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Abstract

Background: New technologies like echocardiography, color Doppler, CT, and MRI provide

more direct and accurate evidence of heart disease than heart auscultation. However, these

modalities are costly, large in size and operationally complex and therefore are not suitable for use

in rural areas, in homecare and generally in primary healthcare set-ups. Furthermore the majority

of internal medicine and cardiology training programs underestimate the value of cardiac

auscultation and junior clinicians are not adequately trained in this field. Therefore efficient decision

support systems would be very useful for supporting clinicians to make better heart sound

diagnosis. In this study a rule-based method, based on decision trees, has been developed for

differential diagnosis between "clear" Aortic Stenosis (AS) and "clear" Mitral Regurgitation (MR)

using heart sounds.

Methods: For the purposes of our experiment we used a collection of 84 heart sound signals

including 41 heart sound signals with "clear" AS systolic murmur and 43 with "clear" MR systolic

murmur. Signals were initially preprocessed to detect 1st and 2nd heart sounds. Next a total of

100 features were determined for every heart sound signal and relevance to the differentiation

between AS and MR was estimated. The performance of fully expanded decision tree classifiers and

Pruned decision tree classifiers were studied based on various training and test datasets. Similarly,

pruned decision tree classifiers were used to examine their differentiation capabilities. In order to

build a generalized decision support system for heart sound diagnosis, we have divided the problem

into sub problems, dealing with either one morphological characteristic of the heart-sound

waveform or with difficult to distinguish cases.

Results: Relevance analysis on the different heart sound features demonstrated that the most

relevant features are the frequency features and the morphological features that describe S1, S2

and the systolic murmur. The results are compatible with the physical understanding of the

problem since AS and MR systolic murmurs have different frequency contents and different

waveform shapes. On the contrary, in the diastolic phase there is no murmur in both diseases

which results in the fact that the diastolic phase signals cannot contribute to the differentiation

between AS and MR.

We used a fully expanded decision tree classifier with a training set of 34 records and a test set of

50 records which resulted in a classification accuracy (total corrects/total tested) of 90% (45

correct/50 total records). Furthermore, the method proved to correctly classify both AS and MR
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cases since the partial AS and MR accuracies were 91.6% and 88.5% respectively. Similar accuracy

was achieved using decision trees with a fraction of the 100 features (the most relevant). Pruned

Differentiation decision trees did not significantly change the classification accuracy of the decision

trees both in terms of partial classification and overall classification as well.

Discussion: Present work has indicated that decision tree algorithms decision tree algorithms can

be successfully used as a basis for a decision support system to assist young and inexperienced

clinicians to make better heart sound diagnosis. Furthermore, Relevance Analysis can be used to

determine a small critical subset, from the initial set of features, which contains most of the

information required for the differentiation. Decision tree structures, if properly trained can

increase their classification accuracy in new test data sets. The classification accuracy and the

generalization capabilities of the Fully Expanded decision tree structures and the Pruned decision

tree structures have not significant difference for this examined sub-problem. However, the

generalization capabilities of the decision tree based methods were found to be satisfactory.

Decision tree structures were tested on various training and test data set and the classification

accuracy was found to be consistently high.

Background
New technologies like Echocardiography, Color Doppler,
CT, and MRI provide more direct and accurate evidence of
heart disease than heart auscultation. However, these
modalities are costly, large in size and operationally com-
plex [1]. Therefore these technologies are not suitable for
use in rural areas, in homecare and generally in primary
healthcare set-ups. Although heart sounds can provide
low cost screening for pathologic conditions, internal
medicine and cardiology training programs underesti-
mate the value of cardiac auscultation and junior clini-
cians are not adequately trained in this field. The pool of
skilled clinicians trained in the era before echocardiogra-
phy continues to age, and the skills for cardiac ausculta-
tion is in danger to disappear [2]. Therefore efficient
decision support systems would be very useful for sup-
porting clinicians to make better heart sound diagnosis,
especially in rural areas, in homecare and in primary
healthcare. Recent advances in Information Technology
systems, in digital electronic stethoscopes, in acoustic sig-
nal processing and in pattern recognition methods have
inspired the design of systems based on electronic stetho-
scopes and computers [3,4]. In the last decade, many
research activities were conducted concerning automated
and semi-automated heart sound diagnosis, regarding it
as a challenging and promising subject. Many researchers
have conducted research on the segmentation of the heart
sound into heart cycles [5-7], the discrimination of the
first from the second heart sound [8], the analysis of the
first, the second heart sound and the heart murmurs [9-
12], and also on features extraction and classification of
heart sounds and murmurs [14,15]. These activities
mainly focused on the morphological characteristics of
the heart sound waveforms. On the contrary very few
activities focused on the exploitation of heart sound pat-
terns for the direct diagnosis of cardiac diseases. The
research of Dr. Akay and co-workers in Coronary Artery

Disease [16] is regarded as very important in this area.
Another important research activity is by Hedben and
Torry in the area of identification of Aortic Stenosis and
Mitral Regurgitation [17]. The reason for this focus on the
morphological characteristics is the following: Cardiac
auscultation and diagnosis is quite complicated depend-
ing not only on the heart sound, but also on the phase of
the respiration cycle, the patient's position, the physical
examination variables (such as sex, age, body weight,
smoking condition, diastolic and systolic pressure), the
patient's history, medication etc. The heart sound infor-
mation alone is not adequate in most cases for heart dis-
ease diagnosis, so researchers generally focused on the
identification and extraction of the morphological charac-
teristics of the heart sound.

The algorithms which have been utilized for this purpose
were based on: i) Auto Regressive and Auto Regressive
Moving Average Spectral Methods [5,11], ii) Power Spec-
tral Density [5], iii) Trimmed Mean Spectrograms [18], iv)
Sort Time Fourier Transform [11], v) Wavelet Transform
[7,9,11], vi) Wigner-Ville distribution, and generally the
ambiguous function [10]. The classification algorithms
were mainly based on: i) Discriminant analysis [19], ii)
Nearest Neighbour [20], iii) Bayesian networks [20,21],
iv) Neural Networks [1,8,18] (backpropagation, radial
basis function, multiplayer perceptron, self organizing
map, probabilistic neural networks etc) and v) rule-based
methods [15].

In this paper a rule-based method, based on decision
trees, has been developed for differential diagnosis
between the Aortic Stenosis (AS) and the Mitral Regurgita-
tion (MR) using heart sounds. This is a very significant
problem in cardiology since there is very often confusion
between these two diseases. The correct discrimination
between them is of critical importance for the
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determination of the appropriate treatment to be recom-
mended. Previous research activities concerning these dis-
eases were mainly focused on their clinical aspects, the
assessment of their severity by spectral analysis of cardiac
murmurs [13] and the time frequency representation of
the systolic murmur they produce [9,22]. The problem of
differentiation between AS and MR has been investigated
in [3] and [17]. The method proposed in [3] was based on
the different statistic values in the spectrogram of the
systolic murmurs that these two diseases produce. The
method proposed in [17] was based on frequency spec-
trum analysis and a filter bank envelope analysis of the
first and the second heart sound. Our work aims to inves-
tigate whether decision tree-based classifier algorithms
can be a trustworthy alternative for such heart sound diag-
nosis problems. For this purpose a number of different
decision tree structures were implemented for the classifi-
cation and differentiation of heart sound patterns pro-
duced by patients either with AS or with MR. We chose the
decision trees as classification algorithm because the
knowledge representation model that they produce is very
similar to the differential diagnosis that the clinicians use.
In other words this method does not work as a black box
for the clinicians (i.e. in medical terms). On the contrary
neural networks, genetic algorithms or generally algo-
rithms that need a lot of iteration in order to converge to
a solution are working as a black box for the clinicians.
Using decision trees clinicians can trace back the model
and either accept or reject the proposed suggestion. This
capability increases the clinician confidence about the
final diagnosis.

In particular, the first goal of this work was to evaluate the
suitability of various decision tree structures for this
important diagnostic problem. The evaluated structures
included both Fully Expanded decision trees Structures
and Pruned decision trees Structures. The second goal was
to evaluate the diagnostic abilities of the investigated
heart sound features for decision tree – based diagnosis. In
both the above evaluations the generalization capabilities
of the implemented decision tree structures were also
examined. Generalization was a very important issue due
to the difficulty and the tedious work of having adequate
data for all possible data acquisition methods within the
training data set. The third goal of this work was to suggest
a way of selecting the most appropriate decision tree struc-
tures and heart sound features in order to provide the
basis of an effective semi-automated diagnostic system.

Problem definition: differentiation between AS and MR 

murmurs

A typical normal heart sound signal that corresponds to a
heart cycle consists of four structural components:

– The first heart sound (S1, corresponding to the closure
of the mitral and the tricuspid valve).

– The systolic phase.

– The second heart sound (S2, corresponding to the clo-
sure of the aortic and pulmonary valve).

– The diastolic phase.

Heart sound signals with various additional sounds are
observed in patients with heart diseases. The tone of these
sounds can be either like murmur or click-like. The mur-
murs are generated from the turbulent blood flow and are
named after the phase of the heart cycle where they are
best heard, e.g. systolic murmur (SM), diastolic murmur
(DM), pro-systolic murmur (PSM) etc. The heart sound
diagnosis problem consists in the diagnosis from heart
sound signals of a) whether the heart is healthy, or not
and b) if it is not healthy, which is the exact heart disease.
In AS the aortic valve is thickened and narrowed. As a
result, it does not fully open during cardiac contraction in
systolic phase, leading to abnormally high pressure in the
left ventricle and producing a systolic murmur that has
relatively uniform frequency and rhomboid shape in mag-
nitude (Figure 1a). In MR the mitral valve does not close
completely during systole (due to tissue lesion) and there
is blood leakage back from the left ventricle to the left
atrium. MR is producing a systolic murmur that has rela-
tively uniform frequency and magnitude slope (Figure
1b). The spectral content of the MR systolic murmur has
faintly higher frequencies than the spectral content of the
AS systolic murmur. The closure of aortic valve affects the
second heart sound and the closure of the mitral valve
affects the first heart sound.

It can be concluded by the visual insplection of Figure 1
that the AS systolic murmur has very similar characteris-
tics with the MR systolic murmur and therefore the differ-
entiation between these two diseases is a difficult problem
in heart sound diagnosis, especially for young inexperi-
enced clinicians. All these facts define the problem of dif-
ferentiation between the AS and the MR murmurs. In the
following sections we propose a method based on time-
frequency features and decision tree classifiers for solving
this problem.

Methods
Preprocessing of heart sound data

Cardiac auscultation and diagnosis, as already men-
tioned, are quite complicated, depending not only on the
heart sound but also on other factors. There is also a great
variability at the quality of the heart sound affected by fac-
tors related to the acquisition method. Some important
factors are: the type of stethoscope used, the sensor that
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the stethoscope has (i.e. microphone, piezoelectric film),
the mode that the stethoscope was used (i.e. bell, dia-
phragm, extended), the way the stethoscope was pressed
on the patients skin (firmly or loosely), the medication
the patient used during the auscultation (i.e. vasodila-
tors), the patient's position (i.e. supine position, standing,
squatting), the auscultation areas (i.e. apex, lower left ster-
nal border, pulmonic area, aortic area), the phase of
patients' respiration cycle (inspiration, expiration), the fil-
ters used while acquiring the heart sound (i.e. anti-tremor
filter, respiratory sound reduction, noise reduction). The
variation of all these parameters leads to a large number
of different heart sound acquisition methods. A heart
sound diagnosis algorithm should take into account the
variability of the acquisition method, and also be tested in
heart sound signals from different sources and recorded
with different acquisition methods. For this purpose we
collected heart sound signals from different heart sound
sources [31-39] and created a "global" heart sound data-
base. The heart sound signals were collected from educa-

tional audiocassettes, audio CDs and CD ROMs and all
cases were already diagnosed and related to a specific
heart disease. For the purposes of the present experiment
41 heart sound signals with "clear" AS systolic murmur
and 43 with ' "clear" MR systolic murmur were used.

This total set of 41 + 43 = 84 heart sound signals were ini-
tially pre-processed in order to detect the cardiac cycles in
every signal, i.e. detect S1 and S2, using a method based
on the following steps:

a) Wavelet decomposition as described in [7] (with the
only difference being that the 4th and 5th level detail was
kept, i.e. frequencies from 34 to 138 Hz).

b) Calculation of the normalized average Shannon Energy
[6].

c) A morphological transform action that amplifies the
sharp peaks and attenuates the broad ones [5].

Two heart cycles of AS and MR heart soundsFigure 1
Two heart cycles of AS and MR heart sounds.



BioMedical Engineering OnLine 2004, 3:21 http://www.biomedical-engineering-online.com/content/3/1/21

Page 5 of 15

(page number not for citation purposes)

d) A method, similar to the one described in [6], that
selects and recovers the peaks corresponding to S1 and S2
and rejects the others.

e) An algorithm that determines the boundaries of S1 and
S2 in each heart cycle [30].

f) A method, similar to the one described in [8], that dis-
tinguishes S1 from S2

In a second phase, every transformed (processed in the
first phase) heart sound signal was used to calculate the
standard deviation of the duration of all the heart cycles it
includes, the standard deviation of the S1 peak value of all
its heart cycles, the standard deviation of the S2 peak value
of all its heart cycles, and the heart rate. These were the
first four scalar features (F1-F4) of the feature vector of the
heart sound signal.

In a third phase, the rest of the features were extracted. For
this purpose we calculated for each heart sound signal two
mean signals for each of the four structural components of
the heart cycle, namely two for the S1, two for the systolic
phase, two for the S2 and two for the diastolic phase. The
first of these mean signals focused on the frequency char-
acteristics of the heart sound; it was calculated as the mean
value of each component, after segmenting and extracting
the heart cycle components, time warping them, and
aligning them. The second mean signal focused on the
morphological time characteristics of the heart sound; it
was calculated as the mean value of the normalized aver-
age Shannon Energy Envelope of each component, after
segmenting and extracting the heart cycles components,
time warping them, and aligning them. Then the second
S1 mean signal was divided into 8 equal parts. For each
part we calculated the mean square value and this value
was used as a feature in the corresponding heart sound
vector. In this way we calculated 8 scalar features for S1
(F5-F12), and similarly we calculated 24 scalar features for
the systolic period (F13-F36), 8 scalar features for S2 (F37-
F44) and 48 scalar features for the diastolic period (F45-
F92). The systolic and diastolic phase components of the
above first mean signal were also passed from four band-
pass filters: a) a 50–250 Hz filter giving its low frequency
content, b) a 100–300 Hz filter giving its medium fre-
quency content, c) a 150–350 Hz filter giving its medium-
high frequency content and d) a 200–400 Hz filter giving
its high frequency content. For each of these 8 outputs, the
total energy was calculated and was used as a feature in the
heart sound vector (F93-F100). With the above three
phases of preprocessing every heart sound signal was
transformed in a heart sound vector (pattern) with dimen-
sion 1 × 100.

Finally these preprocessed data feature vectors were stored
in a database table. This table had 84 records, i.e. as many
records as the available heart sound signals; each record
describes the feature vector of a heart sound signal and has
102 fields. Each field corresponds to one feature of the
feature vector or in other words to one attribute of the
heart sound. One attribute for the pattern identification
code named ID (used as the primary key of this database
table), one attribute named hdisease for the characteriza-
tion of the specific heart sound signal as MR or AS and 100
attributes for the above 100 heart sound features (F1-
F100).

The decision tree-based method

Relevance analysis

Before constructing and using the decision tree Classifiers
a Relevance Analysis [24] of the features was performed.
Relevance Analysis aims to improve the classification effi-
ciency by eliminating the less useful (for the classifica-
tion) features and reducing the amount of input data to
the classification stage. For example from the previous
description of the database table attributes it is obvious
that the pattern identification code (primary key) is irrel-
evant to the classification, therefore it should not be used
by the classification algorithm.

In this work we used the value of the Uncertainty Coeffi-
cient [23-25] of each of the above 100 features to rank
these features according to their relevance to the classify-
ing (dependent variable) attribute which in our case is the
hdisease attribute. In order to compute the Uncertainty
Coefficients, the 100 numeric attributes were transformed
into corresponding categorical ones. The algorithm that
has been used for optimizing this transformation for the
specific classification decision is described in [23]. Then
for each of these 100 categorical attributes, its Uncertainty
Coefficient was calculated, as described in the following
paragraphs.

Initially we have a set P of p data records (84 data records
in our case). The classifying attribute (dependent variable)
for this differential diagnosis problem has 2 possible dis-
crete values: AS or MR, which define 2 corresponding sub-
sets discrete classes Pi (i = 1, 2) of the above set P. If P
contains pi records for each Pi (i = 1, 2), (p = p1 + p2) then
the Information Entropy (IE) of the initial set P, which is
a measure of its homogeneity concerning the classifying
attribute-dependent variable (higher homogeneity corre-
sponding to lower values of IE) is given by:

Any categorical attribute CA (from the 100 ones created
via the above transformation) with possible values ca1,

IE p p
p
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p
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i i
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ca2, ... cak can be used to partition P into subsets Ca1, Ca2,
... Cak, where subset Caj contains all those records from P
that have CA = caj. Let Caj contain p1j records of class P1
and p2j from class P2. The Information Entropy of the set
P, after this partition, is equal to the weighted average of
the information Entropies of the subsets Ca1, Ca2, ... Cak

and is given by:

Therefore, the Information Entropy gained by partition-
ing according to attribute CA, namely the improvement in
homogeneity concerning the classifying attribute-depend-
ent variable is given by:

Gain(CA) = IE(p1, p2) - IE(CA)  (3)

The Uncertainty Coefficient U (CA) for a categorical
attribute CA is obtained by normalizing this Information
Gain of CA so that U (CA) ranges from 0% to 100 %.

A low value of U(CA) near 0% means that there is no
increase in homogeneity (and therefore in classification
accuracy) if we partition the initial set according to CA
therefore there is low dependence between the categorical
attribute CA and the classifying attribute-dependent vari-
able, while a high value near 100% means that there is
strong relevance between the two attributes.

Construction of decision tree classifier structures

A decision tree is a class discrimination tree structure con-
sisting of non-leaf nodes (internal nodes) and leaf nodes
(final-without child nodes), [23,25,28]. For constructing
a decision tree we use a training data set, which is a set of
records, for which we know all feature-attributes (inde-
pendent variables) and the classifying attribute (depend-
ent variable). Starting from the root node, we determine
the best test (= attribute + condition) for splitting the
training data set, which created the most homogeneous
subsets concerning the classifying attribute and therefore
gives the highest classification accuracy. Each of these sub-
sets can be further split in the same way etc. Each non-leaf
node of the tree constitutes a split point, based on a test
on one of the attributes, which determines how the data
is partitioned (split). Such a test at a decision tree non-leaf
node usually has exactly two possible outcomes (binary
decision tree), which lead to two corresponding child
nodes. The left child node inherits from the parent node
the data that satisfies the splitting test of the parent node,
while the right child node inherits the data that does not
satisfy the splitting test. As the depth of the tree increases,

the size of the data in the nodes is decreasing and the
probability that this data belongs to only one class
increases (leading to nodes of lower impurity concerning
the classifying attribute-dependent variable). If the initial
data that is inherited to the root node are governed by
strong classification rules, then the decision tree is going
to be built in a few steps, and the depth of the tree will be
small. On the other hand, if the classification rules in the
initial data of the root node are weak, then the number of
steps to build the classifier will be significant and the
depth of the tree will be higher.

During the construction of the tree, the goal at each node
is to determine the best splitting test (= attribute + condi-
tion), which best divides the training records belonging to
that leaf into most homogeneous subsets concerning the
classifying attribute. The value of a splitting test depends
upon how well it separates the classes. For the evaluation
of alternative splitting tests in a node various splitting
indexes can be used. In this work the splitting index that
has been used is the Entropy Index [28]. Assuming that we
have a data set P which contains p records from the 2
classes and where pj/p is the relative frequency of class j in
data set P then the Entropy Index Ent(P) is given by:

If a split divides P into two subsets P1 and P2 where P1 con-
tains p1 examples, P2 contains p2 examples and p1 + p2 = p,
then the values of Entropy Index of the divided data is
given by:

In order to find the best splitting test (= attribute + condi-
tion) for a node we examine for each attribute data set all
possible splitting tests based on these attributes. We
finally select the splitting test with the lowest value for the
above Entsplit to split the node.

The expansion of a decision tree can continue, dividing
the training set in to subsets (corresponding to new child
nodes), until we have subsets-nodes with "homogeneous"
records having all the same value of the classification
attribute. Although theoretically this is a possible scenario
in practical situations usually leads to a decision tree struc-
ture that is over-fitted to the training data set and to the
noise this data set contains. Consequently such a decision
tree structure has not good generalization capabilities (=
high classification accuracy for other test data sets). Stop-
ping rules have been therefore adopted in order to prevent
such an over-fitting; this approach is usually referred to as
decision tree Pruning [27]. A simple stopping rule that has
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been examined in this work was a restriction concerning
the minimum node size. The minimum node size sets a
minimum number of records required per node; in our
work for the pruned decision tree structure described in
the Results section a node was not split if it had fewer
records than a percentage of the initial training data set
records (percentages 5%, 10%, 15%, and 20% were tried).

Finally the constructed Decision tree structure is used as a
classifier in order to classify new data sets. In our work we
used this classifier to classify both the training data set and
the test data set.

Selection of training and test pattern sets

In practical situations, where the acquisition of heart
sound signals for all probable cases is time consuming
and almost impossible, we are very much interested in the
capability of the constructed-trained decision tree struc-
ture to generalize successfully. In order to examine the
generalization capabilities of the constructed decision tree
structures, the complete pattern set was divided in two
subsets. The first subset included 34 patterns, 17 with AS
systolic murmur and 17 with MR systolic murmur (40%
of each category of the heart sound patterns set) randomly
selected out of each pattern category (AS and MR) of the
patterns set. This subset was used as the training set. The
other subset, that included the remaining 50 patterns (24
belonging to the AS class and 26 belonging to the MR
class), was used as the test set. In this way the first training-
test sets scheme was developed. The division of the pat-
tern set was repeated, keeping the same proportions (40%
training set – 60% test set), but using different patterns
giving a second scheme. In the same way we created some
more schemes with different proportions in order to
examine the impact of the training and test data set size on
the performance of the decision tree classifier. These
schemes are presented in Table 1.

Results
Relevance analysis

In order to investigate the relevance and the contribution
to the differentiation between AS, and MR for each of the
above mentioned 100 heart sound features, the Uncer-
tainty Coefficients were calculated for each one of them
considering the hdisease field as the classifying attribute.
The calculation was made separately for the training data
set of each of the 10 schemes outlined in Table 1 and for
each heart sound feature. Then the average value and the
standard deviation of the Uncertainty Coefficient were
calculated taking into account the 10 values that were cal-
culated from these 10 schemes. The average values and the
standard deviations of the Uncertainty Coefficient for all
the 100 features are presented in Figure 2. Note that the
most relevant features are the frequency features (i.e.
E_dias_hf = High Frequency Energy in diastolic phase,
E_dias_mf = Medium Frequency Energy in diastolic phase,
E_sys_hf = High Frequency Energy in systolic phase,
E_dias_mh = Medium High Frequency Energy in diastolic
phase, etc) and the morphological features that describe
the S1 (i.e. s1_1...s1_8), the S2 (i.e. s2_1...s2_8) and the
systolic murmur (sys1, ... sys24). These results are compat-
ible with our physical understanding of the problem; the
AS and MR systolic murmurs have different frequency
content and different envelope shape. On the contrary, in
the diastolic phase there is no murmur in both diseases,
therefore the diastolic phase of heart sound signals cannot
contribute to the differentiation between AS and MR.
Additionally the closure of Mitral valve affects the S1 and
the closure of Aortic valve affects the S2.

The standard deviation values are generally smaller that
10%, showing that the Uncertainty Coefficients calculated
from each scheme separately, especially the ones of the
most relevant features, are similar and consistent.

Fully expanded decision tree

According to the methodology described in the Methods
section, we initially construct the decision tree structure
with no restriction to the nodes (without pruning). The
training data-set used was from the scheme 40%a (Table
1) and had 34 records (heart sound patterns). The rest 50
patterns were used as a test set. The Decision tree was con-
structed based on the training data set and afterwards
using this decision tree the patterns of the test data set
were classified in order to investigate the generalization
capabilities of the decision tree. Then the percentage of
the correctly classified patterns of the test data set (accord-
ing to the hdisease attribute) was calculated. The classifi-
cation performance for the 40%a scheme was: 45 patterns
were classified correctly (22 AS and 23 MR) while for 5
patterns the classification was wrong (2 AS and 3 MR);
therefore the percentage of classification accuracy, is
defined as

Table 1: The training-test schemes used in this study

Schemes Number of records 
of Training dataset

Number of records of 
Test dataset

40% a 34 50

40% b 34 50

50% a 42 42

50% b 42 42

60% a 51 33

60% b 50 34

70% a 59 25

70% b 59 25

80% a 67 17

80% b 67 17
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is 45/50*100 = 90%.

In order to exploit the results of the Relevance Analysis
described earlier, we constructed five more decision trees
using only the heart sound features that have Uncertainty
Coefficient above a) 50%, b) 60%, c) 70%, d) 80% and e)
90%. For example in the case e) of 90%, the features that
used were the following sixteen: 1) E_dias_lf, 2)
E_dias_mf, 3) E_dias_mhf, 4) E_sys_hf, 5) E_sys_lf, 6)
E_sys_mf, 7) E_sys_mhf, 8) s1_2, 9) s1_4, 10) s1_5, 11)
s1_6, 12) s2_2, 13) s2_4, 14) s2_5, 15) sys_23, 16)
sys_24. These five decision trees were used for classifying
the patterns of the test data set, with results identical to the
ones described above. Therefore using only 16 out of the
100 features we can get identical levels of classification
accuracy with much less computational effort. For each of
the data schemes of Table 1, we repeated the above calcu-
lation and finally we calculated the average classification
accuracy and its standard deviation for the above five
cases a) to e) (= using different number of features,
according to their Uncertainty Coefficients). The results
are shown in Figure 3. We notice from Figure 3 that the

classification accuracy results for cases a) to e) are identi-
cal; therefore the standard deviation is very low (zero in
most of the cases) confirming the above-mentioned rele-
vant conclusions. Also we can see that for the schemes
with the largest training data sets (= 80%a and 80%b
schemes, with the training data set of 67 record-patterns)
we have a consistent (= the same for both schemes) level
of classification accuracy about 88.3%. For other schemes
of the classification accuracy e.g. for the 50%a scheme the
classification accuracy is 75% while for the 50%b scheme
it is 95%. This is probably due to the small size of the cor-
responding training sets. Therefore it is concluded that
decision trees if properly trained can give a high and con-
sistent level of classification accuracy concerning the dif-
ferentiation between AS and MR, using auscultation
findings. Also it is worth mentioning that the Classifica-
tion Accuracy for the training data set was 100% for all the
examined cases.

In order to investigate the performance of the decision
tree classifier in more detail we calculated, in addition to
the above Total Accuracy, also the partial accuracy for AS
heart sounds, referred to as AS_Accuracy:

Average values and standard deviations of the uncertainty coefficient for the 100 features regarding the disease attributeFigure 2
Average values and standard deviations of the uncertainty coefficient for the 100 features regarding the disease attribute.

Accuracy =
+correctly classified AS sounds MR sounds

tested 

( )

(( )
( ),

AS sounds MR sounds+
7
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and the partial accuracy for MR heart sounds, referred to
as MR_Accuracy:

The same calculations described above were repeated six
times for every data scheme, using each time the features
that had an Uncertainty Coefficient value above the pre-
defined percentages we mentioned before: a) 0%, b) 50%,
c) 60%, d) 70%, e) 80%, f) 90%. The final average classi-
fication accuracy (total and partial) achieved for each data
scheme is shown in Figure 4.

The standard deviation of all these average values was very
low, proving once more that the 16 most relevant features
(out of the initial 100 features) contain all the informa-
tion we need for the differentiation between AS and MR.
The conclusions derived from Figure 4 concerning the par-
tial Classification Accuracies are similar to the ones
derived above concerning the total Classification
Accuracy; with the exception of schemes 80%a and 80%b,
in which the test data set for each disease is very small (8–
9 patterns), therefore the corresponding partial Classifica-

tion Accuracies are less reliable. Also we can see that for 6
out of 10 schemes (40%a, 50%a, 50%b, 70%a, 70%b,
80%b) there are no significant difference between AS
Classification Accuracy and MR Classification Accuracy,
while for the remaining 4 schemes (40%b, 60%a, 60%b,
80%a) the MR Classification Accuracy is significantly
higher than the AS Classification Accuracy; therefore in
general the classification performance of the decision
trees for the MR heart sounds is higher than it is for AS
heart sounds. In order to confirm statistically this first
conclusion, a t-test was performed with the null hypothe-
sis statement H0:

Mean (Scheme_Average_AS_Accuracy) = Mean
(Scheme_Average_MR_Accuracy),

and the alternative hypothesis statement H1:

Mean (Scheme_Average_AS_Accuracy) < Mean
(Scheme_Average_MR_Accuracy).

Assuming that the error probability of rejecting H0 while
H0 is truth is a = 1%, we found that the null hypothesis
H0 should be rejected (with confidence interval 99%).
This statistical result is consistent with the above first con-
clusion; therefore it confirms statistically the above first
conclusion. Again the classification total Accuracy,

Average classification accuracy for all data schemes and cases for the Fully Expanded decision treeFigure 3
Average classification accuracy for all data schemes and cases for the Fully Expanded decision tree.

AS Accuracy_
( )

(
=

correctly classified AS sounds

tested AS sounnds)
( )8

MR Accuracy_
( )

(
=

correctly classified MR sounds

tested MR sounnds)
( ).9
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AS_Accuracy and MR_Accuracy for the training data set
was 100% for all the examined cases.

Pruned decision tree

In this part of our work we tried to investigate if we could
improve the generalization capabilities of the decision
trees by placing a restriction during the training phase
concerning the creation of new nodes of the decision tree
and not allowing it to be fully expanded as in 5.2. The
restriction we placed was that the number of records-pat-
terns in a node as a percentage of the total number of
records of the initial training data set should be at least a
predefined percentage, usually referred to as the support
of the node. The predefined percentages (minimum sup-
port levels) we examined were 5%, 10%, 15% and 20%.
In particular, in the construction of a decision tree struc-
ture during the training phase for each parent node, the
size (number of records-patterns) of its child nodes was
examined. If the size of one of these child nodes was less
than, for example, 5% of the total number of records-pat-
terns of the initial training set i.e. the node had support
less than 5%, then the parent node was not further split
and was converted to a leaf node and the decision tree was
not further expanded from that path. With this exception
the same calculations described in paragraph 5.2 were
repeated (namely with the only difference that the leaf

nodes of the decision tree had at least the predefined sup-
port). Figure 5 shows an example of a resulting decision
tree following the procedure described.

Figure 6 shows the Total Classification Accuracies
achieved with Pruned decision trees having minimum leaf
node support at least 5%, 10%, 15% and 20%, for all the
data schemes described in Table 1, compared with the pre-
vious results from the Fully expanded decision tree (0%
minimum support at leaf nodes). From Figure 6 we can
see that in 5 out of the 10 schemes (40%a, 40%b, 50%a,
70%a, 80%a) Pruned decision trees give exactly the same
Total Classification Accuracy results with the correspond-
ing Fully-Expanded decision trees, in 2 schemes (60%b,
80%b) pruning slightly increases the Total Classification
Accuracy, while in the remaining 3 schemes (50%b,
60%a, 70%b) pruning slightly decreases the Total Classi-
fication Accuracy. Therefore it is concluded that for our
specific differentiation problem pruning does not signifi-
cantly change the Classification Accuracy of the decision
trees. We performed four individual t-tests, to confirm sta-
tistically this conclusion. The null hypothesis statement
H0X% was defined as:

Mean (Scheme_Average_Accuracy_support_0%) = Mean
(Scheme_Average_Accuracy_support_X%),

Average classification total accuracy, AS_accuracy, and MR_accuracy for the fully expanded decision tree classifierFigure 4
Average classification total accuracy, AS_accuracy, and MR_accuracy for the fully expanded decision tree classifier.
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and the alternative hypothesis statement H1X% was
defined as:

Mean (Scheme_Average_Accuracy_support_0%) > Mean
(Scheme_Average_Accuracy_support_X%).

The X% stands for the minimum support levels (i.e. 5% or
10% or 15% or 20%) used individually in each one of the
four t-tests. Assuming that the error probability of reject-
ing H0X% while H0X% is truth is a = 1%, we found that
there was a 99% confidence that the null hypothesis
should be accepted. This statistical result confirms once
more the above conclusion for the decision tree pruning.

This conclusion is also confirmed by the corresponding
partial classification Accuracies for AS and MR shown in
Figure 7 and Figure 8 respectively. Finally it is worth men-
tioning that using Pruned decision trees the Classification

Accuracy for the training data sets was not 100% for all
schemes / cases (as it was when we used Fully Expanded
decision trees); for many schemes / cases it was much
lower reaching the level of 88% for some of them.

Conclusions
We have investigated the applicability and the suitability
of a number of decision tree structures for the AS MR dif-
ferentiation problem. Criteria for this evaluation ware
considered the classification Accuracy (both the total one
and the partial ones) for the training set and the test set.
The main conclusions from this work are the following:

– The decision trees can be used with high levels of success
for the differentiation between AS and MR. The decision
tree model is simple and clinicians are familiar with it,
because they use a similar way when they make differen-
tial diagnosis. Therefore the decision trees can be used as

Example of a resulting pruned decision treeFigure 5
Example of a resulting pruned decision tree.
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Total classification accuracy results for all data schemes for pruned decision treesFigure 6
Total classification accuracy results for all data schemes for pruned decision trees.

AS classification accuracy for all data schemes for the pruned decision treesFigure 7
AS classification accuracy for all data schemes for the pruned decision trees.
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a basis for decision support systems, giving to the clini-
cians dealing with the heart sound diagnosis, especially to
the ones in rural areas, in homecare, the primary health-
care etc, almost immediately an advice that helps them to
make better heart sound diagnosis. This capability can
reduce the costs and improve the quality of the healthcare
for the cardiological problems.

– There is a small subset of the initial features that contain
most of the information required for the differentiation.
Using Relevance Analysis we can determine this critical
subset of features, which then can be used for constructing
the decision tree. Also the diagnosis for any new data set
will be based only on this subset of features. In this way
the required computational effort for training and using
these decision trees significantly decrease.

– In the specific discrimination problem the Fully
Expanded decision tree structures have similar levels of
Generalization and Classification Accuracy for new data
in comparison with the Pruned decision tree structures.

– Increasing the size of the training data sets (more pat-
terns) improves the Classification Accuracy and the
general reliability of the system. This is reasonable

because the decision tree is trained with more samples
that cover more cases.

– The generalization capabilities of the decision tree based
methods for problems similar to the one examined in this
paper were found to be satisfactory. This is very impor-
tant, due to the difficulty and the high cost of having
enough training data for every possible case. The decision
tree structures were tested on various training and test data
set and the Classification Accuracy was found to be con-
sistently high. However having more training data the
decision trees can produce more trustworthy predictions.

– The general heart sound diagnosis problem can be
divided into a number of simpler problems [29] such as:
detection of systolic murmur, detection of diastolic
murmur, determination of the type of the murmurs (cre-
scendo, decrescendo), determination of the frequency
content (low, high, medium), detection of Mid-systolic
click, arrhythmia, of premature ventricular contraction,
differentiation between heart diseases with similar heart
sound signals, differentiation between Opening Snap,
2nd heart sound split, and 3rd heart sound [30], differen-
tiation between the 4th heart sound, ejection clicks and
the split of S1etc. All these simpler problems can be solved

MR Classification for all data schemes for pruned decision treesFigure 8
MR Classification for all data schemes for pruned decision trees
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by separate specialized decision support systems, which
can be based on different methods, algorithms and fea-
tures. The partial diagnosis given by these decision sup-
port systems can then be combined to give a total
diagnosis. The combination of all these decision support
systems can lead to an integrated decision support system
architecture for Heart Sound Diagnosis.

Further research is required for the development of a
methodology for the selection of the most appropriate
decision tree structure and for improving the Classifica-
tion Accuracy. Also further research is required in order to
investigate the applicability and suitability of decision
tree-based methods for other significant problems in the
area of heart sound diagnosis.
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