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Abstract—Renewable energy production is constantly growing

worldwide, and some countries produce a relevant percentage

of their daily electricity consumption through wind energy.

Therefore, decision support systems that can make accurate

predictions of wind-based power production are of paramount

importance for traders operating in the energy market and

for managers in charge of planning the non-renewable energy

production. In this paper, we present a decision support system

that can predict electric power production, estimate a variability

index for the prediction, and analyze wind farm production

characteristics. The main contribution of this paper is a novel

system for long-term electric power prediction based solely on

weather forecasts; thus, it is suitable for wind farms that cannot

collect or manage real-time data acquired by sensors. Our

system is based on neural networks and on novel techniques

for calibrating and thresholding the weather forecasts based on

the distinctive characteristics of wind farm orography. We tuned

and evaluated the proposed system using data collected from two

wind farms over a two-year period and achieved satisfactory

results. We studied different feature sets, training strategies,

and system configurations before implementing this system for a

player in the energy market. This company evaluated the power

production prediction performance and impact of our system

at ten different wind farms under real-world conditions and

achieved a significant improvement with respect to their previous

approach.

Index Terms—Renewable energy, Wind energy, Prediction,

Calibration, Orography, Neural Networks, Decision support sys-

tem.

I. INTRODUCTION

T
HE importance of green technologies and renewable en-

ergy sources is constantly increasing [1]. In this scenario,

the research community is studying novel energy efficient

production strategies [2], [3], efficient buildings [4], smart grid

technologies [5], and techniques for predicting electric loads

[6] to determine the optimal price of renewable energy [7].

Among these topics, increasing renewable energy production

and improving distribution are of paramount importance to the

global economy.

Wind is one of the most important, sustainable, and eco-

logical sources of renewable energy [8]. A market analysis

[9] estimates that wind farm energy production is growing

at 16.1% per year and currently meets approximately 5% of

global electricity consumption.
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Milano, 26013, Crema, Italy. e-mail: {firstname.lastname}@unimi.it.

Gianluca Sforza is with the Istituto Nazionale di Fisica Nucleare, Bari
Section, 70126 Bari, Italy. e-mail: gianluca.sforza@ba.infn.it

Efficiently managing energy production in a geographical

region requires estimating the amount of produced renewable

energy so that non-renewable power production can be planned

accordingly to satisfy the overall energy need [10]. However,

the market for renewable energy penalizes producers when

their estimated power production differs from that actually

delivered [11]. To avoid penalties and maximize their income,

companies need accurate power predictions and decision sup-

port systems [4], [12], [13].

In ideal conditions, wind power production is defined as

a physical relationship between the wind speed, density of

air, and swept area of the turbine [14], [15]. However, even

if a direct relation truly existed between wind speed and

the power generated by the turbines in wind farms, wind

energy production is a dynamic and non-linear process that

is affected by several difficult-to-predict aspects [16], such as

the i) orography of the territory [17], ii) turbine positions [18],

iii) windmill blade orientation, and iv) other turbine technical

features. For example, the relative locations of the turbines

can create shadowing (or wake) effects [19]; offshore and

nearshore wind farms can be affected by periodic large wind

speed fluctuations [20], and wind farms built close to hills can

be influenced by terrain irregularities (Fig. 1).

In many application scenarios, the only available informa-

tion for predicting power production is the Numerical Weather

Prediction (NWP), which is always affected by uncertainty due

to the time interval elapsed between its computation and the

predicted instant of power generation [21]. Furthermore, the

geographical coordinates related to NWP data do not usually

correspond to the virtual center of the wind farm because NWP

are computed for grids of equally-spaced points [22].

Most power prediction methods in the literature are based

on NWP or on historical power prediction data [23], [24].

Depending on the considered prediction horizon, these meth-

ods can predict power production at intervals ranging from

extremely short-term (a few seconds) to relatively long-term

(one day to one week). Most works address short-time predic-

tions (from approximately 30 minutes to 6 hours ahead) [14].

The approaches for long-term predictions can be divided into

physical, statistical and hybrid techniques [25].

Physical techniques compute the vertical wind profile at the

wind farm to correct the forecasted wind speed by considering

several factors, including the distance of the actual plant from

the NWP grid, site orography, and turbine height with respect

to the NWP reference height [26], [27]. Statistical techniques

use time series of the measured power and historical mete-

orological data [24]. Hybrid techniques use all the available
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Fig. 1. Different wind farm environmental conditions profoundly influence the production and the complexity of the power prediction for (a) offshore wind
farms, (b) nearshore wind farms affected by periodic breezes, and (c) wind farms with complex orography and nearby hills.

information and are often based on computational intelligence

techniques [28].

It has been proved that physical models do not provide

satisfactory accuracy due to the high complexities and non-

linearities involved in wind power prediction. Statistical and

hybrid techniques usually obtain better performance, and

hybrid techniques are the most effective for a wide set of

application scenarios. However, most of the hybrid methods

in the literature require real-time data acquired by wind farm

sensors (which may not be available for some application sce-

narios), do not consider the uncertainty in NWP data stemming

from temporal and geographical factors, and do not exploit

information on the orography and production characteristics

of the wind farm.

The motivations of this work are to propose a new power

prediction approach able to overcome those limitations of the

current hybrid techniques and present novel decision support

tools for end-users working in the energy market.

We propose a novel decision support system that provides

information on the power produced by a single wind farm.

The system includes a hybrid method based on computational

intelligence for long-term power prediction, a function to

estimate a variability index of the predicted power, and tools

for analyzing wind farm production characteristics. Compared

to other methods in the literature, the advantages of our system

are as follows: it is based solely on NWP data and can

therefore be used for every type of wind farm; it reduces

NWP uncertainty by automatically learning and exploiting

information about the orography of the territory via the pro-

ductive characteristics of the wind farm (no GIS or mapping

information are required); and it automatically learns the wind

farm characteristics using a novel technique for calibrating

wind forecasts and a novel algorithm for thresholding the wind

forecasts.

To predict power production, we exploit sets of neural

networks in conjunction with the wind calibration and thresh-

olding modules. We use NWP related to different points of

the weather forecast grid obtained at different times. We also

consider heterogeneous training strategies, configurations of

the calibration and wind thresholding modules, and numbers

of neural predictors.

As a case study, we considered the day-after market [11],

but our system is general and can be applied to different

scenarios. We performed most of the experiments using data

related to two wind farms that cover a two-year period

and achieved satisfactory results. Subsequently, a player in

the energy market adopted our decision support system and

evaluated its performance on ten other wind farms, achieving a

significant improvement with respect to their previous system.

The remainder of this paper is structured as follows. Sec-

tion II describes related works for long-term wind-based power

production predictions. Section III presents the system to

estimate power production and the related neural prediction

variability index. Section IV describes the decision support

tools designed to analyze wind farm production characteristics.

Section V presents the results obtained using a real-world case

study, including the selected metrics, system configurations

tested, and the validation methods. Finally, Section VI con-

cludes this work.

II. RELATED WORKS

Several methods in the literature have used computational

intelligence techniques for environmental monitoring [29]–

[31], time series prediction [32], [33], prediction of adverse

environmental conditions [34], and renewable energy forecast-

ing [35]–[37] because such techniques adapt well to noisy data

and variations in operational conditions.

In the field of wind power forecasting, studies have shown

that computational intelligence techniques usually outperform

methods based on auto-regressive models, especially in cases

where training datasets with large numbers of samples are

available [14], [38], [39].

Many methods for predicting power production have also

applied computational intelligence techniques such as artificial

neural networks, deep learning, support vector machines, or

fuzzy rules to aggregate historical data of predicted power

[40]–[43]. Several approaches have used neural networks and

evolutionary computation to aggregate the output of differ-

ent predictors [40], [44]. In addition, some methods have

considered neural networks [45] and fuzzy systems [16],

[46] for wind farm design and control. In several cases,

evolutionary computation has been used in combination with

neural networks to optimize the learning process [47]–[50].

The prediction accuracy of such methods depends on the

learning method used, the accuracy of the input data [51],

[52], and the advance period of the required predictions [24].

Frequently used features include historical meteorological

data [23], [24], [53], spatial information [54], real time mea-
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surements performed using wind farm sensors [55], and NWP

[25] data.

However, in many application scenarios, NWP data are the

only available information for predicting power production:

power production data may be available only after a delay;

historical data may cover insufficient time periods; spatial

information may be limited or incomplete; and collecting real-

time measurements from sensors placed in the wind farm is not

always possible, particularly for wind farms located far from

cities. However, NWP data present inaccuracies due to the

specific orography of the wind farm and to differences between

the spatial coordinates for which they have been computed and

the coordinates of the windblades. Furthermore, large wind

farms can include coordinates from multiple points of the

weather forecast grid, and small plants may be completely

included in a grid rectangle [51].

To compensate for the NWP data inaccuracies, some meth-

ods in the literature have estimated the quality of the weather

forecasts [56], [57], evaluated the forecasting error [21],

[38], [58], [59], performed preliminary feature selection [49],

[60], or enhanced the NWP data by considering mesoscale

models as the source of weather forecasts [28], [61], [62].

Other approaches have integrated the NWP data with local

observations [63], terrain data, and orography information to

downscale the NWP forecasts to a smaller areas (e.g., an area

of 1 km × 1 km). Examples of mesoscale models include the

Fifth-Generation Mesoscale Model (MM5) [64], the Weather

Research & Forecasting Model (WRF) [65], and the Aire

Limitée Adaptation dynamique Développement InterNational

(ALADIN) [66].

To downscale NWP data to smaller areas, the method

proposed in [58] first uses the WRF and ALADIN mesoscale

models and then analyzes the correlation between the NWP

data and the power generated by each turbine. Next, this

method clusters the obtained forecasts and historical generated

power data to highlight similar patterns. It finally predicts

production 2 days ahead using a combination of neural net-

works and support vector machines. Similarly, the method

described in [21] improves the NWP by performing a WRF

simulation and cluster analysis to search for correspondences

between forecasting errors and NWP values, while [38] uses an

error-correcting model for NWP that analyzes the differences

between the weather forecasts and actual wind speed mea-

surements. The method proposed in [59] adopts the ALADIN

mesoscale models and uses polynomial neural networks to

improve the NWP for a specific site. However, these methods

require real-time input data collected by sensors placed in the

wind farm. Thus, they are not applicable to many wind farms.

The literature does contain prediction methods designed for

application scenarios similar to the one considered in this

paper. The methods described in [28], [61], [62] use neural

networks and the MM5 model to predict the wind power

generated by each turbine of the power plant two days ahead.

However, these methods require real-time measurements and

require information on the local orography and terrain. In

contrast, our system infers the orography information from

the data; thus, it is both simpler and more suitable for a wider

range of application scenarios. The methods described in [56],

[57] predict the power two days in advance using only NWP

data. These studies use self-organizing maps to cluster the

wind data according to the speed and then processed each

cluster using a radial basis function neural network. Finally,

these methods refine the obtained prediction using fuzzy logic

techniques. The parameters of the fuzzy techniques should be

tuned by a human expert for each wind farm separately. In

contrast, our system requires no advance knowledge about the

wind farm because it automatically adapts to heterogeneous

application conditions. The method described in [67] uses a

k-means clustering algorithm to divide the NWP data; then,

each cluster is used to train a neural network that performs pre-

dictions. The clustering method increases the accuracy of the

neural predictor by simplifying its input data but, differently

from our power prediction approach, it does not compensate

for NWP data inaccuracies according to the characteristics of

a specific wind farm.

III. THE PROPOSED SYSTEM FOR LONG-TERM POWER

PREDICTION AND ESTIMATION OF THE NEURAL

PREDICTION VARIABILITY INDEX

We propose a novel system for long-term power prediction

that automatically learns the orography information and the

wind farm characteristics from the NWP data. This system

also estimates a neural prediction variability index for the

power prediction. The system is designed to be used by traders

working in the energy market and by managers who need to

plan the production of non-renewable energy.

Fig. 2 shows the schema of our system for predicting

power production and estimating the corresponding neural

prediction variability index. The system includes two main

blocks: preprocessing and configuration.

The preprocessing block includes the data harmonization

and the feature extraction modules. The first module trans-

forms data collected from different sources into a common

measurement system. The second module computes different

sets of numerical features from NWP data, based on wind farm

characteristics and the available data.

The configuration block is composed of the calibration,

thresholding and neural prediction modules. We present six

system configurations obtained by rearranging the configu-

ration block modules. The calibration module automatically

learns information from the orography and wind farm charac-

teristics and uses them to improve the wind forecasts of NWP

data. The thresholding module detects cases in which the wind

energy is insufficient to activate the wind farm turbines. The

neural prediction module is composed of a hierarchical set of

artificial neural networks trained using different strategies.

We estimate the neural prediction variability index of the

power prediction by computing statistics from the results of the

neural networks that compose the neural prediction module.

We also propose different training strategies for our system

based on the considered scenario.

In the following, we present a formal definition of the

problem, describe our system for predicting power production

and estimating the neural prediction variability index, and

describe different training strategies in detail.
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Fig. 2. Schema of the proposed system for predicting power production ρ̂ and estimating the neural prediction variability index ∆ of the power prediction. The
inputs of the system consist solely of Numerical Weather Predictions (NWP). The calibration and thresholding modules can be used in different configurations
according to the target system.

A. Problem definition

Let t0 be the times at which weather forecast data are

available, and let NWP be the set of harmonized weather

forecasts (more details will be provided in Subsection III-B).

Let T be the ordered set of n times ti ∈ T (expressed in hours)

for which the weather forecasts are provided. Thus, T = {ti :
ti < ti+1, i = (1, . . . , n)} and its cardinality is |T | = n. For

the considered case study, our system performs predictions for

the next day, at intervals of 3 hours, with a time horizon of

one day (i.e., where T = {t0 +24, t0 +27, . . . , t0 +45}, and

n = 8). The array of meteorological data available for a given

point of the grid sj and forecasted at a certain time ti are

defined as follows:

NWPti,sj =
[

uti,sj , vti,sj , tempti,sj
, pressti,sj , cloudti,sj

]

,

(1)

where:

• uti,sj and vti,sj represent the wind speed forecasts ex-

pressed using two variables for the eastward (uti,sj ) and

northward (vti,sj ) directions, respectively,

• tempti,sj
is the temperature;

• pressti,sj is the atmospheric pressure; and

• cloudti,sj is the cloud coverage.

The generic set of features Fti selected for predicting the

power produced at time ti, is defined by aggregating NWP

arrays processed at different times for different points of the

grid. For example:

Fti =
[

NWPt0
ti,s1 ,NWPt0

ti,s2 , dateti , hourti , ti
]

, (2)

or

Fti =
[

NWPt0
ti,s1 ,NWPt0−24

ti,s1 , dateti , hourti , ti
]

, (3)

where dateti is a numerical vector composed as

[dayti
,monthti , yearti ] and hourti is expressed as an

integer number (hourti ∈ [0, . . . , 23]).
Eq. 2 aggregates the NWP data for two sites obtained at

time t0, while eq. 3 aggregates the NWP data for one site

obtained at times t0 and t0 − 24.

In the remainder of this paper, we assume that NWPs are

obtained at t0 unless otherwise indicated (in superscript).

In the simplest configuration of our system, the prediction

of wind power at time ti is defined as follows:

p̂ti = PRED(Fti) , (4)

where PRED(·) is a power production predictor.

B. Preprocessing

The preprocessing module converts weather forecast data to

a reference measurement system. Then, it computes a feature

set F using discriminative values of NWP data related to

different geographical coordinates and computed for different

times.

1) Data harmonization: The weather forecast data provided

by different vendors and data collected by wind farm sensors

could be expressed using different measurement units and

reference systems. Moreover, subscribed weather forecast ser-

vices may change over time, causing the provided data to have

different measurement units, grid sizes d, and be measured at

different heights above the ground. The measurement instru-

ments can also be superseded by different models. Therefore,

a common reference system should be adopted.

In our system, we use: oC for the temperature, m/s for

the wind speed in the eastward and northward directions, hPa

for atmospheric pressure, and a scale from 0 to 1 for cloud

coverage. Through experiments, we observed that describing

the wind speed in the eastward and northward directions allows

the neural networks to better learn the prediction problem with

respect to polar coordinates. This probably occurs because

Cartesian representations do not present any phase jump.

2) Feature extraction: We propose a system that can work

with different combinations of features according to the char-

acteristics of an individual wind farm. We create the feature

sets using harmonized NWP data related to different points of

the weather forecast grid and taken at different times. Eq. 2

and Eq. 3 show examples of these feature set combinations.

Section V-C2 provides more details on the considered combi-

nations.

C. System configuration

The configuration block is composed of three modules:

calibration, thresholding, and a neural predictor. The first
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module adaptively refines the uti and vti components of the

NWP data to simulate wind forecasts related to the virtual

center of the wind farm. The thresholding module evaluates

whether the uti and vti components of NWP are sufficient

to activate the wind farm turbines and produce energy. The

neural predictor is composed of multiple neural networks that

estimate the power production and the related neural prediction

variability index ∆ti .

Because wind farms have different characteristics, we pro-

pose different configurations of our system that should be

selected based on the application conditions:

• Conf-A: this configuration predicts power production by

exploiting only the neural predictor.

• Conf-B: this configuration applies the calibration module

before performing neural predictions.

• Conf-C: this configuration applies the thresholding mod-

ule to uti and vti before performing neural predictions. If

the wind module ρti =
√

(uti)
2 + (vti)

2 is less than the

value ρth related to the thresholding modules, the power

prediction p̂ti is set to 0 MW.

• Conf-D: this configuration applies the calibration and

thresholding modules before performing neural predic-

tions. The input to the thresholding module consists of

the calibrated wind speeds uNN
ti and vNN

ti . If the wind

module ρNN
ti =

√

(uN
ti N)2 + (vNti N)2 is below the value

ρNN
th from the thresholding modules, the power prediction

p̂ti is set to 0 MW.

• Conf-E: Similar to Conf-C, this configuration applies the

thresholding module before performing neural predic-

tions, but the neural predictor is trained without consid-

ering the times tk at which ρtk < ρth.

• Conf-F: Similar to Conf-D, this configuration applies the

calibration and thresholding modules before performing

neural predictions, but the neural predictor is trained

without considering the times tk at which ρtk < ρth.

Fig. 3 shows the schemas of the proposed configurations.

Each module is described below.

1) Calibration: The goal of the calibration module is to

estimate the wind in the virtual center c of the wind farm

(Fig. 4) using forecasted wind speed data uti and vti pertaining

to the feature set Fti . Real historical values of uc
ti and

vcti measured by an anemometer placed in c are frequently

available for a period and can therefore be used to design

and tune the calibration module. However, these values cannot

be accessed in real time at many wind farms; therefore, they

cannot be used as features for our neural predictor.

Our calibration method can be defined as follows:

uNN
ti = CALIBu(uti,Near, vti,Near),

vNN
ti = CALIBv(uti,Near, vti,Near), (5)

where CALIBu(·) and CALIBv(·) are two feedforward neural

networks, and the wind speed values uti,Near and vti,Near

are related to the weather forecasting grid point nearest to the

virtual center (c) of the wind farm.

Each neural network includes a hidden layer composed of

an empirically determined number of tan-sigmoidal nodes and

an output layer composed of a linear node. The method used

for training the neural networks is the Levenberg-Marquardt

algorithm. The training step targets are uc
ti and vcti .

The calibrated wind speeds are then concatenated to a

feature vector Fti , as Fti = [Fti , u
NN
ti , vNN

ti ].
The configurations using the calibration module are Conf-B,

Conf-D and Conf-F.

2) Thresholding: Turbines produce electricity only when

the wind speed in the direction incident to the windmill blades

is greater than the minimum threshold value declared by the

factory. However, we experimentally observed that wind farms

can start producing energy at wind speeds different from the

factory-declared minimum threshold value for several reasons.

First, the turbines can have different orientations. Second,

each turbine of the wind farm may have a different minimum

activation speed. Third, some turbines can be damaged or

require maintenance.

When applied to NWP data, our technique can be described

as follows:

p̂ti =

{

0 if ρti,Near < ρth
p̂ti otherwise

, (6)

where ρti,Near =
√

(uti,Near)2 + (vti,Near)2. Similarly,

when applied to calibrated data, this technique uses ρNN
th and

ρNN
ti,Near (computed from uNN

ti,Near and uNN
ti,Near).

We adaptively estimate the parameters ρth and ρNN
th from a

set of training data. We consider the threshold estimation as a

binary classification problem. To estimate ρth, we consider

a training set composed of features corresponding to the

values ρtk,Near for every time tk pertaining to the training

interval. We define the two classes based on the actual power

production of the wind farm. The positive class is ptk > 0 and

the negative class is ptk = 0. The value ρth is then computed

as a threshold corresponding to the equal error rate (EER) of

the receiver operating characteristic (ROC) curve (see Fig. 5)

[68]. We consider the EER as the working point of the ROC

curve because it represents a good tradeoff between the false

positive rate (FPR) and the false negative rate (FNR). We

estimate ρNN
th similarly but use a training set composed of

features corresponding to the values ρNN
tk

for every time tk
pertaining to the training interval. Fig. 5 shows an example of

the parameter ρth selected from the ROC curve.

The configurations Conf-C and Conf-E use the threshold

ρth, while Conf-D and Conf-F uses ρNN
th .

3) Neural predictor: We use a hierarchical regression strat-

egy based on feed-forward neural networks to predict the

power production. Because single neural networks may obtain

unsatisfactory accuracy for complex problems, many previous

studies have used hierarchical approaches based on a pool of

regression techniques to achieve higher accuracy [40], [44].

The prediction method used by our system consists of an

ensemble of L networks trained individually. The final power

prediction is given by the median value of the results of all

the neural networks:

p̂ti = median
[

FFNNl(Fti , u
NN
ti , vNN

ti )
]

,

l ∈ L, (7)

where FFNNl(·) is a feedforward neural network.
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Fig. 3. System configurations for long-term power prediction with different combinations of the calibration (CALIB), thresholding, and neural prediction

modules based on the considered wind farm characteristics. In the figure, ρth is the speed threshold value ρ =
√

(uti
)2 + (vti )

2 corresponding to the EER;

ρNN

th
is similar, but uses the calibrated speed components uNN

ti
and vNN

ti
. Conf-E differs from Conf-C because the neural prediction module is trained by

discarding the samples for times tk at which ρtk < ρth. Similarly, Conf-F differs from Conf-D because the neural prediction module is trained using only

samples where ρNN
tk

< ρNN

th
.

grid

s1 s2

s3
s4

c

r1 r2
r3

WF

d

hill

Fig. 4. Example of wind farm (WF) placement in the grid and effect of
the orography. The virtual center of the wind farm c composed of different
turbines r1, r2, r3 is often not horizontally or vertically aligned with the
center of the grid. The orography surrounding and within the grid (e.g.,
the presence of hills) significantly affects wind flow in the wind farm and
introduces uncertainty in the weather forecast data, which refers to the
coordinates s1, . . . , s4.

Each neural network FFNNl includes a linear node as

an output layer and a single hidden layer composed of an

empirically tuned number of tan-sigmoidal nodes. The selected

learning technique is based on the Levenberg-Marquardt algo-

rithm.

We also define the neural prediction variability index ∆ti

using the results achieved by the group of neural networks, by

considering the inter-percentile range as follows:

∆ti = max(mβ
ti − p̂ti , p̂ti −mα

ti) , (8)

where mα
ti is the α-th percentile and mβ

ti is the β-th percentile

of l predictions, with α < β.

The model uncertainty estimation can be expressed classi-

cally using the variance in the outputs of the multiple neural

(a) (b)

� !

Fig. 5. Example of computing the threshold parameter ρth: (a) EER point
marked on the ROC curve; (b) FPR and FNR for each possible threshold. The
y coordinate of the intersection between the curves FPR and FNR corresponds
to the EER, and the x coordinate corresponds to ρth.

networks, as performed in [40]. However, using this type

of application, we cannot make reliable assumptions about

the shape and symmetry of the distribution of the neural

outputs; thus, we opted for a more pessimistic estimation based

on the inter-percentile range, which considers the maximum

imbalance among the left and right tails of the distribution.

For our implementation we chose α and β values equal to

the 10th and 90th percentiles, respectively.

D. Design of the learning strategy

To train and validate our system, we consider three strate-

gies:

• k-fold cross-validation with random permutations (kF-

RP): this is one of the most commonly used strategies

in the literature for building regression and classification

models [69]. This strategy has the important advantage

of using all the available data for both training and

testing a method. For k iterations, kF-RP divides the set

of available samples into a validation set composed of
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1/k of the elements and a training set composed of the

remaining samples. The training set is distinct for each

iteration and selected to perform a random permutation

of the sample indexes. This strategy permits to properly

compare the performances of different methods. However,

the accuracy values of the time series prediction methods

obtained using this strategy do not correspond to the

accuracies those methods achieve in real operational

conditions because kF-RP does not consider temporal

evolution or dependencies in the data [70].

• k-fold cross-validation without random permutations (kF-

NO-RP): this strategy is similar to kF-RP, but the training

sets used by the iterative algorithm are obtained by

dividing the set of samples into k blocks of fixed size that

preserve the temporal order of the samples. This strategy

also uses all the available data for both training and

validation. Compared to kF-RP, kF-NO-RP can reduce

problems due to temporal evolution and dependencies in

time series.

• Periodic Training (PT): this strategy simulates real op-

erating conditions by periodically training a prediction

method. PT divides the available feature set into a training

set that includes the samples corresponding to times prior

to ts and a validation set composed of the remaining

samples. The value of ts is iteratively increased using a

constant factor tc. Compared to kF-RP and kF-NO-RP,

PT does not present problems due to temporal evolution

and dependencies in time series because it simulates

real operation conditions. However, this strategy allows

validating methods over only limited intervals; thus, it

reduces the probability that the model will consider all

the possible application conditions.

IV. DECISION SUPPORT TOOLS

In this section, we present two graphical tools intended to

provide intelligible information for monitoring the behavior

of each individual plant by considering the production and

orography of the wind farm.

A physical relationship between wind and power production

exists that is based on the following formula [14]: ptheory =
(δAρ3)/2, where ρ is the wind speed (m/s), A is the swept

area of the turbine (m2), δ is the air density, and ptheory is

the expected power (W). However, the above equation does

not consider the wind angle. Furthermore, traders and plant

engineers are usually interested in aggregating information

related to the overall production of the wind farm, where

turbines with different orientations and characteristics may

exist.

The first tool consists of a set of graphs that evaluate the

relationship between the wind angle, its module, and the power

produced. This tool permits a visual analysis of the data

measured by an anemometer placed in the virtual center of

the wind farm c. Fig. 6 shows an example of this analysis

performed for two wind farms. Fig. 6(a) and Fig. 6(d) show

the ratios of power produced to wind speed for discrete sets

of wind angles at the two wind farms. Fig. 6(b) and Fig. 6(e)

show “Polar boxplots” of the produced power for each set

of wind angles at the two wind farms, and Fig. 6(c) and

Fig. 6(f) represent the frequency at which the wind angle

pertains to each set of wind angles. This figure shows that the

two analyzed wind farms exhibit strong differences in terms

of orography and production characteristics.

The second tool uses the same types of graphs shown in

Fig. 6, but computes them using the NWP data. Comparing

the graphs obtained from the anemometer measurements and

the NWP data, immediately reveals the accuracy of weather

forecasts for a wind farm.

V. EXPERIMENTAL RESULTS

This section focuses on the power production prediction per-

formance. First, we present the selected study cases. Second,

we describe the metrics used to analyze the power prediction

accuracy. Third, we evaluate the performance of the proposed

system in different configurations for data related to two het-

erogeneous wind farms. Finally, we analyze the performance

achieved by a player in the energy market using our system in

real-world applications and compare the achieved results with

that of another commercial system.

A. Study cases

We initially evaluated the performance of the proposed

system using data collected over a two-year period for two dif-

ferent wind farms (WF-A and WF-B). These two wind farms

present strong differences in terms of orography. Both wind

farms are able to generate a maximum power of approximately

50MW. For each wind farm, we performed power predictions

at approximately 3, 000 different timepoints.

We used weather forecasting data provided by the European

Centre for Medium-Range Weather Forecasts (ECMWF). The

forecasting grid used by ECMWF has a scale of 14 km (i.e.,

latitude and longitude in 0.125-degree steps) and consists of

raw weather forecasting data related to every corner point in

the grid.

To study the accuracy of the weather forecasts, we also used

data collected by sensors (anemometers) placed at the virtual

center c of the considered wind farms. These measurements,

however, are affected by noise and instrumental faults, and

they are not available for all the predicted times. Furthermore,

because this type of data cannot be acquired in real time

from all the analyzed power plants, we did not consider these

measurements during the design of the proposed system.

B. Metrics

Power prediction error is commonly computed as ei =
(p∗ti − p̂ti), where p∗ and p̂ represent the actual and predicted

power production, respectively. Widely used metrics consist

of statistical moments computed from the vector E of the

prediction errors ei.
Other frequently used metrics aim to measure the average

error, such as mean absolute error (MAE), its normalized

version (NMAE), and root mean square error (RMSE). All

these measures are derived from the differences p∗ti − p̂ti
between the observed and predicted values [71], [72]. MAE

is defined as follows:
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(a) (b)

(c)

(d) (e)

(f)

Fig. 6. Proposed graphical decision support tool to evaluate the power production using wind speed measured by an anemometer placed at the virtual center
of the wind farm. This tool was applied to wind farms WF-A and WF-B. Images (a), (b) and (c) are related to WF-A, and images (d), (e), (f) are related to
WF-B. Images (a) and (d) show the ratios of power produced to wind speed for discrete sets of wind angles. Images (b) and (e) show “Polar box plots” of
the produced power for each set of wind angles, and (c) and (f) represent the frequency at which the wind angle pertains to each set of wind angles in (b)
and (e), respectively. The variability of the wind speed and the prediction for some angles of WF-A (a) are significantly greater than those of WF-B (d). This
compact representation is based on historical data and can help energy producers to verify the neural predictions and make decisions accordingly. The two
analyzed wind farms exhibit strong differences in terms of orography and production characteristics.

MAE =
1

n

n
∑

i=1

|p∗ti − p̂ti | , (9)

while NMAE and RMSE are respectively defined as follows:

NMAE = 1

n

∑n
i=1

(|p∗ti−p̂ti |/cp), where cp is the net capacity

of the plant, and RMSE = [ 1n
∑n

i=1
(p∗ti − p̂ti)

2]1/2.

An important difference between these metrics lies in their

sensitivity to extreme values (outliers) [73]. Metrics such as

RMSE are highly influenced by outliers. On the contrary,

metrics based on median values are less sensitive to outliers.

MAE falls in the middle. The use of measures based on MAE

for model comparison is also advantageous because it is a

measure of error that can be clearly interpreted [74].

The weighted MAE (WMAE) metric is linked to the stake-

holder’s cost function, which is defined as follows:

WMAE =

∑n
i=1

|p∗ti − p̂ti |
∑n

i=1
|p∗ti |

. (10)

We used the following metrics: mean error (Mean(E)),
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standard deviation (Std(E)), (Skewness(E)), quantile 0.1
(q(E, 0.1)), median (q(E, 0.5)), quantile 0.9 (q(E, 0.9)),
MAE, and WMAE.

Within this set of metrics, skewness is important because

it reveals the prediction error trend. This metric is negative

when power production is underestimated and positive when

production is overestimated.

C. Accuracy evaluation

In this subsection, we compare the performances of well-

known prediction techniques from the literature, evaluate fea-

ture sets composed of weather forecasts related to different

points of the grid and predicted two and three days ahead,

analyze different training strategies, evaluate the accuracy

of different system configurations, and discuss the effect of

using pools of neural networks instead of a single regression

technique.

1) Power prediction techniques: As starting point for our

research, we evaluated the performance of different power

prediction techniques from the literature to select the technique

that achieves the most promising results.

The persistence of the power produced in previous instants

of time is commonly used as a reference for comparing novel

models of prediction. The main idea behind this method

is to exploit the fact that weather conditions change rela-

tively slowly within the forecasting horizon. It is defined as:

p̂ti+∆t = p∗ti , where p∗ti is the power measured at time ti. We

considered the persistence when ∆t = 48 hours as Baseline-1.

The second considered method, Baseline-2, computes a

constant value, p, as the mean of the power produced by the

wind farm over the entire test period.

Table I compares the performance of the proposed system

in its simplest configuration (Conf-A with a single neural

predictor) with that of Baselines 1 and 2 for DB 2 Near

(described in Subsection V-C2). We used the kF-RP cross-

validation method with k = 10. The results show that the

neural approach achieved a higher accuracy with respect to the

compared techniques for each of the considered wind farms.

We also considered techniques based on auto-regressive

models [75], which achieved unsatisfactory results.

2) Feature set: To tune the proposed system, we searched

for the best configuration of the feature set by evaluating

relevant combinations of weather forecasts at different spatial

coordinates sj (with 1 ≤ j ≤ 4) and forecasts performed

both 2 and 3 days ahead of time t0 (with ti ∈ {t0 + 24, t0 +
27, . . . , t0 + 69}). In this manner, we created 3 feature sets

based on the number of sites considered:

1) DB Near: NWP data related to the point of the

grid closest to the considered wind farm. Each sam-

ple was composed of the following features: Fti =
[NWPti,s1 , dateti , hourti , ti], where s1 represents the

closest site and ti ∈ T .

2) DB WMean: weighted mean of NWP data for the

four grid sites surrounding the considered wind

farm, with weights computed according to the

distance between each site and the wind farm.

Each sample was composed of the following

10 features: Fti = [(NWPti,s1(d1/dTot) +
NWPti,s2(d2/dTot) + WPti,s3(d3/dTot) +
NWPti,s4(d4/dTot)), dateti , hourti , ti], where (d1, d2,

d3, d4) are the distances between each point of the grid

si, dTot = d1 + d2 + d3 + d4, c represents the center of

the wind farm, and ti ∈ T .

3) DB Corners: NWP samples from the four

corners of the rectangular grid. Each sample

was composed of the following features:

Fti = [NWPti,s1 , NWPti,s2 , NWPti,s3 ,
NWPti,s4 , dateti , hourti , ti], with ti ∈ T .

Each feature set was created in two versions. The first

version consisted of two-day-ahead weather forecasts, denoted

by the prefix DB 2 (e.g., DB 2 Near). The other version

collected both two-day- and three-day-ahead weather fore-

casts, denoted by the prefix DB 2+3 (e.g., DB 2+3 Near).

The motivation for creating the latter type of feature set was

to exploit the uncertainty of the weather forecasts as additional

information for training the neural predictors.

Table II reports the best results achieved by our system in its

simple configuration (Conf-A with a single feedforward neural

network) for different sets of features created considering the

weather forecasts related to different combinations of points on

the forecasting grid. We obtained these results using the kF-RP

cross-validation approach with k = 10. The results show that

using all the available information (DB 2 Corners) increases

the prediction accuracy. This result probably occurred because

neural networks can infer more information about wind farm

orography by using the weather forecasts for all the available

surrounding points of the grid.

Table III presents the best results achieved using our

system in its simplest configuration (Conf-A with a single

feedforward neural network) and different datasets of features

created considering NWP performed 2 and 3 days ahead of

time t0. We used kF-RP with k=10. The results show that

DB 2+3 Corners achieved the best performance. This result is

probably due to the increased capability of the neural networks

to infer information concerning weather forecast uncertainty

by comparing the values computed at different times.

We considered two different methods to normalize the

values of the feature sets: min-max normalization and z-score

normalization. However, these normalization algorithms did

not contribute satisfactorily to the power prediction accuracy.

We also evaluated the effectiveness of various feature selec-

tion strategies [76] but obtained no significant performance

improvements.

The following tests refer to DB 2+3 Corners.

3) Training strategies: We evaluated three different training

strategies to properly analyze the performance of the proposed

system: kF-RP, kF-NO-RP, and PT (Section III-D). Specifi-

cally, we evaluated kF-RP with k = 10 and kF-NO-RP with

k = 10 and k = 24 (in the second case, each fold corresponds

to one month of the considered two-year datasets). For PT, we

simulated the real use of the system over a time span of five

months, training the neural classifier every 14 and 31 days.

Table IV summarizes the best results achieved for the

best feature set configuration (DB 2+3 Corners) using Conf-

A with a single feedforward neural network. These results
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TABLE I
COMPARISON OF OUR POWER PREDICTION SYSTEM (CONF-A WITH A SINGLE NEURAL NETWORK) WITH BASELINE ALGORITHMS FOR DB 2 NEAR,

EVALUATED WITH KF-RP (K = 10).

Wind Prediction Mean(E) Std(E) Skewness(E) q(E, 0.1) q(E, 0.5) q(E, 0.9) MAE
WMAE

farm method [MW] [MW] [MW] [MW] [MW] [MW] [MW]

WF-A Baseline-1 −0.006 11.074 0.023 −12.676 −0.056 12.911 7.610 1.053
WF-A Baseline-2 −3.258 8.746 −1.623 −16.761 0.000 3.956 6.068 0.841
WF-A Conf-A −0.013 4.759 −0.575 −5.492 0.246 5.258 3.514 0.487

WF-B Baseline-1 −0.011 6.484 −0.020 −7.602 0.000 7.490 4.292 1.173
WF-B Baseline-2 −2.146 5.016 −1.777 −9.971 0.000 1.505 3.317 0.909
WF-B Conf-A 0.002 2.572 −0.674 −3.024 0.243 2.591 1.691 0.463

Notes: Baseline 1 = persistence with ∆t = 48 hours; Baseline 2 = mean of the power produced by the wind farm over the entire test period; Conf-A = the
proposed system in its simplest configuration with a single feedforward neural network. Here, q(·) represents the quantile operation.

TABLE II
SYSTEM ACCURACY (CONF-A WITH A SINGLE NEURAL NETWORK) USING WEATHER FORECASTS RELATED TO DIFFERENT POINTS OF THE GRID AND

KF-RP (K=10).

Wind
Feature set

Hidden layer Mean(E) Std(E) Skewness(E) q(E, 0.1) q(E, 0.5) q(E, 0.9) MAE
WMAE

farm nodes [MW] [MW] [MW] [MW] [MW] [MW] [MW]

WF-A DB 2 Near 40 −0.013 4.759 −0.575 −5.492 0.246 5.258 3.514 0.487
WF-A DB 2 WMean 30 0.030 4.994 −0.744 −5.806 0.423 5.554 3.659 0.507
WF-A DB 2 Corners 35 0.052 4.595 −0.139 −5.327 0.194 5.331 3.430 0.475

WF-B DB-2-Near 25 0.010 2.461 −0.557 −2.933 0.147 2.653 2.631 0.482
WF-B DB 2 WMean 30 −0.002 2.527 −0.551 −2.859 0.150 2.675 2.665 0.489
WF-B DB 2 Corners 5 0.002 2.572 −0.674 −3.024 0.243 2.591 2.526 0.463

Notes: DB 2 Near = NWP data related to the point of the grid closest to the considered wind farm; DB 2 WMean = weighted mean of NWP data for the
four sites of the grid surrounding the considered wind farm; DB 2 Corners = NWP data from the four corners of the rectangular grid.

TABLE III
SYSTEM ACCURACY (CONF-A WITH A SINGLE NEURAL NETWORK) USING WEATHER FORECASTS PERFORMED AT DIFFERENT TIMES AND KF-RP (K=10).

Wind
Feature set

Hidden layer Mean(E) Std(E) Skewness(E) q(E, 0.1) q(E, 0.5) q(E, 0.9) MAE
WMAE

farm nodes [MW] [MW] [MW] [MW] [MW] [MW] [MW]

WF-A DB 2 Corners 35 0.052 4.595 −0.139 −5.327 0.194 5.331 3.430 0.475
WF-A DB 2+3 Corners 40 0.070 4.383 −0.207 −4.990 0.159 5.052 3.182 0.441

WF-B DB 2 Corners 5 0.002 2.572 −0.674 −3.024 0.243 2.591 1.691 0.463
WF-B DB 2+3 Corners 30 0.020 2.157 −0.416 −2.469 0.108 2.452 1.585 0.434

Notes: DB 2 Corners = NWP performed two days ahead of time t0; DB 2+3 Corners = NWP performed two days ahead of time t0 and NWP performed
three days ahead of time t0.

show that training the neural networks frequently increased

the prediction accuracy. In fact, PT achieved better results

when using the 14-day training interval than when using

the 31-day interval. Table IV also confirms our assumption

that kF-RP overestimates the system accuracy because the

training process can exploit additional knowledge on weather

periodicity compared to a real application scenario. kF-NO-RP

achieved more realistic estimations and its accuracy was more

similar to PT (which simulates the system in real application

conditions) but it provides the advantage of considering all

the available data when testing our system. Therefore, we

chose kF-NO-RP with k = 10 as the training strategy for

the subsequent tests.

4) Configurations of the proposed prediction system: The

calibration module of our system should be optimized for each

considered wind farm. In the following, we describe the eval-

uation procedures for the calibration, thresholding, and neural

prediction modules in the various proposed configurations.

We evaluated different techniques for calibrating the wind

forecasts:

• Sum: least mean square approximation of uM
ti = uti +αu

and vMti = vti + αv .

• Multiplication: least mean square approximation uM
ti =

uti · βu and vMti = vti · βv .

• Polynomial 1: least mean square approximation of the

first order polynomial mapping of u to uM and the first

order polynomial mapping of v to vM .

• Polynomial 2: least mean square approximation of the

second order polynomial mapping of u to uM and the

first order polynomial mapping of v to vM .

• RANSAC: approximation based on RANdom SAmple

Consensus (RANSAC) of the second order polynomial

mapping of u to uM and the second order polynomial

mapping of v to vM . Compared to the least mean square

approximation, RANSAC is more robust to noisy data

because it iteratively detects and removes outliers during

the fitting process. We evaluated functions with different

degrees of freedom and achieved the best results using

second order polynomials.

• Neural: our calibration method based on neural networks

(Subsection III-C).

Table V summarizes the best performance of each con-
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TABLE IV
SYSTEM ACCURACIES FOR POWER PREDICTION (CONF-A WITH A SINGLE NEURAL NETWORK) EVALUATED USING DIFFERENT TRAINING STRATEGIES.

Wind Training Hidden layer Mean(E) Std(E) Skewness(E) q(E, 0.1) q(E, 0.5) q(E, 0.9) MAE
WMAE

farm strategy nodes [MW] [MW] [MW] [MW] [MW] [MW] [MW]

WF-A kF-RP (k=10) 40 0.070 4.383 −0.207 −4.990 0.159 5.052 3.182 0.441
WF-A kF-NO-RP (k=10) 10 0.179 5.437 −0.424 −5.861 0.440 6.005 3.815 0.529
WF-A kF-NO-RP (k=24) 10 0.012 4.824 −0.426 −5.498 0.259 5.502 3.571 0.495
WF-A PT (31 days) 3 0.410 5.376 −0.447 −5.989 0.851 6.362 4.040 0.535
WF-A PT (14 days) 3 −0.122 5.428 −0.668 −6.827 0.789 5.486 3.916 0.517

WF-B kF-RP (k=10) 30 0.020 2.157 −0.416 −2.469 0.108 2.452 1.585 0.434
WF-B kF-NO-RP (k=10) 5 −0.043 2.643 −0.679 −3.005 0.257 2.623 1.816 0.497
WF-B kF-NO-RP (k=24) 20 −0.007 2.289 −0.305 −2.802 0.127 2.640 1.690 0.463
WF-B PT (31 days) 3 0.247 2.604 −0.508 −2.872 0.419 2.946 2.121 0.533
WF-B PT (14 days) 3 0.044 2.689 −0.651 −3.102 0.337 2.553 1.780 0.474

Notes: kF-RP = k-fold cross validation with random permutations; kF-NO-RP = k-fold cross validation without random permutations; PT = periodic training
over a maximum testing period of five months.

TABLE V
ACCURACIES OF DIFFERENT METHODS FOR CALIBRATING THE WIND

FORECASTS VALIDATED USING KF-NO-RP WITH K = 10.

Wind

farm

Calibration

method

u v

mean(Eu) std(Eu) mean(Ev) std(Ev)

[m/s] [m/s] [m/s] [m/s]

WF-A Sum 2.77 2.21 3.34 2.82
WF-A Multiplication 2.94 2.41 3.02 2.27
WF-A Polynomial 1 2.76 2.20 2.98 2.23
WF-A Polynomial 2 2.75 2.22 2.90 2.22
WF-A RANSAC 2.18 2.04 2.82 3.10
WF-A Neural 2.10 1.89 2.47 2.15

WF-B Sum 2.60 1.83 3.16 2.60
WF-B Multiplication 2.14 1.72 1.70 1.48
WF-B Polynomial 1 2.13 1.70 1.59 1.47
WF-B Polynomial 2 2.12 1.70 1.59 1.47
WF-B RANSAC 2.09 1.68 1.91 1.76
WF-B Neural 2.04 1.75 1.60 1.43

Notes: Sum = least mean square approximation of uM = u + αu and
vM = v+αv ; Multiplication = least mean square approximation uM = u·βu

and vM = v · βv ; Polynomial 1 = least mean square approximation of the
first order polynomial mapping of u to uM ; Polynomial 2 = least mean
square approximation of the second order polynomial mapping of u to uM ;
RANSAC: approximation based on RANSAC of the second order polynomial
mapping of u to uM ; Neural = our calibration method based on neural
networks (as described in Subsection III-C).

sidered technique for kF-NO-RP with k = 10. In this test,

we used the error metrics Eu
ti =

∣

∣uNN
ti − uti,sj

∣

∣ and Ev
ti =

∣

∣vNN
ti − vti,sj

∣

∣. The results reported for feedforward neural

networks refers to networks with 3 tan-sigmoidal nodes in the

hidden layer. The obtained results show that the feedforward

neural networks achieved the best accuracy for both the con-

sidered wind farms. This result probably occurred because it is

difficult to model the complex physical configuration of a wind

farm using linear approximation techniques. Therefore, non-

linear regression techniques such as neural networks can obtain

better performances. Table V also shows that the calibration

module was more accurate for WF-B than for WF-A. This is

probably because the NWP data for WF-A are noisier than

those for WF-B.

The parameter used by the wind thresholding module should

be tuned for each wind farm. The module considers the u
and v values extracted from NWP in the Conf-C and Conf-E

configurations to compute the threshold ρth, while it considers

uNN and vNN for the Conf-D and Conf-F configurations

TABLE VI
MEAN OF THE BEST THRESHOLDS COMPUTED FOR CALIBRATED AND

UNCALIBRATED DATA, VALIDATED USING KF-NO-RP WITH K = 10.

Parameter Configurations

WF-A WF-B

mean mean mean mean

threshold EER threshold EER

(m/s) (m/s)

ρth (Conf-C, Conf-E) 1.710 0.237 2.600 0.237

ρNN

th
(Conf-D, Conf-F) 3.350 0.148 1.910 0.056

to compute the threshold ρNN
th . The mean of the thresholds

computed using kF-NO-RP with k = 10 are listed in Table VI.

The results show important differences in terms of the EER

obtained when computing ρth and ρNN
th . For WF-B, the

calibration significantly reduced the prediction error, while it

was not effective for WF-A. This result can be justified by the

fact that the weather forecasts for WF-A were significantly

less accurate than those for WF-B.

The configurations of the proposed system (Conf-A, . . .,
Conf-F) use the calibration and thresholding modules in

different positions of the computational chain. Table VII

summarizes the prediction error achieved by performing kF-

NO-RP with k = 10 for each configuration of our system

and using a single neural network. The results show that the

configuration choice should be guided by the characteristics

of each wind farm. For WF-A, we achieved the best errors

MAE = 3.653 MW and WMAE = 0.506 using Conf-C. For

WF-B, we achieved the best errors MAE = 1.602 MW and

WMAE = 0.439 using Conf-D. The calibration and thresh-

olding modules (Conf-B and Conf-C, respectively) increased

the accuracy of the basic configuration of our system (Conf-A)

for both the considered wind farms. However, Table VII shows

that configurations using both the calibration and thresholding

modules (Conf-D and Conf-F) achieved satisfactory results

only when the weather forecasts were sufficiently accurate to

allow calibration to be performed satisfactorily.

5) Pool of neural networks: We evaluated the prediction

accuracy by using a hierarchical pool of neural networks and

extracting the median value of their predictions, as described

in Section III-C3. Table VIII summarizes the results achieved
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TABLE VII
ACCURACY OF DIFFERENT CONFIGURATIONS OF OUR SYSTEM BASED ON A SINGLE FEEDFORWARD NEURAL NETWORK AND VALIDATED USING

KF-NO-RP WITH K = 10.

Wind
Configuration

Hidden layer Mean(E) Std(E) Skewness(E) q(E, 0.1) q(E, 0.5) q(E, 0.9) MAE
WMAE

farm nodes [MW] [MW] [MW] [MW] [MW] [MW] [MW]

WF-A Conf-A 10 0.179 5.437 −0.424 −5.861 0.440 6.005 3.815 0.529
WF-A Conf-B 10 0.223 5.396 −0.696 −6.088 0.810 6.246 3.747 0.519
WF-A Conf-C 5 −0.284 5.522 −0.517 −6.660 0.000 5.241 3.653 0.506

WF-A Conf-D 35 −1.828 5.684 −0.513 −8.049 −1.007 3.811 3.850 0.534
WF-A Conf-E 25 −0.085 5.174 −0.288 −6.197 0.000 6.021 3.652 0.506
WF-A Conf-F 5 −1.991 6.117 −0.693 −9.336 −0.967 4.925 4.276 0.593

WF-B Conf-A 5 −0.043 2.643 −0.679 −3.005 0.257 2.623 1.816 0.497
WF-B Conf-B 15 −0.033 2.483 −0.322 −2.948 0.073 2.670 1.774 0.486
WF-B Conf-C 10 −0.337 2.594 −0.525 −3.124 −0.024 2.404 1.644 0.450
WF-B Conf-D 25 −0.225 2.453 −0.519 −2.987 −0.010 2.538 1.602 0.439

WF-B Conf-E 30 −0.213 2.515 −0.471 −2.956 −0.014 2.734 1.654 0.453
WF-B Conf-F 35 −0.181 2.451 −0.325 −2.813 −0.018 2.570 1.618 0.443

TABLE VIII
ACCURACY OF OUR BEST SYSTEM CONFIGURATION SYSTEM BASED ON A

POOL OF 10 FEEDFORWARD NEURAL NETWORKS, VALIDATED USING

KF-NO-RP WITH K = 10.

Wind

farm
Configuration

WMAE

mean(∆ti
) std(∆ti

)Single Pool of 10

NN NN

WF-A PT (Conf-C) 0.506 0.434 3.950 2.581
WF-B PT (Conf-D) 0.439 0.380 2.545 6.096

by applying a single neural predictor and a pool of 10 neural

networks for the best-performing configurations of our system.

We used kF-NO-RP with k = 10. For each wind farm, the

table reports the mean and standard deviation of the neural

prediction variability index ∆ti of the performed predictions

(Eq. 8). In our tests, pooling the neural networks increased

the repeatability of the tests and outperformed the single

neural predictor, reducing the WMAE by approximately 0.06
(≈ 12%).

Fig. 7 shows the actual power p∗ti and the predicted power

p̂ti using a pool of 10 neural networks for our best-performing

system configuration (Table VIII) over a 100-day period. The

graphs show that, in the vast majority of cases, our system

accurately predicted the production peaks.

D. Application of the proposed system in the energy market

This subsection discusses the results obtained by applying

a first prototype of our prediction system in the real energy

market. A player in the energy market used our system for

a time span of 70 days on a set of 10 wind farms and

summarized the achieved results.

Table IX compares our system with the commercial system

previously adopted by the stakeholder. The results apply to our

system in its simplest configuration (Conf-A) with a pool of

100 neural networks trained daily. Conf-A was selected mainly

because this was a preliminary test for the application of our

system. The results show that, in the vast majority of cases,

our system outperformed the previously used predictor.

(a)

(b)

Fig. 7. Actual power p∗
ti

and the predicted power p̂ti using a group of 10
neural networks with our best-performing system configuration (Table VIII)
for a period of 100 days: (a) and (b) show the results for WF-A and WF-B,
respectively. In the vast majority of cases, our system accurately predicted the
production peaks.

VI. CONCLUSION

This paper presented a novel decision support system that

can predict the wind power production of a general wind

farm. The system includes two main functions: long-term

prediction of the power produced by a wind farm as well

as computation of the related variability index and automatic
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TABLE IX
ACCURACY OF OUR SYSTEM AND A COMMERCIAL PREDICTOR APPLIED

TO THE REAL ENERGY MARKET FOR A TIME SPAN OF 70 DAYS.

Wind farm
WMAE

Our system Commercial

WF-C 0.53 0.74
WF-D 0.51 0.52
WF-E 0.54 0.69
WF-F 0.55 0.61
WF-G 0.59 0.57
WF-H 0.42 0.57
WF-I 0.47 0.60
WF-J 0.58 0.57
WF-K 0.55 0.62
WF-L 0.47 0.53
Mean 0.52 0.60

tools that evaluate the production characteristics of wind farms

and the accuracy of weather forecasts. The main novelty

presented in this paper consists of our system for predicting

the power production of a wind farm based on NWP data. The

proposed system is able to automatically learn the production

characteristics of a wind farm. The system is composed of

the following modules: data harmonization, feature extraction,

calibration, thresholding, and neural prediction. To achieve the

best performance for heterogeneous wind farms, we proposed

different configurations of the system obtained by using dif-

ferent combinations of its modules.

We evaluated the performance of the proposed system on

data collected for two wind farms over a two-year period.

Using these data, we analyzed different prediction approaches,

feature sets, training strategies, system configurations, and

techniques based on multiple regression strategies. The results

achieved were satisfactory and demonstrated the feasibility of

the proposed system. A player in the energy sector evaluated

our decision support system on a set of 10 wind farms for the

day-after energy market. The system was used successfully in

these real-world application conditions and performed better

than the system previously used by the company.

In contrast to most of the previous work in the literature,

our system has an important advantage in that it can be

applied to heterogeneous wind farms without requiring any

previous knowledge of the plant or concerning the orography

of the territory, because our system learns these types of

information directly from the data. Because our system uses

only NWP data, it is also applicable for wind farms from

which it is difficult or impossible to obtain real-time sensor

measurements. Furthermore, training the prediction system

requires only approximately one hour; therefore, it is possible

to periodically re-train the system in real application scenarios.

Our decision support system is currently in use by a power

company.
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[20] D. Petković, V. Nikolić, V. V. Mitić, and L. Kocić, “Estimation of fractal
representation of wind speed fluctuation by artificial neural network with
different training algorothms,” Flow Measurement and Instrumentation,
vol. 54, pp. 172–176, 2017.

[21] J. Zhao, Y. Guo, X. Xiao, J. Wang, D. Chi, and Z. Guo, “Multi-step
wind speed and power forecasts based on a WRF simulation and an
optimized association method,” Applied Energy, vol. 197, pp. 183–202,
2017.

[22] J. Koo, G. D. Han, H. J. Choi, and J. H. Shim, “Wind-speed prediction
and analysis based on geological and distance variables using an artificial
neural network: A case study in South Korea,” Energy, vol. 93, no. Part
2, pp. 1296–1302, 2015.



14

[23] S. M. Lawan, W. A. W. Z. Abidin, T. Masri, W. Y. Chai, and A. Baharun,
“Wind power generation via ground wind station and topographical feed-
forward neural network (T-FFNN) model for small-scale applications,”
Journal of Cleaner Production, vol. 143, pp. 1246–1259, 2017.

[24] J. Wang, Y. Song, F. Liu, and R. Hou, “Analysis and application
of forecasting models in wind power integration: A review of multi-
step-ahead wind speed forecasting models,” Renewable and Sustainable
Energy Reviews, vol. 60, pp. 960–981, 2016.

[25] J. Jung and R. P. Broadwater, “Current status and future advances for
wind speed and power forecasting,” Renewable and Sustainable Energy
Reviews, vol. 31, pp. 762–777, 2014.

[26] M. A. Mohandes, S. Rehman, and S. M. Rahman, “Estimation of wind
speed profile using adaptive neuro-fuzzy inference system (ANFIS),”
Applied Energy, vol. 88, no. 11, pp. 4024 – 4032, 2011.

[27] M. Lange and U. Focken, Physical approach to short-term wind power
prediction. Springer, 2006.
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Università degli Studi di Milano, Italy (since 2015).
His main research interests are: biometric systems,
machine learning and computational intelligence,
signal and image processing, theory and applications
of neural networks, three-dimensional reconstruc-
tion, industrial applications, intelligent measurement
systems, and high-level system design. Original re-
sults have been published in more than 100 papers in

international journals, proceedings of international conferences, books, book
chapters, and patents. He is IEEE Senior Member. He is Associate Editor
of the IEEE Transactions on Human-Machine Systems and the Springer
Soft Computing, he has been Associate Editor of the IEEE Transactions
on Information Forensics and Security, and Guest co-editor for the IEEE
Transactions on Instrumentation and Measurement.

Gianluca Sforza has received his Ph.D. in com-
puter science at Università degli Studi di Bari,
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