiveness of this method by applying it  to the 
Mackey-Glaas chaotic time series. 



Table 1: Experimental Results I with the Feature Extraction Algorithm. The Reduced Feature 
Vector of length 6 is obtained from the transformation of the Original Feature Vector of length 100. 
The Prediction Performance are reported in n m s e  on a 500 point prediction set. The Prediction 
Algorithm used is ClusNet with two different number of clusters as shown on line 3 and 4 of the 
Table. 

Table 2: The Reduction in the TE measure from the Original Feature Space to the Reduced Feature 
Space. This quantity is defined in Equation 5.37. A smaller TE measure means the clusters are 
more separated. 

Feature Description 
Standard 

Full Feature Vector f 
Reduced Feature Vector r 
Reduced Feature Vector r 

Table 3: Experimental Results I1 with the Feature Extraction Algorithm. The Full Feature Vector 
in this Table is a subset of the Full Feature Vector in Table 5.1. The Reduced Feature Vector of 
length 6 is obtained from the transformation of the Full Feature Vector of length 32. The Prediction 
Performance are reported in n m s e  on a 500 point prediction set. The Prediction Algorithm used is 

Length of Feature Vector 
4 

100 
6 
6 

Full Feature Vector f 32 0.1925 
Reduced Feature Vector r 6 I 1 0.1438 1 

- 

ClusNet. 
Feature Description I Length of Feature Vector I Num Clusters I Prediction 

Num Clusters 
65 
78 
61 
89 

Standard 

Prediction 
0.2000 
0.2340 
0.1876 
0.1720 

4 65 1 0.2000 
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