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Abstract

Background: A variant of unknown significance (VUS) is a variant form of a gene that has been identified through
genetic testing, but whose significance to the organism function is not known. An actual challenge in precision
medicine is to precisely identify which detected mutations from a sequencing process have a suitable role in the
treatment or diagnosis of a disease. The average accuracy of pathogenicity predictors is 85%. However, there is a
significant discordance about the identification of mutational impact and pathogenicity among them. Therefore,
manual verification is necessary for confirming the real effect of a mutation in its casuistic.

Methods: In this work, we use variables categorization and selection for building a decision tree model, and later
we measure and compare its accuracy with four known mutation predictors and seventeen supervised machine-
learning (ML) algorithms.

Results: The results showed that the proposed tree reached the highest precision among all tested variables: 91%
for True Neutrals, 8% for False Neutrals, 9% for False Pathogenic, and 92% for True Pathogenic.

Conclusions: The decision tree exceptionally demonstrated high classification precision with cancer data,
producing consistently relevant forecasts for the sample tests with an accuracy close to the best ones achieved
from supervised ML algorithms. Besides, the decision tree algorithm is easier to apply in clinical practice by non-IT
experts. From the cancer research community perspective, this approach can be successfully applied as an
alternative for the determination of potential pathogenicity of VOUS.
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Background
The advances of molecular biology and technologies in
the last decades were crucial for the generation of large-
scale data and the development of “omic” sciences.
These data are structured and integrated into new data-
bases that helped the understanding the complexes

mechanisms of life and are used to support scientific
investigations, either for development of new drugs or
disease diagnosis, prevention, and treatments [1]. The
databases are being consolidated as a valuable source of
information, precise and reliable. Human genetic varia-
tions databases highlight among those databases, like the
ones based on population frequency of polymorphisms
and somatic mutations, many of them focused on cancer
[2–7]. Therefore, new data are continually emerging, de-
manding information extraction in primary analysis, a
comparison against the existent knowledge for better ex-
ploitation of the acquired evidences, and providing a
challenge for data integration [8].
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The advent of new generation sequencing (NGS)
methods at a low cost set up significant advancements
in medicine [9]. The decrease of sequencing price dir-
ectly influenced the development of precision medicine,
making new diagnosis and treatments more precise and
individualized [10], and millions of genomes are se-
quenced every year, either for clinical or research aims
[11]. In some cases, the whole genome is sequenced,
while others are focused on exome or even in specific
genomic regions panel. In this scenario, mutation identi-
fication via NGS emerges as a crucial step in the process
of disease susceptibility verification and is changing the
reality of diagnostics.
A variant calling experiment, which covers mainly

protein-coding genome regions, detects up to 20,000 gen-
etic variants in patient’s DNA [12], many of them leading
to mutations of diverse types: missense, nonsense, non-
stop, frameshift, indel, synonymous, among others. The
actual challenge is to precisely identify which mutation
plays a critical role in diagnosis or treatments [1]. Variant
viewers and computational methods that predict with rea-
sonable accuracy the effects of variants in protein stability
can help to identify critical functional mutations [13–16].
Viewer tools like iVariantGuide™ [17], VarSeq™ [18],

QueryOR [19], OpenViva (Kroll JE, Nascimento PM,
Souza JES, Souza SJ: OpenViva: a variant-calling viewer,
unpublished manuscript) are developed to deal with the
challenge of information extraction [20], supporting
users to access information about detected variants from
genetic sequencing, either total or partial. Nevertheless,
the amount of information is still very high, and little in-
structive [21]. Regarding this, specific search filters can
be used for easing identification of informative muta-
tions in a case study based on requests by gene, patho-
genicity predictors, biochemical characteristics, among
other variables. All of this information can be filtered
through viewers for extracting only the desired ones for
analysis.
After variant annotation, specifics information, namely

features, can be aggregated for later use in information
filtering, and an important and challenging step is the
application of methods and metrics for achieving signifi-
cant findings [20]. This approach is adopted in Open-
Viva (Kroll JE, Nascimento PM, Souza JES, Souza SJ:
OpenViva: a variant-calling viewer, unpublished manu-
script), which provides variant filtering for any feature
and considerably accelerates the discovery of relevant
mutations. However, there is still much conflicting infor-
mation that needs to be addressed more carefully.
Although the tools mentioned above provide support for

the analysis process, there is still considerable difficulty in
integrating biological data. One reason is the great diversity
in which databases are distributed [20], which in turn is
connected to the problem of backbone design for specific

analysis, given the high amount of information for each an-
notated mutation. Despite the required improvements, in-
formation integration can improve the mutation impact
predictions and speed up the analysis response time [21].

Genetic variant impact prediction
Variant impact prediction is based on the identification
of base changes, which lead to alteration or loss of the
gene function. Variant prediction tools are intensely ap-
plied in clinical diagnostic labs to support the mutation
effects evaluation in a genetic sequence. However, the
methodologies for evaluating the implication of a muta-
tion in pathogenicity vary considerably from a predictor
to another [22]. Besides the fact that there is no consen-
sus rule for clinical validation of pathogenicity [23], a
suitable choice of a predictor emerges as an essential
topic for the clinical area [24].
Three of the most commonly employed predictors in

clinical research are Polyphen [14], SIFT [13], and PRO-
VEAN [15]. Polyphen uses structure and evolutionary
conservation to predict the impact of amino acid substi-
tution in the structure and function of human proteins
[14]. SIFT is based on residues conservation degree, as-
suming that essential positions in a sequence were con-
served during the evolution, so substitutions in these
regions have a significant trend to affect proteins func-
tion [13]. PROVEAN has a general approach for predict-
ing functional mutation effects in a protein sequence.
This predictor scores alterations of a given mutation and
verifies the alignment score of sequence like a new
metric for predicting harmful effects of the variants [15].
According to Schwarz [24], the average accuracy of

these predictors is 85%. Nevertheless, there is a consider-
able degree of discordance among them regarding the
pathogenicity of a mutation, and a manual verification to
confirm its real effect becomes necessary. With the devel-
opment of machine learning computational techniques,
specialized in recognizing and associating patterns to a
data set, such verification gains the potential to be fully
automatized and capable of providing higher correctness
rates when analyzing mutations. The Decision Tree is one
of these techniques that contribute to achieving this sce-
nario [25].

Decision tree
Decision Tree is a machine learning technique for data
classification in a fixed set of classes and is recommended
for problems in which input variables are discrete (have a
finite quantity of possible values), and final classification is
binary (only two classes) [26]. Assuming that data from
variant calling have many ease-discretization features, de-
cision trees become an excellent deterministic model for
relevant information search.
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As the name suggests, this technique is based on a hier-
archical structure of “if-then” rules that produce bifurca-
tions in decision paths (edges), promoting a tree shape. The
classification problem, thus, consists of traverse a tree
through its edges, in which each node, from the root, exe-
cutes a test over an input variable. The result indicates
which is the next branch of the tree to be traversed, and
which node is accessed next. The classification itself is per-
formed when a leaf node, namely, a node with no out-
branches, is reached (path ending), and then the class to
which input data is better associated is informed. This
learning technique has been explored systematically with
success in many classification problems in clinical research
[27–32]. The present work aims to classify variants in neu-
tral or pathogenic, thus reinforcing the choice of the pre-
sented approach (hyperparameter of tree conjecture).
In this work, we describe a decision tree modeling to

improve the accuracy of the pathogenicity identification
process when the predictors that are regularly used by
the scientific community present conflicting results. We
expect that this procedure can be used to support the
screening of identified mutations, and elucidate a pos-
sible role of mutations in the underlying tumorigenesis
or response to treatments or diagnosis.

Methods
ClinVar
ClinVar is a database designed for propitiating assess-
ment of variants and phenotype relationships in a sim-
plified way [4] and was chosen to evaluate the accuracy
of actual predictors and the proposed method. ClinVar
was built upon the aggregation of diverse research
groups worldwide, to compare and verify the possibility
of a consensus over the variant analysis results [33].
Nevertheless, this database describes the impact of only
224,312 mutations and classifies them, as described in
Table S1. Facing that, we performed a discretization
process over ClinVar according to CLNSIG parameter
from this database, considering neutral variants the ones
marked as CLNSIG 2 or 3, and pathogenic variants the
ones marked as CLNSIG 4 or 5. ClinVar genome version
GRCh38, available in 2017-05-30, was employed for the
creation and validation of the model, with a total of 224,
312 mutations, from which 31,389 non-synonymous, 13,
398 neutral and 17,991 pathogenic, was selected accord-
ing to the discretization performed. A more recent ver-
sion of ClinVar, available in 2019-09-23, was used as a
future data source for model testing. This new version
has 25.052 novel non-synonymous mutations, 8.790 of
them are neutral, and 16.082, pathogenic.
The 2017-05-30 version of ClinVar database was used as

a learning base that provides a broad knowledge landscape
of neutral and pathogenic variants, given the global charac-
ter that was imprinted during its development, as well as

its aim to propose a consensus. For this work, ClinVar was
obtained in VCF format, processed in several steps with in-
house scripts, and additional data were combined through
variant annotation with snpSift and snpEff tools. This base
was integrated with databases ExAC [3], 1000genomes
[34], HapMap [35], RefSeq [16], among others, and with
predictors SIFT [13], Polyphen [14], PROVEAN [15], be-
yond nine other ones (Table S2), through the support of
dbNSFP and in-house scripts.
After annotation with in-house scripts, ClinVar muta-

tions used in training, validation and test were filtered
and separated for analysis according to the following cri-
teria: (1) non-synonymous mutations; (2) mutations pre-
dicted by SIFT [13], Polyphen [14], and PROVEAN [15];
(3) mutations classified as pathogenic or neutral accord-
ing to ClinVar. This database was divided into two sub-
sets, one with synonymous variants (for future studies),
and another with non-synonymous variants (focus of
this study). The latter was submitted to three variant
predictors (SIFT [13], Polyphen [14], and PROVEAN
[15]), and then split into two new subsets. The first set
containing mutations classified as neutral if three predic-
tors classified it so. And the second, mutations classified
as pathogenic, in the case of at least one predictor classi-
fied it in this way. This process consolidates the first
level of the decision tree.

Evaluation the accuracy of variables
To assess the potential of each classical predictor (SIFT
[13], Polyphen [14], PROVEAN [15], MetaSVM [36]),
and compare with the effectiveness of seventeen super-
vised machine-learning (ML) algorithms (described at
ML session) with proposed decision tree, we compiled a
benchmark to verify the accuracy of each strategy. In
this approach, the Prediction identifies the predicted mu-
tation as Neutral (N) or Pathogenic (P) and Clinvar,
identifies Neutral mutation as (0) or Pathogenic muta-
tions as (1). The classification comparison allowed to
evaluate the accuracy of diverse strategies as follows:
Prediction (N) and Clinvar (0) is True Neutral; Predic-
tion (N) and Clinvar (1) is False Neutral; Prediction (P)
and Clinvar (0) is False Pathogenic; Prediction (P) and
Clinvar (1) is True Pathogenic. The initial results
showed that tree’s conjecture presented an accuracy high
enough to be compared with excellent ML algorithms,
such as XGBoost and Ada Boost. Conjecture identified
Neutral Mutations with False Neutral error rate of 8%;
however, False Pathogenic error rate was 9% (Table 1).
Features screening was redirected with the intent to di-
minish the false positives (False Pathogenic error rate).

Features discretization
Based on data integration on ClinVar, we realized the
features screening with the potential for partitioning
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mutations in pathogenic and neutral. After data analysis,
we decided to discretize and evaluate ten features as it
can be seen from S3 to S12. All discretization was cali-
brated based on a biological understanding of the vari-
able range, such that a system of binary values replaced
attributes of continuous nature.
After each discretization was performed, potential fea-

tures that could improve the partitioning mutations in
pathogenic and neutral were evaluated. Variables de-
scribing population allele frequency (ExAC_AF, COM-
MON), predictors that converge to the same result
(Ndamage), mutations that occur in functional domains
(Interpro_Domain), changes in biochemical amino acid
properties (Transition/transversion sites, Charged/Un-
charged, Hydrophobic/Hydrophilic), among others, were
analyzed. Once results were obtained in this phase, sub-
sequent levels of decision tree were built. After
discretization, six variables were identified as the best
features to separate mutation data in neutral and patho-
genic: SIFT, Polyphen, PROVEAN, ExAC, NDamage,
and COMMON.

Building the decision tree
After the identification of variables and the respective
True-False discretization processes, representing muta-
tion characteristics, the decision tree building was per-
formed. A greedy algorithm was employed for evaluating
the potential features for partitioning mutations in
pathogenic and neutral in each tree level, selecting those
that provide the highest degrees of accuracy (according
to ClinVar annotation). When the tree level converged
to a local optima feature (best partitioning results), a
next level was established, and all remaining features
were tested in brute force mode again until a final
shaped tree was designed (Fig. 1).
The tree was designed in a greedy way - each level is

based on discretized variables and best separation accur-
acy (neutral/pathogenic), using a training and a valid-
ation datasets. The tree topology is illustrated in Fig. 1,
composed of four nodes that evaluate six variables: SPP,1

ExAC, NDamage, and COMMON.

Table 1 Accuracy of proposed model and predictors trained with full ClinVar version 2017-05-30, according to ClinVar version 2019-
09-23

Classifier Accuracy
*Mean
(± Std. Dev.)

Predictor = N,
Clinvar = 0
*Mean
(± Std. Dev.)

Predictor = P,
Clinvar = 0
*Mean
(± Std. Dev.)

Predictor = N,
Clinvar = 1
*Mean
(± Std. Dev.)

Predictor = P,
Clinvar = 1
*Mean
(± Std. Dev.)

Extreme Gradient Boosting 93 (0.3) 92 (0.5) 8 (0.5) 7 (0.3) 93 (0.3)

* Proposed Tree 92 (0.3) 91 (0.5) 9 (0.5) 8 (0.3) 92 (0.3)

Random Forest 92 (0.3) 91 (0.5) 9 (0.5) 8 (0.3) 92 (0.3)

Bagging 92 (0.3) 90 (0.5) 10 (0.5) 8 (0.3) 92 (0.3)

K Nearest Neighbors 92 (0.3) 89 (0.5) 11 (0.5) 6 (0.3) 94 (0.3)

Ada Boost 92 (0.3) 93 (0.5) 7 (0.5) 8 (0.3) 92 (0.3)

Extra Trees 91 (0.3) 90 (0.5) 10 (0.5) 8 (0.3) 92 (0.3)

Extra Tree 91 (0.3) 90 (0.5) 10 (0.5) 8 (0.3) 92 (0.3)

Linear Discriminant Analysis 91 (0.3) 88 (0.6) 12 (0.6) 8 (0.3) 92 (0.3)

Support Vector Machines (Linear kernel) 91 (0.3) 86 (0.6) 14 (0.6) 6 (0.3) 94 (0.3)

SKLearn Decision Tree 91 (0.3) 90 (0.5) 10 (0.5) 8 (0.3) 92 (0.3)

Multilayer Perceptron 91 (0.3) 85 (0.6) 15 (0.6) 6 (0.3) 94 (0.3)

Quadratic Discriminant Analysis 91 (0.3) 88 (0.5) 12 (0.5) 8 (0.3) 92 (0.3)

Bernoulli Naive Bayes 91 (0.3) 86 (0.6) 14 (0.6) 7 (0.3) 93 (0.3)

Support Vector Machines (RBF Kernel) 91 (0.3) 86 (0.6) 14 (0.6) 7 (0.3) 93 (0.3)

Logistic Regression 91 (0.3) 86 (0.6) 14 (0.6) 7 (0.3) 93 (0.3)

Gaussian Naive Bayes 90 (0.3) 84 (0.6) 16 (0.6) 6 (0.3) 94 (0.3)

Nu-Support Vector Machines 87 (0.4) 82 (0.6) 18 (0.6) 11 (0.3) 89 (0.3)

PROVEAN 83 (0.4) 75 (0.7) 25 (0.7) 13 (0.4) 87 (0.4)

MetaSVM 81 (0.4) 69 (0.6) 31 (0.6) 10 (0.4) 90 (0.4)

Polyphen 80 (0.4) 82 (0.8) 18 (0.8) 20 (0.3) 80 (0.3)

SIFT 80 (0.4) 77 (0.8) 23 (0.8) 18 (0.4) 82 (0.4)

*Mean and standard were calculated from 1000 random samples, each one with 30% of ClinVar version 2019-09-23

1Ensemble of variables SIFT, PROVEAN, and Polyphen.
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Variable discretization and pathogenicity features
discovery
After discretize ten variables - ExAC_AF, COMMON,
NDamage, Interpro_Domain, Transition/transversion
sites, Charged/uncharged, Hydrophobic/hydrophilic, Es-
sential/non-essential, Initial/not initial exon and PPI
(Tables S3, S4, S5, S6, S7, S8, S9, S10, S11 and S12, re-
spectively), four of them showed a better segregation
among categorizations (ExAC_AF, COMMON, NDa-
mage, Interpro_Domain - Tables S3, S4, S5 and S6). No
difference was observed for other variables frequencies
(Transition/transversion sites, Charged/uncharged,
Hydrophobic/hydrophilic, Essential/non-essential, Ini-
tial/not initial exon, and PPI), and they were not used in
the decision tree (Tables S7, S8, S9, S10, S11 and S12).

Machine learning algorithms
For evaluating the potential of proposed model, a com-
parison was realized with following Machine Learning

(ML) algorithms: Extreme Gradient Boosting, Ada Boost,
K Nearest Neighbors, Bagging, Random Forest, Extra
Trees, SKLearn Decision Tree, Linear Discriminant Ana-
lysis, Linear Support Vector Machines with RBF and Lin-
ear Kernels, Nu-Support Vector Classification, Logistic
Regression, Multilayer Perceptron (1 hidden-layer of one
hundred neurons), Quadratic Discriminant Analysis, Ber-
noulli Naive Bayes, and Gaussian Naive Bayes. It was used
the implementation provided by scikit-learn2 library, with
except for Extreme Gradient Boosting, for which imple-
mentation from xgboost3 library was used. SKLearn Deci-
sion Tree, Extreme Gradient Boosting, Ada Boost,
Bagging, Random Forest, and Extra Trees are ensemble
methods that construct and combine a set of decision
trees for classifying data. K Nearest Neighbours classifies
data based on their Euclidean distances and vicinity.

Fig. 1 Decision tree obtained after integration and discretization of variables. Level 1: the root node, responsible for receiving input variant,
separates the identified mutations in Neutral, if three predictors classify it so (in this case, variant remains not evaluated in future steps), or
Pathogenic, if at least one of three predictors classify it so. Level 2: mutations classified as Pathogenic in the previous step are reevaluated
according to their allele frequency in ExAC database, being reclassified as Neutral for mutations with allele frequency higher than 0.0001 (remains
not evaluated in future steps), or maintained as Pathogenic, for mutations with allele frequency less than 0.0001. Level 3: Mutations previously
classified as Pathogenic are reevaluated according to the number of predictors that converge to the same result. Mutations are reclassified as
Neutral if identified as pathogenic by less than five predictors (remains not evaluated in future steps), or maintained as Pathogenic if identified as
so by five to nine predictors. Level 4: Mutations previously classified as Pathogenic are reevaluated according to the COMMON variable from
1000genomes, being reclassified as Neutral for mutations with allele frequency higher than 0.0001, or maintained as Pathogenic, for mutations
with allele frequency less than 0.0001

2https://scikit-learn.org
3https://xgboost.readthedocs.io
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Linear Discriminant Analysis, Linear Support Vector Ma-
chines with RBF and Linear Kernels, Nu-Support Vector
Classification, and Quadratic Discriminant Analysis seek
to perform classification by dividing data representation
space in hyperplanes. Logistic Regression and Multilayer
Perceptron optimize predefined sets of equations for clas-
sifying data into their respective classes, and Bernoulli and
Gaussian Naive Bayes uses Bayes theorem in a probabilis-
tic fashion for classification.

Cross-validation
10-fold Cross-Validation was performed to test the poten-
tial of the proposed model and find the best training and
testing conjecture. Pathogenic and Neutral mutations data
from the 2017-05-30 version of the ClinVar database were
each divided into 10 folds. Each pair of folds from patho-
genic and neutral mutations are selected in a 10-step itera-
tive process to form a test dataset while remaining folds
are joined together to form a training dataset.
In each step, ML algorithms are trained and then clas-

sify all mutations from the test dataset. The following met-
rics are then calculated: (a) Accuracy, calculated as (True
Neutrals + True Pathogenic)/(True Neutrals + False Neu-
trals + True Pathogenic + False Pathogenic); (b) Sensitivity
(Predictor = N, Clinvar = 0), calculated as True Neutrals/
(True Neutrals + False Neutrals); (c) Type I Error (Pre-
dictor = P, Clinvar = 0), calculated as False Neutrals/(True
Neutrals + False Neutrals); (d) Specificity (Predictor = P,
Clinvar = 1), calculated as True Pathogenic/(True Patho-
genic + False Pathogenic); and (e) Type II Error (Pre-
dictor = N, Clinvar = 1), calculated as False Pathogenic/
(True Pathogenic + False Pathogenic). The best conjec-
ture, defined as the pair of training and test datasets that
yielded the highest accuracy, was selected for each algo-
rithm after the execution of Cross-Validation.

Decision tree, classical predictors and ML algorithms tests
To evaluate the efficiency of the proposed tree, classical
predictors and ML algorithms, they were trained with the
entire ClinVar 2017-05-30 dataset. Subsequently they were
submitted to testing using Monte Carlo simulation with the
ClinVar 2019-09-23 dataset, in an iterative process of a
thousand steps. In every iteration, a sample containing 30%
mutations from ClinVar was selected randomly, evaluated
by each classifier, and rates were then calculated from these
classifications, with the mean and standard deviation.
The best performance of each ML algorithm was

established by the cross-validation test. Again they were
submitted to testing using Monte Carlo simulation with
the ClinVar 2019-09-23 dataset.

Distribution of variables
Distribution of neutral and pathogenic mutations of vari-
ables used in the proposed model for the best conjecture of

training and validation, so as for validation sets, are shown
in Table S13. These same distributions were calculated for
each two-by-two combination of the proposed model vari-
ables (neutral-neutral, neutral-pathogenic, pathogenic-
neutral, and pathogenic-pathogenic), as shown in Figure S1.

Results
Accuracy of classifiers
To validate the proposed method, we compared the re-
sult obtained by the decision tree with the ones obtained
by the four classical pathogenicity predictors, SIFT [13],
Polyphen2 [14], PROVEAN [15] and MetaSVM [36],
and the seventeen ML algorithms described in Methods,
evaluated over same data. These algorithms were trained
on all ClinVar data (version 2017-05-30), and tested
using a Monte Carlo simulation with ClinVar version
2019-09-23. The mean and standard deviation of each
fold are available in Table 1. Also, we performed 10-fold
cross-validation with mutations data from the 2017-05-
30 version of the ClinVar database, and the results (in
terms of the mean and standard deviation of each fold)
are available in Table S14.
The results showed that the decision tree reached

higher precision in every tested variable: 91% for True
Neutral, 8% for False Neutral, 9% for False Pathogenic,
and 92% for True Pathogenic. For example, SIFT results
were: 77% for True Neutral, 18% for False Neutral, 23%
for False Pathogenic, and 82% for True Pathogenic; and
MetaSVM results were: 69% for True Neutral, 10% for
False Neutral, 31% for False Pathogenic, and 90% for
True Pathogenic (Table 1). As mentioned previously, the
decision tree demonstrated higher precision in the clas-
sification of these data, consistently producing relevant
predictions for realized tests.
It can be noticed from Table 1 and S14 that all predic-

tors achieve statistically the same performance in both
ClinVar versions (considering mean and standard devia-
tions). The proposed method has a mean accuracy of 91
(±0.1)% in 10-fold cross-validation results, and a mean
accuracy of 92 (±0.3)% in Monte Carlo simulation, with
overlap confidence intervals. This behavior is also seen
from best ML algorithms, (for example, Extreme Gradi-
ent Boosting has mean accuracy of 92 (±0.0)% in cross-
validation, and 93 (±0.3)% in Monte Carlo simulation)
and classical predictors (for example, PROVEAN has
mean accuracy of 80 (±0.1)% in cross-validation, and 83
(±0.4)% in Monte Carlo simulation).
All classical predictors obtained the worst accuracies

in both test scenarios: MetaSVM had a mean accuracy
of 82 and 81% in Cross-Validation and Monte Carlo
simulation, respectively; PROVEAN, 80, and 83%; SIFT,
78, and 80%; and Polyphen, 77, and 80%. These mea-
sures are below the ones reported in the literature [24].
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Our proposed method was ranked between the six best
positions in accuracy evaluation from both analyses
(Table 1 and S14), with a difference of only 1% from the
first two (Extreme Gradient Boosting and Ada Boost),
and a mean difference of 9% to classical predictors.
These results show the competitive strength of the
model, considering both the powerful ML algorithms
and traditional predictors used in clinical research for
pathogenicity in VOUS.

Variables distribution
The results in Figure S1 show that when variables are
combined, possible classification errors that could be
made by one is compensated by another. For example,
45.3% of ClinVar neutral mutations (2017-05-30 version)
are classified as neutral by the SPP variable and as
pathogenic by the ExAC variable. Therefore, in the com-
bination SPP-ExAC, the first variable prevents 45.3% of
mutations from being misclassified by the second. Simi-
larly, 21.6% of pathogenic mutations have the neutral-
pathogenic combination of the ExAC-NDamage pair,
making it possible to state that the second variable com-
pensate in 21.6% the wrong classifications of the first.
Such behavior suggest a classification complementarity
among tree variables, and when using them together,
achieves a higher accuracy in relation to their applica-
tion alone.

Variable correlations
The φ coefficient, as described in [37], was used to verify
the degree of correlation of the four variables according
to ClinVar (2017-05-30 version). Table S15 presents the
results obtained for each two-by-two combination of
variables. It is important to note that tree variables do
not present a strong correlation with each other except
for the ExAC-COMMON pair (− 0.77) as shown above.

Complementarity of variables and variants of the
proposed model
Eleven new tree topologies were produced from rear-
rangements of the obtained topology. It is important to
note here that although the ExAC and COMMON
population variables have high discriminatory power
(ExAC: 95% pathogenic, 81% neutral, COMMON: 98%
pathogenic, 58% neutral) and represent a large amount
of information extracted from the ExAC and 1000 ge-
nomes, respectively, they do not present a significant
representativeness of populations with low sequencing
level. In our strategy, variants with low population fre-
quency are treated as pathogenic. Neutral high fre-
quency mutations in populations not yet sequenced,
however, would not have been described in these banks
and would therefore be misclassified as pathogenic.

As this interpretation could lead to high error rates in
future data, we discarded the trees that presented these
variables in the root node, limiting this position to the
variables SPP and NDamage. This resulted in twelve
possible topologies (the eleven cited plus our suggested
model). The accuracy, false positive rate, and false nega-
tive rate on ClinVar (version 2017-05-30) were calcu-
lated for each level of the trees, as shown in Table 2.

Discussion
Sequencing in clinical genomics
Bioinformatics provides an essential bridge between sci-
ence and delivery of relevant information for genomic
medicine in practical clinics [36, 38]. Only in England,
after 100.000 genomes project announcement [39], thir-
teen genomic medicine centers were opened in 2014
[36]. This leverage stands out due to the ever-developing
nature of health and the significant advancements in
omic sciences in the last 15 years [40]. Bioinformatics
had a fundamental role in the genomic revolution in the
last two decades [10], but still has a lot to accomplish
and contribute.
The large volume of data in genomic sequencing is

such that a huge task for any research center is to iden-
tify and categorize automatically all detected mutations
without an analyst or curator intervention. Aggregate
data and discoveries from many known sources can
speed up the process by which pathogenic genetic muta-
tions are identified, allowing a personalized treatment
approach for each patient [41]. Databases like DE-
CIPHER [42], COSMIC [43], HGMD [44], OMIN [45],
ClinVar [4], and NCBI dbGaP [46], can help to link gen-
etic mutations to known phenotypes. However, even
these databases are incipient, and cannot always be use-
ful for genes and mutations limited studied, or even
identified mutations in poorly studied populations [47].
The pathogenicity predictors seem to be an excellent

option for the determination of pathogenicity potential
of a variant of unknown meaning (VOUS, Variant of
Unknown Significance). This is a hot and active research
field: there are notoriously known predictors, such as
SIFT [13], Polyphen2 [14], PROVEAN [15], MetaSVM
[36], among others. However, conflicting predictions
among predictors and the average accuracy of 85% of
these strategies indicate that there is space for seeking
better accuracy via an automated process of pathogen-
icity determination [47].
We described in this work the modeling of a decision

tree and the discretization of variables (attributes from
database integration) to improve the average accuracy of
actual pathogenicity predictors. In our tests, when re-
sults from decision tree were compared to predictors,
decision tree reached higher precision in every tested
variable: 91% for True neutral, 9% for False neutral, 9%
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for False Pathogenic, and 91% for True Pathogenic
(Table S14). When we compared the proposed model
with ML algorithms (Table 1), we verified that its per-
formance is comparable to the best ones, because it has
an accuracy of 92%, slightly lower or equal than accur-
acies from Extreme Gradient Boosting and Ada Boost,
respectively, 93 and 92%. These rates are superior even
from a meta-predictor that unites results from various
predictors, the MetaSVM [36], whose results were: 69%
for True neutral, 10% for False neutral, 31% for False
Pathogenic, and 90% for True Pathogenic (Table 1). De-
cision tree exceptionally demonstrated high precision in
the classification of these data, consistently producing
relevant previsions for realized tests, which makes it an
excellent option for the determination of pathogenicity
potential of VOUS.
We also reevaluate the pathogenicity prediction poten-

tial of actual predictors, to highlight individual predic-
tion potential of tested variables (True Neutral, False
Neutral, False Pathogenic, and True Pathogenic) for each
predictor (Table 1). MetaSVM [36] has the highest iden-
tification rate of True Pathogenic (90%), while Poly-
phen2 [14] has the highest identification rate of True
Neutral (82%). MetaSVM has the lowest rate of False
Neutral (10%), while Polyphen2 [14] has the lowest rate
of False Pathogenic (18%).

Decision tree-based predictors vs. weighting-based
predictors
Weighting-based predictors, as the name suggests, ini-
tially perform a weighted sum up classifying input data,
submitting the result to an activation function, destined
to proper classification [48]. Decision Tree-based tech-
niques, on the other hand, organize datum variables in a

hierarchical data structure (tree), where each node cor-
responds to an “if-then” execution rule over a specific
variable of datum [26]. Given this definition, it can be
assumed that variables have a meaningful contribution
to the final result in weighting algorithms. Moreover, al-
terations in weights significantly impact the classification
result. Thus, every variable must be considered during
the analysis, which implies that weighting algorithms
have few or no flexibility in their design, because of in-
herently sensibility to value changes of weighting [48].
Diversely, the decision tree-based techniques provide

different classification methods, in which not all vari-
ables are considered in every case, making this ap-
proach much more feasible to classification problems,
especially with big data. In the proposed tree, if the re-
sult of SPP node considers that analyzed mutation is
neutral, it is not necessary to consider remaining vari-
ables. Therefore, this approach is not only flexible but
also efficient, once information volume to be processed
is reduced.
Another inherent advantage to decision trees is the

ease of manipulating it, adding or removing nodes
(rules) without necessarily affect its global performance
[49]. In the SPP node example, if a new node were added
in one branch of the tree, the classification processes
that go from the branch with a new rule would not
affect tree branches where the rule was not inserted,
which implies in performance preservation of that
branch. This same inclusion in a weighting-based algo-
rithm would influence in its whole performance raising a
real possibility of diminishing the efficiency in the classi-
fication of a set of cases previously correct classified, for
example, the comparison of prediction performance be-
tween Polyphen2 [14] and MetaSVM [36] (Table 1).

Table 2 Accuracies at each level of constructed tree topologies variants from our proposed model, according to ClinVar (version
2017-05-30)

Accuracy (%) FPR (%) FNR (%)

Topology Lv. 1 Lv. 2 Lv. 3 Lv. 4 Lv. 1 Lv. 2 Lv. 3 Lv. 4 Lv. 1 Lv. 2 Lv. 3 Lv. 4

SPP-ExAC-NDamage-COMMON (Proposed Tree) 74 91 90 91 30 8 11 9 10 11 9 9

SPP-ExAC-COMMON-NDamage 74 91 87 91 30 8 16 9 10 11 8 9

SPP-NDamage-ExAC-COMMON 74 78 79 79 30 7 2 4 10 32 33 32

SPP-NDamage-COMMON-ExAC 74 78 79 79 30 7 4 2 10 32 32 33

SPP-COMMON-ExAC-NDamage 74 87 91 91 30 15 8 9 10 8 11 9

SPP-COMMON-NDamage-ExAC 74 87 79 79 30 15 4 2 10 8 32 33

NDamage-SPP-ExAC-COMMON 78 78 79 79 7 7 2 4 32 32 33 32

NDamage-SPP-COMMON-ExAC 78 78 79 79 7 7 4 2 32 32 32 33

NDamage-ExAC-SPP-COMMON 78 79 78 79 7 2 7 4 32 33 32 32

NDamage-ExAC-COMMON-SPP 78 79 79 79 7 2 4 4 32 33 32 32

NDamage-COMMON-SPP-ExAC 78 79 79 79 7 4 4 2 32 32 32 33

NDamage-COMMON-ExAC-SPP 78 79 79 79 7 4 2 4 32 32 33 32
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It is essential to highlight that the inclusion of a new classi-
fying feature in weighting-based prediction algorithm would
imply in defining associated weight to that feature so as
complete re-balancing of the sum should be done. Consider-
ing that weighting predictors SIFT [13] and PROVEAN [15]
do not consider allowing the possibility of including new clas-
sifying features and add new features to them is an infeasible
task. It causes a negative impact because a significant part of
actual knowledge about mutations came from projects made
after their implementations and publications, i.e., ExAC [3],
1000genomes [34], and COSMIC [43], so these predictors
can be considered outdated. Therefore, the proposed predic-
tion method is a promising complementation to traditional
mutation prediction tools, since it presents excellent flexibility
in manipulating decision rules, as a way to enhance its pre-
dictive power. This improvement was demonstrated in the
correct classification percentages of the proposed tree, that
overcomes other traditional tools (Table 1).

Proposed tree versus ML algorithms
All machine-learning algorithms are presented as a black
box (in general, the user only executes them without
interfering with their functioning or understanding their
execution flow). The lack of this transparency, combined
with the high computational cost required for its use,
makes it difficult, in many cases, its direct use in clinical
practice. The proposed decision tree, in turn, is based on
biological precepts and simple data analysis to make a
decision. The simplicity of data processing, coupled with
accuracy, facilitates its application in clinical practice by
non-IT professionals.
The proposed model is organized from data that can be

easily obtained through web tools. For example, a physician,
from a sequencing clinical report, could collect through
web tools information on the variants in question, such as
allelic frequency (via ExAC and COMMON), as well as
submitting them to online versions of the classical predic-
tors used in this work. With the resulting data, he could
analyze them under the light of the proposed decision tree
to determine which of these variants are pathogenic, since
the model proposed here boils down to comparing the
values of such data with other values that are capable of
identifying a variant as pathogenic or benign.
Thus, the model presented in this paper has the poten-

tial for immediate practical application, compared to
more complex models provided by other machine-
learning algorithms. In this sense, it is intended, as fu-
ture objective, to implement a user-friendly tool that
automates the collection of this data, as well as execute
the proposed model on them.

Combinations of predictors
Because of the diversity of algorithms classes destined to
information prediction, it is natural that two different

predictors not always provide the same classification re-
sult for the same input data. In machine learning,
ensembles of classifiers term are given to the attempt to
combine the outputs of one or more prediction algo-
rithms. As reported by various works [50–54], this tech-
nique produces better results if compared to the use of
individual predictors. Two nodes from the proposed pre-
diction method in this work are ensembles. The first one
is the root, which combines predictions of SIFT [13],
Polyphen2 [14], and PROVEAN [15]. The second is
Ndamage, an ensemble of nine mutation classifiers. One
parameter that must be taken into consideration when
building an ensemble is the number of employed classi-
fiers because a high quantity can negatively impact the
predictor’s accuracy [55]. Although there are two ensem-
bles of compound-classifiers, it did not affect the overall
tree accuracy, and tree conjecture contribute to a con-
siderable decrease in false negatives rate to 9%, both in
Cross-Validation and Monte Carlo simulations (Tables
S14 and 1, respectively), and was fixed in distinct posi-
tions of the tree.
Another factor that contributed to such decision was

the goal of preserving tree branches that were already
providing positive results. As previously mentioned, the
SPP ensemble as root node contributed to the proposed
tree has low False Neutral rates. Although False Patho-
genic rates are still high (56%), tree flexibility character
independently allowed the decrease of it in other
branches, without affecting meaningfully True Patho-
genic. Based on this, the remaining of the proposed tree
focused on filtering neutral mutations, making it pos-
sible to classify with assurance a mutation as Pathogenic
at the end of the process. As new neutral classification
branches that contribute to diminishing False Pathogenic
were discovery through that strategy, they were pre-
served, and new branches for treating possible patho-
genic mutations were defined.

Conclusions
This paper showed that application of Machine Learning
on the available high-throughput data is a valuable tool for
biomedical research, and provides a significant case study
to other researchers that are dealing with similar discovery
challenges. A new method of pathogenicity classification of
the VOUS mutations is proposed in this work. The decision
tree, modeled as a classification process, was based on the
evaluation of statistical properties of input classifying vari-
ables obtained through data integration. Besides, we present
a comparative benchmark of the accuracy of the proposed
method concerning other prediction tools.
The proposed method was validated with the ClinVar

database [4], and its performance was compared to pre-
dictors SIFT [13], Polyphen2 [14], PROVEAN [15] and
MetaSVM [36], showing to be more accurate regarding
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the correct identification of pathogenic variants, with the
lowest False Pathogenic rate. This result is meaningful
because the classification of the mutation potential plays
a crucial role in response to treatment and diagnosis.
When compared to seventeen ML algorithms, the pro-
posed method kept as one of the bests in terms of accur-
acy, showing its high prediction potential.
For future works, it is intended to explore other vari-

ables not employed in this work for refining the built tree,
seeking to improve the method performance. Moreover, it
is also aimed to study and develop generator algorithms of
mutation prediction trees with optimal performance,
employing evolutionary computation techniques. This
methodology is being explored intensively in decision
trees design [56], and gene expression studies [57].
It is important to note that this work is focused on non-

synonymous mutations and VOUS pathogenicity classifica-
tion, aiming to identify potential deleterious variances.
However, the features discretization approach proposed in
this work enables the construction of other trees with dif-
ferent proposals, such as the search for variants involved in
genetic syndromes, just requiring the input of adequate
characteristic variables. Finally, when results from tests over
the decision tree were compared to the ones from predic-
tors with the same data, the decision tree reached the high-
est precision among all tested variables. The classification
of those data, whereas consistently provide relevant previ-
sions for realized tests, establish an alternative and more
precise option for determination of pathogenicity potential
of VOUS for the cancer research community.
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