
A Decision Support System that Reverse

Engineers Abstract Database Transactions -

The Conceptual Model

A. Sulaiman ''̂ & J. Souza '
' Coordenagdo dos Programas de P6s-gradua$ao em Engenharia,
COPPE/UFRJ. * Laboratorio Nacional de Computa$ao Cientifica -
LNCC/CNPq. * Universidade Santa Ursula - USU. ' Cidade
Universitdria, Centra de Tecnologia, bloco H, sala 319,
Ilha do Fundao, Rio de Janeiro, RJ. Caixa Postal: 68513.
EMail: sulaiman@lncc. br, jano@cos. ufrj. br

Abstract

Traditional methods of database integration don't solve applications integration
issues. These methods work on database schema. Beyond the complexity of
integrating names and meanings between data and metadata of heterogeneous
databases, is the understanding of the business that originated applications.
Database transactions should have been projected to reflect the business
activities. In general, differences between abstractions levels don't let database
transactions mirror business activities. Business process consists of separate
activities. Sometimes database transactions solve part of a defined activity.
Otherwise more than one activity can be embedded in a database transaction.
Database log records all occurrences of database transactions; it has their
complete histories. Database log is an endogenous data warehouse: In this
datawarehouse one can mine rules, which will help understanding the nature of
the business task and the adequacy of the related database logical model. This
paper describes a conceptual model for a Decision Support System that will help
database administrators on reverse engineering legacy system applications from
its database logs, generating rules about transactions, to retrieve business process
That approach will complement Conceptual Schema Integration.

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

1 Introduction

The database log is a kind of datawarehouse. In this datawarehouse one
can mine rules, as described in [1], which will help understanding the
nature of the business process and its adequacy to the database logical
model.
As defined in [2], a business process is a set of activities. But differently
from [2], where a process execution with its activities occurrences is
completely represented in a workflow log record, there is no assurance
that a database log record will represent completely an activity.
There are important differences between workflow software and
database software, among others: in a workflow software, the kind of
diagrams used symbolizes business process and its activities; in a
database software the emphasis isn't the business process, but the
information transaction (On Line Transaction Processing - OLTP).
Using Zachman Framework [3] [4] one can understand these important
differences related to the abstraction axes (workflow software is well
suited to the functional axe and database software to the data axe) and to
the abstraction level (workflow software is to represent knowledge and
database software represents information and data). So the granularity of
information is distinct in each case.
In general database log transactions grouped together stands for an
activity. Sometimes database transactions solve part of a defined activity.
Otherwise more than one activity can be embedded in a database
transaction. Abstract transaction is the name we are using to represent an
activity implemented in a database.
Mining database log transaction one can discover knowledge about
functional and control abstraction axe. The rules that represent that
knowledge can be combined with the rules inferred from the metadata
(data abstraction axe), in the database integration.
In general, there is no documentation about business process in legacy
systems, and a software to retrieving it (even partially) should be
desirable, for economical reasons.
Next versions of the model will work on federated databases (network
axe).
The rest of this paper is organized as follows. In section 2, we compare
the nature of a database log and a datawarehouse and formulate the
hypothesis of an endogenous datawarehouse. In section 3, we formulate
the hypothesis of an abstract transaction as an computational
interpretation of a business activity. In section 4, we review the concept
of a production rule server. In section 5, we review the concept of mining

402

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

The rest of this paper is organized as follows, in section z, we
compare the nature of a database log and a datawarehouse and
formulate the hypothesis of an endogenous datawarehouse. In section
3, we formulate the hypothesis of an abstract transaction as an
computational interpretation of a business activity. In section 4, we
review the concept of a production rule server. In section 5, we review
the concept of mining association rules. In section 6 we model a
decision support system that reverse engineers abstract database

transactions. In section 7 we conclude with a summary.

2 An Endogenous Datawarehouse

Is possible to develop some taxonomies to computer applications. One
of them can be based on the necessity of modeling one or more
abstraction axes. Another possibility is to classify them by the
exogenous or endogenous nature of the application.
Exogenous applications in relation to databases, are generic programs
that belong to the users and specialists universe. Stock control and
bank transactions are related to users. Bank loan and medical advice

are related to specialists.
Endogenous applications in relation to databases, are system
administration programs. Typical example is the integrity constraint
control in a DBMS. Other examples are: periodic file reorganization,

and backup.
A Datawarehouse is "a subject oriented, integrated, time-variant, and
non-volatile collection of data in support of management's decision
making process" [5].
A Database log is "the temporal database. The online sessions, tables,
contexts, queues and other durable objects are just their current
versions. The log has their complete histories." [6]. And "the log
manager provides read and write access to the log table for all other
resource managers and for the transaction manager" [6]].
Our Hypothesis is that database logs can be viewed as

datawarehouses:
• Database logs are subject oriented. The subject is the record of a

database transaction;
• Database logs are integrated. Once the log is the history of the

transactions, the information obtained is semantically related to the

application;

403

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

• Database logs are time-variant. They record each modification in
each object at each time;

• Database logs are non-volatile. They have to be preserved to
prevent crashes, but also to let audit checking.

Our point of view is that the log manager software is an endogenous
application and the database log is an endogenous datawarehouse
where one can mine rules to the database administrator's decision
support.

3 Abstract Transactions

Observing the Zachman framework [3] one can realize that there are

important differences between the business point of view and the
computational point of view about a task to be performed.
One of the most important differences is the semantical one. In
modeling business one can define business process as a set of separate
activities [2]. And an activity can be defined as an action that is a
semantical unit at some level, or as a function that modifies the state
of a process [2].
On the other hand, from the computational point of view, a
transaction is the execution of a program that access or changes the
contents of the database, and an atomic transaction is an atomic unit
of work, or a logical unit of database processing [7].
When building a system, one adequates business models to
computational models. A semantical gap then is found: none all the
meaning stated for the business can be built by a piece of software
program. And the part that can be built doesn't necessarily obey the
business logic, but the computational logic.
In general, database transactions grouped together stands for an
activity. Sometimes database transactions solve part of a defined
activity. Otherwise more than one activity can be embedded in a
database transaction.
Abstract transaction is the name we are using to represent an activity
(or the computational part of the activity) implemented in a database.

404

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

4 A Production Rule Server

One of our goals is to record facts and rules automatically generated.
We will use our production rule server [8][9][10][11], to use the

DBMS to store facts and rules homogeneously.
With this rule server we can perform forward and backward chaining.
If we choose a relational environment, the methods can be
implemented through a third generation language that supports

recursion and embedded SQL call.
With this model, the rules can be stored with the facts in the same
DBMS. If an external event happens, it can change the state of a
clause, firing a rule. The rule server can be implemented in any

DBMS.
The Venn diagram represents all of our transactions and the possible
states of each transaction. From [12] the assertion: "generalization is
an OR relationship", one can deduce that the set of the clauses is
made by hypothesis Ufacts Upremises U conclusions. But the point
is that a clause can be simultaneously in two or even three of these
states. There are eight possible states represented below [9]:

Figure 1: a Venn diagram that represents a knowledge base.

405

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

CLAUSE STATE TABLE

000

001

010

100

Oil

101

110

111

Hypothesis in its initial state. When the
knowledge base receives a message this state
must change or the inferencing cannot
happen. There is no knowledge.

Exclusive premise. In this case this premise
will never be fired, if the clause does not
change its state.

Exclusive conclusion. In this case this
conclusion will never be reached, if the
clause does not change its state.

Exclusive fact. This is a truth. If this is an
initial hypothesis, it is proved.
Premise and conclusion. It must change its
state, or the clause can't be proved.

Fact and premise. The clause is proved. The
knowledge base must be reorganized.

Fact and conclusion. The clause is proved.
The knowledge base must be reorganized.
Fact and premise and conclusion. The clause
is proved. The knowledge base must be
reorganized.

Figure 2: a clause state table.

5. Mining Association Rules

With the fact base (the Database log) and the rule server, the next step
is to generate the rules in the rule server to represent the knowledge
about database transactions. Borrowing the idea from [1], originally
used for exogenous applications, one can use new functionalities,
endogenous by nature, and search over the log datawarehouse as
follows:
• Find all rules that have "delete record from table A" as a

consequent. These rules may help to built a CRUD matrix
[13][14], from a legacy system for future data planning and
distribution;

406

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

• Find all rules that have "insert record into table B" in the
antecedent. These rules may help determine the impact of that
operation on other transactions;

• Find all rules that have "insert record into table C" in the
antecedent AND "delete record from table D". This rules can help
in finding same patterns of behavior in different transactions;

• Find all rules relating operations over tables X and Y in the
schema Z. These rules may help Information System Planning, by
determining if the operations over table X from transaction Q are
related to the operations over table Y from transaction W.

Reading [1] one will find the analogy that has been done here
between store shelves and the database conceptual and logic schema,
between a selling transaction and database transaction, and between
item sold and insert/delete operations.

6 The Conceptual Model

The definition of the granularity of a datawarehouse, is one of the first
steps recommended in the literature [immon92][4]. Our grain is the
atomic transaction recorded in a transaction database log.
To do so, one of the desired properties of database transactions is the
"A" of ACID properties: Atomicity. "A transaction is an atomic unit
of processing; it is either performed in its entirety or not performed at
all" [7].

There are long transactions that, if implemented, don't obey the
atomicity principle. In general nested transactions are necessary to
implement them. However using traditional relational DBMS and
hence under the atomicity principle, one must break a long transaction
in small (atomic) pieces.

Figure 3: nested transaction

407

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

Other principle, Consistency, says "A correct execution of the
transaction must take the database from one consistent state to
another"[7]. If the business address a group of atomic transactions to
perform a task, there is no warranty at all: the transaction will be
atomic and consistent, but can happen that the task doesn't.
In this work we are calling a group of atomic transactions aggregated
by a business reason as "abstract transactions":

Figure 4: abstract transaction

On the other hand there are atomic transactions contained in more
than one abstract transaction, to be performed in other place and/or
time:

AT XT

Figure 5: abstract transactions versus simple transactions

To generate the rules automatically using the production rule server
one have to see the transaction as a clause (fact or premise or
conclusion [12]):

408

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

Operation Clause/Transaction

Fact

r

Premisse |§ J Concl

" w 1
1 Rule

usion

Figure 6: An object model to the Decision Support System

This conceptual model is coherent with the Knowledge Discovery in
Databases process [KDD95][KDD96];
1. The application domain is an endogenous datawarehouse: the

database log;
2. To choose which group of logs will be searched, by period of time

or by business unit, for example;
3. To do the cleaning and pre-processing;
4. To generate the desired rules, searching the significant rules, using

the algorithm from [1];
5. To do inference over the patterns obtained (by the specialist, the

DBA);
6. To interpret the results (by the specialist, the DBA);
7. To reconstruct hypothetical business process.

409

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

GENERATING >.
"GOOD")
RULES /

INFERENCING

A ik

DATABASE LOG

High abstraction level Data Flow Diagram

7. Summary

In this work we presented the Conceptual Model of A Decision
Support System that Reverse Engineers Abstract Database
Transactions. Related work was cited. We introduced the concepts of
an Endogenous Datawarehouse and Abstract Transactions.

References

[1] R. Agrawal, T. Imielinski, A Swami - Mining Rules between Sets
of Items in Large Databases - Proceedings of the ACM SIGMOD,
1993.
[2] Agrawal R., Gunopulos D, Leymann F. - Mining Process Models
from Workflow Logs, 1998.

410

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

[3] Zachman J. -A Framework for Information Systems Architecture,
IBM Systems Journal, vol. 26, no. 3, 1987, IBM publication G3212-

5298.
[4] Immon W., Zachman J. & Geiger J. - Data Stores Data
Warehousing and the Zachman Framework - McGraw-Hill, 1997.
[5] Immon W. H. - Building the Data Warehouse, QED Technical
Publishing Group, 1992.
[6] J. Gray & A Reuter - Transaction Processing: Concepts and
Techniques - Morgan Kaufmann, 1993.
[7] R. Elmasri, S. Navathe - Fundamentals of Database Systens -
Benjamin/Cummings, 1994.
[8] A Sulaiman - An Inteligent Decision Support Environment for
Demographic and Statistics Applications. Ms Dissertation (in
Portuguese), Engineering Militar Institute, IME-RJ, 1992.
[9] E. Passos, A Sulaiman, C. Garcez, A Tanaka - A Conceptual
Model for a Knowledge Base Homogeneously Stored in a Database
Environment - Lecture Notes in Artificial Intelligence 991, 12th
Brazilian Symposium on Artificial Intelligence, SBIA'95 -, October
1995.
[10] A Sulaiman, M. Mattoso, J. Souza - An Expert System Shell
built using O2, USE O2! (in Portuguese) - II Unconventional
Database Workshop - UFF - December 1995.
[11]A Sulaiman & G. Xexeo - Developers Magazine, Mai. 97 - A
Production Rule Server (in Portuguese).
[12] J. Rumbaugh et alii. - Object-Oriented Modeling and Design -
Prentice Hall Inc, 1991.
[13] Business System Planning. Information Systems Planning Guide,
2nd ed. IBM, 1978.
[14] J. Martin - Strategic Data Planning Methodologies - Prentice-
Hall, 1982.

411

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

