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Abstract

There is a growing interest in intelligent assistants for a variety of applications from organiz-
ing tasks for knowledge workers to helping people with dementia. However, a general framework
that captures the notion of useful assistance is lacking. In this paper, we present and evaluate a
decision-theoretic model of assistance. The objective is to observe a goal-directed agent and to
select assistive actions in order to minimize the overall cost. We describe how to model this prob-
lem as an assistant POMDP where the hidden state corresponds to the agent’s unobserved goals.
This formulation naturally handles uncertainty, varying action costs, and customization to specific
agents via learning. Since directly solving the assistant POMDP is often not a practical alterna-
tive, we consider an approximate approach to action selection based on the computation of myopic
heuristics and bounded search. In addition, we introduce a novel approach to quickly learn the
agent policy, based on a rationality assumption, which is critical for the assistant to be useful early
in its lifetime. We evaluate our approach in two game-like computer environments where human
subjects perform tasks and a real-world domain of providing assistance during folder navigation in
a computer desktop environment. The results show that in all three domains the framework results
in an assistant that substantially reduces user effort with only modest computation.

1. Introduction

The development of intelligent computer assistants has tremendous impact potential in many do-
mains. A variety of Al techniques have been used for this purpose in domains such as assistive
technologies for the disabled (Boger et al., 2005) and desktop work management (Myers et al.,
2007). However, most of this work has been fine-tuned to the particular application domains. In
this paper, we describe and evaluate a more comprehensive framework for designing intelligent
assistants.

We consider a model where the assistant observes a goal-oriented agent and must select assistive
actions in order to best help the agent achieve its goals. To perform well the assistant must be able
to accurately and quickly infer the goals of the agent and reason about the utility of various assistive
actions toward achieving the goals. In real applications, this requires that the assistant be able to
handle uncertainty about the environment and agent, to reason about varying action costs, to handle
unforeseen situations, and to adapt to the agent over time. Here we consider a decision-theoretic
model, based on partially observable Markov decision processes (POMDPs), which naturally han-
dles these features, providing a formal basis for designing intelligent assistants.

The first contribution of this work is to formulate the problem of selecting assistive actions as an
assistant POMDP, which jointly models the application environment along with the agent’s policy
and hidden goals. A key feature of this approach is that it explicitly reasons about the environment
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and agent, which provides the potential flexibility for assisting in ways unforeseen by the developer
as new situations are encountered. Thus, the developer need not design a hand-coded assistive policy
for each of a set of preconceived application scenarios. Instead, when using our framework, the
burden on the developer is to provide a model of the application domain and agent, or alternatively
a mechanism for learning one or both of these models from experience. Our framework then utilizes
those models in an attempt to compute, in any situation, whether assistance could be beneficial and
if so what assistive action to select.

In principle, given an assistant POMDP, one could apply a POMDP solver in order to arrive at
an optimal assistant policy. Unfortunately, the relatively poor scalability of POMDP solvers will
often force us to utilize approximate/heuristic solutions. This is particularly true when the assistant
is continually learning updated models of the agent and/or environment, which results in a sequence
of more accurate assistant POMDPs, each of which needs to be solved. A second contribution of
our work is to describe a fast online action selection mechanism that heuristically approximates the
optimal policy of the assistant POMDP. The approach is based on a combination of explicit goal
estimation, myopic heuristics, and bounded search. We argue that the approach is well-suited to the
assistant POMDP in many application domains even when restricted to small search bounds. We
propose two myopic heuristics, one based on solving a set of derived assistant MDPs, and another
based on the simulation technique of policy rollout.

In order for the above approach to be useful, the assistant POMDP must incorporate a reasonably
accurate model of the agent being assisted. A third contribution of our work is to describe a novel
model-based bootstrapping mechanism for quickly learning the agent policy, which is important
for the usability of an assistant early in its lifetime. The main idea is to assume that that agent is
“close to rational” in the decision-theoretic sense, which motivates defining a prior on agent policies
that places higher probability on policies that are closer to optimal. This prior in combination with
Bayesian updates allows for the agent model to be learned quickly when the rationality assumption
is approximately satisfied, which we argue is often the case in many application.

A fourth contribution of our work is to evaluate our framework in three domains. First we con-
sider two game-like computer environments using 12 human subjects. The results in these domains
show that the assistants resulting from our framework substantially reduce the amount of work per-
formed by the human subjects. We also consider a more realistic domain, the folder navigator (Bao,
Herlocker, & Dietterich, 2006) of the Task Tracer project. In the folder-navigator domain, the user
navigates the directory structure searching for a particular location to open or save a file, which
is unknown to the assistant. The assistant has the ability to take actions that provide “short cuts”
by showing the user a set of three potential destination folders. Bao et al. (2006) formulated the
problem in a supervised learning framework and applied a cost-sensitive algorithm to predict the
3 most relevant folders at the beginning of the navigation process. We model this problem in our
framework, which allows for the assistant to recommend folders at any point during navigation, not
just at the beginning. The results show that our generic assistant framework compares favorably to
the hand-coded solution of Bao et al. (2006).

The remainder of this paper is organized as follows. In the next section, we introduce our formal
problem setup, followed by a definition of the assistant POMDP. Next, we present our approximate
solution technique based on goal estimation and online action selection. Finally we give an empiri-
cal evaluation of the approach in three domains and conclude with a discussion of related and future
work.
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2. Problem Setup

Throughout the paper we will refer to the entity that we are attempting to assist as the agent and
the assisting entity as the assistant. We assume that the environment of the agent and assistant is
a Markov decision process (MDP) described by the tuple (W, A, A, T, C, I), where W is a finite
set of world states, A is a finite set of agent actions, A is a finite set of assistant actions, and
T(w,a,w') is a transition distribution that represents the probability of transitioning to state 4
given that action a € AU A’ is taken in state w. We will sometimes use 7'(w, a) to denote a random
variable distributed as T'(w, a, -). We assume that the assistant action set always contains the action
noop which leaves the state unchanged. The component C is an action-cost function that maps
W x (AU A') to real-numbers, and I is an initial state distribution over W. We will sometimes
treat I as a random variable whose value represents the initial state.

We consider an episodic problem setting where at the beginning of each episode the agent begins
in some state drawn from I and selects a goal from a finite set of possible goals G according to some
unknown distribution. The goal set, for example, might contain all possible dishes that the agent
might be interested in cooking, or all the possible destination folders that the user may possibly
navigate to. When an assistant is not available, the episode proceeds with the agent executing
actions from A until it arrives at a goal state upon which the episode ends. When an assistant is
present it is able to observe the changing state and the agent’s actions, but is unable to observe the
agent’s goal. At any point along the agent’s state trajectory the assistant is allowed to execute a
sequence of one or more actions from A’ ending in noop, after which the agent may again perform
an action. The episode ends when either an agent or assistant action leads to a goal state. The cost of
an episode is equal to the sum of the costs of the actions executed by the agent and assistant during
the episode. Note that the available actions for the agent and assistant need not be the same and may
have varying costs. Also note that the cost of the assistant’s actions should be viewed as the cost
of those actions from the perspective of the agent. The objective of the assistant is to minimize the
expected total cost of an episode.

More formally, we will model the agent as an unknown stochastic policy 7 (a|w, g) that gives the
probability of selecting action a € A given that the agent has goal g and is in state w. The assistant is
a history-dependent stochastic policy #(a|w, t) that gives the probability of selecting action a € A
given world state w and the state-action trajectory ¢ observed starting from the beginning of the
trajectory. It is critical that the assistant policy depend on ¢, since the prior states and actions
serve as a source of evidence about the agent’s goal, which is important for selecting good assistive
actions. Given an initial state w, an agent policy =, and assistant policy # we let C(w, g, w, '),
denote the expected cost of episodes that begin at state w with goal g and evolve according to the
following process: 1) execute assistant actions according to 7 until noop is selected, 2) execute an
agent action according to , 3) if ¢ is achieved then terminate, else go to step 1.

Given the above interaction model, we define the assistant design problem as follows. We
are given descriptions of an environment MDP, an agent goal distribution G, and an agent policy
7. The goal is to select an assistant policy #' that minimizes the expected cost E[C (I, Gy, 7, 7')],
which is simply the expected cost of interaction episodes for initial states and goals drawn according
to I and G respectively. Note that the agent policy 7 and goal distribution Gg will not necessarily
be known to the assistant early in its lifetime. In such cases, the assistant will need to learn these
by observing the agent. One of the contributions of the paper, described later, is to introduce an
approach for bootstrapping the learning of the agent’s policy so as to provide useful early assistance.
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Before proceeding it is worth reviewing some of the assumptions of the above formulation and
the potential implications. For simplicity we have assumed that the environment is modeled as an
MDP, which implies full observability of the world state. This choice is not fundamental to our
framework and one can imagine relatively straightforward extensions of our techniques that model
the environment as a partially observable MDP (POMDP) where the world states are not fully ob-
servable. We have also assumed that the agent is modeled as a memoryless/reactive policy that gives
a distribution over actions conditioned on only the current world state and goal. This assumption is
also not fundamental to our framework and one can also extend it to include more complex models
of the user, for example, that include hierarchical goal structures. Such an extension has recently
been explored (Natarajan, Tadepalli, & Fern, 2007).

We have also assumed for simplicity an interaction model between the assistant and agent that
involves interleaved, sequential actions rather than parallel actions. This, for example, precludes the
assistant from taking actions in parallel with the agent. While parallel assistive actions are useful
in many cases, there are many domains where sequential actions are the norm. We are especially
motivated by domains such as “intelligent desktop assistants” that help store and retrieve files more
quickly, helps sort email, etc., and “smart homes” that open doors, switch on appliances and so on.
Many opportunities for assistance in these domains is of the sequential variety. Also note that in
many cases, tasks that appear to require parallel activity can often be formulated as a set of threads
where each thread is sequential and hence can be formulated as a separate assistant. Extending our
framework to handle general parallel assistance is an interesting future direction.

Finally, note that our sequential interaction model assumes that the assistant is allowed to take an
arbitrary number of actions until selecting NOOP, upon which the agent is allowed to select a single
action. This at first may seem like an unreasonable formulation since it leaves open the possibility
that the assistant may “take control” indefinitely long, forcing the agent to pause until the assistant
has finished. Note, however, that a properly designed assistant would never take control for a long
period unless the overall cost to the agent (including annoyance cost) was justified. Thus, in our
framework, with an appropriately designed cost function for assistive and agent actions, the assistant
can be discouraged from engaging in a long task without giving control to the user, so the problem
of having to wait for the assistant does not arise. Also note that assistant actions will often be on a
much smaller time scale than agent actions, allowing the assistant to perform a potentially complex
sequence of actions without delaying the user (e.g. carrying out certain file management tasks). In
addition, a developer could restrict the number of actions selected by the assistant by defining an
appropriate MDP, e.g. one that forces the assistant to select NOOP after each non-NOOP action.

3. The Assistant POMDP

POMDPs provide a decision-theoretic framework for decision making in partially observable stochas-
tic environments. A POMDP is defined by a tuple (S, A, T, C, I, O, u), where the first five com-
ponents describe an MDP with a finite set of states S, finite set of actions A, transition distribution
T(s,a,s'), action cost function C, and initial state distribution I. The component O is a finite set of
observations and p(o|s, a, §') is a distribution over observations o € O generated upon taking action
a in state s and transitioning to state . The primary distinction between a POMDP and an MDP is
that a controller acting in a POMDP is not able to directly observe the states of the underlying MDP
as it evolves. Rather, a controller is only able to observe the observations that are stochastically
generated by the underlying state-action sequence. Thus, control of POMDPs typically involves
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dealing with both the problem of resolving uncertainty about the underlying MDP state based on
observations and selecting actions to help better identify the state and/or make progress toward the
goal.

A policy for a POMDP defines a distribution over actions given the sequence of preceding
observations. It is important that the policy depends on the history of observations rather than only
the current observation since the entire history can potentially provide evidence about the current
state. It is often useful to view a POMDP as an MDP over an infinite set of belief states, where a
belief state is simply a distribution over S. In this case, a POMDP policy can be viewed as a mapping
from belief states to actions. Note, however, that the belief-state MDP has an infinite state space
(the uncountable space of distributions over S) and hence cannot be directly solved by standard
techniques such as dynamic programming which are typically defined for finite state spaces.

We will use a POMDP to jointly model the agent and environment from the perspective of the
assistant. Our goal is to define this “assistant POMDP” such that its optimal policy is an optimal
solution to the assistant design problem defined in the previous section. The assistant POMDP will
allow us to address the two main challenges in selecting assistive actions. The first challenge is to
infer the agent’s hidden goals, which is critical to provide good assistance. The assistant POMDP
will capture goal uncertainty by including the agent’s goal as a hidden component of the POMDP
state. In effect, the belief states of the assistant POMDP will correspond exactly to a distribution
over possible agent’s goals. The second challenge is that even if we know the agent’s goals, we must
jointly reason about the possibly stochastic environment, agent policy, and action costs in order to
select the best course of action. Our POMDP will capture this information in the transition function
and cost model, providing a decision-theoretic basis for such reasoning.

More formally, given an environment MDP (W, A, A, T, C, I), a goal distribution G, over a
finite set of possible goals G, and an agent policy = we now define the corresponding components
of the assistant POMDP (S’ A", T', C", I', O', u'):

e The state space S’ is W x G so that each state is a pair (w, g) of a world state and agent goal.
The world state component will be observable to the assistant, while the goal component will
be unobservable and must be inferred. Note that according to this definition, a belief state
(i.e. a distribution over S") corresponds to a distribution over the possible agent’s goals G.

e The action set A’ is just the set of assistant actions specified by the environment MDP. This
choice reflects the fact that the assistant POMDP is used exclusively for selecting actions for
the assistant.

e The transition function 7" assigns zero probability to any transition that changes the goal
component of the state. This reflects the fact that the assistant cannot change the agent’s goal
by taking actions. Thus the agent’s goal remains fixed throughout any episode of the assistant
POMDP. Otherwise, for any action a except for noop, the state transition from (w, g) to
(w', g) has probability T'((w, g), a, (w', g)) = T'(w,a,w"). This reflects the fact that when
the agent takes a non-noop action the world will transition according the transition function
specified by the environment MDP. Otherwise, for the noop action, 7" simulates the effect
of executing an agent action selected according to « and then transitioning according to the
environment MDP dynamics. That is, T'((w, g), noop, (v', g)) = T(w, 7(w, g)) = w'.

e The cost model C’ reflects the costs of agent and assistant actions in the MDP. For all ac-
tions a except for noop we have that C'((w, g),a) = C(w,a). Otherwise we have that
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C'((w, g),noop) = E[C(w,a)], where a is a random variable distributed according to 7 (-|w, g).
That is, the cost of a noop action is the expected cost of the ensuing agent action.

e Theinitial state distribution I" assigns the state (w, g) probability I(w)Gy(g), which mod-
els the process of independently selecting an initial state and goal for the agent at the begin-
ning of each episode.

e The observation set O’ is equal to W x (A U A’), that is all pairs of world states and
agent/assistant actions.

e The observation distribution 4’ is deterministic and reflects the fact that the assistant can
only directly observe the world state and actions. For the noop action in state (w, g) lead-
ing to state (w',g), the observation is (w',a) where a € A is the action executed by the
agent immediately after the noop. Note that the observations resulting from noop actions
are informative for inferring the agent’s goal since they show the choice of action selected
by the the agent in a particular state, which depends on the goal. For all other assistant ac-
tions the observation is equal to the W component of the state and the assistant action, i.e.
' ((w,g),a,(w',g)) = (w',a). Note that the observations resulting from non-noop actions
are not informative with respect to inferring the agent’s goals.

Note that according to the above definition, a policy ' for the assistant POMDP is a mapping
from state-action sequences (i.e. the observations are pairs of states and agent actions) to assis-
tant actions. We must now define an objective function that will be used to evaluate the value
of a particular policy. For this purpose, we will assume an episodic setting, where each assistant
POMDP episode begins by drawing an initial POMDP state (w, g) from I'. Actions are then se-
lected according to the assistant policy #' and transitions occur according to 77 until a state (', g)
is reached where w' satisfies the goal g. Note that whenever the assistant policy selects noop, the
transition dictated by 7" simulates a single action selected by the agent’s policy, which corresponds
to the sequential interaction model introduced in the previous section. Our objective function for
the assistant POMDP is the expected cost of a trajectory under #. Note that this objective function
corresponds exactly to our objective function for the assistant design problem E[C(I,G,r, )]
from the previous section. Thus, solving for the optimal assistant POMDP policy yields an optimal
assistant.

There are two main obstacles to solving the assistant POMDP and in turn the assistant design
problem. First, in many scenarios, initially the assistant POMDP will not be directly at our disposal
since we will lack accurate information about the agent policy = and/or the goal distribution (.
This is often due to the fact that the assistant will be deployed for a variety of initially unknown
agents. Rather, we will often only be given a definition of the environment MDP and the possible
set of goals. As described in the next section, our approach to this difficulty is to utilize an approxi-
mate assistant POMDP by estimating 7 and Gy. Furthermore, we will also describe a bootstrapping
mechanism for learning these approximations quickly. The second obstacle to solving the assis-
tant POMDP is the generally high computational complexity of finding policies for POMDPs. To
deal with this issue Section 5 considers various approximate techniques for efficiently solving the
assistant POMDP.
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4. Learning the Assistant POMDP

In this section, we will assume that we are provided with the environment MDP and the set of
possible agent goals and that the primary role for learning is to acquire the agent’s policy and goal
distribution. This assumption is natural in situations where the assistant is being applied many times
in the same environment, but for different agents. For example, in a computer desktop environment,
the environment MDP corresponds to a description of the various desktop functionalities, which
remains fixed across users. If one is not provided with a description of the MDP then it is typically
straightforward to learn this model with the primary cost being a longer “warming up” period for
the assistant.

Relaxing the assumption that we are provided with the set of possible goals is more problematic
in our current framework. As we will see in Section 5, our solution methods will all depend on
knowing this set of goals and it is not clear how to learn these from observations, since the goals,
unlike states and actions, are not directly observable to the assistant. Extending our framework so
that the assistant can automatically infer the set of possible user goals, or allow the user to define
their own goals, is an interesting future direction. We note, however, it is often possible for a
designer to enumerate a set of user goals before deployment that while perhaps not complete, allow
for useful assistance to be provided.

4.1 Maximum Likelihood Estimates

It is straightforward to estimate the goal distribution Gy and agent policy « by simply observing the
agent’s actions, possibly while being assisted, and to compute empirical estimates of the relevant
quantities. This can be done by storing the goal achieved at the end of each episode along with the
set of world state-action pairs observed for the agent during the episode. The estimate of G can
then be based on observed frequency of each goal (usually with Laplace correction). Likewise, the
estimate of 7(a|w, g) is simply the frequency for which action a was taken by the agent when in
state w and having goal g. While in the limit these maximum likelihood estimates will converge to
the correct values, yielding the true assistant POMDP, in practice convergence can be slow. This
slow convergence can lead to poor performance in the early stages of the assistant’s lifetime. To
alleviate this problem we propose an approach for bootstrapping the learning of the agent policy .

4.2 Model-Based Bootstrapping

We will leverage our environment MDP model in order to bootstrap the learning of the agent policy.
In particular, we assume that the agent is reasonably close to being optimal. That is, for a particular
goal and world state, an agent is more likely to select actions that are closer to optimal. This is not
unrealistic in many application domains that might benefit from intelligent assistants. In particular,
there are many tasks, that are conceptually simple for humans, yet they are quite tedious and require
substantial effort to complete. For example, navigating through the directory structure of a computer
desktop.

Given the “near rationality assumption”, we initialize the estimate of the agent’s policy to a prior
that is biased toward more optimal agent actions. To do this we will consider the environment MDP
with the assistant actions removed and solve for the Q-function Q(a,w, g) using MDP planning
techniques. The Q-function gives the expected cost of executing agent action « in world state w and
then acting optimally to achieve goal g using only agent actions. In a world without an assistant,
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a rational agent would always select actions that maximize the Q-function for any state and goal.
Furthermore, a close-to-rational agent would prefer actions that achieve higher Q-values to highly
suboptimal actions. We first define the Boltzmann distribution, which will be used to define our
prior,

ﬁ(a|w,g) = eXp(K : Q(aawvg))

1
Z(w,g)
where Z(w, g) is a normalizing constant, and K is a temperature constant. Using larger values
of K skews the distribution more heavily toward optimal actions. Given this definition, our prior
distribution over = (-|w, g) is taken to be a Dirichlet with parameters (ay, ..., o 4|), Where a; =
ap - T(a;|w, g). Here oy is a parameter that controls the strength of the prior. Intuitively oy can be
thought of as the number of pseudo-actions represented by the prior, with each ¢ representing the
number of those pseudo-actions that involved agent action ¢. Since the Dirichlet is conjugate to
the multinomial distribution, which is the form of =(-|w, g), it is easy to update the posterior over
7(-|w, g) after each observation. One can then take the mode or mean of this posterior to be the
point estimate of the agent policy used to define the assistant POMDP.

In our experiments, we found that this prior provides a good initial proxy for the actual agent
policy, allowing for the assistant to be immediately useful. Further updating of the posterior tunes
the assistant better to the peculiarities of a given agent. For example, in many cases there are
multiple optimal actions and the posterior will come to reflect any systematic bias for equally good
actions that an agent has. Computationally the main obstacle to this approach is computing the
Q-function, which needs to be done only once for a given application domain since the environment
MDRP is constant. Using dynamic programming this can accomplished in polynomial time in the
number of states and goals. When this is not practical, a number of alternatives exist including the
use of factored MDP algorithms (Boutilier et al., 1999), approximate solution methods (Boutilier
etal., 1999; Guestrin et al., 2003), or developing domain specific solutions.

Finally, in this work, we utilize an uninformative prior over the goal distribution. An interesting
future direction would be to bootstrap the goal distribution estimate based on observations from a
population of agents.

5. Solving the Assistant POMDP

We now consider the problem of solving the assistant POMDP. Unfortunately, general purpose
POMDP solvers are generally quite inefficient and not practical to use in many cases. This is par-
ticularly true in our framework where the assistant POMDP is continually being refined by learning
more accurate estimates of the agent goal distribution and agent policy, which requires re-solving
the assistant POMDP when the model is updated. For this reason, we adopt a Bayesian goal esti-
mation followed by a heuristic action selection approach that we argue is natural for many assistant
POMDPs and we show that it works well in practice. Below, we first give an overview of our
solution algorithm and then describe each of the components in more detail.

5.1 Overview

Denote the assistant POMDP by M = (S A", T'",C',I',O', ') and let O; = oy, ...,0¢ be an
observation sequence observed by assistant from the beginning of the current trajectory until time
t. Note that each observation is a tuple of a world state and the previously selected action (by either
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the assistant or agent). Given O, and M our goal is to compute an assistant action whose value is
close to optimal.

To motivate the approach, it is useful to consider some special characteristics of the assistant
POMDP. Most importantly, the belief state corresponds to a distribution over the agent’s goal. Since
the agent is assumed to be goal directed, the observed agent actions provide substantial evidence
about what the goal might and might not be. In fact, even if the assistant does nothing, the agent’s
goals will often be rapidly revealed by analyzing the relevance of the agent’s initial actions to the
possible goals. This suggests that the state/goal estimation problem for the assistant POMDP may be
solved quite effectively by just observing how the agent’s actions relate to the various possible goals,
rather than requiring the assistant to select actions explicitly for the purpose of information gathering
about the agent’s goals. In other words, we can expect that for many assistant POMDPs, purely (or
nearly) myopic action selection strategies, which avoid reasoning about information gathering, will
be effective. Reasoning about information gathering is one of the key complexities involved in
solving POMDPs compared to MDPs. Here we leverage the intuitive properties of the assistant
POMDP to gain tractability by limiting or completely avoiding such reasoning.

We note that in some cases, the assistant will have pure information-gathering actions at its
disposal, e.g. asking the agent a question. While we do not consider such actions in our experiments,
we believe that such actions can be handled naturally in this framework by incorporating only a
small amount of look-ahead search.

P(G)

Goal Estimation Action Selection

X Assistant /

K ) "
i

Environment

Figure 1. Depiction of the assistant architecture. The user/agent has a hidden goal and selects ac-
tions U, that cause the environment to change world state 14}, typically moving closer to
the goal. The assistant (upper rectangle) is able to observe the world state along with the
observations generated by the environment, which in our setting contain the user/agent
actions along with the world state. The assistant is divided into two components. First,
the goal estimation component computes a posterior over agent goals P(G) given the ob-
servations. Second, the action selection component uses the goal distribution to compute
the best assistive action A; via a combination of bounded search and myopic heuristic
computation. The best action might be noop in cases where none of the other assistive
actions has higher utility for the user.
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With the above motivation, our assistant architecture, depicted in Figure 1, alternates between
goal estimation and action selection as follows:

1. After observing the agent’s next action, we update the goal distribution based on the assistant
POMDP model.

2. Based on the updated distribution we evaluate the effectiveness of assistant actions (including
noop by building a sparse-sampling look-ahead tree of bounded depth (perhaps just depth
one), where leaves are evaluated via a myopic heuristic. If the best action is noop then control
is given to the agent and we go to step 1, otherwise we repeat step 2.

The key element of the architecture is the computation of the myopic heuristics. On top of this
heuristic, we can optionally obtain non-myopic behavior via search by building a look-ahead sparse-
sampling tree. Our experiments show that such search can improve performance by a small margin
at a significant computational cost. We note that the idea of utilizing myopic heuristics to select
actions in POMDPs is not new, see for example (Cassandra, 1998; Geffner & Bonet, 1998), and
similar methods have been used previously with success in applications such as computer bridge
(Ginsberg, 1999). The main contribution here is to note that this approach seems particularly well
suited to the assistant POMDP and also in later sections to suggest some efficiently computable
heuristics that are specifically designed for the assistant POMDP framework. Below we describe
the goal estimation and action selection operations in more detail.

5.2 Goal Estimation

Given an assistant POMDP with agent policy =« and initial goal distribution Gy, our objective is to
maintain the posterior goal distribution P(g|0;), which gives the probability of the agent having
goal g conditioned on observation sequence O,. Note that since we have assumed that the assistant
cannot affect the agent’s goal, only observations related to the agent’s actions are relevant to the pos-
terior. Given the agent policy , it is straightforward to incrementally update the posterior P(g|Q)
upon each of the agent’s actions by referring to the Bayesian network of Figure 2. The node g refers
to the current goal of the user and is the only hidden variable that is distributed according to the
current goal posterior, A; denotes the agent’s action at time ¢, and W, refers to the world state at
time-step ¢. The agent action A; is distributed according to the agent’s policy .

At the beginning of each episode we initialize the goal distribution P(g|Gy) to G. On timestep ¢
of the episode, if o; does not involve an agent action, then we leave the distribution unchanged. Oth-
erwise, when the agent selects action a in state w, we update the posterior according to P(g|Q) =
(1/Z) - P(g|O¢-1) - m(alw, g), where Z is a normalizing constant. That is, the distribution is ad-
justed to place more weight on goals that are more likely to cause the agent to execute action a in w.
The accuracy of goal estimation relies on how well the policy = learned by the assistant reflects the
true agent policy. As described above, we use a model-based bootstrapping approach for estimating
m and update this estimate at the end of each episode. Provided that the agent is close to optimal,
as in our experimental domains, this approach can lead to rapid goal estimation, even early in the
lifetime of the assistant.

We have assumed for simplicity that the actions of the agent are directly observable. In some

domains, it is more natural to assume that only the state of the world is observable, rather than the
actual action identities. In these cases, after observing the agent transitioning from w to «) we can
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° P(Atl g’ Wt)
Wt
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Figure 2: The Bayes net used to compute the posterior distribution over the agent’s goals. The node
Ay represents the agent action that is conditioned on the agent’s goal G and current world
state ;. In the simplest setting G is the only hidden variable with both the agent actions
and states being observable. In other cases, the agent action may also be hidden, with
only the state transition being directly observable.

use the MDP transition function T' to marginalize over possible agent actions yielding the update,

P(g|0:) = (1/Z) - P(g9|0¢-1) - Z m(alw, 9)T (w, a, w').
a€A

5.3 Action Sdlection

Given the assistant POMDP M and a distribution over goals P(g|0;), we now address the problem
of selecting an assistive action. Our mechanisms utilize a combination of bounded look-ahead
search and myopic heuristic computations. By increasing the amount of look-ahead search the
actions returned will be closer to optimal at the cost of more computation. Fortunately, for many
assistant POMDPs, useful assistant actions can be computed with relatively little or no search. We
first describe several myopic heuristics that can be used either for greedy action selection or in
combination with search. Next, we describe how to utilize sparse sampling to obtain non-myopic
action selection.

5.3.1 MYoPIC HEURISTICS

To explain the action selection procedure, we introduce the idea of an assistant MDP relative to a
goal g and M, which we will denote by M(g). The MDP M (g) is identical to M except that we
change the initial goal distribution such that P(Gy = ¢g) = 1. That is, the goal is always fixed to
g in each episode. Since the only hidden component of M’s state space was the goal, fixing the
goal in M (g) makes the state fully observable, yielding an MDP. Each episode in M (g) evolves
by drawing an initial world state and then selecting assistant actions until a noop, upon which the
agent executes an action drawn from its policy for achieving goal g. An optimal policy for M (g)
gives the optimal assistive action assuming that the agent is acting to achieve goal g. We will denote
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the Q-function of M (g) by Q4(w, a), which is the expected cost of executing action a and then
following the optimal policy.

Our first myopic heuristic is simply the expected Q-value of an action over assistant MDPs.
This heuristic has also been called the Quo» method in (Cassandra, 1998). The heuristic value for
assistant action « in state w given observations O, is

H(w,a,0;) =Y Qg(w,a) - P(g|0y).
g

Intuitively H(w, a, O;) measures the utility of taking an action under the assumption that all goal
ambiguity is resolved in one step. Thus, this heuristic will not value the information-gathering utility
of an action. Rather, the heuristic will favor assistant actions that make progress toward goals with
high posterior probability, while avoiding moving away from goals with high probability. When the
goal posterior is highly ambiguous this will often lead the assistant to prefer noop, which at least
does not hurt progress toward the goal. Note that this heuristic, as well as the others below, can
be used to evaluate the utility of a state w, rather than a state-action pair, by maximizing over all
actions max, H(w',a, Oy).

The primary computational complexity of computing H is to solve the assistant MDPs for each
goal in order to obtain the Q-functions. Technically, since the transition functions of the assistant
MDPs depend on the approximate agent policy 7, we must re-solve each MDP after updating the
m estimate at the end of each episode. However, using incremental dynamic programming methods
such as prioritized sweeping (Moore & Atkeson, 1993) can alleviate much of the computational
cost. In particular, before deploying the assistant we can solve each MDP offline based on the
default agent policy given by the Boltzmann bootstrapping distribution described earlier. After
deployment, prioritized sweeping can be used to incrementally update the Q-values based on the
learned refinements we make to .

When it is not practical to exactly solve the assistant MDPs, we may resort to various approx-
imations. We consider two approximations in our experiments. One is to replace the user’s policy
to be used in computing the assistant MDP with a fixed default user policy, eliminating the need to
compute the assistant MDP at every step. We denote this approximation by H;. Another approxi-
mation uses the simulation technique of policy rollout (Bertsekas & Tsitsiklis, 1996) to approximate
Qg(w, a) in the expression for H. This is done by first simulating the effect of taking action a in
state w and then using = to estimate the expected cost for the agent to achieve g from the resulting
state. That is, we approximate Qy(w,a) by assuming that the assistant will only select a single
initial action followed by only agent actions. More formally, letC), (7, w, g) be a function that sim-
ulates n trajectories of « achieving the goal from state w and then averaging the trajectory costs.
The heuristic H, is identical to H(w, a, O;) except that we replace Q,(w, a) with the expectation
Yowew T(w,a,w') -C(m,w', g). We can also combine both of these heuristics, using a fixed default
user policy and policy rollouts, which we denote by Hj ,..

5.3.2 SPARSE SAMPLING

All of the above heuristics can be used to greedily select assistant actions, resulting in purely myopic
action-selection strategies. In cases where it is beneficial to include some amount of non-myopic
reasoning, one can combine these heuristics with shallow search in the belief space of the assistant
MDP. For this purpose we utilize depth d bounded sparse sampling trees (Kearns, Mansour, & Ng,
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1999) to compute an approximation to the Q-function for a given belief state (w, O;), denoted by
Q%(wy, a, Oy). Given a particular belief state, the assistant will then select the action that maximizes
Q?. Note that for convenience we represent the belief state as a pair of the current state w and
observation history O;. This is a lossless representation of the belief state since the posterior goal
distribution can be computed exactly from O, and the goal is the only hidden portion of the POMDP
state.

As the base case Q°(wy, a, O¢) will be equal to one of our myopic heuristics described above.
Increasing the depth d will result in looking ahead d state transitions and then evaluating one of
our heuristics. By looking ahead it is possible to track the potential changes to the belief state after
taking certain actions and then determine whether those changes in belief would be beneficial with
respect to providing better assistance. Sparse sampling, does such look-ahead by approximately
computing:

Q*w,a,0) = E[C'((w,g),a) + V¥ (w',0") (1)
Viw,0) = minQ%w,a,0) (2)

where ¢ is a random variable distributed according to the goal posterior P(g|O) and («,0’) is
a random variable that represents the belief state after taking action a in belief state (w,O). In
particular, w' is that world state arrived at and O is simply the observation sequence O extended
with the observation obtained during the state transition. The first term in the above expectation
represents the immediate cost of the assistant action a. According to the definition of the assistant
POMDP, this is simply the cost of the assistant action in the underlying MDP for non-noop actions.
For the noop action, the cost is equal to the expected cost of the agent action.

Sparse sampling approximates the above equations by averaging a set of b samples of successor
belief states to approximate the expectation. The sparse-sampling pseudo-code is presented in Table
1.Given an input belief state (w, O), assistant action a, heuristic H, depth bound d, and sampling
width b the algorithm returns (an approximation of) @*(w, a, O). First, if the depth bound is equal
to zero the heuristic value is returned. Otherwise b samples of observations resulting from taking
action a in belief state (w, O) are generated. In the case that the action is not noop, the observation
is created by simulating the effect of the assistant action in the environment MDP and then forming
an observation from the pair of resulting state and action a (recall that observations are pairs of states
and previous actions). In the case that the assistant action is noop, the observation is generated by
sampling an agent goal and an action and then simulating the environment MDP for the agent action.
The observation is simply the pair of resulting state and agent action. Each observation q = (w;, a;)
corresponds to a new belief state (w;, [O; 0;]) where [O; o;] is simply the concatenation of o; to O.
The code then recursively computes a value for each of these belief states by minimizing @ over
all actions and then averages the results.

As b and d become large, sparse sampling will produce an arbitrarily close approximation to the
true Q-function of the belief state MDP. The computational complexity of sparse sampling is linear
in b and exponential in d. Thus the depth must be kept small for real-time operation.

6. Experimental Results

In this section, we present the results of conducting user studies and simulations in three domains:
two game-like environments and a folder predictor domain for an intelligent desktop assistant. In
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Table 1: Pseudo-code for Sparse Sampling in the Assistant POMDP

e Given: heuristic function H, belief state (w, O), action a, depth bound d, sam-
pling width b

e Return: an approximation Q%(w, a, O) of the value of a in belief state (w, O)

1. If d = 0 thenreturn H (w, a, O)

2. Sample a set of b observations {o1,...,0s} resulting from taking action a in
belief state (w, O) as follows:
(@) If a # noop then a; = a, otherwise,
(b) If a = noop then
e Sample a goal g from P(g|O)
e Sample an agent action a; from the agent policy 7 (-|w, g)
(€) 0; = (w;,a;), where w; is sample from the environment MDP transition
function T'(w, a;, -)
3. Foreach o; = (w;, a;) compute V; = min, Q4 (w;,a’, [0; 0i])
4. Return Q4(w,a,0) = C(w,a;) + 1 >, Vi

the user studies in the two game-like domains, for each episode, the user’s and the assistant’s actions
were recorded. The ratio of the cost of achieving the goal with the assistant’s help to the optimal
cost without the assistant was calculated and averaged over the multiple trials for each user. We
present similar results for the simulations as well. The third domain is a folder predictor domain,
where we simulated the user and used one of our heuristics to generate the top 3 recommended
folders for the user. We present the number of clicks required on an average for the user to reach his
desired folder.

6.1 Doorman Domain

In the doorman domain, there is an agent and a set of possible goals such as collect wood, food and
gold. Some of the grid cells are blocked. Each cell has four doors and the agent has to open the
door to move to the next cell (see Figure 3). The door closes after one time-step so that at any time
only one door is open. The goal of the assistant is to help the user reach his goal faster by opening
the correct doors.

A state is a tuple (s, d), where sstands for the the agent’s cell and d is the door that is open. The
actions of the agent are to open door and to move in each of the 4 directions or to pickup whatever
is in the cell, for a total of 9 actions. The assistant can open the doors or perform a noop (5 actions).
Since the assistant is not allowed to push the agent through the door, the agent’s and the assistant’s
actions strictly alternate in this domain. There is a cost of —1 if the user has to open the door and
no cost to the assistant’s action. The trial ends when the agent picks up the desired object.

In this experiment, we evaluated the two heuristics: one where we fixed the user policy to the
default policy in the assistant POMDP creation (Hy) and the second where we use the policy rollout
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to calculate the Q-values (H,). In each trial, the system chooses a goal and one of the two heuristics
at random. The user is shown the goal and he tries to achieve it, always starting from the center
square. After every user’s action, the assistant opens a door or does nothing. The user may pass
through the door or open a different door. After the user achieves the goal, the trial ends, and a new
one begins. The assistant then uses the user’s trajectory to update the agent’s policy.

(=)

[

L |
A
& bL
| -

Figure 3: Doorman Domain. The agent’s goal is to fetch a resource. The grid cells are separated by
doors that must be opened before passing through.

The results of the user studies for the doorman domain are presented in Figure 2. The first
two rows give cumulative results for the user study when actions are selected greedily according
to H, and Hy respectively. The table presents the total optimal costs (number of actions) for all
trials across all users without the assistant N, and the costs with the assistant U, and the average of
percentage cost savings (1-(U/N)) over all trials and over all the users.

As can be seen, both the methods reduce the cost to less than 50%. An omniscient assistant who
knows the user’s goal reduces the cost to 22%(i.e., the assistant performs 78% of the actions). This
is not 0 because the first door is always opened by the user. In our experiments, if we do not count
the user’s first action, the cost reduces to 35%(the assistant performs 65% of the actions). It can be
observed that H, appears to have a slight edge over H;. One possible reason for this is that while
using Hg, we do not re-solve the MDP after updating the user policy, while H, is always using the
updated user policy. Thus, rollout is reasoning with a more accurate model of the user.

Another interesting observation is that there are individual differences among the users. Some
users always prefer a fixed path to the goal regardless of the assistant’s actions. Some users are
more flexible. From the survey, we conducted at the end of the experiment, we learned that one of
the features that the users liked was that the system was tolerant to their choice of suboptimal paths.
The data reveals that the system was able to reduce the costs by approximately 50% even when the
users chose suboptimal trajectories.

We also conducted experiments using sparse sampling with non-trivial depths. We considered
depths of d = 1 and d = 2 while using sampling widths of b = 1 or b = 2. The leaves of the
sparse sampling tree are evaluated using H, which simply applies rollout to the user policy. Hence
sparse sampling of d = 0 and b = 1, would correspond to the heuristic H,. For these experiments,
we did not conduct user studies, due to the high cost of such studies, but simulated the human

1. This gives a pessimistic estimate of the usefulness of the assistant assuming an optimal user and is a measure of utility
normalized by the optimal utility without the aid of the assistant.
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Total User | Fractional Savings Time

Heuristic | Actions | Actions 1—(U/N) per
N U action (in secs

H, 750 339 0.55+ 0.055 0.0562

H, 882 435 0.51 £+ 0.05 0.0021

H, 1550 751 0.543 £ 0.17 0.031
d=2,b=1| 1337 570 0.588 + 0.17 0.097
d=2,b=2| 1304 521 0.597 + 0.17 0.35
d=3,b=1| 1167 467 0.6 £0.15 0.384
d=3,b=2| 1113 422 0.623 £ 0.15 2.61

Table 2: Results of experiments in the Doorman Domain. The first two rows of the table present the
results of the user studies while the rest of the table presents the results of the simulation.

users by choosing actions according to policies learned from their observed actions. The results
are presented in the last 5 rows of Table 2. We see that sparse sampling increased the average run
time by an order of magnitude, but is able to produce a reduction in average cost for the user. This
result is not surprising in hindsight, for in the simulated experiments, sparse sampling is able to
sample from the exact user policy (i.e. it is sampling from the learned policy, which is also being
used for simulations). These results suggest that a small amount of non-myopic reasoning can have
a positive benefit with a substantial computation cost. Note, however, that the bulk of the benefit
realized by the assistant can be obtained without such reasoning, showing that the myopic heuristics
are well-suited to this domain.

6.2 Kitchen Domain

In the kitchen domain, the goals of the agent are to cook various dishes. There are 2 shelves with
3 ingredients each. Each dish has a recipe, represented as a partially ordered plan. The ingredients
can be fetched in any order, but should be mixed before they are heated. The shelves have doors
that must be opened before fetching ingredients and only one door can be open at a time.

There are 8 different recipes. The state consists of the location of each of the ingredient
(bowl/shelf/table), the mixing state and temperature state of the ingredient (if it is in the bowl)
and the door that is open. The state also includes the action history to preserve the ordering of the
plans for the recipes. The user’s actions are: open the doors, fetch the ingredients, pour them into
the bowl, mix, heat and bake the contents of the bowl, or replace an ingredient back to the shelf.
The assistant can perform all user actions except for pouring the ingredients or replacing an ingre-
dient back to the shelf. The cost of all non-pour actions is -1. Experiments were conducted on 12
human subjects. Unlike in the doorman domain, here it is not necessary for the assistant to wait at
every alternative time step. The assistant continues to act until the noop becomes the best action
according to the heuristic.

This domain has a large state space and hence it is not possible to update the user policy after
every trajectory. The two heuristics that we compare both use the default user policy. The second
heuristic in addition uses policy rollout to compare the actions. In other words, we compare H;
and Hgy,. The results of the user studies are shown in top part of the Table 3. The total cost of
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Figure 4. The kitchen domain. The user is to prepare the dishes described in the recipes on the
right. The assistant’s actions are shown in the bottom frame.

user’s optimal policy, the total cost when the assistant is present, and the average ratio of the two
are presented. The number of user actions was summed over 15 users and the cumulative results
are presented. It can be observed that Hy, performs better than H,;. It was observed from the
experiments that the H;, technique was more aggressive in choosing non-noop actions than the
Hy,, which would wait until the goal distribution is highly skewed toward a particular goal.

Total User | Fractional Savings Time
Heuristic | Actions | Actions 1— (U/N) per
N U action (secs)

Hy, 3188 1175 0.6361 +0.15 0.013
Hy 3175 1458 0.5371+0.10 0.013
H;, 6498 2332 0.6379 + 0.14 0.013
d=2,b=1]| 6532 2427 0.6277 + 0.14 0.054
d=2,b=2| 6477 2293 0.646 + 0.14 0.190
d=3,b=1| 6536 2458 0.6263 +0.15 0.170
d=3,b=2| 6585 2408 0.645 + 0.14 0.995

Table 3: Results of experiments in the Kitchen Domain. The first two rows of the table present the
results of the user studies while the last 5 rows present the results of the simulation.

We compared the use of sparse sampling and our heuristic on simulated user trajectories for
this domain as well (see the last 5 rows of Table 3). It can be observed that the total number of
user actions is much higher for the simulations than the user studies due to the fact that user studies
are costly. The simulations had to consider a much larger state-space than the one used in the user
studies. Because of this, the policies learned on simulations are significantly cheaper than in the
user studies, although they took more time to execute. There is no significant difference between the
solution quality of rollouts and sparse sampling on simulations, showing that our myopic heuristics
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are performing as well as sparse sampling with much less computation. Sparse sampling with higher
depths requires an order of magnitude more computation time when compared to the rollout.

6.3 Folder Predictor

In this section, we present the evaluation of our framework on a real-world domain. As a part of
the Task Tracer project (Dragunov, Dietterich, Johnsrude, McLaughlin, Li, & Herlocker, 2005),
researchers developed a file location system called folder predictor (Bao et al., 2006). The idea
behind the folder predictor is that by learning about the user’s file access patterns, the assistant can
help the user with his file accesses by predicting the folder in which the file has to be accessed or
saved.

In this setting, the goal of the folder predictor is to minimize the number of clicks of the user.
The predictor would choose the top three folders that would minimize the cost and then append them
to the Ul (shown in ovals in Figure 5). Also, the user is taken to the first recommended folder. So if
the user’s target folder is the first recommended folder, the user would reach the folder in zero clicks
and reach the second or the third recommended folder in one click. The user can either choose one
of the recommendations or navigate through the windows folder hierarchy if the recommendations
are not relevant.

Figure 5: Folder predictor (Bao et al., 2006).

Bao et al. considered the problem as a supervised learning problem and implemented a cost-
sensitive algorithm for the predictions with the cost being the number of clicks of the user (Bao
et al., 2006). But, their algorithm does not take into account the response of the user to their
predictions. For instance, if the user chooses to ignore the recommended folders and navigates the
folder hierarchy, they do not make any re-predictions. This is due to the fact that their model is
a one-time prediction and does not consider the user responses. Also, their algorithm considers
a restricted set of previously accessed folders and their ancestors as possible destinations. This
precludes handling the possibility of user accessing a new folder.

Our decision-theoretic model naturally handles the case of re-predictions by changing the rec-
ommendations in response to the user actions. As a first step, we used the data collected from their
user interface and used our model to make predictions. We use the user’s response to our predic-
tions to make further predictions. Also, to handle the possibility of a new folder, we consider all
the folders in the folder hierarchies for each prediction. We used a mixture density to obtain the
probability distribution over the folders.
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P(f) = woPo(f) + (1 — po) P (f)

Here P, is the probability according to Bao et.al’s algorithm, R is the uniform probability
distribution over the set of folders and g is ratio of the number of times a previously accessed
folder has been accessed to the total number of folder accesses.

The idea behind using the above density function is that during early stages of a task, the user
will be accessing new folders while in later stages the user will access the folders of a particular
task hierarchy. Hence as the number of folder accesses increase the value of 1 increases and would
converge to 1 eventually and hence the resulting distribution would converge to B. The data set
consists of a collection of requests to open a file (Open) and save a file (saveAs), ordered by time.
Each request contains information such as, the type of request (open or saveAs), the current task,
the destination folder etc. The data set consists of a total of 810 open/saveAs requests. The folder
hierarchy consists of 226 folders.

The state space consists of 4 parts: the current folder that the user is accessing and the three
recommendations two of which are unordered. This would correspond to a state space of size
226 x 225 x (*2%). The action of the user is either to choose a recommended folder or select a
different folder. The action of the assistant corresponds to choosing the top 3 folders and the action
space is of size 225 x (*2*). The cost in our case was the number of user clicks to the correct
folder. In this domain, the assistant and the user’s actions strictly alternate as the assistant revises its
predictions after every user action. The prior distribution was initialized using the costs computed
by the model developed in (Bao et al., 2006).

We applied the decision theoretic model to the data set. For each request, our assistant would
make the prediction using the Hy, heuristic (which uses the default user policy and the rollout
method) and then the user is simulated. The user would accept the recommendation if it shortens
his path to the goal else would act according to his optimal policy. The user here is considered
close to optimal, which is not unrealistic in the real world. To compare our results, we also used the
model developed by Bao et al. in the data set and present the results in Table 4.

One-time Prediction | With Repredictions
Restricted folder set 1.3724 1.34
All Folders 1.319 1.2344

Table 4: Results of the experiments in the folder predictor domain. The entry in the top left hand
cell is the performance of the current Task Tracer, while the one in the bottom right hand
cell is the performance of the decision-theoretic assistant

The table shows the average cost of folder navigation for 4 different cases: Bao et.al’s original
algorithm, their algorithm modified to include mixture distributions and our model with and without
mixture distributions. It can be seen that our model with the use of mixture distributions has the least
user cost for navigation and hence is the most effective. This improvement can be attributed to the
two modifications mentioned earlier; first, the use of re-predictions in our model which is natural to
the decision-theoretic framework while their model makes a one-time prediction and hence cannot
make use of the user’s response to the recommendations. Secondly, the fact that we consider all
folders in the hierarchy for prediction and thus considering the possibility of the user accessing a
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new folder. It can be observed that either of the modifications yields a lower cost than the original
algorithm, but combining the two changes is significantly more effective.

7. Discussion and Related Wor k

Our work is inspired by the growing interest and success in building useful software assistants (My-
ers et al., 2007). Some of this effort is focused on building desktop assistants that help with tasks
such as email filtering, on-line diagnostics, and travel planning. Each of these tasks typically re-
quires designing a software system around specialized technologies and algorithms. For example,
email filtering is typically posed as a supervised learning problem (Cohen, Carvalho, & Mitchell,
2004), travel planning combines information gathering with search and constraint propagation (Am-
bite, Barish, Knoblock, Muslea, Oh, & Minton, 2002), and printer diagnostics is formulated as
Bayesian network inference (Skaanning, Jensen, & Kjaerulff, 2000). Unfortunately the plethora
of systems and approaches lacks an overarching conceptual framework, which makes it difficult
to build on each others’ work. In this paper, we argue that a decision-theoretic approach provides
such a common framework and allows the design of systems that respond to novel situations in a
flexible manner reducing the need for pre-programmed behaviors. We formulate a general version
of the assistantship problem that involves inferring the user’s goals and taking actions to minimize
the expected costs.

Earlier work on learning apprentice systems focused on learning from the users by observa-
tion (Mahadevan, Mitchell, Mostow, Steinberg, & Tadepalli, 1993; Mitchell, Caruana, Freitag,
J.McDermott, & Zabowski, 1994). This work is also closely related to learning from demonstra-
tion or programming by demonstration (Atkeson & Schaal, 1997; Cypher, 1993; Lau, Wolfman,
Domingos, & Weld, 2003). The emphasis in these systems is to provide an interface where the
computer system can unobtrusively observe the human user doing a task and learn to do it by itself.
The human acts both as a user and as a teacher. The performance of the system is measured by
how quickly the system learns to imitate the user, i.e., in the supervised learning setting. Note that
imitation and assistance are two different things in general. While we expect our secretaries to learn
about us, they are not typically expected to replace us. In our setting, the assistant’s goal is to reduce
the expected cost of user’s problem solving. If the user and the assistant are capable of exactly the
same set of actions, and if the assistant’s actions cost nothing compared to the user’s, then it makes
sense for the assistant to try to completely replace the human. Even in this case, the assistantship
framework is different from learning from demonstration in that it still requires the assistant to infer
the user’s goal from his actions before trying to achieve it. Moreover, the assistant might learn to
solve the goal by itself by reasoning about its action set rather than by being shown examples of
how to do it by the user. In general, however, the action set of the user and the assistant may be
different, and supervised learning is not appropriate. For example, this is the case in our Folder
predictor. The system needs to decide which set of folders to present to the user, and the user needs
to decide which of those to choose. It is awkward if not impossible to formulate this problem as
supervised learning or programming by demonstration.

Taking the decision-theoretic view helps us approach the assistantship problem in a principled
manner taking into account the uncertainty in the user’s goals and the costs of taking different
actions. The assistant chooses an action whose expected cost is the lowest. The framework naturally
prevents the assistant from taking actions (other than noop) when there is no assistive action which
is expected to reduce the overall cost for the user. Rather than learning from the user how to behave,
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in our framework the assistant learns the user’s policy. This is again similar to a secretary who learns
the habits of his boss, not so much to imitate her, but to help in the most effective way. In this work
we assumed that the user MDP is small enough that it can be solved exactly given the user’s goals.
This assumption may not always be valid, and it makes sense in those cases to learn from the user
how to behave. It is most natural to treat this as a case where the user’s actions provide exploratory
guidance to the system (Clouse & Utgoff, 1992; Driessens, 2002). This gives an opportunity for the
system to imitate the user when it knows nothing better and improve upon the user’s policy when it
can.

There have been other personal assistant systems that are based on POMDP models. However,
these systems are formulated as domain-specific POMDPs and solved offline. For instance, the
COACH system helped people suffering from Dementia by giving them appropriate prompts as
needed in their daily activities (Boger et al., 2005). They use a plan graph to keep track of the user’s
progress and then estimate the user’s responsiveness to determine the best prompting strategy. A
distinct difference from our approach is that there is only a single fixed goal of washing hands, and
the only hidden variable is the user responsiveness. Rather, in our formulation the goal is a random
variable that is hidden to the assistant. We note, that a combination of these two frameworks would
be useful, where the assistant infers both the agent goals and other relevant hidden properties of the
user, such as responsiveness.

In Electric Elves, the assistant takes on many of the mundane responsibilities of the human
agent including rescheduling meetings should it appear that the user is likely to miss it. Again a
domain-specific POMDP is formulated and solved offline using a variety of techniques. In one such
approach, since the system monitors users in short regular intervals, radical changes in the belief
states are usually not possible and are pruned from the search space (Varakantham, Maheswaran,
& Tambe, 2005). Neither exact nor approximate POMDP solvers are feasible in our online setting,
where the POMDP is changing as we learn about the user, and must be repeatedly solved. They are
either too costly to run (Boger et al., 2005), or too complex to implement as a baseline, e.g., Electric
Elves (Varakantham et al., 2005). Our experiments demonstrate simple methods such as one-step
look-ahead followed by rollouts would work well in many domains where the POMDPs are solved
online. In a distinct but related work (Doshi, 2004), the authors introduce the setting of interactive
POMDPs, where each agent models the other agent’s beliefs. Clearly, this is more general and more
complex than ordinary POMDPs. Our model is simpler and assumes that the agent is oblivious
to the presence and beliefs of the assistant. While the simplified model suffices in many domains,
relaxing this assumption without sacrificing tractability would be interesting.

Reinforcement Learning has been explored before in specific interactive settings such as in
dialogue management in spoken dialogue systems (Singh, Litman, Kearns, & Walker, 2002; Walker,
2000). For example, the goal of the NJFun system in (Singh et al., 2002) is to learn a policy for
optimally interacting with the user who is trying to query a database in spoken natural language.
In particular the system decides when to take initiative in the dialogue, and whether to confirm
its understanding of the speaker’s utterance. The user’s speech is processed through an automatic
speech recognition (ASR) system which produces a noisy belief state which is compressed into a
set of derived features. A dialogue policy is then learned over this set of derived features. The
approach taken is to first learn a user’s model through an exploratory phase, and then use offline
value-iteration on the model to learn an optimal policy. This work can be viewed as a specific
instance of our assistantship framework to dialogue management where the state/goal estimation is
done by a separate ASR system and the action selection is done by offline reinforcement learning.
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Our work is also related to on-line plan recognition and can be naturally extended to include
hierarchies as in the hierarchical versions of HMMs (Bui, Venkatesh, & West, 2002) and PCFGs
(Pynadath & Wellman, 2000). Blaylock and Allen describe a statistical approach to goal recognition
that uses maximum likelihood estimates of goal schemas and parameters (Blaylock & Allen, 2004).
These approaches do not have the notion of cost or reward. By incorporating plan recognition in the
decision-theoretic context, we obtain a natural notion of optimal assistance, namely maximizing the
expected utility.

There has been substantial research in the area of user modeling. Horvitz et.al took a Bayesian
approach to model whether a user needs assistance based on user actions and attributes and used it
to provide assistance to user in a spreadsheet application (Horvitz et al., 1998). Hui and Boutilier
used a similar idea for assistance with text editing (Hui & Boutilier, 2006). They use DBNs with
handcoded parameters to infer the type of the user and compute the expected utility of assisting the
user. It would be interesting to explore these kind of user models in our system to take into account
the user’s intentions and attitudes while computing the optimal policy for the assistant.

8. Summary and Future Work

We introduced a decision-theoretic framework for assistant systems and described the assistant
POMDP as an appropriate model for selecting assistive actions. We also described an approxi-
mate solution approach based on iteratively estimating the agent’s goal and selecting actions using
myopic heuristics. Our evaluation using human subjects in two game-like domains show that the
approach can significantly help the user. We also demonstrated in a real world folder predictor that
the decision-theoretic framework was more effective than the state of the art techniques for folder
prediction.

One future direction is to consider more complex domains where the assistant is able to do a se-
ries of activities in parallel with the agent. Another possible direction is to assume hierarchical goal
structure for the user and do goal estimation in that context. Recently, the assistantship model was
extended to hierarchical and relational settings (Natarajan et al., 2007) by including parameterized
task hierarchies and conditional relational influences as prior knowledge of the assistant. This prior
knowledge would relax the assumption that the user MDP can be solved tractably. This knowledge
was compiled into an underlying Dynamic Bayesian network, and Bayesian network inference al-
gorithms were used to infer a distribution of user’s goals given a sequence of her atomic actions.
The parameters for the user’s policy were estimated by observing the users’ actions.

Our framework can be naturally extended to the case where the environment is partially ob-
servable to the agent and/or to the assistant. This requires recognizing actions taken to gather
information, e.g., opening the fridge to decide what to make based on what is available. Incorporat-
ing more sophisticated user modeling that includes users forgetting their goals, not paying attention
to an important detail, and/or changing their intentions would be extremely important for building
practical systems. The assistive technology can also be very useful if the assistant can quickly learn
new tasks from expert users and transfer the knowledge to novice users during training.
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