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Abstract This paper presents a decision support system for
cyclic master surgery scheduling and describes the results of
an extensive case study applied in a medium-sized Belgian
hospital. Three objectives are taken into account when build-
ing the master surgery schedule. First of all, the resulting
bed occupancy at the hospitalization units should be leveled
as much as possible. Second, a particular operating room is
best allocated exclusively to one group of surgeons having
the same speciality; i.e., operating rooms should be shared
as little as possible between different surgeon groups. Third,
the master surgery schedule is preferred to be as simple and
repetitive as possible, with few changes from week to week.
The system relies on mixed integer programming techniques
involving the solution of multi-objective linear and quadratic
optimization problems, and on a simulated annealing meta-
heuristic.
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1 Introduction

Due to the ageing of society and the continuously growing
demands, health care is becoming very expensive. Accord-
ing to the 2005 report of RIZIV, the Belgian national ex-
penses for health care amounted to 15.38 billion Euro in
2003. Five years earlier, in 1998, we spent no more than
11.29 billion Euro. In other words, the total health care ex-
penses have increased by 36% in only five years. The annual
figures indicate an average growth of 6.3% per year with a
strong acceleration of 8.2% in 2003 (RIVIZ 2005). A pos-
sible way to keep the expenses at an acceptable level is to
introduce more responsibility into the system. Principally,
the Belgian health care system is free at the point of deliv-
ery, and therefore neither the patients nor the care providers
directly feel the real cost-price of health care. The problem
of health care finance is not that the incomes are too low,
but mainly that the expenses grow too fast. Policy makers
and health care providers must determine how to provide
the most effective health care to citizens using the limited
resources that are available. Therefore, they need effective
methods for planning, prioritization, and decision making.

A critical resource in each hospital is the operating room.
As pointed out by Litvak and Long (2000), the operating
room can be seen as the engine of the hospital. Indeed, the
activities inside the operating room have a dramatic impact
on many other activities within hospitals. For instance, op-
erated patients are expected to recover during a number of
days, called the length of stay (LOS), during which they oc-
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cupy a bed in a recovery department, also called a ward or a
hospitalization unit.

This paper presents a decision support system for assist-
ing in the development of master surgery schedules. The
master surgery schedule is a cyclic schedule that defines the
number and type of operating rooms available, the hours that
rooms will be open, and the surgeons who are to be given
priority for the operating room time (Blake et al. 2002).
A cyclic schedule is a schedule that is repeated after a pre-
determined time, called the cycle time. The cycle time is
usually one week. A new master schedule is created when-
ever the total amount of operating room time changes. We
define a block as the amount of time during which operating
room time in a specific room can be allocated to a specific
surgeon.

The system aims at three objectives. A first important ob-
jective is the visualization and optimization of the resulting
bed occupancy. An optimal resulting bed occupancy, in this
respect, is one that is as leveled as possible. To this pur-
pose, the model presented in Beliën and Demeulemeester
(2007) is adopted and embedded in the decision support sys-
tem. Second, surgeons prefer to share an operating room
with their direct colleagues, i.e., with surgeons belonging
to the same surgeon group. We define a surgeon group as
all surgeons having the same specialty, for instance, oph-
thalmology or oncology. Finally, in the case that the cycle
time is two or more weeks, the schedule should be as repet-
itive as possible within the individual weeks of the cycle. In
other words, the changes in the schedule from week to week
should be minimized.

Although not necessarily, the three objectives often con-
flict with each other, meaning that building an optimal
schedule with respect to one objective goes at the cost of
the two other objectives. This requires a multi-objective ap-
proach in which the performance with respect to the three
objectives is quantified in order to measure the schedule
quality. To this purpose, our model has a weighted penalty
function in which the weights represent the importance of
each objective. The relative magnitudes of these weights are
of course a subjective matter and can be set (and adapted)
by the human scheduler.

The system presented in this paper only takes into ac-
count elective cases. In contrast to non-elective (emer-
gency) cases, elective cases are surgical interventions that
are planned beforehand. Obviously, non-elective cases con-
tribute dramatically to the huge amount of variability in the
bed occupancy, however, an important part of the variance
can be controlled by applying well-thought-out scheduling
policies to the elective cases. More specifically, if the bed
occupancy resulting from the elective cases is nicely leveled,
there is at any time instance room left to absorb unexpected
peaks in bed requirements from non-elective cases.

2 Literature review

This literature review focuses on work in which operations
research (OR) and artificial intelligence (AI) techniques
have been applied in real-life health care settings. Despite
the rich literature on effective methods and efficient algo-
rithms for health care scheduling problems, relatively few
papers present results for real-life data. Case studies where
the algorithms are implemented in some kind of software
system and applied in practice are even harder to find. An
early bibliographic overview that focuses on OR health care
applications can be found in Fries (1976). Wiers (1997)
gives a more general review on the applicability of schedul-
ing techniques in practice that also includes some interest-
ing health care applications. A more recent collection of
OR applications in health care is provided by Brandeau et
al. (2004). Besides operating room scheduling, successful
applications of OR/MS techniques in health care include
benchmarking using DEA (e.g., Coppola et al. 2003), lo-
cation of health care facilities (e.g., Adenso-Díaz and Ro-
dríguez 1997; Brotcorne et al. 2003), organ allocation (e.g.,
Pritsker 1998), disease control and vaccination (e.g., Sewell
and Jacobson 2003), radiotherapy treatment planning (e.g.,
Romeijn et al. 2006), and many others.

A number of interesting case studies and applications on
health care scheduling deal with the development of nurse
rosters. A literature review on nurse rostering including an
interesting classification with respect to the applicability of
the approach has been provided by Burke et al. (2004). Kel-
logg and Walczak (2007) present an exploratory research
study in which they examine the models that academics have
produced and the models that have been actually used in
practice. According to their study only 30% of the mod-
els presented in the literature have been implemented. One
remarkable result was that the research-application gap is
much larger in the US (more publications, less implementa-
tions) than in Europe. Aickelin and Dowsland (2000) apply
a genetic algorithm approach on real life data from wards of
up to 30 nurses in a major UK hospital. More recently, Aick-
elin and White (2004) experiment with Bayesian optimiza-
tion and classifier techniques to similar rostering problems.
Burke et al. (1999, 2004) describe the successful application
of a hybrid tabu search metaheuristic. Their method has been
implemented in software that has been used to create nurse
rosters in over forty Belgian hospitals. Further research led
to the development of variable neighborhood search tech-
niques that also have been applied on highly constrained
real world nurse rostering data (Burke et al. 2003). This ap-
proach was hybridized with heuristic ordering (Burke et al.
2008) to produce a methodology that significantly outper-
forms a commercially implemented genetic algorithm ap-
proach on real-life data.

In the hierarchical framework for hospital production and
control by Vissers et al. (2001) master surgery scheduling
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could be positioned on the tactical level, somewhere be-
tween the Resource Planning & Control level and the Pa-
tient Group Planning & Control level. An interesting paper
that also concerns the development of master surgery sched-
ules has been written by Blake et al. (2002). They propose
an integer programming model that minimizes the weighted
average undersupply of operating room hours, that is allocat-
ing to each surgical group a number of operating room hours
as close as possible to its target operating room hours (see
also Blake and Donald 2002). The master surgery schedule
is preferred to be as simple and repetitive as possible which
entails as few changes as possible from week to week. Blake
et al. (2002) use a two-step approach that successively deals
with both objectives. In the first step, they assume a short
cycle time (one week) and use integer programming to find
the cyclic schedule with minimal undersupply of target op-
erating room hours. In the second step, a post-improvement
heuristic is run that tries to further improve this objective
by introducing some changes in the schedule from week to
week. The model has been successfully applied in a large
Canadian hospital.

Van Oostrum et al. (2006) model the problem of con-
structing master surgical schedules as a Mathematical Pro-
gram containing probabilistic constraints. Due to computa-
tional intractability the authors propose a two-phase column
generation approach that first maximizes the OR utilization
and subsequently levels the demand for succeeding hospi-
tal departments, such as wards and intensive care units. The
approach was tested using data from the Erasmus Medical
Center, Rotterdam, the Netherlands. Hans et al. (2008) pro-
pose several constructive and local search heuristics for the
robust surgery loading problem. The objective is to assign
the surgeries by the specialties in such a way, that the risk
of working in overtime is minimized, no surgeries are can-
celed, and at the same time the operating room capacity uti-
lization can be improved. The approach has also been devel-
oped in collaboration with the Erasmus Medical Center and
tested on historical data.

Santibanez et al. (2007) present a system-wide optimiza-
tion model for block scheduling that enables managers to ex-
plore trade-offs between operating room availability, book-
ing privileges by surgeons, bed capacity and waiting lists for
patients.

Kusters and Groot (1996) present a decision support
system for admission planning based on a series of re-
source availability models. The main support of the com-
puter model is in predicting the effects of decisions on the
availability of scarce resources like beds, operating theater
facilities, and nursing staff. It enables the human decision
maker to choose the right patients from the waiting list in
order to better balance the daily demand of hospital facil-
ities against the availability of these resources. The paper

contains an empirical study validating the statistical mod-
els and reports on the problems encountered when imple-
menting the system in practice. The results obtained with
the model show that such an approach based on statistical
data provides sufficiently accurate results to be useful.

Lapierre et al. (1999) propose guidelines in order to set
up a measurement system to improve on-time performance
of first health care services of the day. Their main finding is
that, even if surgeons are the main cause of delay, efforts are
likely better aimed at improving hospital workers’ on-time
performance than on improving surgeons’ on-time perfor-
mance. If the on-time performance of other hospital depart-
ments is improved, then anesthesiologists will improve their
performance and surgeons will eventually improve theirs,
with a lag. These findings are illustrated by analyzing one
hospital organization’s case.

Everett (2002) describes the design of a simulation
model to provide decision support for the management and
scheduling of patients waiting for elective surgery in the
public hospital system. The model can also be useful in
monitoring the performance of the system and exploring the
relative effectiveness of alternative policies in coping with
historical or statistically generated patient load.

Hsu et al. (2003) present a deterministic approach to
schedule patients in an ambulatory surgical center such that
the number of postanesthesia care unit nurses at the center
is minimized. Their heuristic has been tested on a set of real
data from a university hospital’s ambulatory surgical center.

Marcon and Dexter (2006) use discrete event simulation
to analyze the impact of seven different sequencing rules
on over-utilized operating room time, delays in phase I post
anesthesia care unit (PACU) admission, the PACU comple-
tion time, and PACU nurse staffing.

The ability to cope with uncertainty is considered to be
an essential part of modern health care scheduling. Kim et
al. (2000) describe a flexible bed allocation scheme that re-
serves one or more beds for the exclusive use of elective-
surgery patients to enhance the operations of the intensive
care unit. Kim and Horowitz (2002) elaborate on this work
and show through a simulation model that the combination
of this flexible bed allocation scheme and a quota system
for elective surgery greatly reduces the number of canceled
surgeries.

The operating room scheduling problems described in
the literature often contain several, sometimes conflicting
objectives. Cardoen et al. (2006) present a multi-objective
optimization model for scheduling individual cases in the
surgical day-care center of a large Belgian hospital. The
authors introduce a so-called room for improvement mea-
sure to trade-off between six different objectives (children
as early as possible, prioritized patients as early as possible,
patients having a large travel distance as much as possible
before a particular hour, minimizing overtime in recovery
and leveling bed occupancy in both recovery phase 1 and
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recovery phase 2). The model is solved using integer pro-
gramming and branch-and-bound algorithms. In a more re-
cent work, Cardoen et al. (2007) also present a branch-and-
price approach to deal with this multi-objective optimization
problem. Ogulata and Erol (2003) develop a set of hierar-
chical multiple criteria mathematical programming models
to generate weekly operating room schedules. The objec-
tives considered in this study are maximum utilization of
operating room capacity, balanced distribution of operations
among surgeon groups and minimization of patient waiting
times. Pérez et al. (2005) propose a so-called possibilistic
linear multi-objective programming model as an informa-
tion system in order to analyze the internal coherency of the
different goals expressed by Spanish Health Service in rela-
tion to the maximum stay on a waiting list. Using a Multicri-
teria Decision technique they intend to assign and manage,
in an optimal way, the real performance of the surgical ser-
vices of a medium-sized hospital in Spain.

The remainder of this paper is structured as follows. Sec-
tion 3 describes the mathematical model on which the deci-
sion support system is built. Section 4 presents the solution
procedures that were developed starting from this mathemat-
ical model. Section 5 gives some more information on the
case study. Section 6 contains a presentation of the graph-
ical user interface that was built on top of the algorithms
to visualize the operation and performance of the system.
Section 7 discusses the results obtained by applying the dif-
ferent algorithms while Sect. 8 draws conclusions and lists
some topics for future research.

3 Mathematical model

As already mentioned in the introduction, our decision sup-
port model aims at three objectives. With respect to the first
objective, leveling the resulting bed occupancy, the system
uses the model presented in Beliën and Demeulemeester
(2007). This model assumes multinomial distribution func-
tions for both the number of patients per operating room
block and the length of stay of each operated patient. Us-
ing this information, the model is capable of constructing
a master surgery schedule with leveled resulting bed occu-
pancy. In addition, performance measures such as the daily
expected bed occupancy, the variance on this occupancy,
the expected bed shortage, and the probability of a short-
age on each day can be calculated. Leveling is achieved us-
ing mixed integer programming (linear as well as quadratic)
and a simulated annealing metaheuristic.

The theoretic model described in Beliën and Demeule-
meester (2007) has been slightly modified in order to deal
with some practical issues. First, in the theoretic model, all
patients are assumed to recover in one hospitalization unit.
In practice, of course, a hospital has more than one hospital-
ization unit at which predetermined groups of patients can

recover from surgery. This is a fairly straightforward exten-
sion, that can be achieved by considering different probabil-
ity distributions for each surgeon–hospitalization-unit com-
bination. A second limit of the theoretic model is the fact
that block sizes are assumed to be fixed. In practice, how-
ever, the time for which an operating room can be allo-
cated to a particular surgeon is not necessarily fixed. For
instance, one surgeon can be allocated to a block of 4 hours
while another surgeon gets a block of 6 hours. This exten-
sion has some consequences for the simulated annealing ap-
proach (described in Beliën and Demeulemeester 2007) for
which we have added a corresponding neighborhood move.
Finally, the system described in this paper allows for the al-
location of operating room time to individual surgeons in-
stead of surgeon groups. This extension requires the addi-
tion of an extra constraint that prevents individual surgeons
from being scheduled in different rooms at the same time.

We now state the mixed integer programming models that
are used to develop the master surgery schedules. We start
with the model that only aims at a leveled resulting bed oc-
cupancy. Starting from this model we present the modifi-
cations needed in order to take into account the other two
objectives. The notation used in these models is as follows:

The indices and sets are:

i, j, d, d1, d2: days in the cycle.
s: surgeons.
r : rooms.
h: hospitalization units.
D: set of days in the cycle.
A: set of days on which surgery takes place (=active days)

(usually all days, except for the weekends).
S: set of surgeons.
R: set of rooms.
H : set of hospitalization units.

The decision variable is:

xisr =
⎧
⎨

⎩

1, if surgeon s obtains an operating room block
in room r on day i;

0, otherwise.

The help variables are:

meanhi = the mean bed occupancy in hospitalization unit h

on day i.
meanh = the peak mean bed occupancy in hospitalization

unit h over all days in the cycle.
varhi = the variance of the bed occupancy in hospitaliza-

tion unit h on day i.
varh = the peak variance of the bed occupancy in hospital-

ization unit h over all days in the cycle.

The data parameters are:

reqs : the number of blocks required by surgeon s.
capir : the total capacity (in hours) of room r on day i.
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durs : the duration (in hours) of a block allocated to sur-
geon s.

mbsijh: the contribution of allocating a block to surgeon s

on day j to the mean bed occupancy on day i in hospital-
ization unit h.

vbsijh: the contribution of allocating a block to surgeon s

on day j to the variance of the bed occupancy on day i in
hospitalization unit h.

wmeanh
: the relative importance of leveling the mean occu-

pancy in hospitalization unit h.
wvarh

: the relative importance of leveling the variance of the
occupancy in hospitalization unit h.

We start with the linear min–max model that aims at min-
imizing the weighted peaks in the expected bed occupancy
and/or the variance in bed occupancy:

Minimize
∑

h∈H

(wmeanh
meanh + wvarh

varh) (1)

subject to:
∑

i∈A

∑

r∈R

xisr = reqs ∀s ∈ S; (2)

∑

s∈S

dursxisr ≤ capir ∀i ∈ A and ∀r ∈ R; (3)

∑

r∈R

xisr ≤ 1 ∀i ∈ A and ∀s ∈ S; (4)

meanhi =
∑

s∈S

∑

j∈A

∑

r∈R

mbsijhxjsr

∀h ∈ H and ∀i ∈ D; (5)

varhi =
∑

s∈S

∑

j∈A

∑

r∈R

vbsijhxjsr

∀h ∈ H and ∀i ∈ D; (6)

meanhi ≤ meanh ∀h ∈ H and ∀i ∈ D; (7)

varhi ≤ varh ∀h ∈ H and ∀i ∈ D; (8)

meanhi, varhi ≥ 0 ∀h ∈ H and ∀i ∈ D; (9)

meanh, varh ≥ 0 ∀h ∈ H ; (10)

xisr ∈ {0,1} ∀i ∈ A,∀s ∈ S and ∀r ∈ R. (11)

The objective function (1) minimizes the weighted sum of
peaks in the bed occupancy and variance over all hospi-
talization units. Constraint set (2) ensures that every sur-
geon obtains the right number of blocks. The number of
hours preserved for each surgeon is decided on a higher level
and is a consequence of the hospital’s strategic decision for
which ailments capacity will be preserved (case mix plan-
ning). Constraint set (3) makes sure that the total operating
time assigned on each day in each room does not exceed
the available operating room time. Constraint set (4) pre-
vents a surgeon to be scheduled simultaneously in two dif-
ferent rooms. Constraint set (5) calculates the expected bed

occupancy in each hospitalization unit as a function of the
operating room schedule, while constraint set (6) calculates
the variance on this occupancy. The reader is referred to Be-
liën and Demeulemeester (2007) for more details on how
the values mbsijh and vbsijh are calculated. Constraint set
(7) provides the link with the objective function by impos-
ing for each hospitalization unit that the expected bed oc-
cupancy on each day cannot exceed the peak expected bed
occupancy. Constraint set (8) does the same for the variance.
Finally, constraint sets (9) and (10) define the mean and vari-
ance to be nonnegative and constraint set (11) defines xisr as
a binary decision variable.

The quadratic MIP model is identical to the linear min–
max MIP model except for the objective function that rep-
resents an explicit (weighted) leveling of the mean and vari-
ance of the occupancy in the different hospitalization units:

Minimize
∑

h∈H

(

wmeanh

∑

i∈A

mean2
hi + wvarh

∑

i∈A

var2
hi

)

. (12)

Obviously, constraints (7), (8), and (10) can now be removed
as these are no longer required.

In order to take into account the second objective, that is,
try to concentrate surgeons that belong to the same surgeon
group as much as possible in the same room, we need to add
an extra penalty term in the objective function and two extra
constraints triggering this penalty. Define G as the set of all
surgeon groups g. In the ideal case all surgeons of one group
are scheduled in one and the same operating room. Let ROg

be an integer decision variable that represents the number
of extra operating rooms allocated to surgeon group g. For
instance, if a group is allocated to two different rooms, then
ROg equals 1, if a group is allocated to three different rooms,
then ROg equals 2, etc. Now, we can add the following term
to the objective functions (1) and (12):
∑

g∈G

wroomg ROg (13)

with wroomg the relative importance (compared to the other
objectives) of the room concentrating objective with respect
to group g. To impose that ROg obtains the correct value,
two constraints must be added to the model. Let bgr be a
binary decision variable that equals 1 if at least one surgeon
of surgeon group g ∈ G obtains an operating room block
in room r . Let Sg be the set containing all surgeons s that
belong to group g and let |Sg| and |A| be the respective num-
bers of elements in the sets Sg and A. The extra constraints
are:
∑

i∈A

∑

s∈Sg

xisr ≤ |A||Sg|bgr ∀g ∈ G and ∀r ∈ R; (14)

∑

r∈R

bgr ≤ 1 + ROg ∀g ∈ G. (15)
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In order to take into account the third objective, that is,
making the schedules as repetitive as possible from week
to week if the cycle time is longer than one week, we need
some extra decision variables. Since the cycle time in the
studied hospital is either one or two weeks, we will only
consider this case. Let Oisr be a binary decision variable
that equals 1 if surgeon s obtains an operating room block at
day i in room r only during the odd weeks and 0 otherwise,
while Eisr represents the same for the even weeks. Whether
the cycle time is one week or two weeks, the set of active
days A remains the same containing 5 days (from Monday
to Friday). The set of days D, however, contains all days in
the cycle time (hence, 14 days in case of a cycle time of two
weeks). Note that if xisr is set to 1, then surgeon s obtains
a block on day i in the odd weeks and on day i in the even
weeks, whereas, if Oisr (Eisr ) is set to 1, this surgeon only
gets a block in the odd (even) weeks. The following term is
added to the objective functions (1) and (12):

∑

i∈A

∑

s∈S

∑

r∈R

woddevens (Oisr + Eisr ) (16)

with woddevens the relative importance of a repetitive sched-
ule for surgeon s. The constraints (2)–(6) are modified as
follows:

∑

i∈A

∑

r∈R

(2xisr + Oisr + Eisr ) = 2reqs ∀s ∈ S; (17)

∑

s∈S

durs(xisr + Oisr + Eisr ) ≤ capir

∀i ∈ A and ∀r ∈ R; (18)

∑

r∈R

(xisr + Oisr + Eisr ) ≤ 1 ∀i ∈ A and ∀s ∈ S; (19)

meanhi =
∑

s∈S

∑

j∈A

∑

r∈R

(mbsijhxjsr + ombsijhOjsr

+ embsijhEjsr ) ∀h ∈ H and ∀i ∈ D; (20)

varhi =
∑

s∈S

∑

j∈A

∑

r∈R

(vbsijhxjsr + ovbsijhOjsr

+ evbsijhEjsr ) ∀h ∈ H and ∀i ∈ D, (21)

with ombsijh (embsijh) the contribution to the mean bed oc-
cupancy on day i in hospitalization unit h of allocating a
block to surgeon s on day j of the odd (even) weeks and
ovbsijh (evbsijh) the contributions to the respective bed oc-
cupancy variances.

4 Solution procedures

To solve the model outlined above, the application can
call the CPLEX MIP solver (ILOG 2002) for linear and
quadratic optimization. Unfortunately, incorporating the
three objectives simultaneously leads to such a large mixed
integer program that the problem becomes computationally
intractable (see further). As the system is designed to sup-
port the decision making process, it is crucial that users get
quick answers to what-if questions. Therefore, alternative
heuristic solution procedures have been developed. A first
heuristic is a modified version of the simulated annealing
procedure described in Beliën and Demeulemeester (2007)
that also evaluates the second and third objective.

Simulated annealing (SA) is a technique to find a good
solution to an optimization problem by trying random vari-
ations of the current solution. A worse variation is accepted
as the new solution with a probability that decreases as the
computation proceeds. The slower the cooling schedule, or
rate of decrease, the more likely the algorithm is to find
an optimal or near-optimal solution. The algorithm is based
upon that of Metropolis et al. (1958), which was originally
proposed as a means of finding the equilibrium configura-
tion of a collection of atoms at a given temperature. The con-
nection between this algorithm and mathematical minimiza-
tion was first noted by Pincus (1970), but it was Kirkpatrick
et al. (1983) who proposed that it forms the basis of a search
technique for combinatorial (and other) problems. Good the-
oretic expositions on simulated annealing can also be found
in Huang et al. (1986) and Van Laarhoven and Aarts (1988).

We implemented a basic SA implementation in which the
neighborhood is defined as all solutions which could be ob-
tained after swapping two surgery blocks from the current
solution. The first block is chosen randomly. The second
block is the first encountered block for which a swap re-
sults in an improvement (decrease) of the objective value. If
no such block can be found, the block leading to the small-
est increase is chosen. In order to deal with variable block
sizes we added the restriction that surgeon block allocations
can only be swapped if they have the same duration. To be
able to explore a larger neighborhood, also swaps between
sets of surgeon block allocations could be performed, pro-
vided that these sets have the same total duration, making
sure that available operating room time is not exceeded in
one of the rooms after a swap. In order to decide whether
or not to accept a worse solution, a standard Boltzman func-
tion is evaluated. Let T denote the temperature and �f the
decrease in objective function. For swaps with negative �f

the probability of acceptance is given by e
�f
T . Of course, the

best found schedule is saved. For the test results reported be-
low, the temperature T was initialized at 500 and decreased
with 5% after each 10 iterations.

A second attempt to obtain good solutions in small com-
putation times resulted in the development of hierarchical
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goal programming models. These models first concentrate
on one objective after which the next objective is opti-
mized. A first important simplification concerns the cycle
time. Even when changes from the first week to the second
are, to a small extent, allowed, and hence the cycle time is
in theory two weeks, we will start with developing a one-
week schedule. This schedule is then copied to the second
week, after which some modifications can be made in a post-
optimization step (see further).

Observation 1 The resulting bed occupancy remains un-
changed when a surgeon block is shifted to a different oper-
ating room on the same day. Indeed, only the time of surgery
determines when patients enter the hospital and when they
are expected to occupy a bed; the operating room where
surgery takes place has no impact on the bed occupancy.

This first observation leads to a first hierarchical goal
programming approach consisting of two goal programming
models that are solved successively (HIER-GOAL-1):

1. Solve the MIP that only aims at leveling the bed oc-
cupancy, that is, solve the linear MIP (1)–(11) or the
quadratic MIP with objective function (12).

2. Solve a MIP that only aims at the room objective, in
which surgeon blocks cannot be shifted to different days
but only to different rooms.

The decision variables in the second MIP are selected
based on the solution of the first MIP. If xisr equals one in
the solution of the first MIP, then all xi′sr with i′ �= i will
not be present in the second MIP, ensuring that surgeons are
not shifted to another day. This two-step approach makes the
model much easier to solve.

Observation 2 The number of different operating rooms
used by a surgeon group remains unchanged when a sur-
geon block is shifted to a different day in the same operating
room.

This second observation leads to a second hierarchi-
cal goal programming approach consisting of two goal
programming models that are solved successively (HIER-
GOAL-2):

1. Solve the MIP that only aims at the room objective, that
is, solve the linear MIP with objective (13) and con-
straints (2)–(4).

2. Solve a MIP that only aims at the leveling objective,
in which surgeon blocks cannot be shifted to different
rooms but only to different days.

Similarly, the decision variables in the second MIP are
selected based on the solution of the first MIP. If xisr equals
one in the solution of the first MIP, then all xisr ′ with r ′ �= r

will not be present in the second MIP, ensuring that sur-
geons are not shifted to another room. This two-step ap-
proach makes the model again much easier to solve.

Improvement step As already said, even when the cycle
time is two weeks, both hierarchical approaches outlined
above aim at a one-week schedule. Afterwards the devel-
oped schedule is copied to the second week. Since the sched-
ule of the first week is exactly the same as the schedule of
the second week, we incur no penalty cost for the difference
between odd and even weeks (no odd–even penalty cost).
Although leading to an odd–even penalty cost, some modi-
fications to the schedule could be beneficial with respect to
the resulting bed occupancy. Therefore, a post-optimization
procedure can be applied that searches for the surgeon swap
that results in the best improvement with respect to a chosen
objective (leveling, minimizing expected shortage, probabil-
ity of shortage). The user can control the odd–even penalty
cost by limiting the maximal number of swaps in the post-
optimization procedure.

An extra asset is that the different procedures of the hi-
erarchical goal programming models can also be used sepa-
rately in order to solve what-if questions. One can start from
a given schedule, for instance the schedule that is currently
in practice, and execute the second MIP optimization for
which either the days or the rooms of surgery are fixed. If,
for instance, the room allocation is fixed, one can find an
answer to the question: To what extent the bed occupancy
can be leveled without changing the room allocations? Al-
ternatively, if the days are fixed, one can obtain an answer
to the question: To what extent the room allocations can be
rearranged such that the same specialties share the same op-
erating room without changing the expected bed occupancy?

5 Case study

The case study presented entails the Virga Jesse Hospital,
situated in Hasselt, Belgium. Virga Jesse’s central operat-
ing room complex consists of 9 rooms in which a total of
46 surgeons have been assigned operating room time. These
surgeons are classified into 14 different surgeon groups with
respect to the specialism. Each operating room is open from
Monday to Friday for 8.5 hours. Up to now, no elective
surgery takes place during the weekends. The hospital has
25 different hospitalization units, however, only 10 units
have served more than 100 elective cases in 2004. The
models applied in this study involve the development of a
(cyclic) master surgery schedule with leveled bed occupancy
in these 10 major hospitalization units.

For the leveling objective we need as input for each
surgeon–hospitalization-unit combination the probability
distributions of the number of patients per block and the
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Table 1 Snapshot of the input file containing detailed information on all surgical interventions in 2004

OR_NR SURGEON ROOM HOSP. UNIT DATE_IN DATE_OUT

23005838 PUTE Operatiezaal 04 3200 2/01/2004 8:00 2/01/2004 17:00

23116828 DTRG Operatiezaal 09 3200 2/01/2004 8:00 2/01/2004 17:00

23408780 VDVG Operatiezaal 03 2150 2/01/2004 8:00 5/01/2004 15:00

23409553 BOES Operatiezaal 05 2160 2/01/2004 8:00 5/01/2004 15:19

23382108 PUTE Operatiezaal 04 3200 2/01/2004 8:05 2/01/2004 17:00

23383582 LENH Operatiezaal 08 3200 2/01/2004 8:05 2/01/2004 17:00

23409151 PUTE Operatiezaal 04 3200 2/01/2004 8:10 2/01/2004 17:00

23408550 PUTE Operatiezaal 04 3200 2/01/2004 8:15 2/01/2004 17:00

23382105 PUTE Operatiezaal 04 3200 2/01/2004 8:20 2/01/2004 17:00

23408576 VDKJ Operatiezaal 06 3200 2/01/2004 8:20 2/01/2004 17:00

. . .

LOS for each operated patient. The theoretical models as-
sume multinomial distributions, often referred to as empir-
ical discrete probability distributions. These general proba-
bility distributions can easily be constructed from a database
containing the detailed information on all surgical interven-
tions that have been performed in a reasonably long time
period (e.g., one year). Table 1 contains a snapshot of the
(relevant) fields of the input file.

Only elective cases are taken into account. The reason
why the non-elective (emergency) cases are not retained is
twofold. First, the occurrence as well as the recovery period
of non-elective, emergency cases is, by definition, highly
unpredictable, and hence it would make little or no sense
to fit a probability distribution to them. Second, since non-
elective (emergency) cases occur, by definition, unexpect-
edly, this surgery often takes place on days during which the
surgeon has no block allocated. Hence, taking them into ac-
count would lead to a biased distribution for the number of
patients per operating room block.

Table 2 shows an example of the derived probability dis-
tributions, for one particular surgeon. It must be clear at
this point that the LOS distributions are specific for each
surgeon–hospitalization-unit combination. This is a very re-
alistic basic assumption, since the patient recovery time is
usually strongly related to this unique combination as pa-
tients operated by the same surgeon and recovering in the
same hospitalization unit often suffer from similar ailments.
Of course, surgeons can perform different surgical treat-
ments in one block, but the proportions of these treatments
are often reasonably constant.

Our system can derive these probability distributions au-
tomatically. Before deriving the number of patients and LOS
distributions, the surgeons and the existing schedule have to
be read in manually. The existing schedule is needed to de-
termine whether the case is elective or non-elective. If the
intervention takes place on a day during which a block is

preserved for the surgeon, it is considered to be an elective
case. Otherwise, it is considered to be a non-elective case.

A problem arises when a surgeon is assigned to blocks of
different durations in the current schedule. In this case, the
distribution functions are derived for each different block
duration. For instance, consider a surgeon who has a block
of 8.5 hours on Monday and a block of 4 hours on Tuesday.
In our approach, distributions will be derived for the Mon-
day block as well as for the Tuesday block. This implies that
hours cannot be exchanged between blocks. Only shifting
of total blocks will be allowed. The choice for this approach
is justified as follows. First of all, a block is probably the
best unit for deriving the probability distributions. A smaller
unit (e.g., an hour) is in our view less effective to fit the real
distributions. Second, a block that extends twice as long as
another block, assigned to the same surgeon, does not neces-
sarily include twice the number of patients. Hence, deriving
one number of patients distribution from two blocks with
different duration would lead to a biased probability distri-
bution. Third, limiting the model to shifting entire blocks
entails some interesting computational features. Also con-
sidering the exchange of hours between the different blocks
of a surgeon would dramatically complicate the problem.
Fourth, the graphical user interface is kept extremely simple
as block allocations and swaps can easily be done by drag-
ging and dropping. Finally, from a practical point of view,
most of the surgeons have currently been allocated to blocks
of the same duration, and hence relatively few extra distrib-
ution functions need to be derived.

6 Graphical user interface

In this section the graphical user interface (GUI) is pre-
sented. The application was programmed in Visual C++.
NET. The GUI visualizes the surgery schedule and the re-
sulting bed usage occupancy distributions for a given sched-
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Table 2 Example of number of
patient and LOS distributions
for three hospitalization units
for surgeon DUPA

SURGEON HOSP. UNIT NUMBER OF PATIENTS LOS

NUMBER OF PATIENTS PROB. NUMBER OF DAYS PROB.

DUPA 2160 0 0.20 3 0.20

1 0.38 4 0.02

2 0.34 5 0.02

3 0.06 6 0.03

4 0.02 7 0.28

8 0.21

9 0.21

10 0.03

12 0.02

2601 0 0.56 4 0.03

1 0.34 7 0.04

2 0.06 8 0.41

3 0.04 9 0.45

10 0.07

3200 0 0.16 1 1

1 0.10

2 0.22

3 0.30

4 0.12

5 0.08

6 0.02

ule. Moreover, it allows the user to modify an existing sched-
ule and to view the impact of a change in the schedule on the
bed occupancy. Data like the schedule properties, the sur-
geon properties and the hospitalization properties can easily
be read in and modified. Automation features include the
deduction of the probability distributions for patient num-
bers and lengths of stay from a database (as described in
Sect. 5) and the optimization of the schedule with respect to
certain objective measures. Figure 1 shows the current mas-
ter surgery schedule with resulting bed occupancy (only four
hospitalization units are shown). The main window consists
of two panes. In the left pane the master surgery schedule
is shown. The columns in the grid represent the days in the
week (in this case the cycle time is one week). The nine
rows represent the nine operating rooms. The surgeons are
shown above the grid in the color legend (only a subset is
visible). The schedule could be built from scratch by drag-
ging and dropping the surgeons to the cells of the grid. Of
course, a room can also be allocated for a limited number
of hours instead of the full 8.5 hours. Each block allocation
introduces a patient flow in the system, which is reflected by
an increase in the bed occupancy of one or more hospital-
ization units on one or more days. This is represented in the
right pane. Only four hospitalization units are shown (2110,
2120, 2130, and 2140; each row corresponds to one unit).

The small T-ending bars on top of each colored occupancy
box indicate the standard deviations of the bed occupancy
distributions on the corresponding days at the correspond-
ing hospitalization units.

A simulation run could be done in order to validate the
theoretical basic assumptions of the model. To this purpose
it can be verified whether the predicted bed occupancies
(and shortages) obtained by calculation are similar to the
ones obtained by simulation.

7 Results

It is difficult to objectively compare the quality of the gen-
erated schedules, as there is no once-and-for-all objective
measure to make this comparison. To build a quality sched-
ule or at least to improve the current schedule, one has to
study the current practices and determine the most appro-
priate objective function and automation procedure. For in-
stance, if capacity problems always occur at the same hos-
pitalization unit, a linear or quadratic MIP procedure that
focuses on this unit will probably render the best results.
The visualization of the bed occupancies can of course as-
sist in determining the appropriate model. However, it might
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Fig. 1 Overview of the GUI

be not so easy to find the surgeon swaps that lead to a bet-
ter schedule. Therefore, the automation procedures can be
useful.

Rather than trying to find the overall best master surgery
schedule for the Virga Jesse Hospital, which is a subjec-
tive matter after all and hence makes little sense anyway,
we present the current schedule and compare it with the re-
sults of a number of different algorithm runs. Figure 1 shows
the current schedule and the resulting bed occupancy in the
first 4 hospitalization units. The total expected bed shortage
in the current schedule is 23.49, which means that, over all
hospitalization units, more than 3 beds per day are lacking in
the assigned hospitalization unit and hence have to be found
in another hospitalization unit.

As can be seen in Fig. 1, some problems may arise at
hospitalization unit 2130 (third unit), where there is a high
peak occupancy on Friday leading to a positive expected bed
shortage. Also the fourth hospitalization unit (2140) suffers
from large differences in the bed occupancy peaks. This asks
for a scheduling procedure that simultaneously focuses on
the leveling of the bed occupancy distributions in units 2130

and 2140. To this purpose, a linear MIP procedure that min-
imizes the weighted maximum peak of the bed occupancies
in units 2130 and 2140 could be applied. It should be clear
that the bed occupancy in these units is now much more lev-
eled over the week.

The drawback of this new schedule is that many surgeons
have to share an operating room with colleagues belonging
to different groups. If we account for a penalty of 1 for each
extra room used by a surgeon group (wroomg = 1), we obtain
a total room penalty of 34, while in the current schedule this
is only 14. This means that in the current schedule the 14
surgeon groups use two rooms per group (14 extra rooms),
while in the new schedule, they use more than 3 rooms per
group. It would be interesting to ask the system for a sched-
ule that takes into account both room restrictions and level-
ing issues. It could also be investigated to what extent the
bed occupancy can be further leveled by a prolongation of
the cycle time from one week to two weeks (and, hence, by
allowing a limit number of differences between the odd and
the even weeks).
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Fig. 2 The results of a linear MIP to level the mean bed occupancy of hospitalization units 2130 and 2140 (shown in the lower right)

But first we present more computational results for the
case in which the schedule is repeated each week (cycle
time = 1 week) and room penalties are ignored. To evaluate
the bed occupancy leveling objective we take the expected
number of bed shortages over all ten hospitalization units in-
cluded in this study as the one and only objective measure.
The results of several optimization procedures are shown
in Table 3. The first procedure is a linear MIP that aims at
minimizing the highest peak in the mean bed occupancy in
each hospitalization unit, this is (1)–(11) with wmeanh

= 1
and wvarh

= 0 ∀h ∈ H . The second procedure also merely
focuses on the mean bed occupancies but only considers
hospitalization units 3 and 4, hence wmean3 = wmean4 = 1,
wmeanh

= 0 ∀h �= 3 and h �= 4. The third procedure mini-
mizes in addition the peak in the variances, but again only
for unit 3 and 4. The three subsequent procedures are simi-
lar to the three first procedures but have a quadratic objective
function (12).

Table 3 shows that the total expected bed shortage drops
from 23.49 (in the current schedule) to 20.77 if a linear MIP
approach is used that focuses on all hospitalization units.

Similar results are obtained for the other MIP based proce-
dures. The best result was found by the simulated annealing
procedure which can be explained by the fact that this is the
only procedure that directly aims at the minimal expected
shortage objective.

Since the procedures of Table 3 do not take into account
a room penalty, the resulting schedules perform poorly with
respect to this objective (total room penalty ranging from 33
to 38 if wroomg = 1 ∀g ∈ G). Table 4 contains the results of
the same procedures, but this time room penalties are taken
into account. Two new procedures are added. The first is
the hierarchical procedure HIER-GOAL-1 in which the first
step is solving the linear MIP (1)–(11) with wmeanh

= 1 and
wvarh

= 0 ∀h ∈ H . The second is the hierarchical procedure
HIER-GOAL-2 in which the second step is solving the lin-
ear MIP (1)–(11) with wmeanh

= 1 and wvarh
= 0 ∀h ∈ H .

A first important difference with the results of Table 3 is that
many of the procedures no longer succeed in finding a fea-
sible solution (–) within 120 seconds (even with the CPLEX
setting emphasizing feasibility). Only the linear MIP mod-
els that focus on two hospitalization units manage to find a
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Table 3 Results of different
algorithm runs; cycle
time = 1 week; comp.
time = 120 seconds

Procedure Total exp. shortage Room penalty

Linear MIP MIN–MAX mean all units 20.77 36

Linear MIP MIN–MAX mean 2130 and 2140 21.05 37

Linear MIP MIN–MAX mean + var. 2130 and 2140 20.78 35

Quadratic MIP mean all units 20.51 33

Quadratic MIP mean 2130 and 2140 20.45 37

Quadratic MIP mean + var. 2130 and 2140 20.63 38

Simulated annealing 18.95 35

Table 4 Results of different
algorithm runs taking into
account room penalty; cycle
time = 1 week; comp.
time = 120 seconds

Procedure Total exp. shortage Room penalty

Linear MIP MIN–MAX mean all units – –

Linear MIP MIN–MAX mean 2130 and 2140 21.26 12

Linear MIP MIN–MAX mean + var. 2130 and 2140 21.05 13

Quadratic MIP mean all units – –

Quadratic MIP mean 2130 and 2140 – –

Quadratic MIP mean + var. 2130 and 2140 – –

Simulated annealing 21.91 16

HIER-GOAL-1 20.77 15

HIER-GOAL-2 20.81 6

Table 5 Results of different
algorithm runs; cycle
time = 2 weeks; comp.
time = 120 seconds

Procedure Total exp. shortage Odd–even penalty

Linear MIP MIN-MAX mean all units 45.36 0

Linear MIP MIN-MAX mean 2130 and 2140 45.54 0

Linear MIP MIN-MAX mean + var. 2130 and 2140 45.05 0

Quadratic MIP mean all units 45.50 12

Quadratic MIP mean 2130 and 2140 44.42 0

Quadratic MIP mean + var. 2130 and 2140 44.18 0

Simulated annealing 46.98 0

feasible solution. A second important difference is that the
simulated annealing procedure is now outperformed by the
other procedures (at least the ones that find a feasible solu-
tion). This can be explained by the fact that, in contrast with
the leveling objective, the room objective is a direct part of
the objective function of the MIP models and, hence, sim-
ulated annealing loses its advantage of exclusively focusing
on the real objective. The second hierarchical goal program-
ming procedure performs remarkably well.

Table 5 contains again the results for the procedures
of Table 3 (hence, no room penalty) but now consider-
ing a cycle time of two weeks, thus with added term (16)
(woddevens = 1 ∀s ∈ S) in the objective function and modi-
fied constraints (17)–(21). Apparently, this extension is less
complicated than the room penalty extension as all ap-
proaches again succeed in finding at least a feasible solution.
Similar to the case with added room penalty, the MIP based

procedures perform better than the simulated annealing pro-
cedure. As a matter of fact, the simulated annealing proce-
dure does not manage to improve the start solution (current
schedule with two identical weeks) because the first surgeon
swap results in an increase of the odd–even penalty by at
least 4 (the two swapped surgeons each incur an odd–even
penalty of 1 in each week). Even when this swap passes the
simulated annealing temperature test, the algorithm fails to
improve the solution again to one that is better than the start
schedule. Only for the quadratic MIP model that focuses on
all units, the found schedule differs from week 1 to week 2.
This is a quite logical result since the odd–even penalty of
12 is rather small with respect to the (quadratic) remainder
of the objective function (4557.24, not shown in the table).

Table 6 combines Tables 4 and 5 by considering both
the room extension and the cycle time prolongation. The
last two procedures are the earlier described hierarchical
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Table 6 Results of different algorithm runs taking into account room constraints; cycle time = 2 weeks; comp. time = 120 seconds

Procedure Total exp. shortage Room penalty Odd–even penalty

Linear MIP MIN–MAX mean all units – – –

Linear MIP MIN–MAX mean 2130 and 2140 45.70 14 0

Linear MIP MIN–MAX mean + var. 2130 and 2140 45.01 12 0

Quadratic MIP mean all units – – –

Quadratic MIP mean 2130 and 2140 – – –

Quadratic MIP mean + var. 2130 and 2140 – – –

Simulated annealing 46.98 15 0

HIER-GOAL-1 + improvement step 39.55 12 22

HIER-GOAL-2 + improvement step 39.76 7 18

goal programming approaches followed by an improvement
step, that searches for the three most improving swaps (sub-
sequently) with respect to the minimal total expected bed
shortage objective at the cost of introducing differences be-
tween the odd and the even weeks and, hence, incurring an
odd–even penalty cost. As can be seen in Table 6, these pro-
cedures manage to improve both the leveling objective and
the room objective at the cost of a positive odd–even penalty
cost.

Finally, Table 7 presents the solution quality, measured
by the so-called gap, as a function of the computation time.
For the MIP based solution procedures the gap is defined
as the difference between the found solution and the lower
bound, expressed as a percentage of the found solution. Re-
mark that these gaps are calculated with respect to the ob-
jective values of the MIP models (and not with respect of the
minimal total expected bed shortage objective). The reason
is that the MIP optimizer provides us with a quality lower
bound on the MIP objective while we lack a lower bound
calculation on the real objective. For the hierarchical goal
programming procedures the reported gaps apply on the so-
lution of the second MIP. For the simulated annealing proce-
dure the gap is defined as the difference between the found
solution in the given time limit and the final solution found
after 120 seconds, again expressed as a percentage of the
first. Hence, the gap of the simulated annealing procedures
is by definition 0 after 120 seconds of computation time.
Also for the hierarchical goal programming procedures fol-
lowed by an improvement step the gap was calculated in this
way, since the last step is a steepest descent heuristic. Recall
that ‘–’ indicates that no feasible solution was found in the
given computation time. ‘N.A.’ indicates that the procedure
is not applicable; e.g., the hierarchical goal programming
procedures are not applicable to problems without a room
penalty. Similarly, the hierarchical goal programming proce-
dures followed by an improvement step are only applicable
for problems with a 2-week cycle time and a room penalty.
From Table 7 it can be concluded that the MIP models, at

least in the case of no room penalty, find near optimal so-
lutions in the first 30 seconds which are hardly improved in
the remaining computation time. On the contrary, the simu-
lated annealing procedure keeps significantly improving the
solution during the whole computation run.

8 Conclusions and future research

This paper has presented a decision support system to de-
velop master surgery schedules. The system is built on dif-
ferent optimization procedures that aim at leveling the re-
sulting bed occupancy, concentrating surgeons of the same
group in the same rooms, and keeping the schedules consis-
tent from week to week. Depending on the hospital’s situa-
tion and, in particular, on the problems it is facing, a proce-
dure can be chosen to build a new master surgery schedule.
Additionally, the system can provide managers with impor-
tant insights into the opportunities or limits with respect to
the master operating room schedule. The system was pre-
sented by means of a case study in a medium-sized Belgian
hospital. To this purpose, the required input data, namely the
distribution functions for the number of operated patients as
well as for the length of stays, have been derived from the
hospital’s central database containing detailed information
on all surgical cases during a 1-year period.

It must be clear that the software does not provide an
overall best solution. Different algorithm runs lead to dif-
ferent solutions and it is up to the manager to decide on the
best schedule. The real power of the software lies in the vi-
sualization of the schedule and the resulting bed occupancy,
the ease with which schedules can be built and the capability
it provides to carry out an in-depth analysis of the existing
system. Using the software, managers can find answers to
questions like “what is the most leveled bed occupancy pos-
sible at hospitalization unit X?”, “which schedule simultane-
ously levels the bed occupancy in units X and Y?”, “to what
extent surgeons can be assigned operating rooms with col-
leagues of the same group?”, or “could it be beneficial with
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respect to the resulting bed occupancy distribution to intro-
duce some differences between the schedules of the odd and
the even weeks?”.

The computational results show that the built-in algo-
rithms generally succeed well in generating schedules with
leveled resulting bed occupancy. However, when the room
objective is added, the single MIP approaches, in particular
the quadratic ones, face computational difficulties. In this
case, the hierarchical goal programming approaches provide
a valuable alternative.

In real life, it is often the case that a surgeon admits or
rejects patients as a function of the remaining bed capacity
at the relevant hospitalization unit at that moment. In other
words, an important part of the variability in the bed oc-
cupancy can be taken care of by appropriate admission of
elective cases during the final stage of the surgery schedul-
ing process which involves the detailed planning of the indi-
vidual elective cases taking into account the block allocation
from the master surgery schedule. Obviously, in the concern
of both patient and surgeon, the postponement of surgery is
best avoided as much as possible. Therefore, methods for a
careful design of the master surgery schedule, as presented
in this study, are still valuable. For future research, however,
it would be interesting to extend the software with a module
that deals with scheduling the individual elective cases. In
addition, a statistical module that enables the user to make
comparisons between the occupancy observed in real life on
the one hand and the occupancy predicted by the system on
the other hand, with a feedback mechanism to improve the
predictions, would definitely increase the power of the soft-
ware.
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