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In our current era, a new rapidly spreading pandemic disease called coronavirus disease (COVID-19), caused by a virus identified
as anovel coronavirus (SARS-CoV-2), is becoming a crucial threat for the whole world. Currently, the number of patients infected
by the virus is expanding exponentially, but there is no commercially available COVID-19 medication for this pandemic.
However, numerous antiviral drugs are utilized for the treatment of the COVID-19 disease. Identification of the appropriate
antivirus medicine to treat the infection of COVID-19 is still a complicated and uncertain decision. This study’s key objective is to
develop a novel approach called g-rung orthopair probabilistic hesitant fuzzy rough set (3-ROPHFRS), which incorporates the g-
rung orthopair fuzzy set, probabilistic hesitant fuzzy set, and rough set structures. New g-ROPHFR aggregation operators have
been established: the g-ROPHEFR Einstein weighted averaging (q-ROPHFREWA) operator and the g-ROPHFR Einstein weighted
geometric (-ROPHFREWG) operator. In this study, we explored some basic features of the developed operators. Afterward, to
demonstrate the viability and feasibility of the established decision-making approach in real-world applications, a case study
related to selecting drugs for COVID-19 pandemic is addressed. Furthermore, a comprehensive comparison with the g-rung
orthopair probabilistic hesitant fuzzy rough TOPSIS technique is also presented to illustrate the benefits of the new framework.
The obtained results confirm the reliability and effectiveness of the proposed approach for finding uncertainty in real-
world decision-making.

1. Introduction

Wuhan, China, was faced with a dangerous challenge in
December 2019, which distorted the health of humans and
created global instability. The pneumonia cases were caused
by a new virus known as coronavirus 2019 (COVID-19).
COVID-19 was unknown; therefore, the government of
China controlled Wuhan’s traffic to prevent the spread of the
infection [1]. Russia, the United States, Brazil, India, and
France are the most infected countries in terms of the
number of confirmed COVID-19 cases. The World Health

Organization (WHO) recognized COVID-19 as a pandemic
by March 2020. Several governments and organizations have
been closed down and have implemented strict social dis-
tancing processes to prevent virus proliferation. According
to a WHO report released on June 13, 2021, more than
176,396,104 cases of COVID-19 have been reported around
the world, resulting in more than 3,810,989 deaths, and a
total of 160,398,032 people have been recovered [2]. The
virus that causes COVID-19 is primarily spread via the
droplets created when someone infected with COVID-19
sneezes, coughs, or exhales. Coronavirus is more harmful to
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those who have a low immune system, are elderly, have
diabetes, or have medical problems, especially for those
involving the lungs problem [3-6]. Virus propagation can be
influenced by various factors, including population density,
medical care facilities, climate, and others [7]. Coronaviruses
are a vast family of viruses that can cause various diseases in
both animals and humans. They mainly cause respiratory
tract infections in humans, varying from an ordinary cold
towards more severe illness disorders such as Middle East
respiratory syndrome (MERS) and severe acute respiratory
syndrome (SARS) [8, 9]. Phylogenetic and sequencing an-
alyses have shown that COVID-19 is closely related to a
collection of human and bat SARS-like coronaviruses
[4, 10, 11]. COVID-19 is believed to have evolved from bats
to a greater level of life chains [12-14]. The statistic is shown
in Figure 1. Doctors, experts, or medical sections should
implement an ideal plan, tests, or techniques for the
COVID-19 treatment process to avoid further crisis ex-
pansion. The department in the process of establishing
strategy must make quick and effective decisions. While
making decisions in this situation, individuals are often
bound logically instead of entirely reasonable. As a result, it
is essential to identify appropriate multicriteria decision-
making (MCDM) models that recognize human activities to
provide individuals with practical ways of responding to
emergencies. Dealing with uncertainty and unpredictable
information in realistic circumstances has always been
challenging. Several tools have been developed to address the
complexities and conflicts encountered in real-life activities.
Zadeh [15] explored a solution to such problems by
establishing the foundations of fuzzy set (FS) theory, in
which each element is assigned a membership degree
ranging between 0 and 1. Atanassov [16] extended the idea of
FS into intuitionistic FS (IFS) by introducing nonmem-
bership (y, (x)) to the membership (B (x)) of the FS, with
the restriction that f_(x) + v (x)< L.

Yager [17] introduced the Pythagorean FS (PFS) theory,
which relaxes the previously mentioned IFS condition to
(ﬁF(x))2 + (q/F(x))ZS 1. PF expressions are undoubtedly
raising the interest of many researchers, especially in terms
of their applications to DM. For example, Huang et al. [18]
described a PF MULTIMOORA approach that utilizes a
novel distance measure and a score function. They used this
approach to evaluate disk productions and energy projects.
Zhang and Xu [19] established the TOPSIS approach in a
Pythagorean fuzzy environment and used it to assess the
efficiency of private airline services.

Hesitancy is a natural phenomenon in the universe.
Identifying the better alternatives having the same charac-
teristics in daily life is complicated. Due to the uncertainty
and hesitancy of the results, professional experts are expe-
riencing difficulty in DM. To tackle hesitancy, Torra [20]
developed the concept of hesitant FS (HFS). The HFS can be
used to solve a variety of DM problems. Many authors used
HES to solve issues by aggregating operators (AOPs) in
group DM (for detailed information, see [21-24]). Liao and
Xu [25] identified generalized forms of the HF hybrid
weighted averaging (HFHWA) operator, the HF hybrid
weighted geometric (HFHWG) operator, generalized form
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of the quasi-HFHWA operator, and the generalized form of
the quasi-HFHWG. Khan et al. [26] introduced the concept
of Pythagorean HFS (PyHFS). They established an evalua-
tion method and identified operators for data aggregation.
Xu and Zhou [27] identified a novel concept of probabilistic
HF sets (PHEFSs). Inspired by the power of PHFSs, re-
searchers extensively investigated the idea of multiattribute
decision-making (MADM) (see [28-30] for detailed infor-
mation). Yager [31] established a new idea called g-rung
orthopair FSs (q-ROFSs), in which the number of the gth
exponent of support for membership and the gth exponent
of support nonmembership is restricted to one, ie,
(B ()1 + (v, (x))1< 1, and demonstrated that the g-ROFS
is more general than the IFS and PFS. The g-ROFSs provide a
broader range of fuzzy information and are the versatile and
appropriate approach to deal with unpredictable situations.
Yager and Alajlan [32] explored the fundamental properties
of these g-ROFSs and discussed how they can be used in
information representation. Subsequently, the authors in
[33] put forward the notation of g-rung orthopair HF set (g-
ROHES) and explored the operational laws which exist for
any two ¢q-ROHFSs. Wang et al. [34] investigated the
Heronian mean operators in MADM in a ¢-ROHFS
framework. They also proposed the Hamacher norm-based
AOPs under dual hesitant g-ROFSs and discussed their
usefulness in DM problems. Wang et al. [35] established the
AOPs based on Muirhead mean under dual hesitant g-rung
orthopair fuzzy information. Hussain and Yang [36] mea-
sured the entropy for HF information using the Hausdorft
metric and the structure of HF TOPSIS. The TOPSIS is a
valuable information analysis tool developed by Hwang and
Yoon [37]; it is also known as the approximate ideal solution.
It investigates the appropriate approach in terms of relative
closeness based on their distances from the positive ideal
solution (PIS) and the negative ideal solution (NIS), en-
suring that the shortest distance from the PIS and the far-
thest distance from the NIS are satisfied. This analysis
method effectively eliminates decision information uncer-
tainty while maintaining the validity and precision of de-
cision-making by simply measuring the distance between
PIS and NIS and ranking them accordingly. TOPSIS method
is straightforward and simple to understand and analyze as
compared to the ELECTRE method, VIKOR method, and
other conventional methods, so it has been extensively
studied and implemented by researchers.

In recent years, several authors have presented TOPSIS
in various fuzzy information. For example, Boran et al. [38]
used TOPSIS to identify the best supplier by using IF in-
formation. Chen and Tsao [39] suggested the TOPSIS
technique based on interval-valued fuzzy information and
addressed the experimental results. The authors in [40]
established the extended TOPSIS method for g-ROHFSs and
addressed their significance in DM. Li [41] proposed a
TOPSIS-based nonlinear programming technique for
MADM with interval-valued IFs in order to deal with un-
certainty in real-world DM problems. The TOPSIS model for
DM problems in interval-valued IF information was in-
troduced by Park et al. [42]. The Dombi-based AOPs for PF
information is formulated in [43]. Barukab et al. [44]
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France: 3.25% (5,740,665 cases)

Brazil: 9.86% (17,413,996 cases)

India: 16.71% (29,510,410 cases) ———

United States: 19.43%
(34,321,158 cases)
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Russia: 2.95% (5,208,687 cases)
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United Kingdom: 2.58%
(4,565,813 cases)

Figure 1: Distribution of cases all over the world. Source: Worldometer [2].

proposed the extended fuzzy TOPSIS method for spherical
fuzzy information, which is based on the entropy measure.
The aforesaid approach has been used by many other re-
searchers; see [45-47] for more information. However, there
are many research findings in applying the fuzzy TOPSIS
method to solve MADM problems; the decision information
used by these approaches is too old and restricted to manage
increasingly challenging decision environments.

Pawlak [48] was the founder of exploring the domi-
nating concept of rough set (RS) theory. The classical set
theory which deals with inconsistent and imprecise in-
formation is extended by rough set theory. Recently, re-
search on the rough set has progressed significantly, both in
terms of theoretical implementations and theory itself. In
recent decades, research has demonstrated the TOPSIS
technique in a number of RS information. Su et al. [49]
studied RS theory based on fuzzy TOPSIS on the serious
game design assessment procedure. Khan et al. [50]
implemented a rough set strategy and the TOPSIS method
for selection of sites for food distribution. Lu and Zhao [51]
investigated the improved TOPSIS method based on RS
theory for selection of suppliers. A b—rough set model and
its applications to DM using the TOPSIS approach have
been discussed in [52]. The concept of RS has been ex-
panded by several researchers around the world in different
directions. Using the fuzzy relation rather than the crisp
binary relation, Dubois and Prade [53] initiated the notion
of fuzzy rough sets (FRSs). The hybrid structure of IFSs and
RS, intuitionistic RS (IFR set), was introduced by Cornelis
et al. [54]. Zhou and Wu [55] established a novel DM
technique under the IFR environment to address their
constructive and axiomatic analysis in detail by utilizing
IFR approximations. Zhan et al. [56] presented the DM
methodology under the IFR environment and explored
their applications in real-world problems. Different ex-
tensions of the IFRS are being investigated [57, 58] to tackle
the uncertainty in MCGDM problems. Chinram et al. [59]
established the algebraic norm-based AOPs based on the
EDAS technique under IFR information and discussed
their applications in MAGDM.

In some real-life circumstances, there exist numerous
cases when decision makers (DMs) have their strong points

of view about ranking or rating of plans, projects, or po-
litical statements of a government. For example, let the
administration of a university start megaprojects of the
football ground to render his accomplishment and per-
formance. The members of the university administration
may rate their project highly by assigning positive mem-
bership= 0.9, whereas the others may rate the same project
as a wastage of money and try to defame it by providing
strongly opposite points of view. So, they assign negative
membership= 0.7. In this situation, their sum 0.9 + 0.7 >1
and (0.9)* + (0.7)>>1 but (0.9)7 + (0.7)2<1 for g>3 so
that it is neither IFN nor PFN but it is g-ROFN. Thus,
Yager’s g-ROFNs are efficient to deal with vagueness in the
data. g-rung orthopair probabilistic hesitant fuzzy rough
set (@-ROHEFRS), a hybrid intelligent structure of rough
sets and g-ROPHFS, is an advanced classification strategy
that has attracted researchers to address ambiguous and
incomplete data. From the analysis, it is concluded that, in
decision-making, AOP plays a significant role in aggre-
gating the collective data from different sources to a single
value. In accordance with the best available knowledge to
date, the development of the AOP with the hybridization of
the g-ROPHEFS with a rough set is not observed in the g-
ROF setting. As a result, the current g-ROPHF rough
structure is inspired, and we define a list of Einstein ag-
gregation operators depending on rough data, such as g-
rung orthopair probabilistic hesitant fuzzy Einstein
weighted averaging, Einstein ordered weighted averaging,
Einstein hybrid weighted averaging, Einstein weighted
geometric, Einstein ordered weighted geometric, and
Einstein hybrid weighted geometric aggregation operators,
under the Einstein t-norm and s-norm.

The description of the main objectives of the present
work is as follows:

(1) To introduce a novel idea of g-rung orthopair
probabilistic hesitant fuzzy rough sets (g-
ROPHEFRSs) and investigate their basic operational
laws.

(2) Establish a list of AOPs based on Einstein {-norm
and t-conorm and comprehensively explore the
relevant properties.



(3) To develop a DM strategy for aggregating unpre-
dictability in real-world DM problems employing
suggested aggregation operators.

(4) In addition, a case study of drug selection for mild
COVID-19 symptoms is described to demonstrate
the applicability and utility of the established
operators.

(5) Finally, a comparison with the g-ROPHFR-TOPSIS
method is made to interpret the outcomes. The
ranking of the obtained results is presented
graphically.

2. Basic Terminologies

This section covers a variety of significant and fundamental
concepts, i.e., fuzzy set (FS), intuitionistic FS (IFS), g-rung
orthopair FS (g-ROFS), hesitant FS (HFS), g-rung orthopair
HFS (g-ROHES), g-rung orthopair probabilistic HEFS
(g-ROPHES), rough sets (RSs), and g-rung orthopair FRS
(g-ROFRS).

Definition 1. (see [15]). For a universal set , an FS Q is
presented as

Q ={¢x, B (X)) |x € F}, (1)

for each x € F, and the function f3, (x) belongs to [0, 1] that
represent the degree of membership.

Definition 2. (see [16]). For a universal set ), an IFS r over
Q is described as

F={¢x B, (), y, () ]x € Q}. 2

For each x €, the functions f.:Q —0,1] and
Vet QO —> 0,1] represent the membership and nonmem-
bership, respectively, which must satisfy the property
OsﬁF(x)+1//F(x)S1.

Definition 3. (see [60]). For a universal set (3, an HFS A in O
is represented mathematically as

A={{x, By, (x)]x € Ql, (3)

where f8, (x)is a set of some values in [0, 1] representing the
degree of membership for the element x € Q) of the set A.

Definition 4. For a universal set (), a probabilistic HF set
(PHEFS) P in Q is described mathematically as

P={¢xfy, (000, Dlx € 0f, (4)
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where ﬁhp(x) is a subset of [0,1] and ﬁhp(x)/éx shows a
membership grade of the element x € Q to the set P. And 8,
shows the possibilities with the property that &;_;0, = 1.

Definition 5. (see [31]). For a universal set Q, a g-ROFS r
over Q) is defined as

F={¢x B (x), v () x € O}, (5)

for each xep the functions B.:Q-—0,1] and
¥t Q — 0,1] denote the membership and nonmember-
ship, respectively, which must satisfy
(v )T+ (B (x)1<1, (g>2 € Z) (Figure 2).

Definition 6. (see [33]). For a universal set (), the mathe-
matical representation of g-ROHEFS 2 is as follows:

2 ={x, By, (%), v, (x)]x € Q}, (6)

where ﬂhj (x) and y;,_(x) are sets of some values in [0, 1]. It
is required to satisfy the following properties: Vx € Q,
Vo4 (x) € ﬁhj (%), V71 (x) € y,_(x) with (max (B, (%)) +
(min (y,_ (x)i<1 and (min(B;,_(x)))? + (max
7 (x)))2<1. For simplicity, we will use a pair 1=
(Bn_> ¥y.) to mean g-ROHF number (q-ROHEN).

Definition 7. (see [33]). Let 2, = (B, .y, ) and
3, = (Bu_> ¥y ) be two q-ROHEFNs. Then, the basic set
theoretic operations are as follows:

(S, U8, =7 U max(®,,®,), U min(v,v,) ¢,
‘Dleﬁhsl V1€¥hg,
L Qzeﬂhsz V2€¥hg,

Y

2)3,ng,=4 U
‘Dleﬁhsl
ozeﬁhsz

(3)S = {‘/’hgl’ﬁhgl}'

min(®;, ®,), ) ELvJ/
1€Vg,

Vzalfhs2

max (v;,v,)

(7)

Definition 8. Let = (B,_, v, )and S, = (B,_,vy,_ ) be
two g-ROHFNs where g > 2 1andJ)l/ >0 are any real number.
Then, the operational laws based on Einstein t-norm and -
conorm can be defined as
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FIGURE 2: Geometrical representation of IFS, PyFs, and q-ROFSs (g =1-5).
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Definition 9. For a universal set (2, a g-ROPHEFS S is defined
as

(9)

G- {<x,ﬁh%(x),%3(x)>|x ] Q}

where B,_(x)/9, and y;,_(x)/0, are sets of some values in
[0, 1] which denote the membership and nonmembership,
respectively. 0, and 0, represent the possibilities of mem-
bership and nonmembership with the following property:
0<9;, and 9;, <1 with 6957:16,1[31 and eaf:lahtsl (p

represents that the total elements exist in the g-ROPHES). It
is required to satisfy the following properties: Vx € Q,
Vg (x) € ﬁhs (x), and Vvg(x) € Vg (x)  with
(max (B, ()7 (min (y,, () <1 and
(min (), (x)+ (max(y,_(x)))?7<1. For simplicity, we
will use a pair § = (ﬁhﬁlé; v, /0,) to mean a g-ROPHF
number (q-ROPHEN). )

Definition 10. Let By = By 105 ¥y 10x,) and
3y = (Byy 10x) ¥, 10,,) be two q-ROPHFNs. Then, the

basic set theoretic operations are as follows:
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o, ® (Y
(1) SIUSZ = 4 U max(l,z), U mm(l,z) =
Qleﬁhsl,aleéﬁX] 61 62 vlewhsl,aleaxl al 82

| ©2 Gﬁhsz.az € oy, VzGV/hSZ’azeaxz

(10)
0; @© v,V
(2)3,US,; = 1 U min(l,z), U max( ! 2) .
®1€ﬁh51’51€5x1 0, 0, vlewhsl,alea a 0
| ©26Bug, 0 <o, €Y 0:€0s,
Vg, Brg
G)S =155
0, 9,
Deﬁnition 11. Let  Then, the operational laws based on Einstein t-norm and t-

By = B, /61,1//,% /0)and 3, = (B, /62, Vg /a )betwog-  conorm can be defined as
ROPHFNs and q>2€€Z+ and y>0 be any’real number.

a| ~4 ;.4 1 ~4 q 9 a
e \/a)1+®2/\/1+®1.£®2 vl.evz/\/1+(l—vl).£(1—v2)
(1) \51U\52 = 9 U > U N
@By ,01€0y, 0,0, V1€9g 01€05, 0,0,
| @ Eﬁh52,az ey, vzewh%,azeaxz
@1,£®2/</1+(1—®‘{)-s(1—®§) \/v1+v2/\/1+vl Y
(2)3,®,S,; =1 U > U )
wleﬂhsl’aleaxl 6162 VleWhSl)aleaxl a182
@, Eﬁ;y52,az cay, L2 5%52’52 €o,,

Ja+al) -1 -al)i{(1+al) +(1- ) | {201 V/\/(z WY 4 (1)

U b
@, eﬂh81’61 €0y 61 "1 GV’hlea1 €0y,

(3) Y'ssl

e He-a)+@)] o [Jaed -0 0

(4) 3 = u ,
@1 6fyg 01 €0, 9, V€Y 01 €05, 0,

(11)

Definition 12. Let Q be the universal set and XCQ x Q be a Definition 13. (see [48]). Let Q) be a universal set and N be

(crisp) relation. Then, any relation on Q. Define set-valued mapping

N* QO — M(Q) by N* (g)— {ae Ql(g a) € NJ for

g € Q where N* (g) is called a successor neighborhood

(3) N is symmetric if Vg a € Q and (9 a) € X, then  of the element g with respect to relation N. The pair (Q, NX)

(a, g ) €N is called the (crisp) approximation space. Now, for any set

(4) N is transitive if Vg a,beQ, ( g a) € Q, and bcQ, the lower and upper approximation of b with respect
(a,b) € N implies (g b) e R to the approximation space (Q, N) is defined as

(1) R is reflexive if (‘/q\‘ 5/,\]‘) € N, for each g €Q



Complexity

R(b) ={§' c Q|N*(§')gb},
N(b) = {g € QIN" ( )an&qb}
The pair (R (b), R (b)) is called the rough set, and both

R(b), R(b): M(Q) — M(Q) are upper and lower ap-
proximation operators.

(12)

Definition 14. (see [59]). Let Q be the universal set and
N e (Q2 x Q) be an intuitionistic fuzzy relation. Then,

1) N is reﬂexwe if
vN(g g)—OVg €Q,
2) X is symmetnc if ( g a) € Q x Q,
(DN(g a) = @N(ag)anva(g a)—vN(ag)

(3) X is transitive if ‘v’(g ,b) e QA xQ,

(DN(Q,?]') =1 and

Ox (!A% b) = QXQ[®N<9’ ‘1)/\(1& (a, b)],

QQQ[VN@‘,(Z)MN @b)]. o

<
Z
/-~
>
S
N———
1l

Definition 15. Let Q) be the universal set. Then, any X € g —
RFS(Q x Q) is called a g-rung relation. The pair (€, X) is
said to be g-rung approximation space. Now, for any
bcq — RFS(Q), the upper and lower approximations of b
with respect to the g-RF approximation space (€2, N) are two

R(b) = (R(b),R(b)) = {9 <®§(b)<9>”’§(b)<g>> (‘Dﬁ(b)@-)”’ﬁ(b)

is known as the g-rung rough set. For simplicity,

K00 =18 0009 ) (2509 ) 505 )15 <0}

(18)

is represented as N (b) = ((@, ), (®,7)) and is known as g-
REFRV.

3. Construction of g-Rung Orthopair Hesitant
Fuzzy Rough Sets

In this section, we propose the notion of g-ROHFRS which is
the hybrid structure of the rough set and g-ROFS. We also
introduce the new accuracy and score functions to rank the
q-ROHERS and also put forward its basic operational laws.

Definition 16. Let Q) be the universal set. Then, any subset
N € g — ROHFS (Q x Q) is said to be a g-RHF relation. The
pair (Q, R) is called the g-ROHF approximation space. If for
any bCq — ROHFS(Q)), then the upper and lower approxi-
mations of b with respect to the g-ROHF approximation
space (Q, R) are two g-ROHFSs, which are denoted by X (b)
and N (b) and defined as

g-RFSs, which are denoted by N (b) and X (b) and are de-
fined as

R(b) :{g.’mﬁ(b)@) VR b)( >|9 € Q}

(14)
80 =[50 (§) ()3 <),
where
oxo5) - ylov(3-0)o (4]
o) = i (5)
u(8)- plon(epn(d)
()= o (5)
such that
o<((osuB))) o)) "1
o< (0 (§)) +(m(6))) <1
As (R (b), R (b)) are q — RFSs, N(b),

N(b): g - RFS(Q) — q— RFS(Q) are upper and lower
approximation operators. The pair

Ghol
X (b) :{ﬁy',ﬁhmy)@),th@‘)@' € Q}

sor-fi e (), (0 0.
where
B (9) = o (858, 0
Ui (6) = Y [ (5 vwn, 0] -
Bra(5) = 3, B (-)vi, 0.
o 5) 5]
such that
(ol () ol G
o 5)) oo, 5)) =
As (R(b), X (b)) are q-ROHFSs,

R (b), X(h): q — ROHFS (©2) — g — RES(Q) are upper and
lower approximation operators. The pair



R (b) = (X(b), R (b)) ={?1E(ﬁh§< ( ) Vheo 9

will be called g-ROHFRS. For simplicity,

RO) =5 (B (8 ) ¥ (8)): (Brs, ()

is represented as R (b) = ((§, 7), (B, ¥)) and is known as g-
ROHFRV. h

(6))s <]

(23)

Y

R(b)

Definition 17. Let R(by) = (X(b)), R (b)) and

R(b,) = (X(b,), N (b,)) be two g-ROHFRSs. Then,
1) R(b)UR(b,) = {(R(b))U R(by)),
(R (b)) UR(by))}
(2) R(b) NR(b,) = {(R (b)) N R(b,)),
(N (b)) NR(by))}

(3) R(b@R (by) = {(R(b))o R (h,)), (R(b))aR (h,))}

(4) R(b)@R(h,) = {(R(b)® R(by)),
(R (b)) @R (b,))}

1
2+—

Complexity

(22)

P

N(b)

(6)) (B, (6 ) 1s, (9) )i <}

(5) R(b))ER (b,) =
(R (b;)ER (b))}

(6) YR (b)) = (yNR(b,),yR (b)) for p>1

(7) (R (b)) = (((R(b)", (R(b))) for y=1

(8) R(by) = (X (b)), R(b;)) where X (b)° and
N(b;)° show the complement of g-rung fuzzy rough
approximation operators X (b;) and X (b,), which is

N (b)) = (V/hw)’/jhﬁm) — —
(9) R(by) = R(b,)iff R (b;) = R(b,) and R (b,) = R (b,)

{(R(b,)S R (b,)) and

For comparing/ranking two or more q-ROHFRVSs, the
score function will be utilized, whereas the accuracy function
will be used when the score values are equal. The accuracy
function will be used when the score values are equal.

Definition 18. The score function for g-ROHFRV X(b) =
(R (b), R (b)) = ((§ ), (B, V) is given as

1

1 1 — 1 —
Go(R(B) =247~ > {% } S DR Y vl (%)‘M— 2 () (24)
S @, p S T S v, ey, - S e
ot hﬁ(b) hy ﬂhﬁ(b) The R (b) e W,N(b)
The accuracy function for q-ROHFRV
R(b) = (R(b), R(b)) = (& 1), (B,tW)) is given as

1 1 — 1 —

RRO) =27~ 2 @)+ 2 @t X (% ) v 2 (m) ) (25)
S @ehy_ S5, O, B N AN 3 iy Vi

N(b)

where Mg and Ng are the number of elements in [Sh and
V,» respectlvely

Definition  19. Suppose N (b;) = (X(b,),N(b;)) and

R(by) = (X(b,), R(b,)) are two g-ROHFRVs. Then,
(1) If Gg (R (b)) > Gg (R (b)), then R (b;) >R (b,)
(2) If Gg (R (h1))<Gg (N (b)), then R (b )< (b,)
(3) If Gg (R (b)) = Gg (R (b)), then
(a) If R(N (b)) >R (N (b,)), then X(b;)>N(b,)

(b) If R(R(b))<R (R (b,)), then R (b, )<N(b,)
() f R(N(by)) = R(X(b,)), then N(b;) = R(b,)

4. Construction of g-Rung Orthopair
Probabilistic Hesitant Fuzzy Rough Sets

This section deals with the notion of g-ROPHFRS which is
the hybrid structure of the rough set and g-ROPHFS. We

also establish the new score and accuracy functions to rank
the g-ROPHFRS and also discuss the operational laws.

Definition 20. Let Q be the universal set. Then, any subset
N € g - ROPHES (Q x Q) is said to be a g-rung probabilistic
HF relation. The pair (Q,N) is called the g-ROPHF ap-
proximation space. If for any bcqg — ROPHES (Q), the upper
and lower approximations of b with respect to the g-ROPHF
approximation space (€, X) are two g-ROPHFSs, which are
denoted by X (b) and N(b) and defined as

L
R(b) ‘{ ﬁhw( ) ‘”hmv)(g):?j e Q},

R(b)

6h
6}1— ah_

R(b) N(b)



Complexity

where
A A
ﬁhm)(g) kz/o _ﬁhN<g ’k)vﬁh”(k)]
% v _%( 5 c)véhb (k)]

E k)“!’hb (k)]
), ]
)

‘ (27)
NBy, (k)

16)3,, ()] ’

(8K v, o)
wold) 5 (5.c)vai, 0]

,C

9
such that
0< <max(ﬁh§(b)(?j>>> +(mln<wh b)(@ >>)q <1, 08
o (4] (8
N ROLRO) are q - ROPHESs,

N(b), X(b): g — ROPHFS(Q) — q - RFS(Q) are upper
and lower approximation operators. The pair

N(b)(N(b),N(b)){ag( 5
R(b)

will be called g-rung orthopair HFRS. For simplicity,

ﬁth)(g) Whg(b)<~/g\'> ﬁhﬁ(b)( ) th)(‘g) |§ cb (29)
’ NG 6’“?@ ah§<b>

PHMOISTS

NO) ahzw

is represented as N(b)= (({/0d,7/0), (B/&WE)) and
known as g-ROPHFRV. a

Definition ~ 21. Let  N(b;) = (X(b;),R(b;))  and
N(by) = (N(b,), X(b,)) be two g-ROPHFRSs. Then,

(1) R (b)) UR(by) = {(R(5,)U R (b)),
(R (b)) UN(b,))}
(2) X(b))NR(b,) = {(R (b)) N R(by)),
(R (b)) NN (b,))}
(3) R(baR (h,) = {(R (b X (b,)), (R(h))eR (b,))}
(4) R(b) @R (b;) = {(R(b)® R (b)),
(R (b)) ®N(b,))}
(5) R(b,)SR (b,) = {(R (b)) R (b,)) and
(R(b)SX (b))}

A A
), (/5’%;:5:’ )"’E:(f’ >>|§' c b]» (30)

(6) YR (b)) = (yR (b)), yR(by)) for y>1

(7) (R = ((R(b)), (R(by))") for y=1

(8) X(b))° = (X (b)), R(b;)") where X (b;) and
N(b,)° show the complement of g-RFR approxi-
mation operators N(b,) and N(b,), which is
R (b)) = (%(b)/a, ﬁhﬁ(b)/(ﬁ)

(9) R(b)) = R(b,) #f R (b,) = R(b) and R(b,) = R(b,)

Definition 22. The score function for g-ROPHFRV

X(b) = (R (0), R (»)) =<(§ 5 (‘i%)) (31)

is given as
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1
2+—

2 @y By 0 Dny )

Go(R() =

1 1
e X () X

VLEWh§<b>‘a‘€ah§<b)

The accuracy  function for  g-ROPHFRV
N(b) = (R (b), R(b)) = ((§/§,ﬂ/a), (B/8,y/0)) is given as

1

«Q

O eﬂhﬁ(b)’a—‘ Eahﬁ(b)

R =

1 1
DY (L RSl

3
Ve Vi 201 SOy

where Mg and N« represent the number of elements in f3,
. 9
and v, , respectively.
9

Definition ~ 23. Suppose X (b;) = (X (by),N(by)) and
N(by) = (N(by), X(b,)) are two g-ROPHFRVs. Then,
(1) If Gg (X (b)) > Gg (R(b,)), then N(b;) >R (b,)
(2) If Gg (R (h}))<Gg (X (b,)), then R (b;)<R(b,)
(3) If Gg (R(b))) = G (R (b,)), then
(a) If R(N (b)) >R (X(by)), then N(b;)>N(b,)

(b) If R (N (b;))<R (X (b,)), then X (by)<R(b,)
(0) I R(X (b)) = R(X(by), then R(b) = R(b,)

5. g-Rung Orthopair Probabilistic Hesitant
Fuzzy Rough Aggregation Operators

In this section, we propose a new idea of g-ROPHF rough
AOPs by embedding the notions of the RS and g-ROPHF
AQPs to get aggregation concepts of ¢-ROPHFREWA and

e Y epaleg X

i Y (a<a)ey X

Complexity

{@, %3}~
5 -
‘Dhteﬁhmj)’éht@hg(b)
(32)
(7%, % 3,)
5
Vhﬁ‘l’hg(b)>ah,€ah§(b)
(@), x3,)+
5 -
@y, Eﬁhg(b)’ah, Eahﬁ(»)
> (33)
(v, % 3,)
5 -
Vhtev’hmb)’ahteahmb)
q-ROPHFREWGA. Furthermore, some fundamental

properties of the notion are discussed.

5.1. q-Rung Orthopair Probabilistic Hesitant Fuzzy Rough
Einstein Weighted Averaging Operator

Definition 24. Let X(b,) = (X(b,),X(b,)) (t = 1,2,3,4,
..»n) be the collection of g-ROPHFRVs. Then, the g-
ROPHFREWA operator is determined by

q - ROPHFRWA (X (b,), R (b,),..., X (b,))

n N (34)
=(te:)lytﬁ(bt),tialytli(b,)),
where y = (11,75 - > 7,)" are the weight vector such that
®._,7,=1and 0<y,<1 and J, and 9, are probabilistic
terms such that ®_,0, =1 and &_,0;, = 1.

Theorem 1. Let R(b,) = (X(b,),R(b,)) (t =1,2,3,4,
..,n) be the collection of q-ROPHFRVs. Then, the
q-ROPHFREWA operator is defined by



Complexity

g - ROPHFREWA (X (b, ), R (b,). .., R (b))

= <tej1)’t R(b,), g)’zN (bt))’

vt vt vt vt
</®7:1<1+®Zt> - ®?:1<1_‘DZ,) /</®7:1(1+®Zt> + ®:’:1<1— COZ)

U(Dht € ﬁhﬁ(b)’ 6ht € 6}15(&7) ®:L:16ht

q VE VE
2®t1v / t12—vh) +®t1<vh>

€ €0
vh L Iy ®" aht

>

>

vt Yt vt Yyt
({or(1+01) - stu(1-at) Y {or(1+01)"+ or(1- 03)")

Uw, € th’éht € 6”3(») 7

Ve G G
{/2‘8’?:1("1) /({j@?_1<2— VZ,) +®:‘:1(VZ[) )

n
® 10,

>

Uv;,t € thyaht € ahw

>

11

(35)

where = (Y1, V2. -->Y,) are the weight vector such that  Proof. We will prove the aforesaid theorem by utilizing

@,y =1 and 0<y, <1 and 9, and 0, are probabilistic  mathematical induction. Suppose n = 2. Then,

terms such that ﬂaf‘:léht =1 and ea;;laht =1

(R(by) @ N (b))
= (R(b) @ R(b,), R(b;) @R (by)),
q - ROPHFREWG (R (b, ), X (b))

2 2
= (E’lyt R(b,), t§1YtN (bt)>

Y Ve Y
q 2 q 2 q q 2 q 2 q
Uy \/®t:1<1+@ht> _®t:1<1_@ht>/\/®t:1(l+@ht> +®t:1(1_@h,)
Yt Ve Ve
q 2 q | o 2 q 2 q
\/2®t:1<zht> /\/®t:1<2_yht> + ®t:1<2_zht>
v 0, €0;_ >
- Ye Ye Ye
a| o 2 =4 2 ~9 a o2 ~4 2 9
\/®t:1<1+a)hl) —®t:1<1—a)hl)/\/®t:1<1+®h[> +®t:1<1_®h,>
i P O g o) ® 0y,
4
Vi Yt
a 71 71
\/2®t1 vht /\/ ®1 2—vh) +®; 1<2 vh[)
V€Y, 0 2
Vi, € hi(b)’ahtsahﬁ(b) ®tzlahl

and the result is true for n = 2. Now, suppose the result is
true for n = k.

(36)
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q — ROPHFREWA (R (b,), R (b,) ..., R(b;))

k kK —
= (tiBlYt B(bt)’ ffl)’tN (bt))

q \t q \ q \ q \
{/@fﬂ(l +®hf> - ®f:1<1 —a)ht) /(/@ﬁ;(l +‘Dht> + ®f:1<1 - %)
Uay, € Bhyer O € Ony, ok, 9, ’
— t=1
Vt ¥
k
ok () ok (z- ) + ski(4)
Uy, € lljhg(v)’ai € ahﬁ(“ 5 ,
t:l \
- —\ Yt —\Vt —\ Yt —\ Pt
\q/®'t‘:1<1 +®Zt> - ®f:1(1 —@Zt> /{j@'t;(l +®Zt) + ®f:1<1 - ®2t>
Us,, € Vi, 6h66hm) oF 5 )
t=19h,
< -
—\ Yt —\ —\
o {/2@&(1}%) /</®f=1<2— vzt> + ®f=1<vzt>
Vs, € w’“ﬁ(»)’ahre ahﬁ(W o~ 0,
t=10n,
(37)
Next, we shall show that the result is true for n = k + 1.
g — ROPHFREWA (R (b,), X (b,) ... R(by), R(bsy1))
k Wity k N ) W1
(63 R0)0 (R (o)™, 1R (0o (R (b))
I Vi e\ )
\/ f+f<1+a)h > - ®f+11<1—63h ) /\/ ’;+11<1+63h ) + ®f+11(1— @y, )
U%Eﬁ@w’%ea’@(b) ®f+11 6h ’
Vi Ve Ve
{2eti(on ) eki(z- ) + oti(oh)
U”ht Wiy (5O O eahN(h) k+1 ah > (38)

—\ 1t
\/ k+1<1+®q> - o 1—@‘1 /\/ kel 1+(Dq +®f+11<1—®2t>

Dy €Wy Op €0y k+1 >
ke Ww) R ®, 1

Yt Y Y
2okt () aki(2- 1) + 02107

U_ p—
Vi, €W 50, €0)_ k+13—
Vg 4y SO ®t+1 ah




Complexity

Hence, the result is true for n = k + 1. Therefore, the
result is true for all n> 1. O

Theorem 2. Let X (b,) = (X(b,),R(b))(t=1,2,3,...,n)
be the collection of ¢-ROPHFRVS, y = (Y1, Vs - - -»V,)" be the
weight vector such that y, € 0,1] and ®_,y, = 1, and 9, and
0y, be probabilistic terms such that &_,0, = 1 and &_,0), =
1. Then, the g-ROPHFRWA operator satisfies the following
properties:

(1) Idempotency: if X(b,) =f(b) for t=1,2,3,...,n

where
bh(x) dh(x) Eh d,
FO) =@OFO) =( === ) | =2 LX) ),
Ohx) %) ) \ O O
(39)
then

q - ROPHFRWG (X (b, ), X (b,), ..., R (b,)) = F (b).
(40)

q - ROPHFREWA (R (b,), X (b,),...,RX(b,))

= <t§l)’t R(b,), t§IYt§(bt)>

13

(2) Boundedness: let
max, X (b,)) and

min, N (b,)). Then,
(R (b)) min <g — ROPHFRWG (R (b;), X (b,), ..., X(b,))
< (R(0))max-

(N(b))min = (mintﬁ(bt):
(R (b)) oy = (max, R(b,),

(41)

(3) Monotonicity: suppose F(b) = (@(b),E(by))
(t = 1,2,...,n) is another collection of -ROPHFRV's
such that @ (b,) < X(b,) and F(b,) <R (b,). Then,

g — ROPHFRWG (F (b, ), F(by),---»F(b,))

<q—-ROPHFRWG (X (b,), X(b,),...,R(b,)). (42

Proof.

(1) Idempotency: as N(b,) =) (for all
t=1,23,...,n) where F(b)=(F(b),F(h)) =
(b /On) > A 1 Oni) > BBy A/
On(x)))s it follows that

d _n q \"t n q \t a _n q \"t " q \"t
®t:1(l+®ht> _®t:1(1_®h,>/ ®t:1<1+®h‘> +®t:1<1_®ht>

U
Qieﬁhg(b)’ai Gahgw)

>

n
i O

Y Vi Y
q n q 9| 1 q n q
\/2®t=1(’/h,> /\/®t:1<2— vht> + ®t:1<vht>

Vi Vg (5% €Oy o)

>

n
®11 O,

—\ "Vt —\ "Vt —\ "t —\ "t
{/@f‘:l<1+a)2[> - ®?:1<1_®Z,> /(/@t":l<1+®zl) + ®t":1(1— @Z[)

C')htGWh§(b)>6hteéh§(b)

>

——
®,0,

—\ "t —\ "t —\ "t
q n 9 a 1 1 n 9
\/2®t:1(vht> /\/®t:1<2— vht> + ®t:1<vht>

v, € 01, €0;,_
e V’hg(b) e €O )

for ol 6 (EOLFEG) = (B [
d(i/ah(X) ), (bh(x)/ah(x),dh(x)/ah(x))). It follows that

-
®,10)

- t

(43)



14 Complexity

L\ =(F0).F () = F ).
(44)

Hence, q-ROPHFREWG (X (b)), X(by),...,
R(b,)) =F(b).
(2) Boundedness:



Complexity

_<n¥
(R (b)) =

(s

max
(R ()" =

(o

and R (b,) = [(§/3,,7/0,), (B,/d;,,¥,/0;,)] to prove

that
(X (b)) <q - ROPHFREWG (X (b,), R (b,), ..., X (b,,))
< (R(b)".
(46

)

Let f(y) = 31— y3/1+ 3, y €0,1.] Then, f/(y) =
~2y/(1+*)*3(1 = y3/1 + y*) 2 <0. Thus, f(y) is

a  decreasing function

[onf={on}<{o}

[0,1].
all

over

for

g(G)hmin ) Sg(%) Sg(a)hm)(t =1,2,3,...,n), ie,

Since

i)

15
Vp, ]
mtax aht
h, A
(45)
. ’V t |
mtm aht
.
ming —
£ on i
3 3
J1-(®n,) 31_(@h)
And 3 s — 3>
1 +<Cohmi > 1 +<‘Dh,>
(47)
3
J1-(a,,)
S 32 t - 1> 2) 3) )n>
\i+(a,)

and let p = (Y75 ...,7,) be the weight vector
such that y, € 0,1] and &y, =1 and §, be the
probabilistic term such that &_,3, = 1; we have

® 41 6ht ®:L:1 6h
R 3 3 Ve
®¢_1((1_(%) )/(H(@hm) ))
< 7 s
®,, Oy,
N 3 3\ \ O e 3 3\ \ Vt
(o) Y1) ) o (1 (o) P2 +(wn)'))
< n S n
®t:16l ®;-1 6h

(48)
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Complexity

3
i/®?—1((1‘<®hf) )/(1+(a)h
ot
®, ai ®, 0y,
Binin
Rk (49)
s 3 3 Yt
® (|1 —<cohr> /|1 +<cohr)
o ‘max < -
i ® 3y,
(Vs
o min
Oy
In a similar way, we can show that for all ¢

a {en((-@))@))

‘max < m
® 11 O

(=

O (50)

max

@y

<

o

h

‘min

Again, let g(x)= ~/(2-x3)/x3, %€ (0,1]; then,
gr(») = (—2/%4)\3/((2—x3)/x3)_2<0. So, g(x) is a

= 125 o |

g(vhm)gg(vﬂ)gg(vhmm)(t =1,2,3,...,n), ie,

3 3 3
Poln) () ()
3 < 3 S 32
(vhmax ) (vht ) (vhmin )

and let y = (¥, ...,7,)" be the weight vector
such that y, €0,1] and @]_,y, =1 and 0), be the
probabilistic term such that @]_, 9, = 1;"we have

(51)

decreasing function on (0,1]. Since
R 3 3 Y R 3 3 Y
ot (b L)) (b))
< <
81 O, 81 9,
N 3 3\ 1t
®p 2 (th ) / (vhmx )
) L
3 3\ BV 3 3\
i](Z —('thax) /('thax> ) ij@:‘_1<2 <vhz )/('Vh’ > )
< <
®i, O, ® Oy,
- _ (52)
, 3 3\ B Ve
B 2‘(%) / ( h)
) 81 O,
N 3/ 3\
ot () )
hmin = ht i (Dh
<:\’ S max 3
81O, 81 O, Bt O,
N 3 3\
U el _<vi> /<yh‘ ) Vhiae
< <
ah B ®:1=1 aL - ahmin
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Similarly, we can show that

_ ®0,

hmm =1 h[ (53)

< Vs

ahmin
Thus, from equations (48), (49), (52), and (53), we

have
(R(b))” <qg— ROPHFREWG (R (b,), X(b,),...,R(b,))
< (R(b)".

(54)

(3) Monotonicity: the proof is similar to the proof of
(2). O

q - ROPHFREWG (R (b;), R (b,), ..., X (b,,))

(8000 6")
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6. g-Rung Orthopair Probabilistic Hesitant
Fuzzy Rough Einstein Weighted Geometric
Aggregation Operator

In this section, the g-ROPHFREWG aggregation operator is
introduced, and the key characteristics of the proposed
operators are demonstrated.

Definition  25. Let R(b,) = (X(b,),R(b,))(t =1,2,3,4,
..,n) be the collection of g-ROPHFRVs. Then, g-ROPH-
FREWGA operator is determined as

g - ROPHFREWG (R (b,), R (b,), ..., R (b,))
(55)

(B350

where y = (y,,75-..,7,)" is the weight vector such that
@7, =1and 0<y,<1 and J, and 9, are probabilistic
terms such that &_,0, =1 and &0, = 1.

Theorem 3. Let N(b,) = (X(b,),R(b,)(t =1,2,3,...,n)
be the collection of ¢-ROPHFRVs with the weight vector y =
(V1> Y2s- - > V) suchthat @y, = 1 and 0 <y, < 1. Then, the
q-ROPHFREWG operator is described as

q n q v qal n q v n q G
201,(} ) {em(2- ) - oi(oh)

U
D P O i)

n >
®,1 0y

t

a _n qytn qytqn an qyt
\/%(“z) ~ol(1-1) /\/®f21<1+vi> roly(1-)

Vit Vi Oh €Ong sy

®:t:1 ai (56)

—\ —\ —\t
</2®?:1<®Zt) /\qj®?:1<2_ ‘th> - ®:‘:1<‘th>

e Prg 5O g o)

~
®,-10y,

—\Vt
{/@L(l +th> - ®?:1<1 -

iy E‘#’hﬁ(b)ﬁhfa}xﬁ(b)
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L y)" is the weight vector such that

where y = (Y1, V2 - -
i Ye =1 and 0<y,<1 and 8, and 0, are probabilistic

e
terms such that &_,0, =1 and &/_,0, =1

(X (b)) @X(b,))

Complexity

Proof. We will prove the aforesaid theorem by utilizing
mathematical induction. Suppose n = 2; then

= (R(b))® R(b), R(b)) @R (b,)),
q — ROPHFREWG (X (b;), X (b,))
2 2
-(& (O™ & RO
2 Vi 5 P 2 Vi
R I N G DA CY
U%eﬁhﬁ(b),%eéhﬁ(b) ®t271 3, >
yt vt vt yt
{/@fil(l +i> - ®f:1<1 —i) I\ ®f:1<1 +i> + ®f,1<1 - sz) (57)
UVA Wiy 91 g ®?=1 o,
— A\t — A\t — A\t
\qj2®f:1<wzt> /</®f:1<2_ ®2,> - ®f:1<®2,>
Um_hteﬁhg(b)’a_hreahﬁ(b) ® tzﬂa >
—\ Yt —\ Yt —\ Yt —\ Yt
{/@fﬂ(l + Vzt> - ®z2=1<1 —th> /(/@tz:l(l +vZf) + ®t2=1<1 - th>
—
®tzlah,

Vhy EW}xﬁ(b)’ahreahﬁm

and the result is true for n = 2. Now, suppose the result is

true for n = k.

q- ROPHFREWG(N (b1), R(by).... R (by))

~(& )" 8 R O)")
| ot

k

Vi Ye
Ul k q
t=1<2 - th) + ®t=1(@hz)

Vi
@

U
@y, eﬁhﬁ(b) >6ht66h5(b)

k
®,,0p,

Y Y Y Yt
al ok q k q | k q k q
\/®t=1(1+zht> _®t=1<1_£ht> / ®t=1(2+2ht) +®t=1(2_ﬂh,)
Uv €Y, a €0,
Vi €Y hyg (%, €On k (58)
R (b))t "R (b) ®t:1Qh
- Ve Y Y ]
al o k =4 q| ok =4 k =4
\/®f:1<l+mht) /\/®t:1(1+a)ht) +®t:1<1_®h,>
@y, €Y J;, €0, >
e €T h e € ) ®f:16ht
Y Y Y Y
(]2®f:1<1 ”21) - ®f:1<1 —vzl> I ®f:1(1+VZ,> + ®f:1(1 - vZ)
=
®,_10h,
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Furthermore, we are going to show that the result holds
forn=k+ 1.
q— ROPHFREWG (R (b,), X (b,)...R (by), R (by,1))
k Yt wen k(3 Ve 3 Wity
—( & (@ED)® ()™ 8(RE)")® R(b)) ™)
q| o k+1 q 1o k+1 q k+1 q 16
o (@ ) /3 2-of +®t1 o
U@hteﬁhyb)ﬁh[eﬁhﬁ(b) f+1l 6h >
k+1 1 e k+1 q k+1 k+1 Ve
®; +vh -®, l—vh / ®;_) 1+vh +®t1 l—vh
the‘i’hﬁméhl eahﬁ(b) 1::11 th (59)

Hence, the result holds for n = k + 1. Thus, the result is

true for all n>1. O
Theorem 4. Let X(b,) = (X(b,),R(b))(t=1,2,3,...,n)
be the collection of g-ROPHFRVS, y = (Y1, Y- - -, V)" be the

weight vector such that vy, € 0,1] with the property that

F(b) =(@(b),Fb)) =<<bh(x) 1 0px) > Ay 1 O )’(Eh(x)/ah(x)>dh(x)/ah(x))>’

( Y
k+1( =49 k+1 q k+1 q
\/®t1 CO /\/ 2 - CO +®t1(®ht>
24 ,0), €0, >
A N ) k+16h
p
Y Ve Y
q| o k+1 —-q k+1 —q k+l k+1 —q
(o (em ) - o (- o (1o ) v o (1- )
v B 9, 15
1P O SO ®1t<+l ahr

&,y =1, and 9, and 0, be probabilistic terms such that
®)_,0y, =1 and &_,0, = 1. Then, the -ROPHFRWG oper-
ator satisfies the following properties:

(1) Idempotency: if N(b,) =f(b) for t=1,2,3,..,n

where

(60)

then

g — ROPHFRWG (R (b,), R (b,), ..., R(b,)) = F(b).

(61)
(2) Boundedness: let (N(b)) i = (min, X(b,),
max, X (b,)) and (R(D) pax = (max, X(b,),

min, X (b,)). Then,

(R (6))min <g ~ ROPHFRWG (R (b, ),
< (R (b))

R(by),..» X (b))

max*

(62)

(3) Monotonicity: suppose F(b) = (F(b),F(by)
(t =1,2,...,n) is another collection of g-ROPHFRV's
such that g (b,) < R(b,) and F(b,) <R(b,). Then,

g~ ROPHFRWG (F (b,),F(b,), -, F(b,))

< - ROPHERWG (R (b,), R (0,).. . R(5,)).

Proof.
(1) Idempotency: as X (b,) = p(b) (forallt = 1,2,3,...,n)
where F(b,) = (F(b),F(b)) = ((by(x) / On(xy> Fnixy /

ah(x) ), (bh(x)/éh(x)’ dh(x)/ah(x))), it follows that
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q— ROPHFREWG (X (b;), X (b,), ..., X (b,))

B <t§1 (X(b)" é (ﬁ(bt))w>

Ve Vi Vi
a n q q| 1 q n 9
\/2®t:1<@ht) /\/®t:1(2 - @ht> + ®t:1<@h,>
@y, eﬁhﬁ(b) ’th eahﬁ(b) ® :l,lah ’
-
- P,
Vi Vi Vi Vi
a 1 q n q q| 1 9 n 9
\/®t:1<1+zht> _®t:1<1_2ht> /\/®t:1(2+2h,) +®t:1<2_2ht)
U
i g2 g ®1_10y, (64)
Vi Vi Ye
q n =4 q n =4 n =9
\/®t:1(1+®ht) /\/®t:1(1+®ht) +®t:1<1—®ht>

U= - -
@y, €Y, ,0p, €0, n
ey M R ) ®t:Iaht

7 7 7 7
{]2‘8’?:1(1 +Vzt) - ®:’:1<1 —?Zt) t/</®’::1(1 +vl;z,) - ®tn:1(1 - ?Zt) t

n
(b) ® t—lah

Vi, €Y 20p, €0
R() R

for all t, and N(b,) =f(b) = (£ (b),
F(b)) = ((bh(X) /6h(x) ’dh(x) /ah(x) ), (bh(x)/ah(x)>
dh(x)/ah(x)))- Therefore,

g ®t"=1((bhx)q)%/</®?=l(2 - (bhx)q)yr + ®t"=1<@zl )Yt
bhxeﬁhﬁ(b)’éhtéahﬁ(h) ®:l:16hx 5
g Jo () — o () (o)) ot~ (@)
i ¥y D1 D ®_0)

t:lah

{2ei((B)) et~ (6))" + e L((bn))"
Ubhxe\yhE B o7 ,

x

o (1+())" - e (1 -()) Her (1 +(d))" + o (1= (4,))"
Udhxe\}’,1§b N ma’)

= _(1 ‘(1 — by /Qh(x)>adh(x) /ah(x)>’ (1 —(1 _Eh(x)/gh(x))’ah(x)/ah(x)):l

=(FBLFO) = F ).
(65)
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Hence,
(R (by), R(by),...,R(b,)) =F(b).

q-ROPHFREWG
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(R(h))” <q - ROPHEREWG (R (b, ), R (by), .., R (b,))

(2) Boundedness: < (R(G)"
(67)
_ o, ”, -
mtin 3. [>max a_ Let g0 = V2 = x3/x3, % € (0,1]; then,
hy hy 3
(R (b)) = — g1 () = =2/x*{/ (2 - ¥3/%3) "% <0. So, g(x) is a de-
o o ’ creasing function on (0,1]. Since
.| On Vh
min — &, mtax = {‘Dhmm } < {% } < {(Dhmax } for all t,
- & el /- (66) 9@, )<g(@,)<g(@, )(t=123 .n),ie,
[ (Dht Y ] 3 3 3
max ,min{ = 32—(®m“> 32‘<®h> 32‘(®mm>
o 9, =) =L =l (e
(B (b))+ = > (thax > ((Dht ) (Cohmin )
o .
maxqy == r,min 5 and let p = (y,75...,7,) be the weight vector
| b by i

and N(b,) = [(£/3,,1/0,), (B,/3),,,/0;,)] to prove
that

such that y, €0,1] and &.,y, =1 and J,be the
probabilistic term such that ®/_,3, = 1. We have

< <
® 9y, ®?:16l
s n 3 3\t
® 1 2‘<@hmax) /<‘7°h )
<
- ®1, dy,
(69)
3 3 3 A N " 3 3\ Ve
(z-(mhm) /( h)) ®", 2—<a>ht> /<a)ht>
< <
®;_, Oy, ‘%’:1%
N " 3 3 a);l:l)/t
®r_1<2_<mhmax) /< hmax) )
< E)
841 O,
. 3 3\t
o Yem(2-(a) (o)
P
®;, Oy, ®f:1%
hmax
®i_, 0y,
(70)
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Similarly, we can show that

o on(-@) @)
o—2< PR
6h i ®t:16h,

‘min

(71)

8

h

‘max

x

h

min

Again, let f(y)=+/1-y3/1+y%yec0,1]. Then,
F1(y) = =29/ (1+ y*) (1 - y*/1+ y*) 72 <0
Thus, f (y) is a decreasing function over [0, 1]. Since

{'thax } {'Vh } < {'thm } fOr all t,

g, )sg)<gy )(E=1,23,..,n) ie,

=

h

min

o

=

o) ()
Vo) Vi)
[T

Vo)

and let y= (y, 2 ---

=

t=1,2,3,.

Complexity

(72)

,yn)T be the weight vector

such that y, €0,1] and ®]_,y, =1 and 0;, be the
probabilistic term such that @]_, 9, = 1;"we have

) 10,
& O ‘
s 3 3\
®, 1—<vhm> /1+< )
< b
- ®;, 10,
s 3 3\ &1Vt 3 3\ 7
(1_<thm> /1+<”hmm> ) ®?1(1—<vht> /1+<vht) )
= <
t 1% t 1%
N 3 3\ Omi Ve
1= (v ) 1+ (%)
- ®, Oy, ’
, 3 3\ 7t
o ()
o Tm
®7—1al ®;_, 0
Yhain
< b
T ®L, 0,

In a similar way, we can show that

(73)

(74)
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3 n —\3 —\3 Yt
i oL (z-E)E))
S ,
ahmax ®?:lal (75)
v,
< i
9

‘min

Thus, from equations (70), (71), (74), and (75), we
have

(R(b))” <q- ROPHFREWG (R (b,), X (b,), ..., R (b,))
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7. Multiattribute Decision-
Making Methodology

Herein, we develop an algorithm for addressing uncertainty
in MAGDM under q-ROHEFR information. Consider a DM
problem withaset {A;, A,, ..., A,} of nalternatives and a set
of nattributes {y,, X, - - - X,,} With (y1, V5, - - ., y,,)" being the
weight vector; that is, y, € 0,1], &Ly, = 1. Also, d;, and 0,
are probabilistic terms such that ®_,9, =1and &/_,0, =1
with the property that 0< 8, and 0), <1. To test the reli-
ability of kth alternative A, under the attribute ¢, let

{DI,DZ, e ,D?} be a set of decision makers (DMs). The

< (R()" expert evaluation matrix is described as
(76)
(3) Monotonicity: the proof is similar to the proof of
(2). O
)
—(ﬁ(bll))ﬁ(l’n)) (ﬁ(l’n)»B(blz)) (ﬁ(blj)’ﬁ(blj))-
(R(by): R (b)) (R(b).R(by)) -+ (K(sz)E(sz)) (77)
7| R31)R(bs1)) (R(b3), R(b3)) -+ (R(bs;). R(bs;)) |
[ (R(a), R (b)) (R(ba)R(bi)) - (R(be), (b)) |
where such that
( At A ) A- q A q
A ﬁhN(b)(‘q) w"mw(g> A 0< <max(ﬁh_ (g ))) +(min<1//h_ (g >>) <l
R(b)=19,— = lg eQt Koy 0] (79)
> 6]1 > ah | > N q N q
) - - 0= <min<ﬁhx(b)<g >> +<maX<WhN(b)<g )>) =1
(78) - -
i By (@) v, <§> ] are the -ROPHEFR values. The main steps for MAGDM are
— A Thre N () A
N(I’tj) =19, ) lg €eQ ¢, as follows.
6115(,) al’h_\*(b) Construct the experts’ evaluation matrices as

(E) -

N
where J shows the number of experts.

(80)
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Evaluate the normalized experts’ matrices (N Y as

(NY =

The weight information of the attributes is determined

by using the Shannon entropy measure in the following way.
The entropy measure corresponding to each attribute is

EN(R;) = EN(R,;, N, Ry, ..

j ’th)

-1

Then,
1 - EN(N;
) = ) o
Y 1-EN(X))
Thus, weights of attributes are found as
PR = (p(R), y(Ry), .., y(R)
1 1 1

3
Oy eﬁhg (»)’6; €6h§(b)

1
“ Z

5 — -
Vi €Vh_  Op, €0
R0 Rov

(3, 31,)

)

Rank all the alternative scores in the descending
order. The alternative having a larger value will be su-
perior/best.

The algorithm steps/flowchart of the decision-making
technique are shown in Figure 3.

8. Numerical Example

To strengthen our developed operators, we consider a nu-
merical MCGDM example of drug selection for the treat-
ment of COVID-19.

8.1. Case Study (Drug Selection for the Treatment of COVID-
19). Nowadays, an overwhelming majority of the world is
fighting against an epidemic called coronavirus. Corona-
virus is a new virus that has recently been identified in

b
; )C,(ﬁ(btj))c) if for the cost type.

g — -
@y, €Yy ,0p, €0,
e ‘l/hx(b) e €Ohg )

Complexity

if for the benefit type,
(81)

= () ;(mhu ln<%) ><67t+63ht]_ 1n<6)ht]_) x 0, +”h_r,- ln(vh_tj> X alwhtj ln<vhz}_> X aht>, j=123,...,m

(82)

Compute the g-ROPHFRVSs for each considered alter-
native with respect to the given list of criteria/attributes by
utilizing the proposed aggregation information.

Find the ranking of alternatives based on the score
function as

Y @) X

R
Vi Vg9 gy

(Vh, xah[)

(84)

humans and is officially named COVID-19. Corona cor-
responds to the virus’s external surface, which has crown-
like spikes [61]. Common symptoms of infection are fever,
cough, fatigue, shortness of breath, and breathing difficulties
[12, 62-65]. Regularly washing hands and covering the nose
and mouth while coughing or sneezing are standard sug-
gestions for preventing infection spread. The COVID-19
virus is spread mostly by mouth droplets or nasal discharge
when the infected individual coughs or sneezes. Avoid close
contact with anyone who is coughing or sneezing and has
respiratory symptoms. The moderate symptoms of COVID-
19 infections are likely to be prevented by several known
antiviral medications [66]. In the case of antiviral medica-
tions, up to now, there are no specific medicines developed
for the disease. However, different medicines are used for
experimental purposes to benefit COVID-19 patients, and
laboratory testing indicates that any combination of drugs
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FI1GURE 3: Algorithm steps for decision-making.

could be effective against COVID-19. The combination of
lopinavir/ritonavir and interferon-beta (LPV/RTV-IFNb)
reduced viral masses slightly without impacting other
clinical factors. Remdesivir (GS-5734), a nucleotide analog
prodrug, was earlier tested for SARS, MERS, and Ebola [67].
Remdesivir has been demonstrated to be safe and beneficial
for patients with mild COVID-19 symptoms, according to
an experimental investigation [68]. Hydroxychloroquine
(HCQ) and chloroquine (CQ) are widely used antimalarial
drugs that stimulate immunomodulatory responses and also
used to avoid autoimmune disorders. Wang et al. [69]
testified that HCQ was found to be more stimulating than
CQ in vitro. The potential effectiveness of these drugs in
regulating cytokine discharge syndrome in patients has been
investigated from the global pandemic of COVID-19. Even
though there is no effective treatment for COVID-19, all
antiviral medicines should be investigated further in clinical
testing. According to a WHO report released on June 13,
2021, more than 176,396,104 cases of COVID-19 have been
reported worldwide, resulting in more than 3,810,989
deaths. A total of 160,398,032 people have been recovered
[2]. The most common symptoms and signs reported by
COVID-19 patients are fever (83%-99%), shortness of
breath (31%-40%), fatigue (44%-70%), anorexia (40%-
84%), cough (59%-82%), sputum production (28%-33%),
and myalgia (11%-35%) [70-74].

Here, we proposed four medicines as alternatives for the
treatment of COVID-19 patients, namely, LPV/RTV-IFNb

(A;), remdesivir (A,), LPV/RTV (A,), and favipiravir (A,).
Antiviral medications should be selected not only for their
effect on symptoms but also for their effectiveness and
possible side effects. Therefore, we take four parameters,
cough (x,), fatigue (y,), fever (y;), and shortness of breath
(x4)- For selection of optimal medicine, information is
presented as g-ROPHFR information. The corresponding
weight vector for criteria is y = (0.13,0.27,0.29,0.31)". The
following computations are performed to address the
MCDM problem using the established methodology for
evaluating alternatives.

The information of the professional expert is given in
Tables 1 and 2 in the form of q-ROPHEFRS.

The expert information is of the benefit type. So, in this
case, we do not need to normalize the ¢-ROPHFRVS.

In this problem, only one expert is considered for col-
lection of uncertain information. So, we do not need to find
the collected information.

Aggregation information of the alternative under the
given list of attributes is evaluated using proposed aggre-
gation operators which are as follows.

Case 1. Aggregation information using the EWA operator is
shown in Table 3.

Case 2. Aggregation information using the g-ROHFREWG
operator is presented in Table 4.



0 4784/0.084, 0.5990/0.336, 0.4811/0.056, 0.6006/0. 224
O 4852/0.036, 0.6032/0.144, 0.4879/0.024, 0.6048/0. 144
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TaBLE 1: Expert information.
X1 X2
A, ((0.1/0.3,0.2/0.5,0.5/0.2) (0.3/0.6, 0.4/0.4)) ((0.5/0.4,0.7/0.6) (0.5/0.7,0.6/0.3))
, ((0.8/1)(0.4/0.5,0.6/0.5)) , ((0.4/0.5,0.6/0.5) (0.7/0.3,0.9/0.7))
A ((0.6/0.7,0.7/0.3) (0.7/0.5,0.9/0.5)) ((0.2/0.2,0.4/0.1,0.5/0.7) (0.5/1.0))
2 , ((0.3/0.2,0.5/0.8) (0.6/1)) » ((0.6/0.3,0.7/0.7) (0.3/1))
A ((0.4/0.3,0.5/0.6, 0.6/0.1) (0.6/0.1, 0.7/0.9)) ((0.1/1.0) (0.5/0.5, 0.6/0.5))
3 , ((0.9/1)(0.5/1)) ((0.4/0.3,0.6/0.4,0.7/0.3) (0.5/0.2,0.7/0.8))
A ((0.4/1) (0.5/0.5,0.6/0.5)) ((0.4/0.4, 0.5/0.6) (0.4/1))
4 , ((0.3/0.7,0.4/0.3) (0.8/1)) , ((0.1/0.6,0.2/0.4) (0.2/0.2,0.3/0.8))
TaBLE 2: Expert information.
X3 X4
A ((0.4/1), (0.3/0.2,0.7/0.8)), ((0.6/1), (0.7/1)),
((0.5/1), (0.9/1)) ((0.6/0.4,0.8/0.2,0.9/0.4), (0.7/0.7,0.9/0.3))
A ((0.8/1), (0.4/0.6, 0.5/0.2,0.7/0.2)), ((0.8/1), (0.5/1)),
2 ((0.2/0.6,0.5/0.4), (0.4/0.3,0.5/0.7)) ((0.7/1.0), (0.1/0.5, 0.3/0.3,0.4/0.2))
A ((0.3/1), (0.7/0.6, 0.8/0.4)), ((0.3/0.2,0.6/0.8), (0.8/1)),
3 ((0.7/0.6,0.8/0.4), (0.1/0.7,0.4/0.2,0.7/0.1)) ((0.7/1), (0.3/1))
A ((0.3/1), (0.7/0.7,0.8/0.3)), ((0.6/0.2,0.7/0.4,0.9/0.4), (0.3/0.3,0.4/0.7)),
4 ((0.7/1), (0.6/1)) ((0.2/0.2,0.7/0.8), (0.7/0.4, 0.8/0.2, 0.9/0.4))
TaBLE 3: Aggregated information using g-ROPHFREWA.
{0.4934/0.12, 0.5659/0.18, 0.4946/0.2, 0.5668/0.3, 0.5143/0.08, 0.5817/0.12},
A, 0.4529/0.084, 0.5784/0.336, 0.4766/0.036, 0.6069/0.144, ,
0.4697/0.056, 0.5986/0.224, 0.4941/0.024, 0.6277/0.096
{0.5932/0.12, 0.6759/0.06, 0.7406/0.12,0.5777/0.28, 0.6647/0.14, 0.7320/0.28},
] 0.7111/0.105, 0.7732/0.045, 0.7651/0.245, 0.8277/0.105,
1 0.7441/0.105, 0.8067/0.045, 0.7986/0.245, 0.8609/0.105 |
{0.7074/0.14, 0.7160/0.07, 0.7252/0.49, 0.7074/0.06, 0.7160/0.03, 0.7252/0.21},
{0.4913/0.03,0.5234/0.1, 0.5787/0.1,0.5120/0.3, 0.5452/0.1, 0.6021/0.1}
A, ] 0.5584/0.036, 0.5915/0.024, 0.5944/0.084, 0.6235/0.056,
1 0.5714/0.144,0.6030/0.096, 0.6057/0.336, 0.6336/0.224
{0.2555/0.15,0.3579/0.09, 0.3911/0.06, 0.2733/0.35, 0.3824/0.21, 0.4176/0.21}
{0.2916/0.6, 0.4384/0.24, 0.3201/0.12, 0.4518/0.48, 0.3556/0.02, 0.4707/0.08},
0 6584/0.03, 0.6864/0.02, 0.6890/0.03, 0.7176/0.02
A, O 6716/0.27,0.6998/0.18, 0.7025/0.27,0.7312/0. 18
{0.6968/0.18,0.7310/0.12, 0.7211/0.24, 0.7522/0.18, 0.7408/0.12, 0.7695/0.12},
{0.2694/0.14, 0.4423/0.04, 0.4752/0.02, 0.2980/0.56, 0.4423/0.16, 0.5228/0.08}
{0.4659/0.08,0.5233/0.16, 0.6769/0.16, 0.4899/0.12, 0.5424/0.24, 0.6876/0.24},
0 4475/0.105, 0.4879/0.245, 0.4689/0.045, 0.5109/0. 105
A 0 4586/0.105, 0.4999/0.245, 0.4805/0.045, 0.5233/0. 105
| ( >

{0.4967/0.08, 0.5217/0.04, 0.5478/0.08, 0.5503/0.32, 0.5773/0.16, 0.6052/0.32}
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Score values of all alternatives under developed AOPs are
presented in Table 5.

Rank the alternatives A,(t=1,2,...,4) which is
enclosed in Table 6.

From the above computations, we concluded that al-
ternative A, is the finest alternative among others, and
therefore, it is highly recommended (Figure 4).

9. Reliability and Validity Test

In practice, selecting the perfect option from the group’s de-
cision matrices is a challenging task. The approach for
analyzing the reliability and validity of DM systems was de-
veloped by Wang and Garg [75]. The testing procedure is as
follows:

Test step 1: if we substitute the normalized element for
the worse element of the alternative by presenting the
appropriate alternative with no modification and also
with no altering the comparable position of each de-
cision criterion, the appropriate and effective MAGDM
technique is to do so.

Test step 2: the transitive property must be satisfied
using an efficient and appropriate MAGDM approach.

Test step 3: when a MAGDM problem is reduced to a
minor one, a combined alternative rating should be
similar to the original rating of the undecomposed
problem. To rank the alternative, we utilize the same
methods adopted in the MAGDM problem on minor
issues. The MAGDM problem was reduced to a smaller
one in order to achieve the best result, and the same
suggested DM technique has been used. The appro-
priate and effective MAGDM technique is that if we
apply the same procedure to a small problem, the result
would be the same as the MAGDM problem.

9.1. Validity Test for the Proposed DM Methodology.
Utilizing the competency of the aforementioned test, we
check the appropriation and validation of our established
approach (Tables 7 and 8). The g-ROPHEFR information is
enclosed in Tables 9 and 10 as follows:

Test step 1: we substitute the worse element of the
alternative by presenting the appropriate alternative
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with no modification and also with no altering the
comparable position of each decision criterion, in this
step. Table 11 encloses the updated decision matrix.

Now, we calculate the combined values of each alter-
native under criteria weight (0.13,0.27,0.29,0.31)"
using the proposed list of g-rung orthopair probabi-
listic hesitant fuzzy rough aggregation operators as
follows:

Case I: aggregated information using g-ROPHFRWA
operators is enclosed in Table 12.

Case II: aggregated information using g-ROPHFRWG
operators is enclosed in Table 13.

Score values of all alternatives under developed aggre-
gation operators are presented in Table 13.

Rank the alternatives A,(t=1,2,...,4) which is
enclosed in Table 14.

We get again the same alternative A, by using test step 1,
which is also obtained by applying our proposed method.

We are now testing the validity test steps 2 and 3 to
demonstrate that the proposed approach is reliable and rele-
vant. To this end, we first transformed the MAGDM problem
into three smaller subproblems such as {A,, A}, A},
{A}, A, A5}, and {A,, A, A;}. We now implement our sug-
gested decision-making approach to the smaller problems that
have been transformed and give us the ranking of alternatives
asA,> A >A,L A >A > A; and A, > A, > A, respectively.
We analyzed that A, > A, > A, > A, is the same as the standard
decision-making approach results when assigning detailed
ranking (Figure 5).

10. Comparison Analysis

10.1. TOPSIS Methodology Based on q-Rung Orthopair
Probabilistic Hesitant Fuzzy Rough Information. Hwang and
Yoon proposed the TOPSIS technique for the ideal solution,
which allows policymakers to compare the PIS and NIS.
TOPSIS is based on the assumption that the best alternative
would be the closest to the ideal and the furthest away from
the perfect negative solution [76, 77]. The main parts of the
method are as follows.

Leth = {A}, A,, A;,. .., A,} be the set of alternatives and
C={X1>X2X3>---»Xu} be a set of criteria. The decision
matrix of the expert is presented as

(85)

\;_/
Z|
—
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‘:J.\‘>
~_
~
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TaBLE 4: Aggregated information using ¢-ROPHFREWG.

Complexity

{0.4061/0.12,0.4479/0.18,0.4429/0.2,0.4880/0.3,0.4971/0.08, 0.5465/0.12},
A, 0.5370/0.084,0.6272/0.336,0.5640/0.036, 0.6466/0.144, R
0.5424/0.056,0.6310/0.224, 0.5689/0.024, 0.6502/0.096
{0.5653/0.12,0.6226/0.06, 0.6519/0.12,0.5335/0.28, 0.5887/0.14, 0.6170/0.28},
0.7662/0.105, 0.8334/0.045, 0.8260/0.245, 0.8759/0.105,
0.7751/0.105, 0.8397/0.045, 0.8326/0.245, 0.8806/0.105
{0.5492/0.14, 0.6505/0.07, 0.6864/0.49, 0.5492/0.06, 0.6505/0.03, 0.6864/0.21},
{0.5156/0.03,0.5366/0.1,0.6031/0.1, 0.5933/0.3, 0.6090/0.1, 0.6608/0.1} >
A, 0.4256/0.036,0.5497/0.024, 0.4458/0.084, 0.5744/0.056,
0.4545/0.144,0.5851/0.096, 0.4759/0.336,0.6108/0.224 |’
{0.3795/0.15, 0.3973/0.09, 0.4201/0.06, 0.4169/0.35, 0.4317/0.21, 0.4512/0.21}
0.2320/0.6,0.2900/0.24,0.2391/0.12, 0.6902/0.03,0.7252/0.02,0.7055/0.03, 0.7386/0.02,
A 0.2988/0.48, 0.2453/0.02, 0.3066/0.08 |* | 0.7011/0.27,0.7347/0.18,0.7158/0.27,0.7476/0.18 ’
3 0.6314/0.18,0.6589/0.12, 0.6976/0.24, 0.3890/0.14,0.5179/0.04, 0.5439/0.02,
0.7263/0.18,0.7258/0.12,0.7548/0.12 |’ | 0.4945/0.56,0.5179/0.16, 0.6048/0.08
{0.4193/0.08,0.4422/0.16,0.4888/0.16, 0.4455/0.12, 0.4697/0.24, 0.5185/0.24},
0.5249/0.105, 0.5382/0.245, 0.5878/0.045, 0.5983/0.105, s
A 0.5390/0.105, 0.5515/0.245, 0.5989/0.045, 0.6089/0.105
4 0.2556/0.084, 0.3816/0.336,0.3077/0.056, 0.4571/0.224,
0.2655/0.036, 0.3960/0.144,0.3195/0.024, 0.4740/0.144 |’
{0.6258/0.08, 0.6728/0.04, 0.7383/0.08, 0.6298/0.32, 0.6763/0.16, 0.7409/0.32}
TABLE 5: Score values.
Operators G (A) Gg (4y) Gg (A3) G (Ay)
q-ROPHFREWA 0.5078 0.5176 0.5173 0.5044
q-ROPHFREWG 0.4989 0.5066 0.5018 0.4867

TaBLE 6: Ranking of the alternatives.

Operators

Score

Best alternative

q-ROPHFREWA
q-ROPHFREWG

Gg (A,) > G (A;) > G (A) > Gg (A,)
Gg (A) >Gg (A;) > G (A) >Gg (4,)

A,
A,

Al A2 A3 A4
-6~ q-ROPHFREWA
-6—- q-ROPHFREWG

FIGURE 4: Alternatives using EWA and EWG operators.
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TABLE 7: Expert information.
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X1 X2
A, ((0.1/0.3,0.2/0.5,0.5/0.2), (0.3/0.6, 0.4/0.4)), ((0.5/0.4, 0.7/0.6), (0.5/0.7,0.6/0.3)),
((0.8/1), (0.4/0.5,0.6/0.5)) ((0.4/0.3,0.5/0.7), (0.7/0.3,0.9/0.7))
A ((0.6/0.7,0.7/0.3), (0.7/0.5,0.9/0.5)), ((0.2/0.2,0.4/0.1,0.5/0.7), (0.5/1.0)),
2 ((0.3/0.2,0.5/0.8), (0.6/1)) ((0.6/0.3,0.7/0.7), (0.3/1))
A ((0.4/0.3,0.5/0.6, 0.6/0.1), (0.6/0.1,0.7/0.9)), ((0.1/1.0), (0.5/0.5, 0.6/0.5)),
3 ((0.9/1), (0.5/1)) ((0.4/0.3,0.6/0.4, 0.7/0.3), (0.5/0.2,0.7/0.8))
A ((0.4/1), (0.5/0.5,0.6/0.5)), ((0.4/0.4, 0.5/0.6), (0.4/1)),
4 ((0.3/0.7,0.4/0.3), (0.8/1)) ((0.1/0.6,0.2/0.4), (0.2/0.2,0.3/0.8))
TaBLE 8: Expert information.
X3 X4
A, ((0.4/1), (0.3/0.2,0.7/0.8)), ((0.6/1), (0.7/1)),
((0.5/1), (0.9/1)) ((0.6/0.4,0.8/0.2, 0.9/0.4), (0.7/0.7,0.9/0.3))
A ((0.8/1), (0.4/0.6, 0.5/0.2, 0.7/0.2)), ((0.8/1), (0.5/1)),
2 ((0.2/0.6, 0.5/0.4), (0.4/0.3,0.5/0.7)) ((0.7/1.0), (0.1/0.5, 0.3/0.3, 0.4/0.2))
A ((0.3/1), (0.7/0.6,0.8/0.4)), ((0.3/0.2,0.6/0.8), (0.8/1)),
3 ((0.7/0.6,0.8/0.4), (0.1/0.7,0.4/0.2,0.7/0.1)) ((0.7/1), (0.3/1))
A ((0.3/1), (0.7/0.7,0.8/0.3)), ((0.6/0.2,0.7/0.4, 0.9/0.4), (0.3/0.3,0.4/0.7)),
4 ((0.7/1), (0.6/1)) ((0.2/0.2,0.7/0.8), (0.7/0.4, 0.8/0.2, 0.9/0.4))
TaBLE 9: Updated expert information.
X1
0.5/0.7,0.6/0.3
A, < ((0.1/0.3,0.2/0.5,0.5/0.2), (0.3/0.6,0.4/0.4)), < ((0 5/0.4,0.7/0. 6)) )
((0.8/1), (0.4/0.5,0.6/0.5)) (0.7/0.3,0.9/0.7),
(0.4/0.3,0.5/0.7)
(0.6/0.7,0.7/0.3), (0.5/1.0),
A (0.7/0.5,0.9/0.5) (0.2/0.2,0.4/0.1,0.5/0.7) )
2 (0.3/0.2,0.5/0.8), (0.3/1),
(0.6/1) (0.6/0.3,0.7/0.7)
(0.6/0.1,0.7/0.9), (0.1/1.0),
N (0.4/0.3,0.5/0.6,0.6/0.1) (0.5/0.5,0.6/0.5) )’
3 (0.5/1), (0.4/0.3,0.6/0.4,0.7/0.3),
(0.9/1) (0.5/0.2,0.7/0.8)
(0.5/0.5, 0.6/0.5), (0.4/0.4, 0.5/0.6),
N (0.4/1) ’ (0.4/1) ’
4 (0.8/1), (0.1/0.6,0.2/0.4),
(0.3/0.7,0.4/0.3) (0.2/0.2,0.3/0.8)
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TaBLE 10: Updated expert information.

X3 X4
(0.4/1), (0.7/1),

A < (0.3/0.2,0.7/0.8) ) < (0.6/1) )

((o.sm,) ( (0.7/0.7,0.9/0.3), )
(0.9/1) (0.6/0.4, 0.8/0.2, 0.9/0.4)

( (0.8/1), > ( (0.5/1),)

(0.4/0.6,0.5/0.2,0.7/0.2) )’ 0.8/1) )
< (0.2/0.6,0.5/0.4), ) ( (0.1/0.5,0.3/0.3,0.4/0.2), )

(0.4/0.3,0.5/0.7) (0.7/1.0)

(0.7/0.6,0.8/0.4), (0.3/0.2,0.6/0.8),
(0.3/1) ’ (0.8/1) ’

(0.1/0.7,0.4/0.2,0.7/0.1), (0.7/1),
(0.7/0.6,0.8/0.4) (0.3/1)

(0.7/0.7,0.8/0.3), (0.6/0.2,0.7/0.4, 0.9/0.4),
(0.3/1) ’ (0.3/0.3,0.4/0.7) ’

(0.6/1), (0.2/0.2,0.7/0.8),
(0.7/1) (0.7/0.4,0.8/0.2, 0.9/0.4)

TaBLE 11: Updated aggregated information using g-ROPHFREWA.

{0.5452/0.21,0.5714/0.09, 0.5462/0.35, 0.5723/0.15, 0.5623/0.14, 0.5869/0.06},
< 0.4295/0.048, 0.5499/0.192, 0.4734/0.072, 0.6030/0.288, ),
0.4455/0.032, 0.5694/0.128, 0.4908/0.048, 0.6238/0.192
{0.6746/0.21, 0.7704/0.09, 0.7600/0.49, 0.8291/0.21},

( 0.6219/0.06, 0.6824/0.03, 0.7130/0.06, 0.5879/0.14, 0.6467/0.07, 0.6765/0.14, )
0.6531/0.06, 0.7150/0.03, 0.6765/0.06, 0.6181/0.14, 0.6785/0.07, 0.7090/0.14
{0.6377/0.7,0.6377/0.3},
0.4540/0.03, 0.4842/0.02, 0.5363/0.02, 0.5425/0.03, 0.5771/0.01,
0.6361/0.01,0.5747/0.21, 0.6106/0.07, 0.6716/0.07, 0.4735/0.06,
0.5047/0.02,0.5585/0.02, 0.5648/0.03, 0.6004/0.01,
0.6608/0.01, 0.5979/0.21, 0.6348/0.21, 0.6969/0.07
0.2377/0.06, 0.2780/0.036, 0.3207/0.024, 0.3622/0.04, 0.3816/0.024, 0.4062/0.016,

( 0.2972/0.24, 0.3249/0.144, 0.3577/0.096, 0.3921/0.16, 0.4088/0.096, 0.4305/0.064 |’ )
{0.5633/0.09,0.5988/0.21, 0.5884/0.21, 0.6249/0.49}

0.5400/0.108, 0.5991/0.432, 0.5997/0.072, 0.6477/0.288 |’
{0.4935/0.15,0.5189/0.15, 0.5078/0.3, 0.5338/0.03, 0.5202/0.05, 0.5466/0.05}
( {0.5238/0‘3,0.5447/0.06, 0.6242/0.03,0.5694/0.28, 0.5869/0.08,} )

( 0.5191/0.012,0.5827/0.048, 0.5833/0.008, 0.6342/0.032, )

0.6559/0.04, 0.6040/0.21, 0.6194/0.06, 0.6812/0.03
{0.5186/0.12,0.5427/0.08, 0.5696/0.48, 0.5954/0.32}

0.5872/0.028, 0.6242/0.056, 0.7373/0.056, 0.6379/0.012, 0.6687/0.024,
0.7664/0.024, 0.6022/0.042, 0.6372/0.084, 0.7457/0.084, 0.6503/0.018,
0.6797/0.036, 0.7738/0.036, 0.5983/0.028, 0.6338/0.056, 0.7435/0.056, ¢,
0.6471/0.012, 0.6768/0.024, 0.7718/0.024, 0.6127/0.042,
A, 0.6464/0.084, 0.7517/0.084, 0.6590/0.018, 0.6876/0.036, 0.7790/0.036
{0.3368/0.3,0.3682/0.7}
{0.5180/0.12, 0.6243/0.48,0.5203/0.08, 0.6258/0.32},
{ 0.4571/0.056, 0.4805/0.028, 0.5049/0.056, 0.5073/0.224, }

0.5327/0.112,0.5592/0.224, 0.4740/0.024,
0.4981/0.012, 0.5232/0.024, 0.5257/0.024, 0.5517/0.048, 0.5789/0.096




Complexity

31

TaBLE 12: Updated aggregated information using g-ROPHFREWG.

0.4832/0.048, 0.5907/0.192, 0.5584/0.072, 0.6425/0.288,
0.4899/0.032,0.5951/0.128, 0.5633/0.048, 0.6461/0.192
( {0.6500/0.21, 0.7104/0.09, 0.7024/0.49, 0.7644/0.21}, )

< {0.4284/0.21, 0.4510/0.09, 0.4670/0.35, 0.4913/0.15, 0.5235/0.14, 0.5501/0.06}, )

0.7126/0.06, 0.7670/0.03, 0.8122/0.06, 0.7029/0.14, 0.7594/0.07, 0.8061/0.14,
0.7238/0.06,0.7759/0.03, 0.8061/0.06, 0.7146/0.14, 0.7686/0.07, 0.8135/0.14

{0.5923/0.7,0.5923/0.3},
0.6196/0.03, 0.6338/0.02, 0.6814/0.02, 0.6317/0.03, 0.6453/0.01,

0.6910/0.01, 0.6444/0.21, 0.6574/0.07,0.701/0.07, 0.6741/0.06,
0.6857/0.02,0.7251/0.02, 0.6840/0.03, 0.6952/0.01,
0.7332/0.01, 0.6944/0.21, 0.7051/0.21, 0.7418/0.07
0.1899/0.06, 0.2668/0.036, 0.2920/0.024, 0.2489/0.04,
0.3487/0.024,0.3811/0.016, 0.2034/0.24, 0.2856/0.144, ¢,

0.3124/0.096, 0.2664/0.16, 0.3729/0.096, 0.4073/0.064
{0.5980/0.09, 0.6134/0.21, 0.6292/0.21, 0.6429/0.49}

0.3180/0.012, 0.3964/0.048, 0.3338/0.008,
0.4156/0.032,0.3254/0.108, 0.4054/0.432, ¢,
0.3415/0.072, 0.4250/0.288
0.6052/0.15,0.6262/0.15,0.6120/0.3,
0.6325/0.03, 0.6221/0.05, 0.6419/0.05
0.3339/0.3,0.4935/0.06, 0.5812/0.03,
0.3743/0.28,0.5501/0.08, 0.6445/0.04, ¢,

0.3923/0.21,0.5748/0.06, 0.6718/0.03
{0.6385/0.12,0.6808/0.08, 0.6823/0.48, 0.7184/0.32}

>

0.5527/0.028, 0.5812/0.056, 0.6381/0.056, 0.5779/0.012, 0.6074/0.024,
0.6657/0.024, 0.5853/0.042, 0.6149/0.084, 0.6737/0.084, 0.6115/0.018,
0.6420/0.036, 0.7020/0.036, 0.5659/0.028, 0.5949/0.056, 0.6526/0.056, },
0.5915/0.012, 0.6214/0.024, 0.6804/0.024, 0.5990/0.042, 0.6291/0.084,
0.6885/0.084, 0.6256/0.018, 0.6565/0.036, 0.7170/0.036
{0.3471/0.3,0.3763/0.7}
{0.2731/0.12, 0.4028/0.48, 0.3294/0.08, 0.4857/0.32},

0.27880.41550.33540.4967
0.6102/0.056, 0.6659/0.028, 0.7445/0.056, 0.6138/0.224,

0.6687/0.112,0.7464/0.224,0.6137/0.024, 0.6686/0.012, 0.7463/0.024,

0.6172/0.024,0.6713/0.048, 0.7481/0.096
0.60060.65200.72240.60510.65570.72520.60480.65550.72500.60920.65910.7278

>

TABLE 13: Score values.

Operators

Go (4)) Go (4,) G (43) G (Ay)

q-ROPHFREWA (test)
g-ROPHFREWG (test)

0.5392 0.5392 0.4852 0.4898
0.5291 0.5299 0.4633 0.4739

TaBLE 14: Ranking of the alternatives.

Operators Score Best alternative
q-ROPHFREWA (test) Gg (A;)>Gg (A)) > Gg (A,) > Gg (A3) A,

— A A* A N
where R(by) = {g Py (9 Ohs ¥, (900 19 € 3 9y, €0,1], ®,0;, = 1.

—_— —

A+ A A N*
amd - RO)= {g’ﬁh‘—“‘“(g )/6%,1//,15@(97 )/a’“wlg €< ROPHFRNS.

ROHF rough values. Also, 9, €0,1], &.,0, =1, and

First, we collect information from DMs in the form of g-

such that 0< (max (/)’hm) (9)))‘1 + (min(whm) ( 3)))‘7 <1 Secondly, normalize the data defined by DMs since the

and 0< (min (B, (9))7 + (max(y;, , (§)))7<1 are the g-

decision matrix may have some benefit and cost criteria all
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Al A2 A3 A4

—6— ¢-ROPHFRWA (updated)
—6— q-ROPHFRWG (updated)

FIGURE 5: Alternatives using test EWA and EWG operators.

N
together, as shown in Equation (86), where J represents the Based on the score value, we determine the PIS and the
number of experts. NIS. Herein, the PIS and NIS are denoted as
Evaluate the normalized experts’ matrices (N)] as Yt = (1],75,15,...,7) and Y~ = (17,75,T5,...,T,), re-
_ spectively. For PIS Y%, it can be computed by the formula
o[ R() =(R(0) R (o)) if forbenefit, ey
(N) = c c < c
(805,))" =((X04))" (X)) T orcost
(86)

Y =(1],1,,73,...T,)

(87)
= (mtax score(7y,), max score (102)> max score (t3)>-- > max score (Ten) >
Likewise, the NIS is calculated by the formula as follows:
Y =(11,15,T5-- -5 T,)
(88)
= (mtin score (7)), min score (t02)s min score (ti3)s - +» min score (Tm)>.

Afterward, find the geometric distance between all the
alternatives and PI I as follows:

1 #h 2 —+ \?
<#hz;,< tJ(S>X6 ) ( t(sX6 )l l( tJ(s)Xam)) ( )Xéet(S)zD

d(o;Y") =2 L 89

8
1 & 2 + + )2 2oy =2
g 1<”r1<s ems)) ~(Y 0% ) |+ (”h Xae(s) =, x99
=
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0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
Al A2 A3 A4
—o— q-ROHFR.Topsis scheme
FIGURE 6: Alternatives using the TOPSIS technique.
TABLE 15: Score values of expert information.
X1 X2 X3 Xa
A, 0.6142 0.4600 0.4225 0.4433
A, 0.3825 0.4196 0.6412 0.7317
A, 0.5538 0.4213 0.5567 0.4675
A, 0.3725 0.4400 0.5087 0.5254
where t =1,2,3,...,nand j = 1,2,3,...,m. s is a positive in g-ROPHFRS. Analogously, the geometric distance be-

number which represents the number of elements contained

1 %(
e 6[( ) X
. #h o Jes
d((xtj,Y_) =3
#g 5
1 _ _ N2
+<<#g Z <2tj(5) % aﬁt;‘(s)) _(zt(S) X aet(S)) l +
s=1
Wheret: 17233>~~~>nandj: 1,2,3,...,m.

The relative closeness indices for all DMs of the alter-
natives are calculated as follows:

d(atj,Y+)

R) = )+ e V)

(91)

The ranking orders of alternatives can be determined,
and the most desirable alternative having minimum distance
is chosen.

11. Implementation of the Methodology

A numerical example relevant to “drug selection for the
treatment of COVID-19 disease” is given below to validate
the usefulness of our approach.

2, B .
Qems)) (@79 %3y l +‘<®t]’(s) x 6%))

tween all the alternatives and NI Y~ is as follows:

)
)

The DM information in the form of g-ROPHFRNSs is
given in Tables 1 and 2.

PIS and NIS are computed in Table 13.

Compute the distance measure of the PIS and NIS.

2 — \2
(@9 X Bar(9)

, (90)

2
— = — = 2
(vh tj X a€tj(s)> _(yhr X ast(s))

0.3799
0.4038

0.2158
0.4301

0.4174
0.5054

0.4971
0.2434

The relative closeness indices for all DM of the alter-
natives are calculated.

| 04848 | 03341 | 04523 | 06713

From ranking of the alternative, it could be seen that A,
has the minimum distance (Figure 6). Hence, A, is the best
alternative (Tables 15-17).
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TaBLE 16: Ideal solutions.
Criteria Yt Y
(0.1/0.3,0.2/0.5,0.5/0.2), (0.4/1),
X1 (0.3/0.6,0.4/0.4) ’ (0.5/0.5,0.6/0.5) )’
(0.8/1), (0.3/0.7,0.4/0.3),
(0.4/0.5,0.6/0.5) (0.8/1)
(0.5/0.4,0.7/0.6), (0.2/0.2,0.4/0.1, 0.5/0.7),
(0.5/0.7,0.6/0.3) ) (0.5/1.0) ’
A2 (0.4/0.3,0.5/0.7), (0.6/0.3,0.7/0.7),
(0.7/0.3,0.9/0.7) (0.3/1)
(0.8/1), (0.4/1),
(0.4/0.6,0.5/0.2,0.7/0.2) ) (0.3/0.2,0.7/0.8) )’
A (0.2/0.6,0.5/0.4), (0.5/1),
(0.4/0.3,0.5/0.7) (0.9/1)
(0.8/1), (0.6/1),
0.5/1) ) 0.7/1) )
X (0.7/1.0), (0.6/0.4,0.8/0.2, 0.9/0.4),
(0.1/0.5,0.3/0.3, 0.4/0.2) (0.7/0.7,0.9/0.3)
TaBLE 17: Ranking of the alternatives. cautiously within that context. Furthermore, our study was
S : limited to the articles published in English. Considering the
core Best alternative

Gg (A;) >Gg (A;3) > Gg (A)) >Gg (A A,

12. Conclusion

The main objective of this research is to present a unique and
new approach for evaluating the medicine selection problem for
COVID-19 infection utilizing the novel concepts of g-
ROPHEFRS under the g-ROFS, HFS, and RS environment. In
comparison to conventional fuzzy models, a ¢-ROPHFR model
effectively describes real-world problems with ambiguity,
vagueness, and incompleteness. Furthermore, we introduced the
concept of g-ROPHFREWA and g-ROPHFREWG aggregation
operators that are effective and flexible to MCGDM problems
with uncertainty. Furthermore, the efficiency and applicability of
the described notion have been presented by evaluating med-
ications for the patients infected by the COVID-19 virus. In the
final ranking and optimal decision-making of treatments for
patients of COVID-19 virus, the proposed techniques are
compared with the g-ROHFR-TOPSIS method, and the su-
periority of the acquired results is validated. The ranking of the
alternatives is depicted graphically. According to the final
ranking of the established methodology, remdesivir is the most
effective medicine for treating patients infected with COVID-19.
It is observed that some essential topics remain in terms of
potential future works that are good enough to justify. In the
future, this work will be extended to the (1) g-ROPHFRE
ordered weighted averaging operator (WAO); (2) g-ROPHFRE
hybrid AOPs; (3) ¢-ROPHFRE ordered weighted geometric
operator (WGO); and (4) g-ROPHFRE hybrid WGO.

12.1. Limitation. A number of included studies were limited
in terms of data availability and methodological quality.
Therefore, the reported findings should be interpreted

epicenter of COVID-19, Chinese literature should be in-
cluded in future systematic reviews. We will continue to
monitor the literature, and this method will be updated
when new evidence emerges.
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