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Abstract

Multiclass classification of brain tumors is an important area of research in the field of medical imaging. Since accuracy 

is crucial in the classification, a number of techniques are introduced by computer vision researchers; however, they still 

face the issue of low accuracy. In this article, a new automated deep learning method is proposed for the classification of 

multiclass brain tumors. To realize the proposed method, the Densenet201 Pre-Trained Deep Learning Model is fine-tuned 

and later trained using a deep transfer of imbalanced data learning. The features of the trained model are extracted from the 

average pool layer, which represents the very deep information of each type of tumor. However, the characteristics of this 

layer are not sufficient for a precise classification; therefore, two techniques for the selection of features are proposed. The 

first technique is Entropy–Kurtosis-based High Feature Values (EKbHFV) and the second technique is a modified genetic 

algorithm (MGA) based on metaheuristics. The selected features of the GA are further refined by the proposed new thresh-

old function. Finally, both EKbHFV and MGA-based features are fused using a non-redundant serial-based approach and 

classified using a multiclass SVM cubic classifier. For the experimental process, two datasets, including BRATS2018 and 

BRATS2019, are used without increase and have achieved an accuracy of more than 95%. The precise comparison of the 

proposed method with other neural nets shows the significance of this work.

Keywords Brain tumor · Deep learning · Feature extraction · Feature selection · Feature fusion

Introduction

Brain tumor is one of the most terrifying diseases in the 

present era [1, 2]. The collective behavior of the abnormal 

cells in the brain is a one of the common reasons for its 

occurrence. [3]. Two stages of brain tumors including pri-

mary and secondary are reported in the relevant literature 

[4]. In the primary stage, the tumor size is small, and in the 

biological term, it is called benign. In the secondary stage, 

tumors spread from other parts of the body and its size is 

larger than benign, and it is called malignant [5]. According 

to the National Brain Tumor Society, in USA, approximately 

700,000 patients are suffered from brain tumor disease. Of 

those, 69.8% are benign, whereas rests of 30.2% are malig-

nant in nature. According to the report, the survival rate 

of the patients is 36% only. In 2020, approximately 87,000 

patients are diagnosed with brain tumor [6]. In 2021, an 

estimated number of diagnosed brain tumor patients are 84, 

170. The number of diagnosed adults above age 40 will be 

69, 950. Based on high mortality rate of brain tumor, it is 

divided into two stages—HGG (high-grade glioma) and 

LGG (low-grade glioma). Moreover, the LGG survival rate 

is fast as compared to HGG. The survival rate of HGG is 

approximately 2 years; therefore, it is required a fast treat-

ment [7].

For the treatment of brain tumors, different techniques 

are used in the clinics [8]. In the benign stage, radiotherapy 

is useful and a patient can survive without any surgery [9]. 

On the other side, the cancerous stage is harmful and can be 

treated through chemotherapy and radiotherapy [10]. Hence, 

 * Muhammad Attique Khan 

 attique.khan@hitecuni.edu.pk

1 Department of Computer Science, COMSATS University 

Islamabad, Wah Campus, Pakistan

2 Department of Computer Science, HITEC University, 

Museum Road, Taxila, Pakistan

3 Computer Engineering Department, College of Computer 

and Information Sciences, King Saud University, 

Riyadh 11543, Saudi Arabia

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-021-00321-0&domain=pdf


3008 Complex & Intelligent Systems (2022) 8:3007–3020

1 3

benign tumors are typically slow in spreading as compared 

to malignant tumors. However, in either case, diagnosis is 

crucial and it needs expert radiologists [11]. The more recent 

imaging technology shows a huge success in the area of 

medical imaging for the diagnosis and detection of danger-

ous human diseases such as brain tumors [12], skin cancer 

[13], stomach cancer [14, 15], lung cancer [16], blood cancer 

[17], and name a few more [18–21]. For brain tumors, MRI 

(Magnetic Resonance Imaging) and CT (Computed Tomog-

raphy) scans are more useful imaging technologies [22]. 

However, MRI scans are more useful based on tumor tex-

ture and shape information as compared to CT images [23]. 

Through MRI, the size, shape, and location of the detective 

tissues can be easily computed. These techniques also have 

few flaws such as huge computational time and cost [24, 25].

For early brain tumor detection and classification, a 

computer-aided diagnosis (CAD) system may helpful for the 

second opinion of the radiologists in the clinics [26, 27]. 

A simple CAD system consists of few important steps in a 

sequential manner such as preprocessing of original MRI 

scans, feature extraction of preprocessed MRI scans, feature 

reduction, and finally classification using a supervised learn-

ing algorithm [28]. In the preprocessing step, the original 

MRI scans are improved where tasks like contrast enhance-

ment and noise removal are performed. This is important for 

manual/classical feature extraction. The classical features 

are shaped geometric, texture (LBP and GLCM), and point 

(SIFT). However, these features are not efficient for high-

dimensional datasets. A few researchers introduced feature 

reduction techniques for the fast execution of a CAD sys-

tem [29]. However, it is not a good way as it may neglect 

and drop important features. The final features are classi-

fied using supervised learning algorithms such as KNN, 

Naïve Bayes, etc. [30]. This type of CAD system is not 

supportive of multiclass classification problems. Recently, 

the entrance of deep learning in the area of medical imag-

ing showed great success for the classification task, espe-

cially the multiclass classification problem with improved 

accuracy. In this regard, the deep learning algorithms are 

successfully applied for large-dimensional datasets. For 

brain tumor, the famous datasets are collected from BRATS 

[31, 32]. This dataset includes four tumor types for each 

patient, such as T1-weighted tumor, T1 contrast-enhanced 

tumor, T2-weighted tumor, and Flair, as shown in Fig. 1. 

In the figure, it is shown that most of the image regions are 

similar to each other and there is a high chance of misclas-

sification. Moreover, the textural and shape information of 

these tumors are similar to each other.

In this work, a new automated system using deep learning 

is proposed, which considers the aforementioned problems 

of multiclass brain tumor classifications such as similarity 

among tumor types, reduction of important features, and 

high-dimensional datasets. In the proposed method, we 

extract deep learning features without employing the pre-

processing step (contrast stretching). Major contributions 

of this research work are as follows:

– Fine-tuned a pre-trained deep learning model 

Densenet201 and trained using a deep transfer learning. 

The training is conducted on imbalanced data. From the 

trained model, features are extracted from the average 

pool layer which represents the highly deep information 

of each tumor type.

– Proposed a new feature selection approach named 

Entropy–Kurtosis-based High Feature Values 

(EKbHFV). This approach considers number of itera-

tions (total features), and in each iteration, features are 

validated using Fine-KNN-based fitness function.

– Modified the Genetic Algorithm (MGA) for the best fea-

ture selection using standard deviation. The fitness in 

each iteration is calculated using Euclidean Distance. If 

fitness is not meet then performed a cross-over and muta-

tion. In the last, the selected vector is further passed in a 

threshold function and removes the redundant features.

– Selected features of both EKbHFV and MGA are fused 

using a non-redundant serial-based approach. The final 

features are classified using a multiclass cubic SVM clas-

sifier.

Fig. 1  Sample MRI scans to represent the multiclass brain tumor classification problem
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The related work of this article is set out in the section 

“Related work”. The proposed methodology, consisting of a 

fine-tuned model, extraction features and fusion, is presented 

in the section “Proposed work”. Results and comparisons 

with recent techniques are discussed in the section “Experi-

mental results and analysis”. Finally, the conclusion of this 

work is set out in the section “Conclusion”.

Related work

In the literature, several methods are proposed for brain 

tumor detection and classification. Most of them focus on 

binary class classification such as benign and malignant [33, 

34]. However, the binary class classification is easy due to 

the easy interpretation of tumor shape and texture [35, 36]. 

The multiclass classification problem is difficult due to high 

similarity among tumor types. Sharif et al. [6] presented 

the technique to minimize the detection process of the brain 

tumor and feature selection was the major objective of this 

research. In the study, a deep learning method is used to 

recognize the brain tumor. Initially, the contrast enhance-

ment through the saliency method is applied for tumor 

detection. Later, deep learning features are extracted and 

optimized using PSO. Two datasets including BRATS2017 

and BRATS2018 were used. The accuracies of 83.73% (core 

tumor), 93.7% (whole tumor), and 79.94% (enhanced tumor) 

for the BRATS2017 dataset is reported, whereas the accu-

racy of other dataset BRATS2018 is reported 88.34% (Core 

tumor), 91.2% (whole tumor), and 81.84% (enhanced tumor). 

Moreover, the classification process is also applied to other 

datasets like BRATS2013, BRATS2014, BRATS2017, and 

BRATS 2018, and reported an average accuracy of 92%. In 

another research, Narmatha et al. [37] presented segmenta-

tion and classification techniques with the help of a fuzzy 

brain-storm optimization algorithm. In this method, the 

storm optimization provides the highest priority from the 

target cluster in the brain. Several iterations of the fuzzy 

technique help to get the optimal solution. The BRATS2018 

dataset was used for the experimental process and an accu-

racy of 93.85% is reported. Rehman et al. [12] presented a 

method for the automated detection of brain tumors using 

a deep learning. The study is useful for the microscopic 

detection of the tumor. In this method, for the extraction 

of the brain tumor, the new 3D CNN model is designed. 

Then, a pre-trained Model of CNN was trained for feature 

extraction. In the last, optimal features were selected and 

performed experiments on BRATS 2015, 2017, and 2018. 

On these three datasets, the accuracies of 98.32%, 96.97%, 

and 92.67% are reported, respectively. Rehman et al. [38] 

proposed a framework using three different architectures 

such as Alexnet, VGGNet, and GoogLeNet. The authors 

used the transfer learning techniques on each neural net for 

training. Before training, they performed data augmentation 

for better classification accuracy. The main purpose of the 

work is to reduce the problem of over fitting with a large 

number of data. For the dataset of this performance, MRI 

slices of fine and freeze were used and gained the best accu-

racy of 98.69% using VGG architecture. Khan et al. [25] 

presented the automated model for the classification of brain 

tumors. This model consists of five major steps. Initially, 

an edge-based histogram and DCT (discrete cosine trans-

form) transform were used for stretching of linear contrast 

of MRI scans. In the next step, DL is used with pre-trained 

models—VGG16 and VGG19 for feature extraction. In the 

third step, the best features were selected and classified using 

ELM (Extreme Learning Machine) classifier. This method 

was performed on the widely known datasets BraTs2015, 

2017, and 2018, and accuracy of 97.8%, 96.9%, and 92.5% 

is reported, respectively. Mzoughi et al. [39] presented the 

technique for the easiness of the neuroradiology. The main 

objective of this research was brain tumor detection with 

volumetric 3D MRI. To make the process more efficient, 

the authors used Multiscale 3D CNN architecture to classify 

the tumors. The proposed method has ability to reduce the 

weight of local and global information via small kernels. 

Furthermore, the data augmentation approach is employed 

for better training of the model. In the end, they showed the 

impact of data augmentation with the help of experimental 

results.

Proposed work

A new efficient deep learning-based framework is presented 

in this work for multiclass brain tumor classification. In the 

proposed architecture, the imbalanced data are employed 

instead of balanced data for training of a fine-tuned 

Densenet201 deep learning model. Features are extracted 

from the GAP layer for the classification. However, some of 

the extracted features of this layer are not useful for accu-

rate classification purposes; therefore, we proposed a new 

feature selection approach name EKbHFV. In parallel, we 

modify the GA for the best feature selection. The selected 

features of both techniques are finally fused using a non-

redundancy-based fusion approach. In the end, multiclass 

CSVM is employed for the final classification. The main 

architecture of this proposed method is illustrated in Fig. 2.

Convolutional neural network

Convolutional Neural Network (CNN) is one of the famous 

deep learning architectures, where each layer is connected 

in a feed-forward way [40]. In CNN architecture, end-to-end 

learning is performed for the hierarchical representation of 

an input image. Many layers are added in this architecture for 
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the extraction of local and global information of each image. 

Recently, these models are more useful for object classification 

[41], surveillance [42], and medical imaging [43]. A repre-

sentative CNN architecture consists of several layers, and a 

few famous layers are: (1) convolutional; (2) ReLu; (3) pool-

ing, and (4) fully connected (FC). CNN model depends on 

the three main layers that are convolution, pooling, and fully 

connected layer. Also to overcome the problem of overfitting 

and generalization, a dropout and batch normalization layers 

are also added in a CNN architecture [44]. Hence, the abstract-

level features are extracted and return output score at the end 

of this architecture.

A convolutional layer is one of the most important layers 

in a CNN architecture, which consists of trainable weights. 

Through these weights, the spatial features (edges and contour) 

and high-level features (complex structures) are learned. This 

layer receives an input of dimension h × w × 3 and returns the 

feature maps as output. All feature maps are the dot product 

of a particular field and weights. These weights are captured 

the features information of each class during the learning pro-

cess. The learning process is performed in backpropagation 

and SDG (gradient descent). Mathematically, this layer is for-

mulated as follows:

where � i

k
 represent the output of a convolutional layer, � i

k
 

denoted the bias term, � i
k,j

 represent the weight of the con-

volutional layer, �i−1

j
 represent input terms, and Rel(.) 

(1)� i
k
= Rel

⎛
⎜⎜⎝
� i

k
+

N i−1�
j=1

�
i
k,j
× �

i−1

j

⎞
⎟⎟⎠
,

denotes non-linearity ReLu activation function. These 

weights are updated using the output of the previous layer 

set as an input of the next layer. This function is defined as 

follows:

This function converts negative weights into zero and 

considers positive weights as it is. A max-pooling layer 

is added in a CNN architecture to calculate the maximum 

values of a given rectangle, where the rectangle is based 

on the filter size. Each rectangle is moved based on the 

stride value. This layer is useful to reduce the number of 

features (weights). The parameters of this layer are the 

filter dimension, padding mode, and stride. Mathemati-

cally it is presented as follows:

The output of these layers in the form of two-dimen-

sional arrays is converted into a one-dimensional array in a 

fully connected layer. The features of this layer are finally 

classified using Softmax classifier:

where � i

k
(FC) represents the output of the FC layer which 

is used as an input in Softmax and K represents the number 

of classes.

(2)Rel(�) = max(0,�).

(3)�
i

k
(max) = Poolmax(Rel(�)), Rel(�) ∈ �

i

k
.

(4)Softmax =
e
�

i

k
(FC)

∑K

k=1
e�k

(FC)
,

Fig. 2  Proposed deep learning-based multimodal brain tumor classification
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Pre-trained DenseNet 201 model

In traditional CNN, the connectivity of layers was very 

complex and the data transferred through these layers. In 

this process, it is a high chance of error occurrence and an 

increase in the computational cost. In the Resnet architec-

ture, the problem of complexity is resolved and made eas-

ier with the skipping layers. The minimum two layers are 

skipped in this architecture. Densenet improves the model 

due to the concatenation of the features, in which all fea-

tures are connected sequentially (linear form). This is a bet-

ter approach than that summation of feature from the output 

layer and used as an input for next. The formulation of this 

process is defined as follows:

where m stands for the layer index, Z means the non-linear 

operation, and S
m

 represents the feature of themth layer. 

Original DenseNet201 architecture [45] is illustrated in 

Fig. 3. In this figure, it is illustrated that, originally, this 

model trained on the ImageNet dataset. In each block, the 

(5)S
m
= Z

m

(

s
m−1

)

,

(6)S
m
= Z

m

(

s
m−1

)

+ s
m−1,

(7)S
m
= Z

m

([

s0,s1,s2,,… , s
m−1

])

,

skipping option is available which faster the classification 

process. Each block consists of many layers such as convolu-

tion, ReLu, batch normalization, and pooling. In the end, the 

features of the transition layer are classified using Softmax 

classifier.

In this work, we fine-tuned the DenseNet201 pre-trained 

model for multiclass brain tumor classification. For this pur-

pose, the last two layers are removed, and add a new FC 

layer which includes four types of brain tumor. The same 

weights are used in the fine-tuned model and trained this 

model using transfer learning. The detail of transfer learning 

in the next section (Fig. 4).

Transfer learning-based feature extraction

Transfer learning (TL) [46] is one of the best methods to 

reuse a pre-trained deep learning model for another task. 

Normally, the TL technique is adopted for training a model 

for another task using fewer training data; in this approach, 

training a target model using prior trained knowledge of the 

related task. This process is helpful to give an accurate solu-

tion for fewer training samples. Hence, we can say that TL 

is useful when target training data are less as compared to 

source training data.

Consider, the source data with the learning task 

P
s
=

{(

d
s

1
, e

s

1

)

, ...,
(

d
s

i
, e

s

i

)

,… ,
(

d
s

n
, e

s

n

)}

 and source labels 

Fig. 3  DenseNet 201 architecture for image classification [45]

Fig. 4  Fine-tuned DenseNet201 deep learning model for features extraction using brain images
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= L
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S
,

(

d
s

m
, e

s

m

)
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,
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t

n
, e
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�R . Where n ≪ m  and 

e
P

1
and e

T

1
 are the labels of training data. The target goal of 

TL is to make the more learnable of J
T

 by the combined 

knowledge P
s
 and J

T
 . Hence, transfer learning can be 

explained as:

Visually, the process of transfer learning is illustrated in 

Fig. 5. In this figure, it is illustrated that the source model 

DenseNet201 is trained on the ImageNet dataset, whereas 

the number of labels is 1000. By employing transfer learn-

ing, knowledge is transfer to a fine-tuned target model. 

Later, the SGD learning method is used for training this 

new target model for brain tumor classification. For train-

ing, the learning rate is 0.0001, mini-batch size is 64, and 

the number of epochs is 100. For the target model, two 

datasets—BRATS2018 and BRATS2019—are utilized. In 

the end, features are extracted from the global average pool 

layer for further processing. On this layer, the feature vec-

tor ( ΨN

k
 ) dimension is N × 2048 , where N  represents the 

number of training samples. As in this work, we consider 

the 50:50 approach for evaluation of this proposed archi-

tecture; hence, N  are 50% and 50%, respectively.

(8)P
s
≠ J

T
and P

L
≠ J

L
.

MGA-based feature selection

GA is mostly used in artificial intelligence and machine 

learning for getting the optimal solution. Many other algo-

rithms are used to generate output, but GA is designed to 

solve complex problems with larger numbers of population 

size. There are six steps to solve the GA problem as Initial 

Population, Calculate fitness, Selection, Crossover, Muta-

tion, and Optimal Solution. In the first, the initial population 

is initialized. Next, the fitness value is calculated with every 

individual population. The third step is to select the best 

fitness values, because it is directly proportional or fitness 

value. Only the better fitness value generates a better optimal 

solution, and this is the genetic operation. In the fourth and 

fifth steps, a new population is generated using the swapping 

method. Crossover and Mutation are the primary processes 

in GA to generate the new best fitness values from the par-

ent’s population. If we do not get the highest fitness value, it 

will be in continuity until the stopping criteria fulfill.

In this article, we modify the output of GA and called 

modified GA (MGA). In the MGA, the output of GA is 

passed in a threshold function to remove the redundant fea-

tures. The advantage of this step is to minimize the compu-

tational time and increase accuracy. Let ΨN

k
 is an N × 2048

-dimensional feature vector, extracted from the fine-tuned 

DenseNet201 model. Consider, M is population size and 

value of M = 80 in this work. The chromosome Ψ represent 

Fig. 5  Transfer learning-based feature extraction for multiclass brain tumor classification
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the individual features of ΨN

k
 . In the initial population, 

P =

{

�1, �2,… , �
M

}

 , where all the genes of �
1
 are ‘1’. This 

shows that all descriptors have equal weights. For the other 

individuals, the random values are generated as �
k
∈ [01] 

and k = 1, 2, 3,…Ψ . In the next step, the fitness value is 

calculated for each individual using Euclidean Distance 

(ED). Mathematically, the ED between two individuals is 

computed as follows:

After this step, the genetic operations are performed for 

the searches of better solutions (features). The genetic opera-

tions are Roulette Wheel-based selection, cross-over, and 

mutation. The selection operation selects the best individu-

als based on fitness values. For criteria of new population, 

the top 70% fitness values are selected; otherwise, generate 

a new population using crossover and mutation operation.

For a crossover, two individuals are required with a cross-

over rate C
r
 . In this work, we utilized a double crossover 

with the C
r
= 0.5 . Mathematically, the crossover operation 

is defined as follows:

After this operation, a mutation operation is applied on 

the crossover individuals with a very small mutation rate 

m
r
= 0.2 . Four genes of individuals are randomly selected 

for the mutation operation. Mathematically, the mutation 

operation is defined as follows:

where r is a random value between [01] , t represents iteration 

number, and It represents the total iterations which are 500 

in this work. This process is continued until the max itera-

tions are completed. After the selection of the best features 

of GA, a new threshold function is proposed. Through this 

new function, the redundancy among features is removed 

and decrease the computational cost. Mathematically, this 

function is formulated as follows:

(9)D
(

�1,�2

)

=

√

√

√

√

M
∑

k=1

N
∑

l=1

(

�1(k,l) − �2(k,l)

)2
.

(10)�
t+1

1
=

{

�1, k
}

,

(11)�
t+1

2
=

{

�2, k
}

,

(12)�1,k = ��
k
+ (1 − �).�k

,

(13)�2,k = ��
k
+ (1 − �).�k.

(14)�
�

k
=

{

�
k
+ Δ

(

t, 1 − �
k

)

, � = 0

�
k
− Δ

(

t,�
k

)

, � = 1
,

(15)Δ(t,�) = �

(

1 − r

(

1 −
t

It

)p)

,

This formulation shows that of ith and ith + 1 features are 

match each other than select only ith + 1 and ignore the ith 

feature. In this work, we obtained a final selected feature 

vector of dimension N × 952 and denoted by GA
N

k
.

Entropy–Kurtosis-based feature selection

Consider ΨN

k
 is original deep extracted feature vector of 

dimension N × K , and K represents the extracted features 

dimension and K ∈ ℝ . Consider ΨN

rs
 is a resultant selected 

feature vector of dimension N × rs . Initially, the Shanon 

Entropy is computed from each pair of features and obtained 

an entropy vector of same dimension N × rs.

Similarly, the Kurtosis value is computed for each pair 

and gets the peak frequency feature for the selection of 

entropy features:

Based on the Kur(k) , the peak frequency value is obtained 

and then compared with E(K) for feature selection at the 

first phase:

From this function, the entropy features whose values 

are greater or equal than peak kurtosis value are selected 

and the rest of them are removed. Then, the selected fea-

tures are validated through fine-KNN classifier-based fit-

ness function. We added this process in a loop and number 

of total iterations are 20. After the max iterations, the best 

accuracy based vector is obtained. In this work, the selected 

vector length is N × 738 for iteration 9 and denoted with 

Ent
N

k
 , where Ent

N

k
∈ ΨN

E
(k).

Features fusion and classification

Finally, the selected features of MGA approach and 

EKbHFV approach are fused in a serial-based method and 

(16)Th(Ψ) = �k =

{

ΨN
k
(sel), forcompr

(

�i
k
,�i+1

k

)

ΨN
k
(Nsel), Otherwise

,

(17)compr
(

�i

k
,�i+1

k

)

= �i+1
k
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(

�i

k
,�i+1

k

)

.

(18)E(K) =

n
∑

k=1

Prob
(

k
i

)

log
b
Prob

(

k
i

)

.

(19)Kur(k) =
�4

�4
,

(20)
�4 = Ex
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k
i
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�4
, � =

�

∑
�

k
i
− �

�2

n − 1
.

(21)
∼

A(k)=

{

ΨN
E
(k), forEk ≥ Peak(Kurt)

RemoveFeatures, Otherwise
.
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then remove the redundant information among them. In this 

technique, initially serially fusion is defined as follows:

Then, the features in this resultant vector are removed by 

comparing each other and consider only one feature of same 

values. This comparison process is continued for all features. 

In the last, we obtained an updated resultant feature vector 

Fus
N

k
 of dimension N × 1310 . The dimension of this vec-

tor shows that almost 400 features are redundant which are 

removed in the comparison phase. As a final, the multiclass 

cubic SVM is utilized for the final features classification. 

The results are discussed in the next section.

Experimental results and analysis

Experimental setup

The experimental process of proposed multiclass brain 

tumor classification method is presented in this section. 

Two datasets are considered for the evaluation of proposed 

method- BRATS2018 and BRATS2019. These datasets are 

more prominent and mostly useful for this domain. The 

main target in this work is to achieve improved accuracy 

and minimizing the computational cost. The datasets have 

two modalities—LGG and HGG—where each modality 

consists of four stage tumors such as T1-weighted, T1CE, 

and T2-weighted and Flair (Sample images can be seen 

in Fig. 6). Several classifiers are used for the analysis of 

experimental phase. The famous ones are SVM, Fine KNN, 

and Ensemble Trees. For the evaluation of each classifier 

performance, various measures are calculated such as recall 

rate, precision rate, F1-Score, AUC, accuracy, and testing 

time (sec). This method is implemented on MATLAB2020a 

using Core i7 Desktop Computer having 16 GB of RAM and 

16 GB GPU.

Results and analysis

BRATS2018 Dataset Results: We split dataset into 50/50 

ratio, which means that 50% data are used for training and 

remaining 50% is for testing with 10-Fold cross-validations. 

Several classifiers are used for the evaluation as listed in 

Table 1. This table represents the classification results and 

achieved the best accuracy for Cubic SVM classifier that is 

99.9% for HGG and 99.1% for LGG. The other measures of 

CSVM are recall rate, precision rate, and F1-Score of values 

99.9%, 99.8%, and 99.8% for HGG modality. Similarly, these 

measures are also computed for LGG modality and com-

puted values are 99%, 99%, and 99%, respectively. The noted 

(22)Fus
N

k
=

(

Ent
N

k

GA
N

k

)

N×(Ent(k)+GA(k))

.

time of CSVM during the testing process is 151.67 (sec) 

for HGG and 246.01 (sec) for LGG. The minimum noted 

time for this experiment is 72.049 (sec) for HGG and 77.288 

(sec) for LGG on Linear Discriminant classifier. However, 

the accuracy of this classifier is 99.7% for HGG and 97.7% 

for LGG, which is less as compared to CSVM. Moreover, 

the CSVM performance is also compared with a few well-

known classification algorithms in this table and shows that 

the CSVM results are better.

Table 2 represents the results of BRATS2018 datasets 

after fusion of optimal selected features. This table shows 

the best noted accuracy of 99.7% and 98.8% on CSVM for 

HGG and LGG, respectively. The other noted measures are 

recall rate, precision rate, and F1-Score of values 99.7%, 

99.7%, and 99.7% for HGG and 98.7%, 98.7%, and 98.7%, 

for LGG, respectively. The noted computational time during 

the testing process is 88.455 (sec) and 113.40 (sec) which 

is minimized as compared to the noted time in Table 1. 

The minimum noted time in Table 2 is 22.946 (sec) and 

20.938 (sec) for Linear Discriminant Analysis. Previously 

(in Table 1), this time was 72 (sec) and 77 (sec). This time 

shows that the selection of optimal features and fusion these 

features not only maintain the accuracy, but, on the other 

side, decrease the testing computational time. The compari-

son of proposed accuracy on CSVM is also compared with 

the other classification methods mentioned in Table 2. From 

results, it can be analyzed that the CSVM performance is 

overall better. Also, the CSVM recall rate can be validated 

through confusion matrix illustrated in Figs. 7 and 8. Fig-

ure 7 shows the confusion matrix of CSVM for HGG modal-

ity, whereas the Fig. 8 shows the confusion matrix of LGG 

modality.

Fig. 6  Sample brain image collected from BRATS2019 dataset
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BRATS2019 dataset results

Similar to BRATS2018, we split dataset into 50/50 ratio, 

which means that 50% data are used for training and remain-

ing 50% are for testing with tenfold cross-validations. 

Results are given in Table 3 (without feature fusion). This 

table represents the best achieved classification accuracy 

is 99.9% and 99.5% cubic SVM. The 99.9% accuracy is 

achieved for HGG modality and 99.5% for LGG modality. 

The other measures of CSVM are recall rate, precision rate, 

and F1-Score of values 99.9%, 99.9%, and 99.9% for HGG 

modality. Similarly, these measures are also computed for 

LGG modality and computed values are 99.5%, 99.5%, and 

99.5%, respectively. The noted time of CSVM during the 

testing process is 144.86 (sec) for HGG and 188.36 (sec) 

for LGG. The minimum noted time for this experiment is 

69.895 (sec) for HGG and 68.577 (sec) for LGG on Linear 

Discriminant classifier. However, the accuracy of this clas-

sifier is 99.7% for HGG and 98.7% for LGG, which is less 

as compared to CSVM. Moreover, the CSVM performance 

is also compared with a few well-known classification 

algorithms in this table and shows that the CSVM results 

are better.

Table 4 represents the results of BRATS2019 datasets 

after fusion of optimal selected features. This table shows 

the best noted accuracy of 99.8% and 99.3% on CSVM 

for HGG and LGG, respectively. The other noted meas-

ures are recall rate, precision rate, and F1-Score of values 

99.8%, 99.8%, and 99.8% for HGG and 99.3%, 99.3%, and 

99.3%, for LGG, respectively. The noted computational 

time during the testing process is 80.285 (sec) and 104.56 

(sec) which is minimized as compared to the noted time 

in Table 3. The minimum noted time in Table 4 is 23.231 

(sec) and 20.631 (sec) for Linear Discriminant Analysis. 

Previously (in Table 3), this time was 69 (sec) and 68 (sec). 

This time shows that the selection of optimal features 

and fusion these features minimize the testing computa-

tional time and also increase the classification accuracy. 

The comparison of proposed accuracy on CSVM is also 

compared with other classification methods mentioned in 

Table 4. From results, it can be analyzed that the CSVM 

performance is overall better. Also, the CSVM recall rate 

can be validated through confusion matrix illustrated in 

Table 1  Classification results of BRATS2018 dataset without features fusion step

Bold symbol represents the best accuracy

Classifiers Tumor types Evaluation protocols

HGG LGG Recall (%) Precision (%) FI Score (%) AUC FNR Accuracy (%) Time (s)

Cubic SVM 99.9 99.8 99.8 0.99 0.1 99.9 151.67

99.0 99.0 99.0 0.99 1.0 99.1 246.01

Quadratic SVM 99.8 99.8 99.8 0.99 0.2 99.8 127.87

98.4 98.4 98.4 0.98 1.6 98.4 220.76

Cosine KNN ✓ 98.4 98.5 98.4 0.98 1.6 98.5 273.52

✓ 93.1 93.4 93.2 0.93 6.9 93.0 260.33

MG-SVM ✓ 99.6 99.7 99.6 0.99 0.4 99.7 259.60

✓ 98.0 98.0 98.0 0.98 2.0 98.0 369.75

Fine KNN ✓ 99.4 99.4 99.4 0.99 0.6 99.5 272.94

✓ 96.8 96.8 96.8 0.96 3.2 96.8 263.53

Quadratic discriminant ✓ 98.6 98.7 98.6 0.98 1.4 98.7 155.33

✓ 92.1 93.9 92.9 0.92 7.9 92.6 157.68

Linear discriminant ✓ 99.7 99.7 99.7 0.99 0.3 99.7 72.049

✓ 97.6 97.7 97.6 0.97 2.4 97.7 77.288

Weighted KNN ✓ 99.3 99.3 99.3 0.99 0.7 99.4 267.30

✓ 96.3 96.3 96.3 0.96 3.7 96.3 271.44

Linear SVM ✓ 99.3 99.4 99.3 0.99 0.7 99.4 124.94

✓ 96.4 96.5 96.4 0.96 3.6 96.4 221.47

Subspace discriminant ✓ 99.5 99.5 99.5 0.99 0.5 99.5 522.79

✓ 97.1 97.2 97.1 0.97 2.9 97.1 549.12

Subspace KNN ✓ 99.4 99.4 99.4 0.99 0.6 99.4 3610.3

✓ 96.9 97.0 96.9 0.97 3.1 96.9 3817.5

Medium KNN ✓ 98.6 98.7 98.6 0.98 1.4 98.7 261.73

✓ 93.4 93.7 93.5 0.93 6.6 93.3 268.06



3016 Complex & Intelligent Systems (2022) 8:3007–3020

1 3

Figs. 9 and 10. Figure 9 shows the confusion matrix of 

CSVM for HGG modality, whereas the Fig. 10 shows the 

confusion matrix of LGG modality.

Comparison

In this section, we compare the propose method accuracy 

with other neural nets and also analyze the overall system 

Table 2  Proposed classification results using BRATS2018 dataset

Bold symbol represents the best accuracy

Classifiers Tumor types Evaluation protocols

HGG LGG Recall (%) Precision (%) FI Score (%) AUC FNR Accuracy (%) Time (s)

Cubic SVM ✓ 99.7 99.7 99.7 0.99 0.3 99.7 88.455

✓ 98.8 98.7 98.7 0.98 1.2 98.8 113.40

Quadratic SVM ✓ 99.6 99.6 99.6 0.99 0.4 99.7 71.203

✓ 98.1 98.2 98.1 0.98 1.9 98.2 102.71

Cosine KNN ✓ 98.3 98.4 98.3 0.98 1.7 98.4 130.96

✓ 92.7 93.0 92.8 0.92 7.3 92.6 128.59

MG-SVM ✓ 99.5 99.5 99.5 0.99 0.5 99.6 123.14

✓ 97.7 97.7 97.7 0.97 2.3 97.7 164.98

Fine KNN ✓ 99.4 99.4 99.4 0.99 0.6 99.4 131.46

✓ 96.6 99.6 99.6 0.99 3.4 96.5 126.98

Quadratic discriminant ✓ 99.4 99.4 99.4 0.99 0.6 99.4 29.004

✓ 97.4 97.5 97.4 0.97 2.6 97.4 25.194

Linear discriminant ✓ 99.2 99.2 99.2 0.99 0.8 99.2 22.946

✓ 96.1 96.2 96.1 0.96 3.9 96.1 20.938

Weighted KNN ✓ 99.0 99.1 99.0 0.99 1.0 99.1 130.63

✓ 95.8 95.8 95.8 0.95 4.2 95.7 126.53

Linear SVM ✓ 99.0 99.1 99.0 0.99 1.0 99.1 65.947

✓ 95.9 95.9 95.9 0.95 4.1 95.9 100.98

Subspace discriminant ✓ 98.9 98.9 98.9 0.98 1.1 99.0 215.57

✓ 95.2 95.4 95.2 0.95 4.8 95.2 190.64

Subspace KNN ✓ 99.4 99.4 99.4 0.99 0.6 99.5 1852.0

✓ 96.8 96.8 96.8 0.99 3.2 96.7 1825.1

Medium KNN ✓ 98.4 98.5 98.4 0.98 1.6 98.5 133.77

✓ 92.8 93.2 92.9 0.93 7.2 92.7 126.38

Fig. 7  Confusion matrix of CSVM using HGG modality Fig. 8  Confusion matrix of CSVM using LGG modality
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performance. Before the selection, the maximum accuracy 

was 93% for BRATS2018 and 92% for BRATS2019. Moreo-

ver, the testing computational time was more than 500 (sec). 

Tables 1 and 3 show the classification results without using 

features fusion. From these tables, it is show that the accu-

racy and time efficiency of the proposed method is improved 

after employing feature selection techniques. Furthermore, it 

is improved after the fusion results, as presented in Tables 2 

and 4. The comparison of each dataset is also conducted 

in Tables 5 and 6. In Table 5, the achieved accuracy for 

VGG, AlexNet, ResNet101, and Inception V3 for HGG is 

95.3%, 93.6%, 96.9%, and 97.4%. Similarly, for LGG, the 

achieved accuracy was 92.7%, 91.8%, 95.2%, and 96.9%. For 

the proposed method, achieved accuracy is 99.7% and 98.8 

using BRATS2018 dataset which shows the improvement of 

this approach. Likewise, Table 6 shows the comparison of 

BRATS2019 dataset and described that the performance of 

proposed method is improved.

Conclusion

This work presents a deep learning automated system 

for the classification of brain tumors into four types such 

as T1W, T1CE, T2W, and Flair. Brain MRI scans are 

more useful imaging technology for the analysis of brain 

tumors; therefore, this system may be useful for the sec-

ond opinion of radiologists. Multiclass classification of 

brain tumors is a complex and difficult task due to the 

high similarity between the tumor stages. Also, existing 

systems work well for balancing datasets, which is not 

a good way, because several images are ignored during 

the learning process. The main strength of this proposed 

method is the selection of the most optimal features using 

MGA and Entropy–Kurtosis-based techniques. These pro-

posed techniques improve the accuracy of the system and 

also reduce the time of classification. The second strength 

of this work is the fusion of the optimal features to further 

improve the proposed accuracy. The experimental pro-

cess shows that the proposed method shows a significant 

Table 3  Classification results of BRATS2019 dataset without feature fusion step

Bold symbol represents the best accuracy

Classifiers Tumor types Evaluation protocols

HGG LGG Recall

(%)

Precision (%) FI Score (%) AUC FN Accuracy (%) Time (s)

Cubic SVM ✓ 99.9 99.9 99.9 1.00 0.1 99.9 144.86

✓ 99.5 99.5 99.5 0.99 0.5 99.5 188.36

Quadratic SVM ✓ 99.8 99.8 99.8 1.00 0.2 99.8 126.25

✓ 99.2 99.3 99.2 0.99 0.8 99.3 167.30

Cosine KNN ✓ 98.5 98.5 98.5 0.98 1.5 98.5 253.64

✓ 93.7 93.8 93.7 0.93 6.3 93.7 235.85

MG-SVM ✓ 99.7 99.7 99.7 0.99 0.3 99.7 225.40

✓ 98.9 99.0 98.9 0.98 1.1 99.0 304.25

Fine KNN ✓ 99.4 99.4 99.4 0.99 0.6 99.4 265.20

✓ 97.5 97.5 97.5 0.97 2.5 97.5 225.58

Quadratic discriminant ✓ 98.7 98.9 98.7 0.98 1.3 98.8 158.86

✓ 92.5 94.3 93.4 0.92 7.5 92.7 144.04

Linear discriminant ✓ 99.7 99.7 99.7 0.99 0.3 99.7 69.895

✓ 98.9 98.9 98.9 0.99 1.1 99.0 68.577

Weighted KNN ✓ 99.2 99.3 99.2 0.99 0.8 99.3 245.80

✓ 96.9 97.0 96.9 0.96 3.1 97.0 232.10

Linear SVM ✓ 99.4 99.4 99.4 0.99 0.6 99.4 122.62

✓ 97.8 97.8 97.8 0.98 2.2 97.8 166.42

Subspace discriminant ✓ 99.5 99.5 99.5 0.99 0.5 99.5 480.28

✓ 98.4 98.4 98.4 0.98 1.6 98.4 472.91

Subspace KNN ✓ 99.4 99.3 99.3 0.99 0.6 99.4 3539.7

✓ 97.4 97.4 97.4 0.97 2.6 97.4 3216.0

Medium KNN ✓ 98.5 98.5 98.5 0.98 1.5 98.6 265.95

✓ 94.0 94.1 94.0 0.94 6.0 94.0 233.82
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improvement in the datasets selected. The experimental 

process for BRATS2019 datasets with more recent deep 

learning methods will be conducted in the future. The 

main limitation of this work is the reduction of certain 

important features which have an impact on the accuracy 

Table 4  Proposed classification results using BRATS2019 dataset

Bold symbol represents the best accuracy

Classifiers Tumor types Evaluation protocols

HGG LGG Recall (%) Precision (%) FI Score (%) AUC FNR Accuracy (%) Time (s)

Cubic SVM ✓ 99.8 99.8 99.8 1.00 0.2 99.8 80.285

✓ 99.3 99.3 99.3 0.99 0.7 99.3 104.56

Quadratic SVM ✓ 99.6 99.7 99.6 0.99 0.4 99.7 69.807

✓ ✓ 99.0 99.0 99.0 0.99 1.0 99.1 92.648

Cosine KNN ✓ 98.4 98.5 98.4 0.98 1.6 98.5 135.62

✓ 93.7 93.9 93.7 0.93 6.3 93.7 119.65

MG-SVM ✓ 99.6 99.6 99.6 0.99 0.4 99.6 126.22

✓ 98.6 98.6 98.6 0.98 1.4 98.7 150.34

Fine KNN ✓ 99.5 99.5 99.5 0.99 0.5 99.5 124.67

✓ 97.0 97.0 97.0 0.97 3.0 97.1 117.32

Quadratic discriminant ✓ 99.4 99.5 99.4 0.99 0.6 99.5 30.532

✓ 98.0 98.1 98.0 0.98 2.0 98.0 26.523

Linear discriminant ✓ 99.2 99.2 99.2 0.99 0.8 99.3 23.231

✓ 97.3 97.3 97.3 0.97 2.7 97.4 20.631

Weighted KNN ✓ 99.1 99.1 99.1 0.99 0.9 99.1 125.76

✓ 96.5 96.6 96.5 0.96 3.5 96.6 117.29

Linear SVM ✓ 99.1 99.1 99.1 0.98 0.9 99.1 69.978

✓ 97.0 97.0 97.0 0.97 3.0 97.0 92.412

Subspace discriminant ✓ 99.0 99.0 99.0 0.99 1.0 99.0 203.04

✓ 96.6 96.6 96.6 0.96 3.4 96.6 206.50

Subspace KNN ✓ 99.5 99.5 99.5 0.99 0.5 99.5 1817.4

✓ 97.2 97.2 97.2 0.97 2.8 97.2 1676.5

Medium KNN ✓ 98.5 98.5 98.5 0.98 1.5 98.6 126.91

✓ 94.1 87.5 90.6 0.94 5.9 94.1 117.09

Fig. 9  Confusion matrix of CSVM using HGG modality for 

BRATS2019

Fig. 10  Confusion matrix of CSVM using LGG modality for 

BRATS2019
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of the system. In addition, the fusion process increases the 

computational time.
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