
A Declarative Approach for QoS-Aware Web
Service Compositions�

Fabien Baligand1,2, Nicolas Rivierre1, and Thomas Ledoux2

1 France Telecom - R&D / MAPS / AMS,
38-40 rue du general Leclerc, 92794 Issy les Moulineaux, France
{fabien.baligand,nicolas.rivierre}@orange-ftgroup.com

2 OBASCO Group, EMN / INRIA, Lina
Ecole des Mines de Nantes,

4, rue Alfred Kastler, F - 44307 Nantes cedex 3, France
thomas.ledoux@emn.fr

Abstract. While BPEL language has emerged to allow the specification
of Web Service compositions from a functional point of view, it is still left
to the architects to find proper means to handle the Quality of Service
(QoS) concerns of their compositions. Typically, they use ad-hoc tech-
nical solutions, at the message level, that significantly reduce flexibility
and require costly developments. In this paper, we propose a policy-
based language aiming to provide expressivity for QoS behavioural logic
specification in Web Service orchestrations, as well as a non-intrusive
platform in charge of its execution both at pre-deployment time and at
runtime.

1 Introduction

BPEL language provides abstractions and guarantees to easily specify safe ser-
vice compositions, but its expressivity is limited to functional concerns of a
composition, implying that architects have to handle other concerns, such as
QoS management, by other means. QoS management, in the context of Web
Services, relates to a wide scope of properties such as performance, availability,
price or security. To guaranty the QoS of a relationship between a customer and
a service provider, a Service Level Agreement (SLA) that contains guarantees
and assumptions is negotiated.

Dealing with QoS in service compositions faces numerous challenges both at
pre-deployment time and at runtime. At pre-deployment time, architects have
to guaranty the QoS properties of the composite services and have to find local
services whose QoS satisfies to the global QoS. As discussed in [5], dealing with
the QoS properties combinatory is a complex task. Current works [2,4] focus
either on a bottom-up approach, that deduces the QoS of the composite service
out of local services QoS and the composition structure, either on a top-down

� This work was partially supported by the FAROS research project funded by the
French RNTL.

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 422–428, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



A Declarative Approach for QoS-Aware Web Service Compositions 423

approach, that aims to find a set of local services satisfying to the QoS of the
composite. However, both ways do not take into account architects advanced
requirements. For instance, the architects may want to specify QoS of some parts
of their orchestrations and may require that some local services are discovered
to match the global QoS. At runtime, QoS of local services is likely to vary,
and the orchestration client may use various paths in the BPEL flow execution.
Such variations lead to QoS variations of the composite service that need to be
dynamically counterbalanced. Also, QoS mechanisms such as security, reliable
messaging or transaction, which rely on WS-* protocols, are major features that
must be addressed.

Because BPEL language does not provide expressivity for QoS management,
architects cannot easily specify QoS requirements and behavioural logic in their
orchestrations. Instead, they handle QoS management at the message level, us-
ing different frameworks and languages: some specific platforms take care of
SLA documents, while SOAP filters contain QoS mechanisms implementation
and that BPEL engines may offer basic QoS features. Making all these frame-
works work together leads to code that lacks flexibility and portability, that
decreases loose coupling nature of the composition, and which is error-prone. To
provide the required expressivity for QoS management at the composition level,
we propose a language accurately targeting parts of the BPEL orchestrations.

In this paper, we present our approach that aims to be non-intrusive with
already existing infrastructures and languages. This approach offers a policy-
based language, called “QoSL4BP” (Quality of Service Language for Business
Processes), and a platform, namely “ORQOS” (ORchestration Quality Of Ser-
vice). The latest version of ORQOS platform has not been fully implemented yet,
but already existing components of previous versions have been used for proof
of concept purposes. The remainder of the paper is organized as follows: Sec-
tion 2 describes QoSL4BP language structure and primitives, Section 3 details
the three steps of ORQOS platform process, Section 4 illustrates our approach
with a scenario and Section 5 discusses the related works.

2 QoSL4BP Language

Design. To allow a seamless integration with BPEL language, and to increase
reusability and portability of our language, QoSL4BP language was designed as
a policy-based language. A policy consists in a declarative unit containing the
adaptation logic of a base process. It is commonly agreed that a policy contains
objectives to reach and actions to perform on a system. In our context, the
BPEL orchestration is divided into sub-orchestrations (called scopes), each scope
being addressed by a specific QoSL4BP policy, in order to allow the architect
to address well-delimited systems of the orchestration, to decompose the QoS
aggregation computation problem (described in section 3), and also to increase
policies reusability. Thus, QoSL4BP policies contain both static and dynamic
QoS behavioural logic, hence allowing architect to specify QoS constraints and
adaptation logic over scopes of the orchestration.



424 F. Baligand, N. Rivierre, and T. Ledoux

Structure. The structure of a QoSL4BP policy is composed of three sections,
as shown on Figure 1: The “SCOPE” section specifies the BPEL activity (basic
or structured) targeted by the policy, “INIT” section contains the initial QoS
settings of the scope, used at pre-deployment time, and “RULE” section embod-
ies Event-Condition-Action (ECA) rules. This section is performed at runtime
while the composition performs within the scope targeted by the policy.

POLICY policy name = {
SCOPE = { BPEL activity targeted by the policy }
INIT = { scope initial QoS settings }
RULE = {

(Condition)? -¿ (Action)+
}

}

Fig. 1. QoSL4BP Policy Template

Primitives. QoSL4BP language offers a limited set of context access and action
primitives, as illustrated on Figure 4. Conditions of rules are formed by test-
ing the context access primitives and can be composed with the usual boolean
operators. Context access primitives returns QoS data collected both at the
service and at the composition levels: REQUIRE and PROVIDE primitives
give information about the QoS mechanisms required and provided by a service;
SLAVIOLATION and SCOPEVIOLATION primitives respectively detect
if a SLA is violated and if the scope QoS initial settings are violated; USER,
EXCEPTION, RATE and LOOP primitives respectively returns informa-
tion about the user, QoS exceptions, branch rate of use in a switch activity, and
number of loops in a while activity. Action primitives allow the architect to spec-
ify QoS behavioural logic of the orchestration: PERFORM and PROCESS
primitives enforce QoS mechanisms for outbound and inbound SOAP messages;
SELECT, RENEGOTIATE and REPLANNING primitives respectively
enable to select a concrete service to use for an abstract service, to renegotiate a
concrete service to match an abstract service, and to perform QoS replanning to
satisfy to the scope QoS initial settings; FAIL and THROW primitives allow
to throw QoS exceptions to the customer and inside the orchestration.

3 ORQOS Platform Process

ORQOS platform process includes three steps. First, ORQOS platform stati-
cally singles out a set of concrete services to match the abstract services of
the orchestration whose QoS aggregation satisfies to the SLA of the composite
service, then it modifies the BPEL document to introduce monitoring activi-
ties at pre-deployment time, and finally ORQOS performs QoS adaptation at
runtime.



A Declarative Approach for QoS-Aware Web Service Compositions 425

QoS Planning. Let k be the number of services of the orchestration, and let n
be the number of potential concrete services that can implement each of services
of the orchestration, then the number of potential configurations to evaluate is
nk, making the problem NP-hard [5]. To bring answers to these issues, ORQOS
decomposes, using policies scopes, the computation of the composite service into
multiple computations at some “sub-composite” levels, and recomposes the so-
lutions afterwards. For decomposition, QoS initial settings of QoSL4BP policies
are considered both as expectations (for the local services contained in policies
scopes) and as guarantees (when evaluating the global QoS of the orchestration).
Thus, as shown in Figure 2, smaller aggregations are tested against the QoS ini-
tial settings of QoSL4BP policies, then the QoS aggregations of sub-composite
services are tested against the SLA of the composite service. Therefore, let p be
the number of policies, let ci(i ∈ [1; p]) be the number of services included in the
scope of policy i, and let c0 be the number of services which are not included
in any scope of policies, then the number of potential configurations ORQOS
has to evaluate is

∑p
i=0 nci , which is in Θ(nmax(ci)), meaning that, with a set of

appropriate scopes, testing each configuration with aggregation techniques, such
as presented in [2], becomes affordable.

Monitoring Sensors Insertion into BPEL. The second step of ORQOS plat-
form processing consists in inserting sensor activities at relevant places into the
BPEL document, to monitor performance of orchestration scopes and to inform
ORQOS at runtime. Such sensors are standard “invoke” activities that monitor
scope QoS, BPEL execution paths, and exceptions. They call an ORQOS sen-
sor manager interface, hence allowing ORQOS to collect data at runtime. As
shown on Figure 2, sensors are inserted into the BPEL document according to
the instructions specified in the “RULE” section of QoSL4BP policies. After this
transformation step, the BPEL document can be deployed on any BPEL engine.

Fig. 2. Pre-deployment Process Steps



426 F. Baligand, N. Rivierre, and T. Ledoux

QoS Adaptation at Runtime. Once the orchestration is deployed, the BPEL
engine exposes both a WSDL interface and an SLA offer for customers to in-
voke the composite service. As can be seen on Figure 3, a proxy layer has been
added for SLA monitoring, for WS-* mechanisms enactment, and for flexible
dynamic service binding. Thus, the proxy acts both as a sensor and an actuator
in partnership with ORQOS platform. Meanwhile, ORQOS platform is in charge
of processing the rules contained in QoSL4BP policies. It receives information
both from the proxy (SLA violation, usage of orchestration customers) and from
the BPEL engine via the sensors inserted at pre-deployment time . Upon satis-
faction of any of the rules conditions, the corresponding actions are performed,
hence allowing QoS to be readjusted at runtime.

Fig. 3. Runtime QoS Adaptation Step

4 Illustrative Scenario

Depicted in Figure 4, the “Personal Medical Records” scenario illustrates a Web
Service orchestration called by a doctor to get medical records of a patient.
Upon reception of the request, some registry services are called in parallel. Next,
a records management service that stores the medical records is called. Then,
a “while” activity calls a “fetcher” service to collect the corresponding medical
items. Finally, a folder containing the list of items is assembled by an “archiver”
service, and is sent by an FTP delivery or a mailing service.

Policy “guarantyFlow” targets the flow(“registry”) activity, describes the
QoS settings of the scope (response time below three seconds per request,
throughput exceeding one hundred of requests per second) and specifies message
encryption (using WS-Security) as well as a rule specifying scope QoS replan-
ning if any service SLA is violated. Policy “adapt2loop” specifies a number
of loops (five) for static computation. Depending on the number of loops per-
formed at runtime, it renegotiates with the “fetcher” service or throws an ex-
ception in the orchestration. The “archiver” service can be implemented by two
services (“ZIPService” and “RARService”) that do not come with SLA. Policy
“noSLA” specifies the expected QoS for static computation, and implements
the service selection logic (“ZIPService” can hold a forty requests per second
throughput while “RARService” shows better performance) depending on the



A Declarative Approach for QoS-Aware Web Service Compositions 427

Fig. 4. “Personal Medical Records” Orchestration and QoSL4BP Policies

usage of orchestration customers. Also, it specifies that an exception should be
thrown if the static QoS properties are violated. Policy “branching” con-
tains the initial rates of use of the “switch” branches for static computation
(“FTPSender” service is initially called four times more than the “MailSender”
service). At runtime, WS-ReliableMessaging protocol is specified for each service
of the scope and the QoS of services has to readjust according to the rates of
use of the branches.

5 Related Works

In [3], the authors have elaborated a language named “Aspect Oriented for
Business Process Execution Language” (AO4BPEL) that allows BPEL aspects
specification calling non functional mechanisms, such as security (using infras-
tructural services that modify SOAP messages). This work is different from
ours because the framework requires a purposely built BPEL engine, it uses an
imperative language to specify extra-functional requirements, and it does not
address performance requirements. In [1] the authors propose a policy assertion
language, “WS-CoL” (Web Services Constraint Language), based on WS-Policy
and specifically designed to be used in monitoring BPEL processes. The approach
is similar to ours in that a non intrusive manager, in charge of the evaluation
of policies, is called by standard BPEL invoke activities. However, the authors
focus on monitoring and only consider security assertions (WS-SecurityPolicy).

In [2] the authors propose a QoS prediction algorithm consisting of a set of
graph reduction rules applied to the composite constructs of a workflow. Upon
only one atomic service remains, QoS properties corresponding to the process
are exposed. We use a similar reduction approach as it enables fast workflow
QoS estimation, but we adapt it to take into account dynamic replanning and



428 F. Baligand, N. Rivierre, and T. Ledoux

objective functions, such as architects constraints. In [4] the authors propose a
method allowing to select concrete services so that QoS aggregation is optimized
and that the global constraints are satisfied, either by a local optimal selection
for each individual abstract service, either by global planning optimization of
the composite service as a whole but at the price of higher computational cost.
As discussed in [6,5], such solution cannot be considered when the number of ab-
stract or candidate services is large. Our approach is similar but takes advantage
of the orchestration decomposition process to apply global planning to limited
parts of the workflow. Although such decomposition might lead to suboptimal
solutions, it significantly improves the performances.

6 Conclusion

Although QoS management in service compositions is crucial, architects still lack
means to address this concern in a flexible and reusable manner. Our solution
aims to provide expressivity to address the QoS management concerns of service
compositions. Our first contribution is the QoSL4BP language, allowing to spec-
ify QoS policies over scopes of BPEL orchestrations. Execution of the QoSL4BP
language is performed by the ORQOS platform, designed to be non intrusive
with already existing infrastructures. At pre-deployment time, ORQOS guaran-
tees the static QoS properties of the orchestration and singles out a relevant set
of concrete services. At runtime, ORQOS platform monitors the execution en-
vironment and processes policies rules enabling QoS mechanisms management,
SLA renegotiation and QoS exception handling.

References

1. Baresi, L., Guinea, S., Plebani, P.: Ws-policy for service monitoring. In: Bussler,
C., Shan, M.-C. (eds.) TES 2005. LNCS, vol. 3811, pp. 72–83. Springer, Heidelberg
(2006)

2. Cardoso, J., Sheth, A.P., Miller, J.A., Arnold, J., Kochut, K.: Quality of service for
workflows and web service processes. J. Web Sem. (2004)

3. Charfi, A., Schmeling, B., Heizenreder, A., Mezini, M.: Reliable, secure, and trans-
acted web service compositions with ao4bpel. In: ECOWS. Proceedings of the 4th
IEEE European Conference on Web Services, December 2006, IEEE Computer So-
ciety Press, Los Alamitos (2006)

4. Zeng, L., et al.: Qos-aware middleware for web services composition. IEEE Trans.
Softw. Eng. 30(5), 311–327 (2004)

5. Jaeger, M.: Optimising Quality-of-Service for the Composition of Electronic Ser-
vices. PhD thesis, Berlin University of Technology (January 2007)

6. Yu, T., Lin, K.-J.: Service selection algorithms for web services with end-to-end qos
constraints. In: CEC’04. CEC ’04: Proceedings of the IEEE International Conference
on E-Commerce Technology, Washington, DC, USA, pp. 129–136. IEEE Computer
Society Press, Los Alamitos (2004)


	A Declarative Approach for QoS-Aware Web Service Compositions
	Introduction
	QoSL4BP Language
	ORQOS Platform Process
	Illustrative Scenario
	Related Works
	Conclusion
	References


